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Abstract
Consider a balance law where the flux depends explicitly on the space variable. At jump
discontinuities, modeling considerations may impose the defect in the conservation of some
quantities, thus leading to non conservative products. Below, we deduce the evolution in the
smooth case from the jump conditions at discontinuities. Moreover, the resulting framework
enjoys well posedness and solutions are uniquely characterized. These results apply, for
instance, to the flow of water in a canal with varying width and depth, as well as to the
inviscid Euler equations in pipes with varying geometry.
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Nonhomogeneous Balance laws with measure source term
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1 Introduction

The flow of water in a canal of smoothly varying width and smoothly varying bed elevation
is described by the following balance law
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⎧
⎨

⎩

∂t a + ∂x q = 0

∂t q + ∂x

(
q2

a
+ 1

2
g

a2

σ

)

= 1

2
g

a2

σ 2 ∂xσ − g a ∂x b ,
(1.1)

see [19, Formula (1.1)]. Here g is gravity, t is time, x is the longitudinal coordinate along the
canal, a = a(t, x) is the wetted cross sectional area, q = q(t, x) is the water flow, σ = σ(x)

is the canal width and b = b(x) is the height of the bottom.
The presence of discontinuities in the channel width σ or in the bed elevation b prevents

the application of standard theorems to (1.1). Indeed, discontinuities arise in the flux and
non conservative products appear in the source term. As is well know the latter terms lack a
unique way to be defined. As a reference to non conservative products, we refer to [12, 18].

In the present work, we construct a framework where (1.1) has a meaning and is well
posed, requiring σ and b to be merely of bounded variation.

Whenever σ and b are piecewise constant with jumps at, say, x̄1, . . . , x̄N , equation (1.1)
fits into the non–homogeneous system of conservation laws

∂t u + ∂x f (ζ(x), u) = 0 x ∈ R \ {x̄1, . . . , x̄N },
equipped with suitable conditions

� (ζ(x̄i+), u(t, x̄i+), ζ(x̄i−), u(t, x̄i−)) = 0 for a.e. t > 0 and i = 1, . . . , N (1.2)

where ζ is as in (1.9).
This junction condition, thanks to to the assumptions below, by [8, Lemma 4.1] and by

an immediate extension of [8, Lemma 4.2], can be reformulated as

f (ζ(x̄+), u(t, x̄+)) − f (ζ(x̄−), u(t, x̄−)) = �
(
ζ(x̄+), ζ(x̄−), u(t, x̄−)

)
for a.e. t > 0

(1.3)
where x̄ is any point of jump and � measures the defect in the conservation of u at x̄ .

We show that choosing (1.3) actually singles out the source term in (1.5) below, which
accounts both for the smooth changes as well as for the points of jump in ζ . In the case
of (1.1), this amounts to show that a careful choice of � allows to extend (1.1) to the case of
σ and b in BV.

More precisely, when ζ ∈ BV(R;Rp) and given a piecewise constant approximation ζ h

of ζ with finite number of jumps located at x̄ ∈ I(ζ h), we obtain the following balance law
with measure-valued source term

⎧
⎨

⎩

∂t u + ∂x f (ζ h, u) = ∑

x̄∈I(ζ h)

�
(
ζ h(x̄+), ζ h(x̄−), u(·, x̄−)

)
δx̄

u(0, x) = uo(x),
(1.4)

where δx̄ denotes the Dirac measure at x̄ .
In the general - non characteristic - setting established below, solutions to (1.4) are shown

to converge as ζ h converges to ζ in a suitable - strong - sense, to solutions to
{

∂t u + ∂x f (ζ, u) = ∑

x̄∈I(ζ )

� (ζ(x̄+), ζ(x̄−), u(·, x̄−)) δx̄ + D+
v �(ζ, ζ, u) ‖μ‖

u(0, x) = uo(x) .
(1.5)

The terms in the singular source term above are defined as follows. Since ζ ∈ BV(R;Rp),
the right and left limits ζ(x̄+) and ζ(x̄−) are well defined and the distributional derivative
Dζ can be split in a discrete part and a non discrete one, which may contain a Cantor part:

Dζ =
∑

x̄∈I(ζ )

(ζ(x̄+) − ζ(x̄−)) δx̄ + v ‖μ‖ , (1.6)
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where the function v is Borel measurable with norm 1 and μ is the non atomic part of Dζ .
In (1.5) we also used the (one sided) directional derivative

D+
v �(z, z, u) = lim

t→0+
�(z + t v, z, u) − �(z, z, u)

t
. (1.7)

A preliminary result was obtained in [8], where a sequence of solutions to (1.4) is shown
to converge to a solution to (1.5). Here, we extend the framework in [8] considering space
dependent fluxes, prove that (1.4) generates a Lipschitz semigroup, say Sh , and show the
convergence of Sh to a semigroup whose orbits solve (1.5). Moreover, we provide a full
characterization of the solutions to (1.5) in terms of integral inequalities, in the spirit of [4].

The present results comprise the case of balance laws with a space dependent flux and a
non conservative source term of the type

∂t u + ∂x f (ζ, u) = Dζ G(ζ, u) Dζ (1.8)

see [8, § 3.4]. Setting p = 2, Z =]0,+∞[×R and

ζ(x) =
[
1/σ(x)

b(x)

]

and G (z, (a, q)) =
[

0
− 1

2 g a2 z1 − g a z2

]

(1.9)

we see that (1.1) fits into (1.8):
⎧
⎨

⎩

∂t a + ∂x q = 0

∂t q + ∂x

(
q2

a
+ 1

2
g ζ1 a2

)

= −1

2
g a2 ∂xζ1 − g a ∂xζ2

(1.10)

and hence our main result, Theorem 2.3, applies setting, for instance,

�(z+, z−, u−) = G(z+, u−) − G(z−, u−).

As noted in [8, Section 3], different choices of � may yield different solutions emanating
from discontinuities in ζ while giving the same solutions wherever ζ is smooth.

Moreover, all the applications considered in [8, Section 3] fall within the scope of Theo-
rem 2.3. They are the classical p-system, i.e., isentropic gas dynamics, in a pipe with varying
section or with bends, see also [17], as well as the full Euler compressible system in pipes,
see also [15].

Thus, in addition to the existence of solutions proved in [8], here we also ensure the
Lipschitz continuous dependence of the solutions on the initial data. Further, we provide a
characterization of the solutions by means of the integral relations (i) and (ii) in Theorem 2.3.
These results hold under assumptions on the source terms that are strictly weaker than those
in [1]. Moreover, the present construction encompasses fluxes explicitly depending on the
space variable.

2 Hypotheses andMain Theorem

Here, for a real number x , |x | is its absolute value, while ‖v‖ is the Euclidean norm of a
vector v and ‖μ‖ is the total variation of a measure μ. The open ball inRn centered at u with
radius δ is denoted by B(u; δ), its closure is B(u; δ). We also use the following notation for
left/right limits and for differences at a point:

F(x−) = lim
ξ→x− F(ξ) , F(x+) = lim

ξ→x+ F(ξ) and 	F(x) = F(x+) − F(x−).
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Throughout, we choose the left–continuous representatives of BV functions.
The problem we tackle is defined by the flow f and by the functions � and ζ . Here we

detail the key assumptions,
 being an open convex subset ofRn andZ a convex open subset
of Rp:

(f.1) f ∈ C4(Z × 
;Rn);
(f.2) the Jacobian matrix Du f (z, u) is strictly hyperbolic for every z ∈ Z and u ∈ 
;
(f.3) each characteristic field is either genuinely nonlinear or linearly degenerate for all

z ∈ Z.

In the latter assumption we refer to the classical definitions by Lax [16], see also [11, § 7.5].
By (f.1) and (f.2) we know that, possibly restricting 
, the eigenvalues λ1(z, u), . . . ,

λn(z, u) of Du f (z, u) depend smoothly on z and can be indexed so that, for all u ∈ 
 and
z ∈ Z,

λ1(z, u) < λ2(z, u) < · · · < λn(z, u).

We thus require the usual non resonance condition

(f.4) there exists io ∈ {1, . . . , n − 1} such that λio(z, u) < 0 < λio+1(z, u) for all z ∈ Z and
all u ∈ 
.

Note that both the cases of characteristic speeds being either all positive or all negative are
simpler.

On the function � in (1.3), used to rewrite the coupling condition induced by �, we
require:

(�.1) � : Z × Z → C1(
;Rn) is a Lipschitz continuous map and � : Z × Z →
C2(
;Rn);
(�.2) supz+,z−∈Z

∥
∥�(z+, z−, ·)∥∥C2(
;R)

< +∞;
(�.3) �(z, z, u) = 0 for every z ∈ Z and u ∈ 
;
(�.4) there exists a non decreasing map σ : [0, t̄[→ R with limt→0 σ(t) = 0 such that
for all (z, v, u) ∈ Z × B(0; 1) × 


∥
∥�(z + t v, z, u) − D+

v �(z, z, u) t
∥
∥ ≤ σ(t) t

and moreover the map (z, v, u) → D+
v �(z, z, u) is Lipschitz continuous.

In the latter condition, recall the definition (1.7) of the Dini right derivative. Our requiring
this low regularity, i.e. the mere existence of the Dini derivative rather than differentiability,
is motivated by the example of a pipe with angles, where � depends on

∥
∥z+ − z−∥

∥, see [8,
Section 3.1].

In Problem (1.5) we require that ζ ∈ BV(R;Z). Throughout, the map ζ is assumed to be
left continuous and the set of jump discontinuities in ζ is denoted by I(ζ ), with I(ζ ) ⊂ R.

We now precisely state what we mean by solution to (1.5).

Definition 2.1 Let uo ∈ L1
loc(R;Rn). A map u ∈ C0([0,+∞[;L1

loc(R;Rn)) with u(t) ∈
BV(R;Rn) and left continuous for all t ∈ R+, is a solution to (1.5) if for all test functions
ϕ ∈ C1

c(]0,+∞[×R;R),

−
∫ +∞

0

∫

R

(u(t, x) ∂tϕ(t, x) + f (ζ(x), u(t, x)) ∂xϕ(t, x)) dxdt

=
∑

x̄∈I(ζ )

∫ +∞

0
�(ζ(x̄+), ζ(x̄), u(t, x̄)) ϕ(t, x̄)dt

+
∫ +∞

0

∫

R

D+
v(x)� (ζ(x), ζ(x), u(t, x)) ϕ(t, x) d‖μ‖(x) dt (2.1)
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where v, μ are as in (1.6), and moreover u(0) = uo.

In the last integral in (2.1), the integrand is Borel measurable in (t, x) since, for instance,
by the above assumptions on u, we have at every (t, x) ∈ R+ × R

u(t, x) = lim
h→0

1

h

∫ x

x−h
u(t, y) dy.

Moreover, Borel measurability on R
2 ensures measurability with respect to the product

measure.
Note that the value of the integrand in the first line in (2.1) is independent of changes of

the integrand on sets of Lebesgue measure 0 in R
2, while the latter integrand is integrated

with respect to the product measure ‖μ‖ ⊗ dt . Nevertheless, (2.1) is meaningful, since u is
prescribed pointwise, at every point and not merely almost everywhere.

The above definition is known not to guarantee uniqueness. Nevertheless, Theorem 2.3
below does guarantee uniqueness, relying on an extension to the case of (1.5) the precise
characterization originally provided in [4] for homogeneous systems of conservation laws.

Definition 2.2 By Generalized Riemann Problem we mean the Cauchy Problem (1.5) with
ζ and the initial datum uo as follows:

ζ(x) = z− χ]−∞,0[(x) + z+ χ]0,+∞[(x) and uo(x) = u� χ]−∞,0[(x) + ur χ]0,+∞[(x).

(2.2)
For z ∈ Z and u ∈ 
, call σi → Hi (z, σi )(u) the Lax curve of the i–th family w.r.t. f (z, ·)
exiting u, see [5, § 5.2] or [11, § 9.3]. For σσσ ≡ (σ1, . . . , σn), we use below the notation

H(z,σσσ) = Hn(z, σn) ◦ Hn−1(z, σn−1) ◦ · · · ◦ H2(z, σ2) ◦ H1(z, σ1) (u) . (2.3)

Introduce recursively the states w0, . . . , wn+1 ∈ 
 with w0 = u�, wn+1 = ur and
⎧
⎨

⎩

wi+1 = Hi+1(z+, σi+1)(wi ) if i = 0, . . . , io − 1,
f (z+, wio+1) − f (z−, wio) = �(z+, z−, wio)

wi+1 = Hi (z−, σi )(wi ) if i = io + 1, . . . , n .

(2.4)

We thus define as Admissible Solution to the Generalized Riemann Problem (1.5)–(2.2) the
gluing along x = 0 of the Lax solutions to the (standard) Riemann Problems
{

∂t u + ∂x f (z−, u) = 0
u(0, x) = u�χ]−∞,0[(x) + wioχ]0,+∞[(x),

{
∂t u + ∂x f (z+, u) = 0
u(0, x) = wio+1χ]−∞,0[(x) + urχ]0,+∞[(x).

Throughout, we refer to the stationary jump discontinuities due to jumps in z as to zero waves.
Below, Lemma 3.3 ensures that, with the above definition, the Generalized Riemann

Problem (1.5)–(2.2) turns out to be well posed.
Aiming at the characterization of solutions to (1.5), we now extend to the present case

the general definitions introduced in [4], see also [5, Chapter 9]. Fix ζ ∈ BV(R;Z) and
a function u = u(t, x) with u(t) ∈ BV(R;
) for all t and a point (τ, ξ) ∈ [0,+∞[×R.
Define the function U �

(u;τ,ξ)
as the solution to the generalized Riemann Problem

⎧
⎨

⎩

∂tU + ∂x f (ζ(ξ), U ) = �(ζ(ξ+), ζ(ξ), u(t, ξ−)) δξ

U (0, x) =
{

u(τ, ξ−) x < ξ ;
u(τ, ξ+) x > ξ .

(2.5)
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Note that if ξ /∈ I(ζ ), then the right hand side in (2.5) vanishes due to (�.2) and the above
definition ofU �

(u;τ,ξ)
reduces to the classical one in [4, Chapter 9] related to the homogeneous

flow u → f (ζ(ξ), u).
We define the function U �

(u;τ,ξ)
as the unique solution, see Lemma 3.17, to the following

linear hyperbolic problem with constant coefficients and measure-valued source term
{

∂tU + A ∂xU = g
U (0, x) = u(τ, x)

(2.6)

with A = Du f (ζ(ξ), u(τ, ξ)) and g is the stationary vector measure such that for any Borel
subset E of R,

g(E) =
∑

x̄∈I(ζ )

(� (ζ(x̄+), ζ(x̄), u(τ, ξ)) − f (ζ(x̄+), u(τ, ξ)) + f (ζ(x̄), u(τ, ξ))) δx̄ (E)

+
∫

E

(
D+

v(x)� (ζ(x), ζ(x), u(τ, ξ)) − Dz f (ζ(x), u(τ, ξ)) v(x)
)
d‖μ‖(x).

(2.7)
where we used the same notation as in (1.6) and (1.7).

We are now ready to state the main result of this work.

Theorem 2.3 Let f satisfy (f.1)–(f.4), � satisfy (�.1)–(�.4). Fix z̄ ∈ Z, ū ∈ 
. Then, there
exist positive δ and L such that for any ζ ∈ BV(R;Z) with TV(ζ ) < δ and ‖ζ(x) − z̄‖ < δ

there exists a domain Dζ ⊆ ū + L1(R;
) containing all functions u in ū + L1(R;
) with
TV(u) < δ and a semigroup Sζ : R+ × Dζ → Dζ such that

1. For all uo ∈ Dζ , the orbit t → Sζ
t uo solves (1.5) in the sense of Definition 2.1.

2. Sζ is L1–Lipschitz continuous, i.e. for all uo, u1
o, u2

o ∈ Dζ and for all t, t1, t2 ∈ R+
∥
∥
∥Sζ

t u1
o − Sζ

t u2
o

∥
∥
∥
L1(R;Rn)

≤ L
∥
∥u1

o − u2
o

∥
∥
L1(R;Rn)

;
∥
∥
∥Sζ

t1uo − Sζ
t2uo

∥
∥
∥
L1(R;Rn)

≤ L |t1 − t2|.
3. If ζ ∈ PC(R;Z) and uo ∈ PC(R;
), then for t sufficiently small, the map (t, x) →

(Sζ
t uo)(x) coincides with the gluing of Admissible Solutions, in the sense of Defini-

tion (2.2), to Generalized Riemann Problems at the points of jumps of uo and of ζ .

Moreover, let λ̂ be an upper bound for the (moduli of) characteristic speeds and define
u(t, x) = (Sζ

t uo)(x). Then, for every (τ, ξ) ∈ R+ × R,

(i)

lim
ϑ→0

1

ϑ

∫ ξ+ϑλ̂

ξ−ϑλ̂

∣
∣
∣u(τ + ϑ, x) − U �

(u;τ,ξ)
(ϑ, x)

∣
∣
∣dx = 0.

(ii) There exists a constant C such that for every a, b ∈ R with a < ξ < b and for every
ϑ ∈]0, (b − a)/(2λ̂)[,

1

ϑ

∫ b−ϑλ̂

a+ϑλ̂

∣
∣
∣u(τ + ϑ, x) − U �

(u;τ,ξ)
(ϑ, x)

∣
∣
∣dx

≤ C [TV (u(τ ), ]a, b[) + TV (ζ, ]a, b[)]2 .

If u : [0, T ] → D� is L1–Lipschitz continuous and satisfies (i) and (ii) for almost every time
τ and for all ξ ∈ R, then t → u(t, ·) coincides with an orbit of the semigroup Sζ .
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Note that whenever ζ is piecewise constant, the properties 1., 2. and 3. above uniquely
characterize the semigroup Sζ , see Lemma 3.14.

3 Proofs

Below,O(1) denotes a constant depending exclusively on f , � and on a neighborhood of ū.
By λ̂ we denote an upper bound for (the moduli) of characteristic speeds.

3.1 Preliminary Results

First, we recall a Lipschitz-type estimate on the map �, of use throughout this paper.

Lemma 3.1 ([8, Lemma 4.3]) Let W ⊂ R
m be non empty, open, bounded and convex. Let

ϕ : Z × Z → C1(W ;Rn) be Lipschitz continuous and such that ϕ(z, z, w) = 0 for every
z ∈ Z and w ∈ W . Then,

∥
∥ϕ(z+, z−, w)

∥
∥ ≤ O(1)

∥
∥z+ − z−∥

∥
∥
∥ϕ(z+, z−, w2) − ϕ(z+, z−, w1)

∥
∥ ≤ O(1)

∥
∥z+ − z−∥

∥ ‖w2 − w1‖ .
(3.1)

Proof Sinceϕ(z−, z−, w) = 0,we have
∥
∥ϕ(z+, z−, w)

∥
∥ = ∥

∥ϕ(z+, z−, w) − ϕ(z−, z−, w)
∥
∥

and the first inequality in (3.1) follows by the global Lipschitz continuity of ϕ with respect
to the z variables.

Observe that Dwϕ(z−, z−, w) = 0. Hence, using again the Lipschitz continuity of ϕ,
∥
∥ϕ(z+, z−, w2) − ϕ(z+, z−, w1)

∥
∥

=
∥
∥
∥
∥

∫ 1

0
Dwϕ

(
z+, z−, w2 + ς(w1 − w2)

)
(w1 − w2)dς

∥
∥
∥
∥

=
∥
∥
∥
∥

∫ 1

0

[
Dwϕ

(
z+, z−, w2 + ς(w1 − w2)

)

−Dwϕ
(
z−, z−, w2 + ς(w1 − w2)

)]
(w1 − w2)dς

∥
∥

≤ O(1)
∥
∥z+ − z−∥

∥ ‖w2 − w1‖ .

�
Note that (�.1) and (�.3) are stronger than the assumptions in Lemma 3.1, so that �

satisfies (3.1).
Introduce a map T related to the generalized Riemann Problem.

Lemma 3.2 Let f satisfy (f.1)–(f.4) and � satisfy (�.1), (�.3). Then, for any z̄ ∈ Z and
ū ∈ 
, there exists δ > 0 and a Lipschitz map T : B(z̄; δ)2 → C2 (B(ū; δ);
) such that

⎧
⎪⎨

⎪⎩

f (z+, u+) − f (z−, u−) = �(z+, z−, u−)

z+, z− ∈ B(z̄; δ)

u+, u− ∈ B(ū; δ)

⇐⇒ u+ = T (z+, z−)(u−) . (3.2)

Furthermore,

1. T (z, z)(u) = u and the map (z+, z−, u) → T (z+, z−)(u) − u satisfies the assumptions
of Lemma 3.1.
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2. The following expansion holds:

f (z+, u∗) − f (z−, u∗) − �(z+, z−, u∗) + Du f (z∗, u∗)
(
T (z+, z−)(u) − u

)

= O(1)
∥
∥z+ − z−∥

∥
(∥
∥z+ − z∗∥∥ + ∥

∥z+ − z−∥
∥ + ∥

∥u − u∗∥∥)

Proof (This Lemma is an extension of [8, Lemma 4.4] to the case f dependent on z, too.)
Since ū ∈ 
, (f.1) and (f.2) ensure that the function u → f (z, u) has a local C2 inverse

ϕ, in the sense that ϕ (z, f (z, u)) = u, for z sufficiently close to z̄. Define

T (z+, z−)(u−) = ϕ
(
z+, f (z−, u−) + �(z+, z−, u−)

)
. (3.3)

T enjoys the required Lipschitz regularity and moreover

T (z, z)(u) = ϕ (z, f (z, u) + �(z, z, u)) = ϕ (z, f (z, u)) = u.

To prove 2., rewrite

f (z+, u∗)− f (z−, u∗)−�(z+, z−, u∗)+ Du f (z∗, u∗)
(
T (z+, z−)(u) − u

) = E1+E2 +E3
(3.4)

where we used the definition of T and set

E1 = f (z+, u∗) − f
(
z+, T (z+, z−)(u∗)

) + Du f (z+, u∗)
(
T (z+, z−)(u∗) − u∗)

E2 = −Du f (z+, u∗)
(
T (z+, z−)(u∗) − u∗) + Du f (z∗, u∗)

(
T (z+, z−)(u∗) − u∗)

E3 = −Du f (z∗, u∗)
(
T (z+, z−)(u∗) − u∗) + Du f (z∗, u∗)

(
T (z+, z−)(u) − u

)

By a Taylor expansion, we have:

‖E1‖ ≤ O(1)
∥
∥T (z+, z−)(u∗) − u∗∥∥2

= O(1)
∥
∥z+ − z−∥

∥2.

Concerning E2,
‖E2‖ = ∥

∥Du f (z+, u∗) − Du f (z∗, u∗)
∥
∥
∥
∥T (z+, z−)(u∗) − u∗∥∥

≤ O(1)
∥
∥z+ − z∗∥∥ ∥

∥z+ − z−∥
∥.

Finally, by Lemma 3.1

‖E3‖ = ∥
∥Du f (z∗, u∗)

∥
∥
∥
∥
(
T (z+, z−)(u∗) − u∗) − (

T (z+, z−)(u) − u
)∥
∥

≤ O(1)
∥
∥z+ − z−∥

∥
∥
∥u − u∗∥∥,

completing the proof. �
As a consequence, we also prove the well posedness of the Generalized Riemann Prob-

lem (1.5)–(2.2).

Lemma 3.3 Let f satisfy (f.1)–(f.4) and � satisfy (�.1). Then, there exists a positive δ such
that if u�, ur ∈ 
 and z+, z− ∈ Z satisfy

‖u� − ur‖ ≤ δ,
∥
∥z+ − z−∥

∥ ≤ δ,

then, the Generalized Riemann Problem (1.5)–(2.2) admits a unique solution in the sense of
Definition 2.2. Moreover, the waves’ sizes (σ1, . . . , σn) and the states (w1, . . . , wn) in (2.4)
exist, are uniquely defined and are Lipschitz continuous functions of z+, z−, ur , u�.

Proof Simply rewrite (2.4) by means of (3.2) to use [1, Lemma 3]. �
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The following notation is of use below:

(σ1, . . . , σn) = E(z+, z−, ur , u�) . (3.5)

We separate the waves with negative (σσσ ′) or positive (σσσ ′′) propagation speed as follows:

σσσ ′ = (σ1, . . . , σio , 0, . . . , 0), σσσ ′′ = (0, . . . , 0, σio+1, . . . , σn),

σσσ = σσσ ′ + σσσ ′′ ∈ R
n .

(3.6)

Given two n-tuples of waves ααα and βββ, the waves i with size αi �= 0 and j with size β j �= 0
are approaching whenever i > j or i = j , the i–th family is genuinely nonlinear and
min

{
αi , β j

}
< 0, see [5, § 7.3] or [11, § 9.9]. Call Aααα,βββ the set of these pairs (i, j).

Lemma 3.4 ([21, Theorem p. 30]) Let ϕ ∈ C2,1(B(0, δ̄) × B(0, δ̄);Rm) be such that

ϕ(ααα,βββ) = 0 for all ααα,βββ with Aααα,βββ = ∅ . (3.7)

Then, for all ααα,βββ

‖ϕ(ααα;βββ)‖ ≤ O(1)
∑

(i, j) : i> j

∣
∣αi β j

∣
∣ + O(1) (‖ααα‖ + ‖βββ‖)

∑

i : min{αi ,βi }<0
gen. nonl.

|αi βi |.

Proof Observe that for all ααα,βββ in B(0, δ̄), we have Aααα,0 = A0,βββ = ∅. Hence,
ϕ(ααα; 0) = ϕ(0;βββ) = 0 and ∂αi ϕ(ααα; 0) = ∂β j ϕ(0;βββ) = 0

for all i, j = 1, . . . , n. Following [21], we have

‖ϕ(ααα;βββ)‖
= ‖ϕ(ααα;βββ) − ϕ(ααα; 0)‖

≤
n∑

i=1

‖ϕ(α1, . . . , αi , 0, . . . , 0;βββ) − ϕ(α1, . . . , αi−1, 0, . . . , 0;βββ)‖

≤
n∑

i=1

∫ αi

0

∥
∥∂αi ϕ(α1, . . . , αi−1, a, 0, . . . , 0;βββ)

∥
∥da

=
n∑

i=1

∫ αi

0

∥
∥∂αi ϕ(α1, . . . , αi−1, a, 0, . . . , 0;βββ)

−∂αi ϕ(α1, . . . , αi−1, a, 0, . . . , 0; 0)∥∥ da

≤
n∑

i=1

n∑

j=1

∫ αi

0

∥
∥∂αi ϕ(α1, . . . , αi−1, a, 0, . . . , 0; 0, . . . , 0, β j , . . . , βn)

−∂αi ϕ(α1, . . . , αi−1, a, 0, . . . , 0; 0, . . . , 0, β j+1, . . . , βn)
∥
∥ da

≤
n∑

i=1

n∑

j=1

∫ αi

0

∫ β j

0

∥
∥∂αi ∂β j ϕ(α1, . . . , αi−1, a, 0,

. . . , 0; 0, . . . , 0, b, β j+1, . . . , βn)
∥
∥ dbda

≤
∑

(i, j)∈Aααα,βββ

∫ αi

0

∫ β j

0

∥
∥∂αi ∂β j ϕ(α1, . . . , αi−1, a, 0,
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. . . , 0; 0, . . . , 0, b, β j+1, . . . , βn)
∥
∥ dbda

≤ ∥
∥D2ϕ

∥
∥
C0

∑

i> j

∣
∣αi β j

∣
∣ + Lip(D2ϕ) (‖ααα‖ + ‖βββ‖)

∑

i : min{αi ,βi }<0
gen. nonl.

∣
∣αi β j

∣
∣.

Above, we noted that some terms in the latter double sum vanish by (3.7), since

(i, j) /∈ Aααα,βββ �⇒ Aα1,...,αi−1,a,0,...,0;0,...,0,b,β j+1,...,βn = ∅ for all
a between 0 and αi ;
b between 0 and β j .

In the terms with i > j , we use a standard estimate bounding the integral by means of the
C0 norm. We are left with the terms with i = j , the i–th field is genuinely nonlinear and
min{αi , βi } < 0. In this case, (3.7) ensures that

ϕ(α1, . . . , αi−1, a, 0, . . . , 0; 0, . . . , 0, b, βi+1, . . . , βn) = 0 for all a ≥ 0 and b ≥ 0.

Hence ∂α1∂βi ϕ(0; 0) = 0 and
∥
∥∂αi ∂βi ϕ(ααα,βββ)

∥
∥ ≤ Lip(D2ϕ) (‖ααα‖ + ‖βββ‖). �

Lemma 3.5 ([1, Lemma 4] and [8, Lemma 4.8]) Let f satisfy (f.1)–(f.4), � satisfy (�.1)
and (�.3). Then, there exists a positive δ such that if u�, ur ∈ 
 and z+, z− ∈ Z are such
that

‖u� − ur‖ ≤ δ,
∥
∥z+ − z−∥

∥ ≤ δ

and if σσσ = E(z+, z−, ur , u�) is as in (3.5), we have

‖ur − u�‖ = O(1)
(‖σσσ‖ + ∥

∥z+ − z−∥
∥
)

and ‖σσσ‖ = O(1)
(‖ur − u�‖ + ∥

∥z+ − z−∥
∥
)
.

Lemma 3.6 Let f satisfy (f.1)–(f.4). For all z ∈ Z, u ∈ 
 and for all sufficiently small
ααα,βββ ∈ R

n

‖H(z,βββ) ◦ H(z,ααα)(u) − H(z,ααα + βββ)(u)‖ ≤ O(1)
∑

(αi ,βi )∈Aααα,βββ

|αi βi | (3.8)

∥
∥H(z+,ααα)(u) − H(z−,ααα)(u)

∥
∥ ≤ O(1)

∥
∥z+ − z−∥

∥
n∑

i=1

|αi | (3.9)

Proof The classical Glimm interaction estimate (3.8) follows from Lemma 3.4 with
f (ααα,βββ) = H(z,βββ) ◦ H(z,ααα)(u) − H(z,ααα + βββ)(u).
To obtain the second, apply Lemma 3.1 with w2 = ααα, w1 = 0 and ϕ(z+, z−,ααα) =

H(z+,ααα)(u) − H(z−,ααα)(u). �
The following lemma comprises the interaction estimates necessary below.

Lemma 3.7 Let f satisfy (f.1)–(f.4) and � satisfy (�.1), (�.3). Then, there exists a positive
δ such that if u�, ur ∈ 
; z+, z− ∈ Z and ααα,βββ ∈ R

n are such that

‖u� − ur‖ ≤ δ,
∥
∥z+ − z−∥

∥ ≤ δ, ‖ααα‖ + ‖βββ‖ ≤ δ

with reference to Fig.1, the following general interaction estimate holds:

‖u∗ − ur‖ ≤ O(1)

⎛

⎝
∑

(i, j)∈Aααα,βββ

∣
∣αi β j

∣
∣ + ∥

∥z+ − z−∥
∥
∑

i>io

|αi |
⎞

⎠ . (3.10)
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Fig. 1 Notation used in Lemma 3.7. γ denotes a fictitious wave separating the states u∗, as defined in (3.11),
and ur . 	z denotes the zero wave between z− and z+

Proof Referring to Fig. 1, we have:

ur = H(z+,βββ ′′) ◦ T (z+, z−) ◦ H(z−,βββ ′) ◦ H(z−,ααα′′) ◦ H(z−,ααα′)(u�)

u∗ = H(z+,ααα′′ + βββ ′′) ◦ T (z+, z−) ◦ H(z−,ααα′ + βββ ′)(u�). (3.11)

Introduce

ǔ = H(z+,βββ ′′) ◦ T (z+, z−) ◦ H(z−,ααα′′) ◦ H(z−,βββ ′) ◦ H(z−,ααα′)(u�)

û = H(z+,βββ ′′) ◦ H(z+,ααα′′) ◦ T (z+, z−) ◦ H(z−,βββ ′) ◦ H(z−,ααα′)(u�)

so that

‖ur − u∗‖ ≤ ∥
∥ur − ǔ

∥
∥ + ∥

∥ǔ − û
∥
∥ + ∥

∥û − u∗
∥
∥

and by Lemma 3.7, setting ũ = H(z−,ααα′)(u�),
∥
∥ur − ǔ

∥
∥ ≤ O(1)

∥
∥H(z−, β ′) ◦ H(z−, α′′)(u) − H(z−, α′′) ◦ H(z−, β ′)(u)

∥
∥

= O(1)
∥
∥H(z−, β ′) ◦ H(z−, α′′)(u) − H(z−, α′′ + β ′)(u)

∥
∥

≤ O(1)
∑

(i, j)∈Aααα,βββ

∣
∣αi β j

∣
∣.

Similarly, setting now ũ = H(z−, β ′) ◦ H(z−,ααα′)(u�),
∥
∥ǔ − û

∥
∥ ≤ O(1)

∥
∥T (z+, z−) ◦ H(z−, α′′)(ũ) − H(z−, α′′) ◦ T (z+, z−)(ũ)

∥
∥

apply Lemma 3.1 with w2 = α′′, w1 = 0 and ϕ(z+, z−, α′′) = T (z+, z−)◦ H(z−, α′′)(ũ)−
H(z−, α′′) ◦ T (z+, z−)(ũ) to obtain

∥
∥ǔ − û

∥
∥ ≤ O(1)

∥
∥z+ − z−∥

∥
∑

i>io

|αi | . (3.12)
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Fig. 2 Notation used in Lemma 3.8

Finally, using (3.8) in Lemma 3.6,
∥
∥û − u∗

∥
∥ ≤ O(1)

∑

(i, j)∈Aααα,βββ

∣
∣αi β j

∣
∣,

completing the proof. �
Note that entirely similar estimates apply to the case where the ααα waves are on the right

of the zero wave, i.e., in the region where z attains the value z+.

Lemma 3.8 Let f satisfy (f.1)–(f.4) and � satisfy (�.1), (�.3). Then, there exists a positive
δ such that if u�, ur ∈ 
; z+, z− ∈ Z and ααα,βββ ∈ R

n are such that

‖u� − ur‖ ≤ δ,
∥
∥z+ − z−∥

∥ ≤ δ, ‖ααα‖ + ‖βββ‖ ≤ δ

with reference to Fig.2, the following general interaction estimate holds:

‖σσσ − (ααα + βββ)‖ ≤ O(1)

⎛

⎝
∑

(i, j)∈Aααα,βββ

∣
∣αi β j

∣
∣ + ∥

∥z+ − z−∥
∥
∑

i>io

|αi |
⎞

⎠

Proof Let u∗ be defined as in (3.11) and use the notation (3.5) to obtain:

‖σσσ − (ααα + βββ)‖ ≤ ∥
∥E(z+, z−, ur , u�) − E(z+, z−, u∗, u�)

∥
∥ ≤ O(1) ‖ur − u∗‖.

An application of Lemma 3.7 completes the proof. �
Lemmas 3.7 and 3.8 suggest that the quantity

∥
∥z+ − z−∥

∥ is a convenient way to measure
the strength of the zero–waves associated to the coupling condition.More precisely, we define
the strength of the zero–wave at a junction with parameters z+, z− ∈ Z as σ = ∥

∥z+ − z−∥
∥.
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Fig. 3 Notation used in Lemma 3.9

Lemma 3.9 Let f satisfy (f.1)–(f.4) and � satisfy (�.1), (�.3). Then, there exists a positive
δ such that if u�, ur ∈ 
; z+, z− ∈ Z and ααα,βββ ∈ R

n are such that

‖u� − ur‖ ≤ δ,
∥
∥z+ − z−∥

∥ ≤ δ, ‖ααα‖ + ‖βββ‖ ≤ δ

with reference to Fig.3, the following general interaction estimate holds:

∣
∣‖ur − u∗‖ − ∥

∥û − u�

∥
∥
∣
∣ ≤ O(1)

⎛

⎝
n∑

j=1

∣
∣β j

∣
∣ + ∥

∥z+ − z−∥
∥

⎞

⎠
∥
∥û − u�

∥
∥

Proof Referring to Fig. 3, straightforward computations lead to:
∣
∣‖ur − u∗‖ − ∥

∥u� − û
∥
∥
∣
∣

≤ ∥
∥(ur − u∗) − (u� − û)

∥
∥

= ∥
∥
(
H(z+, β ′′) ◦ T (z+, z−) ◦ H(z−, β ′)(u�) − u�

)

− (
H(z+, β ′′) ◦ T (z+, z−) ◦ H(z−, β ′)(û) − û

)∥
∥ (3.13)

≤ ∥
∥
(
H(z+, β ′′) ◦ T (z+, z−) ◦ H(z−, β ′)(u�) − T (z+, z−)(u�)

)
(3.14)

− (
H(z+, β ′′) ◦ T (z+, z−) ◦ H(z−, β ′)(û) − T (z+, z−)(û)

)∥
∥

+∥
∥
(
T (z+, z−)(u�) − u�

) − (
T (z+, z−)(û) − û

)∥
∥

≤ O(1)

⎛

⎝
∥
∥u� − û

∥
∥

n∑

j=1

∣
∣β j

∣
∣ + ∥

∥u� − û
∥
∥
∥
∥z+ − z−∥

∥

⎞

⎠ (3.15)

completing the proof. Above we used the fact that the term in the norm (3.13)–(3.14) is a
smooth function that vanishes for u� = û as well as for β = 0, see [5, § 2.9]. Moreover,
Lemma 3.1 can be applied to the term (3.15), with ϕ(z+, z−, u) = T (z+, z−)(u) − u. �
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Lemma 3.10 Let f satisfy (f.1)–(f.4), � satisfy (�.1)–(�.3). Then, there exists a δ > 0 such
that if ûl , ûr , ǔl , ǔr ∈ 
, ẑ−, ẑ−, ž+, ž+ ∈ Z and

∥
∥ẑ+ − ẑ−∥

∥ +
∥
∥
∥ûl − ûr

∥
∥
∥ < δ,

∥
∥ž+ − ž−∥

∥ +
∥
∥
∥ǔl − ǔr

∥
∥
∥ < δ

the solutions û and ǔ to the corresponding Generalized Riemann Problems (1.5) with data

ûo(x) =
{

ûl x < ξ

ûr x ≥ ξ
ζ̂ (x) =

{
ẑ− x <ξ

ẑ+ x ≥ ξ

ǔo(x) =
{

ǔl x < ξ

ǔr x ≥ ξ
ζ̌ (x) =

{
ž− x <ξ

ž+ x ≥ ξ

(3.16)

satisfy the estimate

1

h

∫ ξ+λ̂ h

ξ−λ̂ h

∥
∥û(h, x) − ǔ(h, x)

∥
∥dx

≤ O(1)
(∥
∥
∥ûl − ǔl

∥
∥
∥ + ∥

∥ûr − ǔr
∥
∥ +

∥
∥
∥ûr − ûl

∥
∥
∥
(∥
∥ẑ− − ž−∥

∥ + ∥
∥ẑ+ − ž+∥

∥
)

+min
{∥
∥ẑ+ − ẑ+∥

∥ + ∥
∥ž+ − ž−∥

∥,
∥
∥ẑ− − ž−∥

∥ + ∥
∥ẑ+ − ž+∥

∥
})

.

Proof The self similarity of the solutions to Riemann Problems ensures that

1

h

∫ ξ+λ̂ h

ξ−λ̂ h

∥
∥û(h, x) − ǔ(h, x)

∥
∥dx =

∫ ξ+λ̂

ξ−λ̂

∥
∥û(1, ξ + λ) − ǔ(1, ξ + λ)

∥
∥dλ.

Recall that bothλ �→ û(1, ξ+λ) andλ �→ ǔ(1, ξ+λ) consist of a sequence of constant states,
jump discontinuities and Lipschitz continuous rarefaction profiles. Call p̂1, p̂2, . . . p̂2n+2 the
positions of waves in û, in the sense that p̂2l−1 = p̂2l when a shock, a contact discontinuity
or a zero wave in û is supported there; while p̂2l−1 < p̂l whenever a (non trivial) rarefaction
in û is supported on [ p̂2l−1, p̂l ]. Define p̌1, p̌2, . . . p̌2n+2 similarly, with reference to ǔ. The
map (z−, z+, ul , ur ) �→ p is Lipschitz in the ẑ variables and smooth in the u variables.

Set p̂0 = p̌0 = ξ − λ̂ and p̂2n+3 = p̌2n+3 = ξ + λ̂. Then,

∫ ξ+λ̂

ξ−λ̂

∥
∥û(1, ξ + λ) − ǔ(1, ξ + λ)

∥
∥dλ

≤ O(1)

⎛

⎝
2n+2∑

i=1

∣
∣ p̂i − p̌i

∣
∣ +

n+1∑

j=0

∥
∥
∥
∥û

(

1,
p̂2 j + p̂2 j+1

2

)

− ǔ

(

1,
p̌2 j + p̌2 j+1

2

)∥
∥
∥
∥

+
n+1∑

j=1

∫

[ p̂2 j−1, p̂2 j ]∩[ p̌2 j−1, p̌2 j ]
∥
∥û(1, x) − ǔ(1, x)

∥
∥dx

⎞

⎠ .

Above, each of the quantities p̂i − p̌i , û
(
1,

p̂2 j + p̂2 j+1
2

)
− ǔ

(
1,

p̌2 j + p̌2 j+1
2

)
and û(1, x) −

ǔ(1, x) can be written as a difference G(ẑ−, ẑ+, ûl , ûr ) − G(ž−, ž+, ǔl , ǔr ), the function G
being Lipschitz continuous in z and smooth in u. Hence,
∥
∥
∥G(ẑ−, ẑ+, ûl , ûr ) − G(ž−, ž+, ǔl , ǔr )

∥
∥
∥

≤
∥
∥
∥G(ẑ−, ẑ+, ûl , ûr ) − G(ž−, ž+, ûl , ûr )

∥
∥
∥ +

∥
∥
∥G(ž−, ž+, ûl , ûr ) − G(ž−, ž+, ǔl , ǔr )

∥
∥
∥

≤
∥
∥
∥G(ẑ−, ẑ+, ûl , ûr ) − G(ž−, ž+, ûl , ûr )

∥
∥
∥ + O(1)

(∥
∥
∥ǔl − ûl

∥
∥
∥ + ∥

∥ǔr − ûr
∥
∥
)

.
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Moreover,

∥
∥
∥G(ẑ−, ẑ+, ûl , ûr ) − G(ž−, ž+, ûl , ûr )

∥
∥
∥

≤
∥
∥
∥

(
G(ẑ−, ẑ+, ûl , ûr ) − G(ž−, ž+, ûl , ûr )

)
−

(
G(ẑ−, ẑ+, ûl , ûl ) − G(ž−, ž+, ûl , ûl )

)∥
∥
∥

+

∥
∥
∥
∥
∥
∥
∥
∥

(
G(ẑ−, ẑ+, ûl , ûl ) − G(ž−, ž+, ûl , ûl )

)
−

(
G(ẑ−, ẑ−, ûl , ûl ) − G(ž−, ž−, ûl , ûl )

)

︸ ︷︷ ︸
=0

∥
∥
∥
∥
∥
∥
∥
∥

≤
∣
∣
∣
∣
∣

∫ ûr

ûl

∥
∥
∥D4G(ẑ−, ẑ+, ûl , w) − D4G(ž−, ž+, ûl , w)

∥
∥
∥dw

∣
∣
∣
∣
∣

+O(1)min
{∥
∥ẑ+ − ẑ+∥

∥ + ∥
∥ž+ − ž−∥

∥,
∥
∥ẑ− − ž−∥

∥ + ∥
∥ẑ+ − ž+∥

∥
}

≤ O(1)
∥
∥
∥ûr − ûl

∥
∥
∥
(∥
∥ẑ− − ž−∥

∥ + ∥
∥ẑ+ − ž+∥

∥
)

+O(1)min
{∥
∥ẑ+ − ẑ+∥

∥ + ∥
∥ž+ − ž−∥

∥,
∥
∥ẑ− − ž−∥

∥ + ∥
∥ẑ+ − ž+∥

∥
}
,

completing the proof. �

3.2 The Case � ∈ PC(R;Rp)

3.2.1 Wave Front Tracking

Fix a ζ ∈ (PC ∩ BV)(R;Rp), I(z) being the set of points of jump in z. Let u ∈ PC(R;
)

and call I(u) the set of points of jump in u. Let σx,i be the (signed) strength of the i–
th wave in the solution to the Riemann problem for (1.5) with data u(x−) and u(x+),
i.e. (σx,1, . . . , σx,n) = E (ζ(x+), ζ(x−), u(x+), u(x−)) as in (3.5). Define

Aζ (u) =
⎧
⎨

⎩

((x, i), (y, j)) ∈ ((I(u) ∪ I(ζ )) × {1, . . . , n})2 :
x < y and either i > j or i = j, the i − −th field is
genuinely non linear and min{σx,i , σy,i } < 0

⎫
⎬

⎭
(3.17)

Extending what introduced in [7], the linear and the interaction potential are

Vζ (u) =
∑

x∈I(u)∪I(ζ )

n∑

i=1

∣
∣σx,i

∣
∣ +

∑

x∈I(ζ )

‖	ζ(x)‖

Qζ (u) =
∑

((x,i),(y, j))∈Aζ (u)

∣
∣σx,iσy, j

∣
∣

+
∑

x∈I(ζ )

‖	ζ(x)‖
⎛

⎝
∑

y∈I(u), y<x

∑

j>i0

∣
∣σy, j

∣
∣ +

∑

y∈I(u), y>x

∑

j≤i0

∣
∣σy, j

∣
∣

⎞

⎠

ϒζ (u) = Vζ (u) + C0 · Qζ (u) (3.18)

where C0 is a suitable positive constant. For δ > 0 sufficiently small, we define

Dζ
δ = cl

{
u ∈ ū + L1 (R,
) : u is piecewise constant and ϒζ (u) < δ

}
(3.19)

where the closure is in the strong L1–topology.
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We adapt the wave-front tracking techniques from [1, 5, 8, 9, 13] to construct a sequence
of approximate solutions to the Cauchy problem (1.5) and prove uniform BV-estimates in
space. The approximate solutions converge towards a solution to the Cauchy problem with
finitely many junctions. First, we define the approximations.

Definition 3.11 Let ζ ∈ BV(R;Z) be piecewise constant. For ε > 0, a continuous map

uε : [0,+∞[→ L1
loc(R;Rn)

is an ε-approximate solution to (1.5) if the following conditions hold:

• uε, as a function of (t, x), is piecewise constant with discontinuities along finitely many
straight lines in the (t, x)-plane. There are only finitely many wave-front interactions and
at most twowaves interact with each other. There are four types of discontinuities: shocks
(or contact discontinuities), rarefaction waves, non–physical waves and zero–waves. We
distinguish these waves’ indexes in the sets J = S ∪R∪NP ∪ZW , the generic index
in J being α.

• At a shock (or contact discontinuity) xα = xα(t), α ∈ S, the traces u+ = uε(t, xα+) and
u− = uε(t, xα−) are related by u+ = Hiα (ζ(xα), σα)(u−) for 1 ≤ iα ≤ n, see (2.3). If
the iα–th family is genuinely nonlinear, the admissibility condition σα < 0 holds and

∣
∣ẋα − λiα (ζ(xα), u+, u−)

∣
∣ ≤ ε, (3.20)

where λiα (ζ(xα), u+, u−) is the wave speed described by the Rankine-Hugoniot condi-
tions w.r.t. u �→ f (ζ(xα), u).

• On the sides of a rarefaction wave xα = xα(t), α ∈ R in a genuinely nonlinear family,
the traces are related by u+ = Hiα (ζ(xα), σα)(u−) where 1 ≤ iα ≤ n and 0 < σα ≤ ε.
Moreover, ∣

∣ẋα − λiα (ζ(xα), u+)
∣
∣ ≤ ε.

• All non–physical fronts x = xα(t), α ∈ NP travel at the same speed ẋα = λ̂ with
λ̂ > supz,u,i |λi (z, u)|. The total strength of all non–physical fronts is uniformly bounded
by ∑

α∈NP

∥
∥uε(t, xα+) − uε(t, xα−)

∥
∥ ≤ ε for all t > 0 .

• Zero–waves are located at the discontinuities xα ∈ I(ζ ). At a zero–wave xα , α ∈ ZW ,
the traces are related by the coupling condition u+ = T (ζ(xα+), ζ(xα)) (u−) for all
t > 0, see (3.2), except at the interaction times.

• At time t = 0, uε satisfies ‖uε(0, ·) − uo‖L1(R;Rn) ≤ ε.

Proposition 3.12 ([8, Theorem 4.11]) Let f satisfy (f.1)–(f.4) and � satisfy (�.1)–(�.3).
Fix z̄ ∈ Z and ū ∈ 
. Then, there exist δ, K > 0 such that for all piecewise constant
ζ ∈ BV(R;Z) with

ζ(R) ⊆ B(z̄; δ) and TV(ζ ) < δ (3.21)

and for all initial data uo ∈ Dζ
δ , for every ε sufficiently small there exists an ε–approximate

solution to (1.5) in the sense of Definition 3.11. Moreover, the total variation in space
TV(uε(t, ·)) and the total variation in time TV(uε(·, x)) are bounded uniformly for ε suffi-
ciently small, i.e., for all t > 0 and for all x ∈ R

ϒζ (uε(t, ·)) ≤ δ + K ε and TV(uε(·, x)) ≤ K .
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Proof of Proposition 3.12 We use here the well known wave front tracking algorithm origi-
nally introduced in [10] and adapted to the present situation in [1], see also [2, 5, 6, 11, 14].
Indeed, waves supported in the points of jump of ζ , that is the zero waves indexed in ZW ,
behave as linearly degenerate waves from the point of view of the wave front tracking algo-
rithm developed in [2], to which we refer also for the terminology. Remark that Lemma 3.7,
Lemma 3.8 and Lemma 3.9 allow to extend to interactions involving zero waves estimates
of the same form as those typically used in standard wave front tracking procedures.

We refer to [8, Theorem 4.11] for more details. �

3.2.2 An Extended Almost–Decreasing Functional

Toprove theLipschitz continuous dependence of solutions on the initial datum,we introduce a
functional uniformly equivalent to the L1(R,Rn)–distance [6]. We follow the considerations
in [1, Section 4.2].

Let u, respectively v, be an ε–approximate, respectively ε′–approximate, solutions as in
Proposition 3.12 with the same piecewise constant ζ ∈ BV(R;Z) as in (3.41). The functions
u(0, ·) and v(0, ·) do not necessarily coincide. Introduce the concatenation of shock curves

S(z,qqq)(u) = Sn(z, qn) ◦ · · · ◦ S1(z, q1)(u) (3.22)

where qi �→ Si (z, qi ) are the shock curves with respect to the flux function u �→ f (z, u)

possibly violating the admissibility condition. We define q(z, u, v) ≡ (q1, . . . , qn)(z, u, v)

implicitly by
v = S (z,q(z, u, v)) (u) (3.23)

and the i–th shock speed, with the same notation as in (3.20),

�i (z, u, v) = λi (z, Si (z, qi (z, u, v)) ◦ · · · ◦ S1 (z, q1(z, u, v)) (u),

Si−1 (z, qi−1(z, u, v)) ◦ · · · ◦ S1 (z, q1(z, u, v)) (u)) .
(3.24)

For sufficiently small q(z, u, v) and for z in a small neighborhood of z̄, we have

1

C
|u − v| ≤

n∑

i=1

|qi (z, u, v)| ≤ C |u − v|

for a constant C > 1. We define the following functional equivalent to the L1(R;Rn)

distance:

qi (t, x) = qi (ζ(x), u(t, x), v(t, x)) i = 1, . . . , n,

�(u, v)(t) =
n∑

i=1

∫

R

|qi (t, x)| Wi (t, x)dx, (3.25)

Wi (t, x) = 1 + κ1 Bi (t, x) + κ2 (Q(u, t) + Q(v, t)) , (3.26)

Bi (t, x) = Ai (t, x) +
{∑

xα<x,α∈ZW |σα| if i ≤ io,
∑

xα>x,α∈ZW |σα| if i > io,
(3.27)

with positive κ1, κ2, chosen below and with Ai defined as in [1, Formula (4.9)], [5, For-
mulæ (8.8)–(8.9)] or [6, Formulæ (2.17)–(2.18)] and Q is the usual Glimm interaction
potential for piecewise constant approximate solutions, see [5, Formula (7.54)], also includ-
ing all zero waves. We follow [5, 6] and ensure that whatever the values of the constants
κ1, κ2, the parameter δ > 0 in (3.21) can be reduced so that 1 ≤ Wi (t, x) ≤ 2.
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We obtain the following result by the same procedure as in the proof of [1, Lemma 9].
Observe that all arguments hold for f (ζ(x), ·) instead of f by (f.1) and by the smallness of
TV(ζ ).

Lemma 3.13 Let f satisfy (f.1)–(f.4) and � satisfy (�.1)–(�.3). Fix z̄ ∈ Z and ū ∈ 
. There
exist suitable positive κ1, κ2, δ such that if ζ is piecewise constant and satisfies (3.21), u is
an ε–approximate solution and v is an ε′–approximate solution as in Theorem 3.12, both
corresponding to ζ , with u(0, ·) and v(0, ·) in Dζ

δ , as defined in (3.19), then the functional
� satisfies for all 0 ≤ s ≤ t

�(u, v)(t) − �(u, v)(s) ≤ O(1) max{ε, ε′} (t − s) .

Proof At any interaction time t , the same computations as in [1, 5, 6] ensure that � strictly
decreases, thanks to the term κ2 (Q(u, t) + Q(v, t)) in (3.26).

At a time t between any two interaction times, use the set J to index the discontinuities
in u(t, ·), v(t, ·) and in ζ at time t . The same procedure used in [1, 5, 6], to which we refer
also for the standard notation employed below, allows to compute the derivative of � with
respect to time as

d

dt
�(u, v)(t) =

∑

ν∈J

n∑

i=1

(∣
∣qν+

i

∣
∣W ν+

i (λν+
i − ẋν) − ∣

∣qν−
i

∣
∣W ν−

i (λν−
i − ẋν)

)
.

The standard procedure in [1, 5, 6] ensures that the above sum restricted to physical or
non–physical waves is bounded as follows:

∑

ν∈J \ZW

n∑

i=1

(∣
∣qν+

i

∣
∣W ν+

i (λν+
i − ẋν) − ∣

∣qν−
i

∣
∣W ν−

i (λν−
i − ẋν)

) ≤ O(1) ε,

where, as in Definition 3.11, ZW groups the indexes referring to zero waves.
Now consider zero waves: ν ∈ ZW . Then, ẋν = 0 and
∣
∣qν+

i

∣
∣W ν+

i (λν+
i − ẋν) − ∣

∣qν−
i

∣
∣W ν−

i (λν−
i − ẋν)

= W ν+
i

(∣
∣qν+

i

∣
∣−∣

∣qν−
i

∣
∣
)
λν+

i +W ν+
i

∣
∣qν−

i

∣
∣
(
λν+

i −λν−
i

)+ (
W ν+

i −W ν−
i

)∣
∣qν−

i

∣
∣λν−

i . (3.28)

Now we bound the latter three summands separately. First, we use Lemma 3.1 with w ≡
(qν−

1 , . . . , qν−
n ) and ϕ(z+, z−, w) = qν+

i − qν−
i , obtaining

∣
∣
∣
∣qν+

i

∣
∣ − ∣

∣qν−
i

∣
∣
∣
∣ ≤ ∣

∣qν+
i − qν−

i

∣
∣ = ∣

∣ϕ(z+, z−, w) − ϕ(z+, z−, 0)
∣
∣ ≤ O(1) ‖	z‖

n∑

i=1

∣
∣qν−

i

∣
∣.

Second, by the Lipschitz continuity of λi ,

∣
∣qν−

i

∣
∣
∣
∣λν+

i − λν−
i

∣
∣ ≤ O(1)‖	z‖

n∑

i=1

∣
∣qν−

i

∣
∣.

To bound the third term, introduce the sets Î = {
i ∈ {1, . . . , n} : qν+

i qν−
i > 0

}
and Ǐ =

{
i ∈ {1, . . . , n} : qν+

i qν−
i ≤ 0

}
. For i ∈ Î we have A+

i = A−
i . If i ≤ io then λi < 0 and

by (3.27) 	Bi = ‖	z‖ while if i ≥ io + 1 then λi > 0 and 	Bi = −‖	z‖. In both cases,
the third summand in (3.28) satisfies

(W ν+
i − W ν−

i )
∣
∣qν−

i

∣
∣λν−

i < −c κ1 ‖	z‖ ∣
∣qν−

i

∣
∣.
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On the other hand, if i ∈ Ǐ , A+
i and A−

i are not directly related, but

∣
∣qν+

i

∣
∣ + ∣

∣qν−
i

∣
∣ = ∣

∣qν+
i − qν−

i

∣
∣ ≤ O(1) ‖	z‖

n∑

i=1

∣
∣qν−

i

∣
∣ (3.29)

so that

(W ν+
i − W ν−

i )
∣
∣qν−

i

∣
∣λν−

i ≤ O(1) ‖	z‖
n∑

i=1

∣
∣qν−

i

∣
∣ , (3.30)

concluding the estimates on the three terms in (3.28). Moreover, by (3.29),

n∑

i=1

∣
∣qν−

i

∣
∣ =

∑

i∈ Î

∣
∣qν−

i

∣
∣ +

∑

i∈ Ǐ

∣
∣qν−

i

∣
∣ ≤

∑

i∈ Î

∣
∣qν−

i

∣
∣ + O(1) ‖	z‖

n∑

i=1

∣
∣qν−

i

∣
∣.

Hence, for 	z sufficiently small,

n∑

i=1

∣
∣qν−

i

∣
∣ ≤ 2

∑

i∈ Î

∣
∣qν−

i

∣
∣.

Adding the different estimates obtained, we bound the term in (3.28) by

n∑

i=1

(∣
∣qν+

i

∣
∣W ν+

i (λν+
i − ẋν) − ∣

∣qν−
i

∣
∣W ν−

i (λν−
i − ẋν)

)

≤ −c κ1 ‖	z‖
∑

i∈ Î

∣
∣qν−

i

∣
∣ + O(1) ‖	z‖

n∑

i=1

∣
∣qν−

i

∣
∣

≤ (O(1) − c κ1)‖	z‖
∑

i∈ Î

∣
∣qν−

i

∣
∣

< 0, (3.31)

assuming κ1 sufficiently large.
The proof is now completed by means of standard arguments, refer to [1, 5, 6]. �

3.2.3 Proof of Theorem 2.3 in the Case � ∈ PC(R;Rp)

Let f satisfy (f.1)–(f.4), � satisfy (�.1)–(�.4). Fix z̄ ∈ Z, ū ∈ 
 and δ as defined in
Lemma 3.13. Choose ζ ∈ PC(R;Z) with TV(ζ ) < δ, ‖ζ − z̄‖L∞(R;Rp) < δ and let Dζ =
Dζ

δ be as in (3.19). Note that Dζ ⊆ ū + L1(R;
) contains all functions u in ū + L1(R;
)

with TV(u) < δ.

Lemma 3.14 There exist positive δ, L and a unique semigroup Sζ : R+ × Dζ → Dζ such
that Dζ ⊇ {

u ∈ ū + L1(R;
) : TV(u) < δ
}

and points 1., 2. and 3. in Theorem 2.3 hold.
Moreover, Sζ is obtained as limit of wave front tracking ε–approximate solutions.

Proof SinceDζ
δ is separable, the existence of a Lipschitz continuous semigroup Sζ enjoying

properties 1., 2. and 3. can be obtained through the limit of (subsequences of) wave front
tracking ε–approximations in Definition 3.11 following standard arguments, see for instance,
[1] or [5–8].

To prove uniqueness, let �ζ be any Lipschitz continuous semigroups satisfying 1.,
2. and 3.. Fix an initial datum uo ∈ Dζ

δ . Call uε a wave front tracking ε–approximate
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solution approaching the orbit t �→ Sζ uo as ε → 0. Then, by the Lipschitz continuity of �ζ

and Lemma 3.13,

∥
∥
∥�

ζ
t uo − Sζ

t uo

∥
∥
∥
L1(R;Rn)

≤
∥
∥
∥�

ζ
t uε(0) − uε(t)

∥
∥
∥
L1(R;Rn)

+ O(1) ε (1 + t) . (3.32)

We now use [5, Theorem 2.9] to bound the first term in the right hand side above:

∥
∥
∥�

ζ
t uε(0) − uε(t)

∥
∥
∥
L1(R;Rn)

≤ O(1)
∫ t

0
lim inf

h→0

∥
∥
∥�

ζ
h uε(t) − uε(t + h)

∥
∥
∥
L1(R;Rn)

h
dτ .

(3.33)
Using the notation as in Definition 3.11 and the classical estimates on physical and non–
physical waves in [5, Lemma 9.1], for h so small that solutions to adjacent Riemann Problems
do not overlap, we have:

∥
∥
∥�

ζ
h uε(t) − uε(t + h)

∥
∥
∥
L1(R;Rn)

≤
∑

α∈J

∫ xα+λ̂h

xα−λ̂h

∥
∥
∥

(
�

ζ
h uε(t)

)
(x) − uε(t + h, x)

∥
∥
∥dx

≤ O(1) ε h +
∑

α∈ZW

∫ xα+λ̂h

xα−λ̂h

∥
∥
∥

(
�

ζ
h uε(t)

)
(x) − uε(t + h, x)

∥
∥
∥dx

= O(1) ε h

since for all zero waves
(
�

ζ
h uε(t)

)
(x) = uε(t + h, x) for a.e. t and wave front tracking

ε–approximation solves Riemann Problems at zero waves exactly.
Insert the latter bound in (3.33), so that in the limit ε → 0, (3.32) and the arbitrariness of

uo yield the equality of Sζ and �ζ . �

Lemma 3.15 Fix ξ ∈ R and define

ζ̃ (x) =
{

ζ(ξ) x ≤ ξ,

ζ(ξ+) x > ξ.
(3.34)

Choose u ∈ Dζ ∩ Dζ̃ . Then, for all ϑ > 0,

1

ϑ

∫ ξ+λ̂ϑ

ξ−λ̂ϑ

∥
∥
∥Sζ

ϑu(x) − Sζ̃
ϑu(x)

∥
∥
∥dx ≤ O(1) TV

(
ζ ; ]ξ − 2λ̂ϑ, ξ [∪]ξ, ξ + 2λ̂ϑ[

)
.

Proof Let ûε be an ε-wave front tracking approximation of Sζ u so that

∫ ξ+λ̂ϑ

ξ−λ̂ϑ

∥
∥
∥Sζ

ϑu(x) − Sζ̃
ϑu(x)

∥
∥
∥dx ≤ O(1) ε +

∫ ξ+λ̂ϑ

ξ−λ̂ϑ

∥
∥
∥uε(ϑ, x) −

(
Sζ̃
ϑuε(0)

)
(x)

∥
∥
∥dx .
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By [5, Theorem 2.9],

∫ ξ+λ̂ϑ

ξ−λ̂ϑ

∥
∥
∥uε(ϑ, x) −

(
Sζ̃
ϑuε(0)

)
(x)

∥
∥
∥dx

≤ O(1)
∫ ϑ

0
lim inf
h→0+

1

h

∫ ξ+2λ̂ϑ−λ̂(t+h)

ξ−2λ̂ϑ+λ̂(t+h)

∥
∥
∥uε(t + h, x) −

(
Sζ̃

h uε(t)
)

(x)

∥
∥
∥dxdt

≤ O(1)
∫ ϑ

0
lim inf
h→0+

1

h

∫ ξ+2λ̂ϑ−λ̂(t+h)

ξ−2λ̂ϑ+λ̂(t+h)

∥
∥
∥uε(t + h, x) −

(
Sζ

h uε(t)
)

(x)

∥
∥
∥dxdt (3.35)

+O(1)
∫ ϑ

0
lim inf
h→0+

1

h

∫ ξ+2λ̂ϑ−λ̂(t+h)

ξ−2λ̂ϑ+λ̂(t+h)

∥
∥
∥

(
Sζ

h uε(t)
)

(x) −
(

Sζ̃
h uε(t)

)
(x)

∥
∥
∥dxdt .

(3.36)

The integral in (3.35) is bounded byO(1) ε since uε is a piecewise constant ε–approximation
of the trajectory t �→ Sζ

t (uε(0)). The map x �→ uε(t, x) is piecewise constant, hence the
integral in (3.36) can be computed estimating the differences in the local solutions toRiemann
Problems arising from the discontinuities in uε(t) using Lemma 3.10 in the case ǔo = ûo.
Thus, the term in (3.36) is estimated as

lim inf
h→0+

1

h

∫ ξ+2λ̂ϑ−λ̂(t+h)

ξ−2λ̂ϑ+λ̂(t+h)

∥
∥
∥

(
Sζ

h uε(t)
)

(x) −
(

Sζ̃
h uε(t)

)
(x)

∥
∥
∥dx

≤
∑

xα∈I(uε(t))
xα∈]ξ−2λ̂ϑ+λ̂t,ξ+2λ̂ϑ−λ̂t[

xα �=ξ, xα /∈I(ζ )

lim inf
h→0+

1

h

∫ xα+λ̂h

xα−λ̂h

∥
∥
∥

(
Sζ

h uε(t)
)

(x) −
(

Sζ̃
h uε(t)

)
(x)

∥
∥
∥dx

+
∑

xα∈I(ζ )

xα∈]ξ−2λ̂ϑ+λ̂t,ξ+2λ̂ϑ−λ̂t[
xα �=ξ

lim inf
h→0+

1

h

∫ xα+λ̂h

xα−λ̂h

∥
∥
∥

(
Sζ

h uε(t)
)

(x) −
(

Sζ̃
h uε(t)

)
(x)

∥
∥
∥dx

+ lim inf
h→0+

1

h

∫ ξ+λ̂h

ξ−λ̂h

∥
∥
∥

(
Sζ

h uε(t)
)

(x) −
(

Sζ̃
h uε(t)

)
(x)

∥
∥
∥

︸ ︷︷ ︸
=0

dx

≤ O(1)
∑

xα∈I(uε(t))
xα∈]ξ−2λ̂ϑ+λ̂t,ξ+2λ̂ϑ−λ̂t[

xα �=ξ, xα /∈I(ζ )

∥
∥	uε(t, xα)

∥
∥
∥
∥
∥ζ(xα) − ζ̃ (xα)

∥
∥
∥

+O(1)
∑

xα∈I(ζ )

xα∈]ξ−2λ̂ϑ+λ̂t,ξ+2λ̂ϑ−λ̂t[
xα �=ξ

(∥
∥	uε(t, xα)

∥
∥
∥
∥
∥ζ(xα) − ζ̃ (xα)

∥
∥
∥ + ‖	ζ(xα)‖

)

≤ O(1)TV
(
ζ ; ]ξ − 2λ̂ϑ, ξ [∪]ξ, ξ + 2λ̂ϑ[

)
,

and, in the limit ε → 0, the proof of Lemma 3.15 follows. �
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Lemma 3.16 Fix uo ∈ Dζ . For a ξ ∈ R define

ũ(x) =
⎧
⎨

⎩

uo(ξ−) x ∈ ]ξ − δ, ξ [
uo(ξ+) x ∈ ]ξ, ξ + δ[
uo(x) x ∈ ] − ∞, ξ − δ[∪]ξ + δ,+∞[

(3.37)

and assume that ũ ∈ Dζ . Then, for ϑ ∈]0, δ/(2λ̂)[,
1

ϑ

∫ ξ+λ̂ϑ

ξ−λ̂ϑ

∥
∥
∥Sζ

ϑuo(x) − Sζ
ϑ ũ(x)

∥
∥
∥dx ≤ O(1) TV

(
uo; ]ξ − 2λ̂ϑ, ξ [∪]ξ, ξ + 2λ̂ϑ[

)
.

Proof Use the Lipschitz continuity of Sζ , see Lemma 3.14, on the dependency domain,

1

ϑ

∫ ξ+λ̂ϑ

ξ−λ̂ϑ

∥
∥
∥Sζ

ϑuo(x) − Sζ
ϑ ũ(x)

∥
∥
∥dx ≤ L

ϑ

∫ ξ+2λ̂ϑ

ξ−2λ̂ϑ

‖uo(x) − ũ(x)‖dx

≤ L

ϑ

∫ ξ+2λ̂ϑ

ξ−2λ̂ϑ

TV
(

uo; ]ξ − 2λ̂ϑ, ξ [∪]ξ, ξ + 2λ̂ϑ[
)
dx

and the proof follows. �
We are now ready to complete the proof of (i) in Theorem 2.3 for a piecewise constant ζ .

Use ũ as defined in (3.37)with uo = u(τ ) and ζ̃ as in (3.34), so thatU �

(u,τ,ξ)(ϑ, x) = (Sζ̃
ϑ ũ)(x)

for ϑ in a right neighborhood of 0 and x near ξ :
∫ ξ+λ̂ϑ

ξ−λ̂ϑ

∥
∥
∥u(τ + ϑ, x) − U �

(u,τ,ξ)(ϑ, x)

∥
∥
∥dx

=
∫ ξ+λ̂ϑ

ξ−λ̂ϑ

∥
∥
∥(Sζ

ϑu(τ ))(x) − (Sζ̃
ϑ ũ(τ ))(x)

∥
∥
∥dx

≤
∫ ξ+λ̂ϑ

ξ−λ̂ϑ

∥
∥
∥(Sζ

ϑu(τ ))(x) − (Sζ
ϑ ũ(τ ))(x)

∥
∥
∥dx +

∫ ξ+λ̂ϑ

ξ−λ̂ϑ

∥
∥
∥(Sζ

ϑ ũ(τ ))(x) − (Sζ̃
ϑ ũ(τ ))(x)

∥
∥
∥dx

and the latter two terms are estimated by means of Lemmas 3.16 and 3.15, obtaining

1

ϑ

∫ ξ+λ̂ϑ

ξ−λ̂ϑ

∥
∥
∥u(τ + ϑ, x) − U �

(u,τ,ξ)(ϑ, x)

∥
∥
∥dx

≤ O(1)
(
TV

(
u, ]ξ − 2λ̂ϑ, ξ [∪]ξ, ξ + 2λ̂ϑ[

)
+ TV

(
ζ, ]ξ − 2λ̂ϑ, ξ [∪]ξ, ξ + 2λ̂ϑ[

))

(3.38)
and the statement follows passing to the limit ϑ → 0.

We now head towards the proof of (ii) in Theorem 2.3. Preliminary is the following result.

Lemma 3.17 Let A be an n × n non singular matrix with n real eigenvalues λ1, . . . , λn, n
linearly independent right, respectively left, eigenvectors r1, . . . , rn, respectively l1, . . . , ln ,
and let m be a fixed finite vector measure. Then, the equation

∂t u + A ∂x u = m

generates the L1–Lipschitz semigroup

Lt :L1(R;Rn) → L1(R;Rn)

u →
n∑

i=1

li ·
(

u(x − λi t) + 1

λi

∫ x

x−λi t
dm

)

ri .
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The proof relies on a direct computation and is omitted. Note for later use that

Lt u =
n∑

i=1

li · u(x − λi t) ri + A−1
n∑

i=1

li ·
∫ x

x−λi t
dm ri

The next Lemma proves (ii) in Theorem 2.3 in the case x �→ u(τ, x) is piecewise constant.

Lemma 3.18 Under the same assumptions of Theorem 2.3, assume moreover that x →
u(τ, x) is piecewise constant. Then, (ii) in Theorem 2.3 holds.

Proof With the notation in Lemma 3.17, recalling the definition (2.6) of U � in the case of a
piecewise constant ζ ,

U �

(u;τ,ξ)
(ϑ, ·) = Lϑu(τ ) if

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A = Du f (ζ(ξ), u(τ, ξ))

k(x̄)= �(ζ(x̄+), ζ(x̄), u(τ, ξ))

− f (ζ(x̄+), u(τ, ξ)) + f (ζ(x̄), u(τ, ξ))

m = ∑

x̄∈I(ζ )

k(x̄) δx̄ .

(3.39)

Below, set for simplicity uo = u(τ ) and assume that τ = 0. Use [5, Theorem 2.9] with the
notation in the statement of Theorem 2.3, recalling that x �→ Lt uo(x) is piecewise constant,
since so is uo and L is linear.

1

ϑ

∫ b−λ̂ϑ

a+λ̂ϑ

∥
∥
∥Sϑuo − U �

(uo;0,ξ)

∥
∥
∥dx

= 1

ϑ

∫ b−λ̂ϑ

a+λ̂ϑ

‖Sϑuo − Lϑuo‖dx

≤ O(1)
1

ϑ

∫ ϑ

0
lim inf
h→0+

1

h

∫ b−λ̂(t+h)

a+λ̂(t+h)

‖Sh Lt uo − Lh Lt uo‖dxdt

≤ O(1)
1

ϑ

∫ ϑ

0

∑

x̄∈I(Lt uo)∪I(ζ )

lim inf
h→0+

1

h

∫ x̄+λ̂h

x̄−λ̂h
‖Sh Lt uo − Lh Lt uo‖dxdt .

To compute the latter sum, we distinguish the two cases x̄ /∈ I(ζ ) or x̄ ∈ I(ζ ).
In the former case, in a neighborhood of x̄ we have that the semigroup L locally coin-

cide with that generated by the homogeneous equation ∂t u + A ∂x u = 0. Hence, by [3,
Formula (3.8)], Lemma 3.18 and (3.39), we have

1

h

∫ x̄+λ̂h

x̄−λ̂h
‖Sh Lt uo − Lh Lt uo‖dx

≤ O(1) sup
x∈]a,b[

‖A − Du f (ζ(x), (Lt uo)(x))‖‖	(Lt uo)(x̄)‖
≤ O(1) sup

x∈]a,b[
‖Du f (ζ(ξ), uo(ξ)) − Du f (ζ(x), (Lt uo)(x))‖‖	(Lt uo)(x̄)‖

≤ O(1) sup
x∈]a,b[

(‖ζ(x) − ζ(ξ)‖ + ‖uo(ξ) − (Lt uo)(x)‖) ‖	(Lt uo)(x̄)‖
≤ O(1) ‖	(Lt uo)(x̄)‖ (TV (uo, ]a, b[) + TV (ζ, ]a, b[)) .
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Hence,

∑

x̄∈I(Lt uo),x̄ /∈I(ζ )

1

h

∫ x̄+λ̂h

x̄−λ̂h
‖Sh Lt uo − Lh Lt uo‖dx

≤ O(1)
∑

x̄∈I(Lt uo),x̄ /∈I(ζ )

‖	(Lt uo)(x̄)‖ (TV (uo, ]a, b[) + TV (ζ, ]a, b[))

≤ O(1) (TV (uo, ]a, b[) + TV (ζ, ]a, b[))2 .

Assume now that x̄ ∈ I(ζ ). Using the map T defined in Lemma 3.2, define

ũ = (Lt uo)(x̄−)

w(x) =
{

ũ x < x̄
T (ζ(x̄+), ζ(x̄−)) (ũ) x > x̄

and note that (Lt uo)(x̄+) = ũ + A−1 k(x̄). Then, Shw = w and Lh Lt uo = Lt uo in a
neighborhood of x̄ . Moreover, recall the Lipschitz continuity of Sh restricted to dependency
domains:

∫ x̄+λ̄h

x̄−λ̄h
‖Sh Lt uo − Shw‖dx ≤

∫ x̄+2λ̄h

x̄−2λ̄h
‖Lt uo − w‖dx,

and, using the notation in (3.39), proceed

1

h

∫ x̄+λ̂h

x̄−λ̂h
‖Sh Lt uo − Lh Lt uo‖dx

≤ 1

h

∫ x̄+λ̂h

x̄−λ̂h
‖Sh Lt uo − Shw‖dx + 1

h

∫ x̄+λ̂h

x̄−λ̂h
‖Shw − Lh Lt uo‖dx

≤ O(1)
∥
∥T (ζ(x̄+), ζ(x̄)) (ũ) − (

ũ + A−1 k(x̄)
)∥
∥

≤ O(1) ‖A T (ζ(x̄+), ζ(x̄)) (ũ) − (Aũ + k(x̄))‖
= O(1) ‖Du f (ζ(ξ), uo(ξ)) (T (ζ(x̄+), ζ(x̄)) (ũ) − ũ)

−�(ζ(x̄+), ζ(x̄), uo(ξ)) + f (ζ(x̄+), uo(ξ)) − f (ζ(x̄), uo(ξ))‖
≤ O(1) ‖	ζ(x̄)‖ (‖ζ(x̄+) − ζ(ξ)‖ + ‖	ζ(x̄)‖ + ‖uo(ξ) − ũ‖)
≤ O(1) ‖	ζ(x̄)‖ (TV (uo, ]a, b[) + TV (ζ, ]a, b[)) ,

where we used 2. in Lemma 3.2. Now, we add over x̄ ∈ I(ζ ):

∑

x∈I(ζ )

1

h

∫ x̄+λ̂h

x̄−λ̂h
‖Sh Lt uo − Lh Lt uo‖dx ≤ O(1) (TV (uo, ]a, b[) + TV (ζ, ]a, b[))2 ,

completing the proof of Lemma 3.18. �

To complete the proof of (ii) in Theorem 2.3, consider the case of x → u(τ, x) not
necessarily piecewise constant. We keep using the equalities u(τ + ϑ) = Sϑ (u(τ )) and
U �

(u;τ,ξ)
= Lϑ (u(τ )), the linear operator L being defined in Lemma 3.17 with A and k

as in (3.39). Then, for ε > 0 call uε a piecewise constant approximation of u(τ ) with
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TV(uε) ≤ TV (u(τ )). By the Lipschitz continuity of Sϑ and Lt , we have

1

ϑ

∫ b+λ̂ϑ

a−λ̂ϑ

∥
∥
∥u(τ + ϑ, x) − U �

(u;τ,ξ)
(ϑ, x)

∥
∥
∥dx

≤ O(1)
ε

ϑ
+ 1

ϑ

∫ b+λ̂ϑ

a−λ̂ϑ

∥
∥(Sϑuε)(x) − (Lϑuε)(x)

∥
∥dx

≤ O(1)
ε

ϑ
+ O(1) (TV (u(τ ), ]a, b[) + TV (ζ, ]a, b[))2 .

Passing first to the limit ε → 0 and then to the limit ϑ → 0, we complete the proof.

3.3 The General Case

Consider now the case ζ ∈ BV(R;Rp).

Lemma 3.19 Assume f satisfies (f.1)–(f.4) and � satisfies (�.1)–(�.4). Then, for all z ∈ Z,
v ∈ R

p. ω ∈ 
, if δ > 0 is sufficiently small,

�(z + δ v, z, ω) − f (z + δ v, ω)

+ f (z, ω) = δ
(
D+

v �(z, z, ω) − Dz f (z, ω) v
) + O(1) σ (δ) δ.

The proof directly follows from–(�.4) and from the Taylor expansion of f .

Proof of Theorem 2.3 Let ζ ∈ BV(R;Z). Call I(ζ ) the, at most countable, set of points of
jump in ζ . Recall that Dζ is a finite vector measure. Let μ and v be as in (1.6). By Lusin
Theorem [20, Theorem 2.24], for any h > 0, there exists a ṽh ∈ C0

c(R;Rp) such that
∥
∥
∥ṽh(x)

∥
∥
∥ ≤ 1 and ‖Dζ‖

({
x ∈ R : ṽh(x) �= v(x)

})
< h . (3.40)

Following [8, Step 1, § 4.3], introduce points {x1, . . . , xNh−1} ∈ R such that:

(i) x0 = −∞, x1 < −1/h, xi−1 < xi for i = 2, . . . , Nh−1, xNh−1 > 1/h and xNh = +∞.
(ii)

∑
x∈I(ζ )\Ih ‖	ζ(x)‖ < h for a suitable set of pointsIh contained in {x1, x2, . . . , xNh−1}.

(iii) Whenever1 xi ∈ Ih , TV (ζ, [xi−1, xi [) < h/(1 + �Ih) .
(iv) TV (ζ, ]xi−1, xi [) < h for all i = 1, . . . , Nh .
(v)

∥
∥ṽh

(
x ′) − ṽh

(
x ′′)∥∥ < h for x ′, x ′′ ∈]xi−1, xi [, i = 1, . . . , Nh .

(vi) xi − xi−1 ∈]0, h[ for all i = 2, . . . , Nh − 1.

Points satisfying (i) are easily constructed. Then, adding more points, one fulfills also (ii)
and this condition fully defines Ih and, hence, �Ih . Iteratively continuing to add points,
thus increasing Nh , we satisfy also (iii), (iv), (v) and (vi), in this order. Define the piecewise
constant map

ζ h = ζ (−∞) χ]−∞,x1] +
Nh−1∑

i=2

ζ (xi−1+) χ]xi−1,xi ] + ζ
(
xNh−1+

)
χ]xNh−1,+∞[ (3.41)

and note that
ζ h(xi ) = ζ(xi−1+) and ζ h(xi+) = ζ(xi+) . (3.42)

1 Everywhere, �A stands the (finite) cardinality of the set A.
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The approximations ζ h converge to ζ uniformly on R as h → 0. Indeed, fix h and for any
x ∈ R, by (i) we have x ∈]xi−1, xi ] (obviously excluding +∞) and for i ∈ {1, . . . , Nh},
by (iv),

∥
∥
∥ζ h(x) − ζ(x)

∥
∥
∥ ≤ TV (ζ, ]xi−1, xi [) ≤ h.

Call Sζ h : [0,+∞[×Dζ h

δ → Dζ h

δ the semigroup whose existence is proved in the piecewise
constant case in § 3.2.3, provided δ is sufficiently small. We prove that as h → 0 the
semigroups Sζ h

converge to a semigroup Sζ in L1.
Using the notation (3.19), introduce the sets:

Ďζ
δ =

⋂

h>0

Dζ h

δ D̂ζ
δ =

⋃

h>0

Dζ h

δ (3.43)

the latter closure is understood in the strong L1 topology. If ζ has sufficiently small total
variation then suitably choosing positive δ and δ′

Ďζ
δ ⊆ D̂ζ

δ ⊆ Ďζ

δ′

and all these sets are not empty since they contain all u with sufficiently small total variation.
Since Ďζ

δ′ is separable with respect to the strongL1 topology, by a diagonalization process

there exists a sequence hi such that for all u ∈ Ďζ

δ′ and for all t ∈ [0,+∞[, the sequence Sζ hi

t u

converges in L1
loc(R;Rn) to a limit which we define as Sζ

t u. Clearly, Sζ
t u ∈ D̂ζ

δ′ . Moreover,

whenever Sζ
t u ∈ Ďζ

δ′ , thanks to the Lipschitz continuity of u �→ S
ζhi
t u, the semigroup

property holds in the limit hi → 0, i.e., Sζ
s Sζ

t u = Sζ
s+t u for all s ≥ 0.

Define now

Dζ
δ =

{
u ∈ D̂ζ

δ : ∃ t ∈ R+ and ∃w ∈ Ďζ
δ such that Sζ

t w = u
}

. (3.44)

Note that

Ďζ
δ ⊆ Dζ

δ ⊆ D̂ζ
δ .

For all t ∈ R+, the domainDζ
δ is invariant with respect to Sζ

t , in the sense that (Sζ
t Dζ

δ ) ⊆ Dζ
δ .

Following the lines of [8, Theorem 2.2], the above construction proves 1. in Theorem 2.3.
Condition 2. in Theorem 2.3 also follows, since the semigroup Sζ hi admits a Lipschitz
constant independent of hi . In statement 3. of Theorem 2.3 ζ is required to be piecewise
constant and the results in § 3.2.3 apply, since in this case for h sufficiently small ζ h coincides
with ζ .

To prove 4. in Theorem 2.3, we consider first (i).
Proof of (i). To simplify the notation, we denote hi by h. By U �h

(u;τ,ξ)
denote the solution to

the Riemann Problem (2.5) with ζ replaced by ζ h . Clearly,

1

ϑ

∫ ξ+λ̂ϑ

ξ−λ̂ϑ

∥
∥
∥

(
Sζ
ϑu(τ )

)
(x) − U �

(u;τ,ξ)
(ϑ, x)

∥
∥
∥dx (3.45)

≤ 1

ϑ

∫ ξ+λ̂ϑ

ξ−λ̂ϑ

∥
∥
∥

(
Sζ
ϑu(τ )

)
(x) −

(
Sζ h

ϑ u(τ )
)

(x)

∥
∥
∥dx
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+ 1

ϑ

∫ ξ+λ̂ϑ

ξ−λ̂ϑ

∥
∥
∥

(
Sζ h

ϑ u(τ )
)

(x) − U �h
(u;τ,ξ)

(ϑ, x)

∥
∥
∥dx

+ 1

ϑ

∫ ξ+λ̂ϑ

ξ−λ̂ϑ

∥
∥
∥U �h

(u;τ,ξ)
(ϑ, x) − U �

(u;τ,ξ)
(ϑ, x)

∥
∥
∥dx . (3.46)

The first integral in the right hand side above vanishes in the limit h → 0. To estimate the
second integral, use (3.38) and [8, Formula (4.29)] to get

1

ϑ

∫ ξ+λ̂ϑ

ξ−λ̂ϑ

∥
∥
∥

(
Sζ h

ϑ u(τ )
)

(x) − U �h
(u;τ,ξ)

(ϑ, x)

∥
∥
∥dx

≤ O(1)
(
TV

(
u(τ ), ]ξ − 2λ̂ϑ, ξ [∪]ξ, ξ + 2λ̂ϑ[

)

+TV
(
ζ h, ]ξ − 2λ̂ϑ, ξ [∪]ξ, ξ + 2λ̂ϑ[

))

≤ O(1)
(
TV

(
u(τ ), ]ξ − 2λ̂ϑ, ξ [∪]ξ, ξ + 2λ̂ϑ[

)

+TV
(
ζ, ]ξ − 2λ̂ϑ, ξ [∪]ξ, ξ + 2λ̂ϑ[

)
+ h

)
.

In the limits, first for h → 0 and then for ϑ → 0, the latter term above vanishes.
Concerning the third term (3.46), use Lemma 3.10 and obtain

1

ϑ

∫ ξ+λ̂ϑ

ξ−λ̂ϑ
∥
∥
∥U �h

(u;τ,ξ)
(ϑ, x) − U �

(u;τ,ξ)
(ϑ, x)

∥
∥
∥dx ≤ O(1)

(∥
∥
∥ζ h(ξ) − ζ(ξ)

∥
∥
∥ +

∥
∥
∥ζ h(ξ+) − ζ(ξ+)

∥
∥
∥

)

which vanishes as h → 0 by the uniform convergence of ζ h to ζ , completing the proof of (i).
Proof of (ii). We now pass to (ii) in item 4. of Theorem 2.3. the following definitions and
preliminary results are of use below.

Recall the notation in (1.6). For i = 1, . . . , Nh , let

δi = ‖μ‖ (]xi−1, xi [) ; (3.47)

vi =
{ 1

δi
μ (]xi−1, xi [) δi �= 0;

0 δi = 0; (3.48)

vh =
Nh−1∑

i=1

vi χ]xi−1,xi ] + v
Nh

χ]x
Nh−1

,+∞[. (3.49)

Note also that for δi �= 0, vi = 1
δi

∫

]xi−1,xi [ v d‖μ‖.
Claim: We have the convergence

lim
h→0

∫

R

∥
∥
∥vh − v

∥
∥
∥d‖μ‖ = 0 . (3.50)
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Indeed, recalling (3.40),
∫

R

∥
∥
∥vh(x) − v(x)

∥
∥
∥d‖μ‖(x)

=
Nh∑

i=1

∫

]xi−1,xi [
‖v(x) − vi‖d‖μ‖(x)

=
∑

i=1,Nh
δi �=0

1

δi

∫

(]xi−1,xi [)2
‖v(x) − v(y)‖d(‖μ‖ ⊗ ‖μ‖)(x, y)

=
∑

i=1,Nh
δi �=0

1

δi

∫

(]xi−1,xi [)2

[∥
∥
∥v(x) − ṽh(x)

∥
∥
∥+

∥
∥
∥ṽh(y) − v(y)

∥
∥
∥

]
d(‖μ‖ ⊗ ‖μ‖)(x, y)

(3.51)

+
∑

i=1,Nh
δi �=0

1

δi

∫

(]xi−1,xi [)2

∥
∥
∥ṽh(x) − ṽh(y)

∥
∥
∥d(‖μ‖ ⊗ ‖μ‖)(x, y). (3.52)

The two terms in the integral in (3.51) are estimated in the same way, using (3.40), as

∑

i=1,Nh
δi �=0

∫

(]xi−1,xi [)2
1

δi

∥
∥
∥v(x) − ṽh(x)

∥
∥
∥d(‖μ‖ ⊗ ‖μ‖)(x, y)

=
∑

i=1,Nh
δi �=0

∫

]xi−1,xi [

∥
∥
∥v(x) − ṽh(x)

∥
∥
∥d‖μ‖(x)

=
∫

R

∥
∥
∥v(x) − ṽh(x)

∥
∥
∥d‖μ‖(x)

≤
∫

{x∈R : v(x)�=ṽh(x)}
(
‖v(x)‖ +

∥
∥
∥ṽh(x)

∥
∥
∥

)
d‖μ‖(x)

≤ 2 h

→ 0 as h → 0.

We now estimate the term (3.52) by means of (v):

∑

i=1,Nh
δi �=0

1

δi

∫

(]xi−1,xi [)2

∥
∥
∥ṽh(x) − ṽh(y)

∥
∥
∥d(‖μ‖ ⊗ ‖μ‖)(x, y)

≤ h
∑

i=1,Nh
δi �=0

1

δi

∫

(]xi−1,xi [)2
d(‖μ‖ ⊗ ‖μ‖)(x, y)

≤ h
Nh∑

i=1

δi

≤ h ‖μ‖(R)

→ 0 as h → 0,

completing the proof of the Claim.
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Apply Lemma 3.17 with A = D f (ζ(ξ), u(τ, ξ)), first with m = g as defined in (2.7),
then with m = gh where gh is defined, for all Borel subset E of R, by

gh(E) =
∑

y∈I(ζ h)

(
�

(
ζ h(y+), ζ h(y), u(τ, ξ)

)

− f
(
ζ h(y+), u(τ, ξ)

)
+ f

(
ζ h(y), u(τ, ξ)

))
δy(E)

and write

U �

(u;τ,ξ)
(ϑ, x) =

n∑

i=1

li ·
(

u(τ, x − λi ϑ) + 1

λi

∫ x

x−λi ϑ

dg

)

ri ,

U �h
(u;τ,ξ)

(ϑ, x) =
n∑

i=1

li ·
(

u(τ, x − λi ϑ) + 1

λi

∫ x

x−λi ϑ

dgh
)

ri .

(3.53)

Similarly to (3.45), fix a, b, ξ in R with a < ξ < b, let ϑ ∈]0, (b − a)/λ̂[ and compute

1

ϑ

∫ b−λ̂ϑ

a+λ̂ϑ

∥
∥
∥

(
Sζ
ϑu(τ )

)
(x) − U �

(u;τ,ξ)
(ϑ, x)

∥
∥
∥dx

≤ 1

ϑ

∫ b−λ̂ϑ

a+λ̂ϑ

∥
∥
∥

(
Sζ
ϑu(τ )

)
(x) −

(
Sζ h

ϑ u(τ )
)

(x)

∥
∥
∥dx (3.54)

+ 1

ϑ

∫ b−λ̂ϑ

a+λ̂ϑ

∥
∥
∥

(
Sζ h

ϑ u(τ )
)

(x) − U �h
(u;τ,ξ)

(ϑ, x)

∥
∥
∥dx (3.55)

+ 1

ϑ

∫ b−λ̂ϑ

a+λ̂ϑ

∥
∥
∥U �h

(u;τ,ξ)
(ϑ, x) − U �

(u;τ,ξ)
(ϑ, x)

∥
∥
∥dx . (3.56)

The first term (3.54) vanishes as h → 0 by the above construction of S.
Since ζ h is piecewise constant, to bound (3.55) we can use (ii) in Theorem 2.3 as proved

in § 3.2.3 in the piecewise constant case:

[(3.55)] ≤ C
[
TV (u(τ ), ]a, b[) + TV

(
ζ h, ]a, b[

)]2

≤ C [TV (u(τ ), ]a, b[) + h + TV (ζ, ]a, b[)]2

where we used [8, Formula (4.29)]. In the limit h → 0 we obtain the desired estimate.
Compute (3.56) by means of (3.53) as

[(3.56)] =
∫ b−λ̂ϑ

a+λ̂ϑ

∥
∥
∥
∥
∥

n∑

i=1

1

λi
li ·

∫ x

x−λi ϑ

(
dg − dgh

)
∥
∥
∥
∥
∥
dx

≤ O(1)
n∑

i=1

∫ b−λ̂ϑ

a+λ̂ϑ

∥
∥
∥
∥

∫ x

x−λi ϑ

(
dg − dgh

)∥∥
∥
∥dx .
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We now estimate the latter integrals, assuming that neither x nor x − λiϑ are discontinuity
points for ζ or ζ h . Fix i and call J the real interval with extreme points x and x − λiϑ .

∥
∥
∥
∥

∫

J

(
dg − dgh

)∥∥
∥
∥

=
∥
∥
∥
∥
∥
∥

∑

x̄∈I(ζ )∩J

(� (ζ(x̄+), ζ(x̄), u(τ, ξ)) − f (ζ(x̄+), u(τ, ξ)) + f (ζ(x̄), u(τ, ξ)))

+
∫

J

(
D+

v(x)� (ζ(x), ζ(x), u(τ, ξ)) − Dz f (ζ(x), u(τ, ξ)) v(x)
)
d‖μ‖(x)

−
∑

x̄∈I(ζ h)∩J

(
�

(
ζ h(x̄+), ζ h(x̄), u(τ, ξ)

)

− f
(
ζ h(x̄+), u(τ, ξ)

)
+ f

(
ζ h(x̄), u(τ, ξ)

))∥
∥
∥

≤ E1 + E2 + E3 + E4 + E5 + E6.

The terms E1, . . ., E6 are defined below.
In the first term, using the definition of Ih in (ii), we show that the sum of all jumps in ζ

not in Ih is O(1) h:

E1 =
∥
∥
∥
∥
∥
∥

∑

x̄∈(I(ζ )\Ih)∩J

(� (ζ(x̄+), ζ(x̄), u(τ, ξ)) − f (ζ(x̄+), u(τ, ξ)) + f (ζ(x̄), u(τ, ξ)))

∥
∥
∥
∥
∥
∥

≤ O(1)
∑

x̄∈I(ζ )\Ih

‖	ζ(x̄)‖ [By (f .1), (�.1) and (�.3)]

≤ O(1) h [By (ii)]
→ 0 as h → 0.

Now we estimate the effect of passing from ζ h(x̄) to ζ(x̄) in the jumps x̄ in Ih , calling ¯̄x
the point in I(ζ h) that precedes x̄ and using (3.42):

E2 =
∥
∥
∥
∥
∥
∥

∑

x̄∈I(ζ )∩Ih∩J

[
�

(
ζ h(x̄+), ζ(x̄), u(τ, ξ)

)
− f

(
ζ h(x̄+), u(τ, ξ)

)
+ f (ζ(x̄), u(τ, ξ))

−�
(
ζ h(x̄+), ζ h(x̄), u(τ, ξ)

)
+ f

(
ζ h(x̄+), u(τ, ξ)

)
− f

(
ζ h(x̄), u(τ, ξ)

)]∥
∥
∥

≤ O(1)
∑

x̄∈I(ζ )∩Ih∩J

∥
∥
∥ζ(x̄) − ζ h(x̄)

∥
∥
∥ [By (f .1) and (�.1)]

≤ O(1)
∑

x̄∈I(ζ )∩Ih∩J

∥
∥ζ(x̄) − ζ( ¯̄x+)

∥
∥ [By (3.42)]

≤ O(1)
∑

x̄∈I(ζ )∩Ih∩J

TV
(
ζ ; ] ¯̄x, x̄[) [By 3.41]

≤ O(1)
∑

x̄∈I(ζ )∩Ih∩J

h

1 + �Ih
[By (iii)]

≤ O(1) h
→ 0 as h → 0.
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Call ¯̄x the point in I(ζ h) that precedes x̄ . Out of Ih , the measure μ approximates the
measure Dζ , so that ζ h(x̄) + δ̄ v̄ approximates ζ h(x̄+) as in (3.48)–(3.49):

E3 =
∥
∥
∥
∥
∥
∥

∑

x̄∈I(ζ h)∩J\Ih

[
�

(
ζ h(x̄+), ζ h(x̄), u(τ, ξ)

)

− f
(
ζ h(x̄+), u(τ, ξ)

)
+ f

(
ζ h(x̄), u(τ, ξ)

)

− �
(
ζ h(x̄) + δ̄v̄, ζ h(x̄), u(τ, ξ)

)

+ f
(
ζ h(x̄) + δ̄v̄, u(τ, ξ)

)
− f

(
ζ h(x̄), u(τ, ξ)

)]∥
∥
∥

≤ O(1)
∑

x̄∈I(ζ h)∩J\Ih

∥
∥
∥ζ h(x̄+) − ζ h(x̄) − μ

(] ¯̄x, x̄[)
∥
∥
∥

= O(1)
∑

x̄∈I(ζ h)∩J\Ih

∥
∥
∥ζ h(x̄+) − ζ h( ¯̄x+) − μ

(] ¯̄x, x̄[)
∥
∥
∥

= O(1)
∑

x̄∈I(ζ h)∩J\Ih

∥
∥Dζ

(] ¯̄x, x̄]) − μ
([ ¯̄x, x̄])∥∥

≤ O(1)
∑

x̄ /∈Ih

‖	ζ(x̄)‖

≤ O(1) h

→ 0 as h → 0.

Using Lemma 3.19, the differences at the jumps in ζ h out of Ih are approximated by
means of derivatives:

E4 =
∥
∥
∥
∥
∥
∥

∑

x̄∈I(ζ h)∩J\Ih

[
�

(
ζ h(x̄) + δ̄v̄, ζ h(x̄), u(τ, ξ)

)

− f
(
ζ h(x̄) + δ̄v̄, u(τ, ξ)

)
+ f

(
ζ h(x̄), u(τ, ξ)

)

−δ̄
(

D+
v̄ �

(
ζ h(x̄), ζ h(x̄), u(τ, ξ)

)
− Dz f

(
ζ h(x̄), u(τ, ξ)

)
v̄
)]∥

∥
∥

≤ O(1)
∑

x̄∈I(ζ h)∩J\Ih

σ(δ̄) δ̄

≤ O(1) σ (h)TV(ζ )

→ 0 as h → 0.

If x̄ ∈ Ih , ‖μ‖ (] ¯̄x, x̄[) = δ̄ is negligible, so that by (iii), (3.47), (3.48) and (3.49),

E5 =
∥
∥
∥
∥
∥
∥

∑

x̄∈I(ζ h)∩J\Ih

[
δ̄
(

Dv̄�
(
ζ h(x̄), ζ h(x̄), u(τ, ξ)

)
− Dz f

(
ζ h(x̄), u(τ, ξ)

)
v̄
)

−
∫

J

(
D+

vh (x)
�

(
ζ h(x), ζ h(x), u(τ, ξ)

)
− Dz f

(
ζ h(x), u(τ, ξ)

)
vh(x)

)
d‖μ‖(x)

]∥
∥
∥
∥

≤ O(1)
∑

x̄∈Ih

δ̄ + O(1) h
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≤ O(1)
∑

x̄∈Ih

h

1 + �Ih
+ O(1) h

→ 0 as h → 0.

We now use the Lipschitz continuity of Dv�, see (�.4), and of Dz f , see (f.1), the uniform
convergence of ζ h → ζ and the convergence vh → v by (3.50):

E6 =
∥
∥
∥
∥

∫

J

(
D+

vh (x)
�

(
ζ h(x), ζ h(x), u(τ, ξ)

)
− Dz f

(
ζ h(x), u(τ, ξ)

)
vh(x)

)
d‖μ‖(x)

−
∫

J

(
D+

v(x)� (ζ(x), ζ(x), u(τ, ξ)) − Dz f (ζ(x), u(τ, ξ)) v(x)
)
d‖μ‖(x)

∥
∥
∥
∥

≤ O(1)
∫

J

(∥
∥
∥ζ(x) − ζ h(x)

∥
∥
∥ +

∥
∥
∥v(x) − vh(x)

∥
∥
∥

)
d‖μ‖(x)

→ 0 as h → 0.

The proof of (ii) is completed.
We now prove that a L1–Lipschitz continuous map u satisfying (i) and (ii) for a.e. t is

actually an orbit of Sζ . Using [5, Theorem 2.9] as in [5, § 9.2], for any a, b ∈ R with a < b
∥
∥
∥u(t) − Sζ

t u(0)
∥
∥
∥
L1([a+λ̂ t,b−λ̂t];Rn)

≤ L
∫ t

0
lim inf
h→0+

1

h

∥
∥
∥u(τ + h) − Sζ

h u(τ )

∥
∥
∥
L1([a+λ̂ (τ+h),b−λ̂(τ+h)];Rn)

dτ .

Let τ be such that (i) and (ii) hold. Fix ε > 0 and choose x0 = a + λ̂τ , x0 < x1 < x2 <

· · · < xN−1 < xN , xN = b − λ̂τ such that, for i = 1, . . . , N ,

TV(u(τ ); ]xi−1, xi [) + TV(ζ ; ]xi−1, xi [) < ε.

Then, for h > 0 sufficiently small, and for ξi ∈]xi−1, xi [
∥
∥
∥u(τ + h) − Sζ

h u(τ )

∥
∥
∥
L1([a+λ̂ (τ+h),b−λ̂(τ+h)];Rn)

=
N∑

i=1

∫ xi −λ̂ h

xi−1+λ̂ h

∥
∥
∥u(τ + h, x) −

(
Sζ

h u(τ )
)

(x)

∥
∥
∥dx

+
N−1∑

i=1

∫ xi +λ̂ h

xi −λ̂ h

∥
∥
∥u(τ + h, x) −

(
Sζ

h u(τ )
)

(x)

∥
∥
∥dx

=
N∑

i=1

∫ xi −λ̂ h

xi−1+λ̂ h

∥
∥
∥u(τ + h, x) − U �

(u;τ,ξi )
(h, x)

∥
∥
∥dx

+
N∑

i=1

∫ xi −λ̂ h

xi−1+λ̂ h

∥
∥
∥U �

(u;τ,ξi )
(h, x) −

(
Sζ

h u(τ )
)

(x)

∥
∥
∥dx

+
N−1∑

i=1

∫ xi +λ̂ h

xi −λ̂ h

∥
∥
∥u(τ + h, x) − U �

(u;τ,xi )
(h, x)

∥
∥
∥dx

+
N−1∑

i=1

∫ xi +λ̂ h

xi −λ̂ h

∥
∥
∥U �

(u;τ,xi )
(h, x) −

(
Sζ

h u(τ )
)

(x)

∥
∥
∥dx .
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Since both u and Sζ satisfy (ii), we get

1

h

∥
∥
∥u(τ + h) − Sζ

h u(τ )

∥
∥
∥
L1([a+λ̂ t,b−λ̂t];Rn)

≤ O(1)
N∑

i=1

(TV (u(τ ); ]xi−1, xi [) + TV (ζ ; ]xi−1, xi [))2

+
N−1∑

i=1

1

h

∫ xi −λ̂ h

xi +λ̂ h

∥
∥
∥u(τ + h, x) − U �

(u;τ,xi )
(h, x)

∥
∥
∥dx

+
N−1∑

i=1

1

h

∫ xi −λ̂ h

xi +λ̂ h

∥
∥
∥U �

(u;τ,xi )
(h, x) − (Shu(τ )) (x)

∥
∥
∥dx .

Both u and Sζ satisfy (i), hence in the lim infh→0 the latter two terms vanish. Thus,

lim inf
h→0

1

h

∥
∥
∥u(τ + h) − Sζ

h u(τ )

∥
∥
∥
L1([a+λ̂ t,b−λ̂t];Rn)

≤ O(1)
N∑

i=1

(TV (u(τ ); ]xi−1, xi [) + TV (ζ ; ]xi−1, xi [))2

≤ O(1) ε (TV (u(τ )) + TV(ζ )) .

Since ε is arbitrary, the term in the left hand side above vanishes. The arbitrariness of a and
b allows to complete the proof. �
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