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Abstract
We rigorously state the connection between the EHZ-capacity of convex Lagrangian products
K × T ⊂ R

n ×R
n and the minimal length of closed (K , T )-Minkowski billiard trajectories.

This connection was made explicit for the first time by Artstein–Avidan and Ostrover under
the assumption of smoothness and strict convexity of both K and T .We prove this connection
in its full generality, i.e., without requiring any conditions on the convex bodies K and T .
This prepares the computation of the EHZ-capacity of convex Lagrangian products of two
convex polytopes by using discrete computational methods.

Keywords Minkowski billiards · EHZ-capacity · Shortest periodic orbit · Symplectic
geometry · Hamiltonian dynamics

Mathematics Subject Classification 37C83

1 Introduction andMain Result

Simply put, this paper is about the connection between the symplectic size of certain convex
bodies in R

2n , n � 1, and the length of certain minimal periodic billiard trajectories on
that convex bodies, more precisely, it is about the connection between the EHZ-capacity of
convex Lagrangian products

K × T ⊂ R
n × R

n

and the minimal �T -length of closed (K , T )-Minkowski billiard trajectories.
Let us first introduce these two quantities one by one.
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1.1 The EHZ-Capacity of Convex Lagrangian Products

The EHZ-capacity of a convex set C ⊂ R
2n is

cE H Z (C) = min{A(x) : x closed characteristic on ∂C},
where a closed characteristic on ∂C is an absolutely continuous loop in R

2n satisfying{
ẋ(t) ∈ J∂ HC (x(t)) a.e.

HC (x(t)) := 1
2μC (x(t))2 = 1

2 ∀t ∈ R/Z
(1)

where J =
(

0 1n

−1n 0

)
is the symplectic matrix, ∂ the subdifferential-operator, and

μC (x) = min{s � 0 : x ∈ sC}, x ∈ R
2n,

the Minkowski functional. By A(x) we denote the loop’s action given by

A(x) = −1

2

∫
R/Z

〈J ẋ(t), x(t)〉 dt .

We remark that the above definition of the E(keland)H(ofer)Z(ehnder)-capacity is the
outcome of a historically grown study of symplectic capacities. More precisely, it is the
generalization (to the non-smooth case) by Künzle in [14] of a symplectic capacity that
originally represented the coincidence of the Ekeland–Hofer- and Hofer–Zehnder-capacities
constructed in [9] and [13], respectively.

Let us clarify the notion of Lagrangian products in R
2n .

On R
2n there exists a natural symplectic structure such that x ∈ R

2n can be written as

x = (q1, ..., qn; p1, ..., pn),

where q = (q1, .., qn) represent the local and p = (p1, ..., pn) the momentum coordinates
in the classical physical phase space

R
n
q × R

n
p.

This phase space is equipped with the standard symplectic 2-form ω0 which satisfies

ω0(q, p) =
n∑

j=1

dp j ∧ dq j = 〈Jq, p〉.

The Hamiltonian “vector” field
X HC = J∂ HC

of the Hamiltonian differential inclusion (1) is determined by

ιX HC
ω0 = −∂ HC

and the action of a closed curve γ by

A(γ ) =
∫

γ

λ, ω0 = dλ.

Now, a product K × T ⊂ R
2n is called Lagrangian if K ⊂ R

n
q and T ⊂ R

n
p .
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1.2 Minkowski billiards

Minkowski billiards are the natural extensions of Euclidean billiards to the Finsler setting.
Euclidean billiards are associated to the local Euclidean billiard reflection rule: The angle

of reflection equals the angle of incidence (assuming that the relevant normal vector as well
as the incident and the reflected ray lie in the same two-dimensional affine flat). This local
Euclidean billiard reflection rule follows from the global least action principle. For a reflec-
tion on a hyperplane this principle means that a billiard trajectory segment (q j−1, q j , q j+1)

minimizes the Euclidean length in the space of all paths connecting q j−1 and q j+1 via a
reflection at this hyperplane.

In Finsler geometry, the notion of length of vectors in R
n is given by a convex body T ⊂

R
n , i.e., a compact convex set inR

n which has the origin in its interior (inR
n). TheMinkowski

functionalμT determines the distance function, where we recover the Euclidean settingwhen
T is the n-dimensional Euclidean unit ball. Then, heuristically, billiard trajectories are defined
via the global least action principle with respect to μT , because in Finsler geometry, there is
no useful notion of angles.

Here, convexity of T ⊂ R
n means that for every boundary point z ∈ ∂T there is

a hyperplane H with its associated open half spaces H̊+ and H̊− of R
n such that

either T ∩ H̊+ = ∅ or T ∩ H̊− = ∅. We call T ⊂ R
n strictly convex if for every boundary

point z ∈ ∂T and every unit vector in the outer normal cone

NT (z) = {
n ∈ R

n : 〈n, y − z〉 � 0 for all y ∈ T
}

the hyperplane H in R
n containing z and normal to n satisfies H ∩ T = {z}.

Let us precisely defineMinkowski billiard trajectories. Aswe have shown in [16], it makes
sense to differentiate between weak and strong Minkowski billiard trajectories.

Definition 1 (Weak Minkowski billiard trajectories) Let K ⊂ R
n be a convex body. Let

T ⊂ R
n be another convex body and

T ◦ = {
x ∈ R

n : 〈x, y〉 � 1 ∀y ∈ T
} ⊂ R

n

its polar body. We say that a closed polygonal curve1 with vertices q1, ..., qm , m ∈ N�2,
on the boundary of K is a closed weak (K , T )-Minkowski billiard trajectory if for every
j ∈ {1, ..., m}, there is a K -supporting hyperplane Hj through q j such that q j minimizes

μT ◦(�q j − q j−1) + μT ◦(q j+1 − �q j ) (2)

over all �q j ∈ Hj (see Fig. 1). We encode this closed weak (K , T )-Minkowski billiard
trajectory by (q1, ..., qm) and call its vertices bouncing points. Its �T -length is given by

�T ((q1, ..., qm)) =
m∑

j=1

μT ◦(q j+1 − q j ).

We call a boundary point q ∈ ∂K smooth if there is a unique K -supporting hyperplane
through q . We say that ∂K is smooth if every boundary point is smooth (we also say K is
smooth while we actually mean ∂K ).

1 For the sake of simplicity, whenever we talk of the vertices q1, ..., qm of a closed polygonal curve, we
assume that they satisfy q j �= q j+1 and q j is not contained in the line segment connecting q j−1 and q j+1 for
all j ∈ {1, ..., m}. Furthermore, whenever we settle indices 1, ..., m, then the indices in Z will be considered
as indices modulo m.
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Fig. 1 The weak Minkowski billiard reflection rule: q j minimizes (2) over all �q j ∈ H j , where H j is a
K -supporting hyperplane through q j

We remark that, in general, the K -supporting hyperplanes Hj in Definition 1 are not
uniquely determined. One can prove that this is only the case for smooth and strictly convex
T (see [16]).

We note that the weak Minkowski billiard reflection rule does not only generalize the
Euclidean billiard reflection rule to Finsler geometries, it also extends the classical under-
standing of billiard trajectories–which are usually understood as trajectories with bouncing
points in smooth boundary points (billiard table cushions) while they terminate in non-
smooth boundary points (billiard table pockets)–to non-smooth billiard table boundaries. To
the author’s knowledge, the papers [5] (’89), [10] (’04), and [6] (’09) were among the first
suggesting a detailed study of these generalized billiard trajectories.

In the case when T ◦ is smooth and strictly convex, Definition 1 yields a geometric inter-
pretation of the billiard reflection rule: On the basis of Lagrange’s multiplier theorem, one
derives the condition

∇�q j Σ j (�q j )|�q j =q j = ∇μT ◦(q j − q j−1) − ∇μT ◦(q j+1 − q j ) = μ j nHj ,

where μ j > 0, since the strict convexity of T ◦ implies

∇μT ◦(q j − q j−1) �= ∇μT ◦(q j+1 − q j ),

and where nHj is the outer unit vector normal to Hj . This implies that the weak Minkowski
billiard reflection rule can be illustrated as within Fig. 2. For smooth, strictly convex, and
centrally symmetric T ◦ ⊂ R

n , this interpretation is due to [11, Lemma 3.1, Corollary 3.2
and Lemma 3.3] (this interpretation has also been referenced in [2]). For the extension to
just smooth and strictly convex T ◦ ⊂ R

n , it is due to [7, Lemma 2.1]. However, from the
constructive point of view, this interpretation has its limitations.

Definition 2 (Strong Minkowski billiards) Let K , T ⊂ R
n be convex bodies. We say that a

closed polygonal curve q with vertices q1, ..., qm ,m ∈ N�2, on ∂K is a closed strong (K , T )-
Minkowski billiard trajectory if there are points p1, ..., pm on ∂T such that{

q j+1 − q j ∈ NT (p j ),

p j+1 − p j ∈ −NK (q j+1)
(3)
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Fig. 2 T ◦ is a smooth and strictly convex body in R
2 and its boundary plays the role of the indicatrix, i.e., the

set of vectors of unit Finsler (with respect to T ◦) length, which therefore is an 1-level set of μT ◦ . Note that the
two T ◦-supporting hyperplanes intersect on H j due to the condition∇μT ◦ (q j −q j−1)−∇μT ◦ (q j+1−q j ) =
μ j nH j

is satisfied for all j ∈ {1, ..., m}. We call p = (p1, ..., pm) a closed dual billiard trajectory
in T . We denote by Mn+1(K , T ) the set of closed (K , T )-Minkowski billiard trajectories
with at most n + 1 bouncing points.

Definition 2 appeared implicitly in [11, Theorem 7.1], then later the first time explicitly
in [3]. It yields a different interpretation of the billiard reflection rule. Without requiring a
condition on T , the billiard reflection rule can be represented as within Fig. 3. From the
constructive point of view, this interpretation is much more appropriate in comparison to the
one for weak Minkowski billiards.

The natural follow-up question concerns the relationship between weak and strong
Minkowski billiards. In [16, Theorem 1.3], we have shown the following for convex bodies
K , T ⊂ R

n : Every closed strong (K , T )-Minkowski billiard trajectory is a weak one. If T is
strictly convex, then every closed weak (K , T )-Minkowski billiard trajectory is a strong one.
This is a sharp result in the following sense: One can construct convex bodies K , T ⊂ R

n

(where T is not strictly convex) and a closed weak (K , T )-Minkowski billiard trajectory
which is not a strong one (see Example A in [16]).

In the following–if the risk of confusion is excluded–we will call strong Minkowski
billiards trajectories just Minkowski billiard trajectories.

1.3 Main Result

For a convex body K ⊂ R
n , we define the set Fcp

n+1(K ) as the set of all closed polygonal

curves q = (q1, ..., qm) with m � n + 1 that cannot be translated into K̊ .
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Fig. 3 The pair (q, p) satisfies (3), namely: q j − q j−1 ∈ NT (p j−1), q j+1 − q j ∈ NT (p j ), p j − p j−1 ∈
−NK (q j ), and p j+1 − p j ∈ −NK (q j+1)

Our main result concerning the connection between the minimal �T -length of closed
(K , T )-Minkowski billiard trajectories and the EHZ-capacity of convex Lagrangian products
K × T reads:

Theorem 1 Let K , T ⊂ R
n be convex bodies such that K ×T ⊂ R

2n is a convex Lagrangian
product. Then, we have

cE H Z (K × T ) = min
q∈Fcp

n+1(K )

�T (q) = min
p∈Fcp

n+1(T )

�K (p) = min
q∈Mn+1(K ,T )

�T (q).

We note that under the condition of strict convexity of T , the statement of Theorem 1 also
holds for �T -minimizing closed weak (K , T )-Minkowski billiard trajectories. In the general
case, this is not true. When T is not strictly convex, then one can have

min
q cl. weak (K ,T )-Mink. bill. traj.

�T (q) < min
q cl. strong (K ,T )-Mink. bill. traj.

�T (q)

(see [16, Example E], where q = (q1, q2, q3) is a closed weak Minkowski billiard trajectory
which is shorter than any closed strongMinkowski billiard trajectory), and it even can happen
that there is no �T -minimizing closed weak (K , T )-Minkowski billiard trajectory at all (see
[16, Example G]; while in Example E instead, there exists a minimizer).

In order to classify Theorem 1 against the background of current research, we note that
the relationship between action-minimizing closed characteristics on ∂(K × T ) and �T -
minimizing closed (K , T )-Minkowski billiard trajectories wasmade explicit for the first time
by Artstein-Avidan and Ostrover in [3]. However, two points in particular must be taken into
account here: First, they showed this relationship only under the assumption of smoothness
and strict convexity of both K and T . In particular, if one intends to compute the length-
minimizing trajectories (aswe have described in [16] for the 4-dimensional case), this is not so
effective, since for this, one would typically use convex polytopes, which are neither smooth
nor strictly convex. Secondly, their definition of closed (K , T )-Minkowki billiard trajectories
slightly differed from ours. They used the notion of closed Minkowski billiard trajectories
for closed trajectories which arised within their characterization of closed characteristics on
∂(K × T ). As consequence, they had to take trajectories into account, for example, which
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intuitively had no relation to billiard trajectories and could produce ugly behaviour (see
[12])–they called them gliding billiard trajectories. As part of our approach, we were able
to avoid considering such trajectories, allowing us to focus entirely on trajectories that are
commonly understood as billiard trajectories and which, in the case of strict convexity of T ,
i.e., when weak and strong Minkowski billiards coincide, in fact can be traced back to the
classical least action principle.

Besides what has been proved by Artstein-Avidan and Ostrover, Alkoumi and Schlenk
indicated in [2] Theorem 1 for the case K , T ⊂ R

2, where T is additionally assumed to
be smooth and strictly convex. Balitskiy showed in [4] the first equality of the statement in
Theorem 1 under the assumption of smoothness of T .

We note that the generality of Theorem 1 is central to understand the different charac-
terizations of action-minimizing closed characteristics in more detail. For instance, it will
be our starting point when analyzing Viterbo’s conjecture for Lagrangian products in [17].
The generality of this theorem is essential for being able to apply it on convex polytopes,
what would not be possible based on the lesser general statement in [3], but which is essen-
tial in order to develope an algorithm for the computation of the EHZ-capacity of convex
Lagrangian products.

Let us briefly give an overview of the structure of this paper: In Sect. 2, we recall useful
results from [16]. In Sect. 3, we prove Theorem 1 by mainly stating three theorems, whose
proofs we outsourced in Sects. 4, 5, and 6.

2 Preliminaries

We recall statements from [16] which will be used within the following proofs.

Proposition 1 (Proposition 3.4 in [16])Let K , T ⊂ R
n be convex bodies. Let q = (q1, ..., qm)

be a closed (K , T )-Minkowski billiard trajectory with closed dual billiard trajectory p =
(p1, ..., pm) in T . Then, we have

�T (q) = �−K (p).

Proposition 2 (Proposition 3.5 in [16])Let K , T ⊂ R
n be convex bodies and T is additionally

assumed to be strictly convex and smooth. Let q = (q1, ..., qm) be a closed (K , T )-Minkowski
billiard trajectory with its closed dual billiard trajectory p = (p1, ..., pm) in T . Then, p is
a closed (T ,−K )-Minkowski billiard trajectory with

−q+1 := (−q2, ...,−qm,−q1)

as closed dual billiard trajectory on −K .

For the following proposition, we denote by F(K ), K ⊂ R
n convex body, the set of all

sets in R
n that cannot be translated into K̊ .

Proposition 3 (Proposition 3.9 in [16])Let K , T ⊂ R
n be convex bodies. Let q = (q1, ..., qm)

be a closed (K , T )-Minkowski billiard trajectory with closed dual billiard trajectory p =
(p1, ..., pm). Then, we have

q ∈ F(K ) and p ∈ F(T ).

Theorem 2 ( Theorem 3.12 in [16]) Let K , T ⊂ R
n be convex bodies, where T is additionally

assumed to be strictly convex. Then, every �T -minimizing closed (K , T )-Minkowski billiard
trajectory is an �T -minimizing element of Fcp

n+1(K ), and, conversely, every �T -minimizing
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element of Fcp
n+1(K ) can be translated in order to be an �T -minimizing closed (K , T )-

Minkowski billiard trajectory.
Especially, one has

min
q∈Fcp

n+1(K )

�T (q) = min
q∈Mn+1(K ,T )

�T (q). (4)

3 Proof of Theorem 1

The proof of Theorem 1 relies on the following three theorems which we will prove in
Sects. 4, 5, and 6, respectively.

Theorem 3 Let K ⊂ R
n be a convex polytope and T ⊂ R

n a strictly convex body. We consider
K ×T ⊂ R

2n as convex Lagrangian product. Then, for every closed/action-minimizing closed
characteristic x on ∂(K × T ), there is a closed characteristic x̃ = (̃xq , x̃ p) on ∂(K × T )

which is a closed polygonal curve and where x̃q is a closed/an �T -minimizing closed (K , T )-
Minkowski billiard trajectory with x̃ p as its closed dual billiard trajectory on T and

A(x) = A(̃x) = �T (̃xq).

Conversely, for every closed/�T -minimizing closed (K , T )-Minkowski billiard trajectory q =
(q1, ..., qm) with closed dual billiard trajectory p = (p1, ..., pm) on T , x = (q, p) (after a
suitable parametrization of q and p) is a closed/an action-minimizing closed characteristic
on ∂(K × T ) with

�T (q) = A(x).

Especially, one has

cE H Z (K × T ) = min
q cl. (K ,T )-Mink. bill. traj.

�T (q).

Theorem 4 Let K , T ⊂ R
n be convex bodies. Then, every �T -minimizing closed (K , T )-

Minkowski billiard trajectory is an �T -minimizing element of Fcp
n+1(K ), and, conversely,

for every �T -minimizing element of Fcp
n+1(K ), there is an �T -minimizing closed (K , T )-

Minkowski billiard trajectory with � n + 1 bouncing points and with the same �T -length.
Especially, one has

min
q∈Fcp

n+1(K )

�T (q) = min
q∈Mn+1(K ,T )

�T (q). (5)

We note that Theorem 4 is the generalization of (4) without requiring the strict convexity
of T . So far, in contrast to Theorem 2, it is not clear whether the minimizers in (4) coincide
(even not up to translation).

For the next theorem we introduce the Hausdorff-distance dH between two sets U , V ⊂
R

n . It is given by

dH (U , V ) = max

{
max
u∈U

min
v∈V

||u − v||,max
v∈V

min
u∈U

||u − v||
}

.

Theorem 5 (i) If T ⊂ R
n is a strictly convex body and (Ki )i∈N a sequence of convex bodies

in R
n that dH -converges to some convex body K ⊂ R

n, then there is a strictly increasing
sequence (i j ) j∈N and a sequence (qi j ) j∈N of �T -minimizing closed (Ki j , T )-Minkowski
billiard trajectories which dH -converges to an �T -minimizing closed (K , T )-Minkowski
billiard trajectory.

123



Journal of Dynamics and Differential Equations

(ii) If K ⊂ R
n is a convex body and (Ti )i∈N a sequence of strictly convex bodies in R

n that
dH -converges to some convex body T ⊂ R

n, then there is a strictly increasing sequence
(i j ) j∈N and a sequence (qi j ) j∈N of �Ti j

-minimizing closed (K , Ti j )-Minkowski billiard
trajectories which dH -converges to an �T -minimizing closed (K , T )-Minkowski billiard
trajectory.

We come to the proof of Theorem 1:

Proof (Proof of Theorem 1) Let K , T ⊂ R
n be convex bodies such that K × T ⊂ R

2n is a
convex Lagrangian product. We first prove

cE H Z (K × T ) = min
q∈Mn+1(K ,T )

�T (q) = min
q∈Fcp

n+1(K )

�T (q). (6)

We can find a sequence of convex polytopes (Ki )i∈N in R
n that dH -converges to K for

i → ∞ and a sequence of strictly convex bodies (Tj ) j∈N in R
n that dH -converges to T for

j → ∞. Applying Theorem 3, we conclude

cE H Z (Ki × Tj ) = min
q cl. (Ki ,Tj )-Mink. bill. traj.

�Tj (q).

Because of the dH -continuity of cE H Z (see, e.g., [1, Theorem 4.1(v)]) and Theorem 5(i), for
the limit i → ∞, we get

cE H Z (K × Tj ) = min
q cl. (K ,Tj )-Mink. bill. traj.

�Tj (q).

Again using the dH -continuity of cE H Z and this time Theorem 5(ii), for the limit j → ∞,
we get

cE H Z (K × T ) = min
q cl. (K ,T )-Mink. bill. traj.

�T (q).

By Theorem 4, this implies (6).
It remains to prove

min
q∈Fcp

n+1(K )

�T (q) = min
p∈Fcp

n+1(T )

�K (p).

Let (Tj ) j∈N be a sequence of strictly convex and smooth bodies in R
n converging to T for

j → ∞. Then, for every j ∈ N, one has

min
q∈Fcp

n+1(K )

�Tj (q) = min
q cl. (K ,Tj )-Mink. bill. traj.

�Tj (q)

= min
p cl. (Tj ,−K )-Mink. bill. traj.

�−K (q)

= min
p∈Fcp

n+1(Tj )

�−K (q)

= min
p∈Fcp

n+1(Tj )

�K (q),

where the first and third equality follows from Theorem 4, the second from Propositions
1 and 2 (requires strict convexity and smoothness of Tj ), and the last from the following
consideration: one has the equivalence

p = (p1, ..., pm) ∈ Fcp
n+1(Tj ) ⇔ p− = (pm, ..., p1) ∈ Fcp

n+1(Tj ),

and therefore

min
p=(p1,...,pm )∈Fcp

n+1(Tj )

�−K (p) = min
p∈Fcp

n+1(Tj )

�K (p− = (pm, ..., p1))
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= min
p−∈Fcp

n+1(Tj )

�K (p−)

= min
p∈Fcp

n+1(Tj )

�K (p).

Using (6), summarized, for every j ∈ N, we can conclude

cE H Z (K × Tj ) = min
q∈Fcp

n+1(K )

�Tj (q) = min
p∈Fcp

n+1(Tj )

�K (q) = cE H Z (Tj × K ).

Due to the dH -continuity of cE H Z and the generality of (6), for j → ∞, one has

min
q∈Fcp

n+1(K )

�T (q) = cE H Z (K × T ) = cE H Z (T × K ) = min
p∈Fcp

n+1(T )

�K (q).

��
We remark that the proof of Theorem 1 implies the following relationships:

cE H Z (K × T ) = cE H Z (T × K ),

cE H Z (K × T ) = cE H Z (−K × T ) = cE H Z (K × −T ) = cE H Z (−K × −T )

for general convex bodies K , T ⊂ R
n , and

cE H Z (K × T ) = min
q∈Mn+1(K ,T )

�T (q) = min
p∈Mn+1(T ,K )

�K (p),

cE H Z (K × T ) = min
q∈Mn+1(K ,T )

�T (q) = min
q∈Mn+1(−K ,T )

�T (q)

= min
q∈Mn+1(K ,−T )

�−T (q) = min
q∈Mn+1(−K ,−T )

�−T (q)

when either T or K is additionally assumed to be strictly convex and smooth.

4 Proof of Theorem 3

Let K ⊂ R
n be a convex polytope and T ⊂ R

n a strictly convex body. We start by investi-
gating properties of closed characteristics on the boundary of the Lagrangian product

K × T ⊆ R
n
q × R

n
p

For this, we split x ∈ R
2n into q- and p-coordinates: x = (xq , x p). Then, we observe

HK×T (x(t)) = HK×T ((xq(t), x p(t))) = max{HK (xq(t)), HT (x p(t))},
what for

x(t) ∈ ∂(K × T ) \ (∂K × ∂T ) (7)

means

HK×T (x(t)) =
{

HT (x p(t)) , x(t) ∈ K̊ × ∂T ,

HK (xq(t)) , x(t) ∈ ∂K × T̊ ,

(see Fig. 4). A straight forward calculation yields

∂ HK×T (x(t)) =
{

(0, ∂ HT (x p(t))) , x(t) ∈ K̊ × ∂T ,

(∂ HK (xq(t)), 0) , x(t) ∈ ∂K × T̊ ,
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Fig. 4 Illustration of K × T ⊂ R
n × R

n and ∂ HK×T

for the case (7) and

∂ HK×T (x(t)) ⊂ {(α∂ HK (xq(t)), β∂ HT (x p(t)))|(α, β) �= (0, 0), α, β � 0}
= NK×T (x(t))

for the case x(t) ∈ ∂K × ∂T . Because of

ẋ(t) ∈ J∂ HK×T (x(t)) a.e.,

this yields almost everywhere

ẋ(t) ∈

⎧⎪⎨
⎪⎩

(∂ HT (x p(t)), 0) , x(t) ∈ K̊ × ∂T ,

(0,−∂ HK (xq(t))) , x(t) ∈ ∂K × T̊ ,

(β∂ HT (x p(t)),−α∂ HK (xq(t))) , x(t) ∈ ∂K × ∂T ,

(8)

for (α, β) �= (0, 0) and α, β � 0.
We notice that in the case x(t) ∈ K̊ × ∂T , there is just moving xq , while in the case

x(t) ∈ ∂K × T̊ , there is just moving x p . For the case x(t) ∈ ∂K × ∂T , it is apriori not clear
whether xq and x p are never moving at the same time. However, this fact is guaranteed by
the strict convexity of T :

Proposition 4 We can reduce (8) to

ẋ(t) ∈
{

(∂ HT (x p(t)), 0) , x(t) ∈ K̊ × ∂T ,

(0,−∂ HK (xq(t))) , x(t) ∈ ∂K × T̊ ,
a.e. (9a)
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Fig. 5 Illustration of the idea behind the proof of Proposition 4 when xq ([a′, b′]) is a subset of the interior of
a j-face of K , 1 � j � n − 2. We have t0 ∈ [a′, b′] and clearly see NT (x p(t0)) ∩ (Tn− j )

⊥,Rn
p = {0}

ẋ(t) ∈ (∂ HT (x p(t)), 0) or ẋ(t) ∈ (0,−∂ HK (xq(t))), x(t) ∈ ∂K × ∂T , a.e. (9b)

Proof We assume

ẋ(t) = (ẋq(t), ẋ p(t)) ∈ (β∂ HT (x p(t)),−α∂ HK (xq(t)))

for
x(t) ∈ ∂K × ∂T ∀t ∈ [a, b], a < b,

and α, β > 0.
We split the proof into two parts.
Supposing xq([a′, b′]), a � a′ < b′ � b, is a subset of the interior of a facet, i.e.,

an (n − 1)-dimensional face, Kn−1 of K , then NK (xq(t)) is for every t ∈ [a′, b′] one-
dimensional, which implies because of

ẋ p(t) ∈ −α∂ HK (xq(t)) ⊂ −NK (xq(t))

that x p([a′, b′]) is a subset of a one-dimensional straight line. However, together with
x p([a′, b′]) ⊂ ∂T this is a contradiction to the strict convexity of T .

Supposing xq([a′, b′]), a � a′ < b′ � b, is a subset of the interior of a j-face K j ⊂ ∂K ,
1 � j � n − 2, then NK (xq(t)) is (n − j)-dimensional for every t ∈ [a′, b′] (see Fig. 5).
Considering

ẋ p(t) ∈ −α∂ HK (xq(t)) ⊂ −NK (xq(t)),

we conclude that x p([a′, b′]) is a subset of the intersection of an (n − j)-dimensional plane
Tn− j (orthogonal to K j ) and ∂T . Note that because of the strict convexity of T , Tn− j neces-
sarily has a nonempty intersection with the interior of T . From this, we conclude

NT (x p(t)) ∩ (Tn− j )
⊥,Rn

p = {0} ∀t ∈ [a′, b′], (10)

where by (Tn− j )
⊥,Rn

p we denote the orthogonal complement to Tn− j in R
n
p .

Indeed, let t ∈ [a′, b′]. If
n ∈ NT (x p(t)) ∩ (Tn− j )

⊥,Rn
p , n �= 0,

123



Journal of Dynamics and Differential Equations

then one has
n ∈ NT (x p(t)), i.e., 〈n, z − x p(t)〉 < 0 ∀z ∈ T̊ , (11)

and
n ∈ (Tn− j )

⊥,Rn
p , i.e., 〈n, z − x p(t)〉 = 0 ∀z ∈ Tn− j . (12)

Since
T̊ ∩ Tn− j �= ∅,

there is a z0 ∈ T̊ ∩ Tn− j which due to (11) implies

〈n, z0 − x p(t)〉 < 0

and due to (12)
〈n, z0 − x p(t)〉 = 0,

a contradiction. This implies (10).
Considering

ẋq(t) ∈ β∂ HT (x p(t)) ⊂ NT (x p(t)),

we get
ẋq([a′, b′]) � (Tn− j )

⊥,Rn
p ,

which ends up in a contradiction since by construction of Tn− j , we have

K j,0 ⊆ (Tn− j )
⊥,Rn

p ,

where by K j,0 we denote the in the origin translated K j (how exactly, is not relevant), and
therefore

ẋq([a′, b′]) ⊂ (Tn− j )
⊥,Rn

p .

��
Let x be a closed characteristic. We denote its changing points, i.e., the points where the

movement of xq , respectively of x p , goes over to the movement of x p , respectively of xq , by

· · · → (q j , p j ) → (q j+1, p j ) → (q j+1, p j+1) → (q j+2, p j+1) → . . . (13)

and conclude from (9) that they satisfy{
q j+1 − q j ∈ NT (p j )

p j+1 − p j ∈ −NK (q j+1)

for all j ∈ {1, ..., m}. We compute their respective trajectory segments’ contributions to the
action of x (denoted by Ax ′→x ′′ for a trajectory segment from x ′ to x ′′) as follows: Suppose,
we have

x(a) = (q j , p j ), x(b) = (q j+1, p j ) and x(c) = (q j+1, p j+1)

for a < b < c, then

Ax(a)→x(b)(x) = A(q j ,p j )→(q j+1,p j )(x) =
∫ b

a
〈x p(t), ẋq(t)〉 dt

=
〈∫ b

a
ẋq(t) dt, p j

〉
=〈xq(b) − xq(a), p j 〉 = 〈q j+1 − q j , p j 〉
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and

Ax(b)→x(c)(x) = A(q j+1,p j )→(q j+1,p j+1)(x) =
∫ c

b
〈x p(t), ẋq(t)〉 dt = 0.

We note that the action of x only depends on the consecutive changing points in (13),
no matter what happens between them. Therefore, it makes sense to think of the following
equivalence relation on closed characteristics:

x ∼ y :⇔ consecutive changing points of x and y coincide.

Representatives of the same equivalence class have the same action, i.e.,

∀x ′, x ′′ ∈ [x]∼ : A(x ′) = A(x ′′).

Then, by (9), there is a closed characteristic x̃ = (̃xq , x̃ p) in the equivalence class of x ,
which is a closed polygonal curve consisting of the straight line segments connecting the
changing points in (13). Consequently, using

q j+1 − q j ∈ NT (p j ) ∀ j ∈ {1, ..., m}
and [16, Proposition 2.2], we have

A(̃x) = A(x) =
m∑

j=1

〈q j+1 − q j , p j 〉 = �T (xq) = �T (̃xq).

x̃q is a closed polygonal curve with vertices q1, ..., qm on ∂K . Without loss of generality,
we can assume q j+1 �= q j and p j+1 �= p j for all j ∈ {1, ..., m}.

Otherwise, if q j+2 = q j+1, then the changing points

... → (q j , p j ) → (q j+1, p j ) → (q j+1, p j+1) → (q j+2, p j+1) → (q j+2, p j+2) → ...

(14)
can be replaced by

... → (q j , p j ) → (q j+2, p j ) → (q j+2, p j+2) → ... (15)

Indeed, because of

p j+1 − p j ∈ −NK (q j+1) and p j+2 − p j+1 ∈ −NK (q j+2),

we have
p j+2 − p j ∈ NT (q j+2),

and because of
q j+1 − q j ∈ NT (p j ),

we have
q j+2 − q j ∈ NT (p j ).

Therefore, the changing points in (15) are in the sense of (9). If p j+1 = p j , then again,
(14) can be replaced by (15) by similar reasoning. In both cases the lengths of the respective
associated closed characteristics remain unchanged.

As consequence, without loss of generality, we can assume that x̃q is a closed polygonal
curve with vertices q1, ..., qm on ∂K , where q j+1 �= q j and q j not contained in the line
segment connecting q j−1 and q j+1 for all j ∈ {1, ..., m} (otherwise, if q j is contained in
the line segment connecting q j−1 and q j+1, then NT (p j−1) = NT (p j ), and by the strict
convexity of T , p j−1 = p j , but then the corresponding segment again can be removed),
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i.e., q is a closed polygonal curve in the sense of Footnote 1. Therefore, by the definition
of Minkowski billiard trajectories, x̃q is a closed (K , T )-Minkowski billiard trajectory with
closed dual billiard trajectory x̃ p and with �T -length equal to the action of x .

Summarized, we proved that for every closed characteristic x on ∂(K × T ), there is a
closed characteristic x̃ = (̃xq , x̃ p) on ∂(K ×T )which is a closed polygonal curve and where
x̃q is a closed (K , T )-Minkowski billiard trajectory with x̃ p as closed dual billiard trajectory
on T and

A(x) = A(̃x) = �T (̃xq).

And conversely, for every closed (K , T )-Minkowski billiard trajectory q = (q1, ..., qm)

with closed dual billiard trajectory p = (p1, ..., pm) on T , x = (q, p) (after a suitable
parametrization of q and p) is a closed characteristic on ∂(K × T ) with

�T (q) = A(x).

Since these relations remain uneffected by minimizing the action/length, we have

cE H Z (K × T ) = min
q cl. (K ,T )-Mink. bill. traj.

�T (q)

and consequently proved Theorem 3.

5 Proof of Theorem 4

The structure of the proof of Theorem 4 is similar to the structure of the proof of Theorem 2.

Proof (Proof of Theorem 4) It is sufficient to prove the following two points:

(i) Every closed (K , T )-Minkowski billiard trajectory is either in Fcp
n+1(K ) or there is an

�T -shorter closed polygonal curve in Fcp
n+1(K ).

(ii) For every �T -minimizing element of Fcp
n+1(K ), there is a closed (K , T )-Minkowski

billiard trajectory with � n + 1 bouncing points and the same �T -length.

Ad (i): Let q = (q1, ..., qm) be a closed (K , T )-Minkowski billiard trajectory. From
Proposition 3, we conclude q ∈ F(K ). For m � n + 1, we then have q ∈ Fcp

n+1(K ). If
m > n + 1, then, by [15, Lemma 2.1(i)], there is a selection

{i1, ..., in+1} ⊂ {1, ..., m} with i1 < ... < in+1

such that the closed polygonal curve

(qi1 , ..., qin+1)

is in Fcp
n+1(K ). One has

�T ((qi1 , ..., qin+1)) � �T (q).

Ad (ii): Let q = (q1, ..., qm) be an �T -minimizing element of Fcp
n+1(K ). Further, let

(Ti )i∈N be a sequence of strictly convex bodies in R
n that dH -converges to T . For all i ∈ N,

let
qi,mi = (qi,mi

1 , ..., qi,mi
mi

)

be an �Ti -minimizing closed (K , Ti )-Minkowski billiard trajectory. Then, by Theorem 2,
qi,mi is an �Ti -minimizing closed polygonal curve in Fcp

n+1(K ) for all i ∈ N (therefore
mi � n + 1 for all i ∈ N). We conclude

qi,mi ∈ Fcp,∗R
n+1 (K ) = {

q ∈ Fcp
n+1(K ) : q ⊂ Bn

R(0)
} ∀i ∈ N,
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where R is chosen sufficiently large. Since (Fcp,∗R
n+1 (K ), dH ) is a compact metric subspace

of the complete metric space (P(Rn), dH ) (see the proof of Theorem 2), via a standard
compactness argument, we find a strictly increasing sequence (i j ) j∈N and a closed polygonal
curve q∗ ∈ Fcp,∗R

n+1 (K ) such that

mi j ≡: m � n + 1,

(qi j ,mi j ) j∈N dH -converges to q∗,
q∗ = (q∗

1 , ..., q ∗̃
m) with m̃ � m � n + 1.

We show that q∗ is a closed (K , T )-Minkowski billiard trajectory. Without loss of gener-
ality, we assume

lim
j→∞ q

i j
k �= lim

j→∞ q
i j
k+1 ∀k ∈ {1, ..., m}. (16)

Otherwise, we neglect q
i j
k and continue with

(q
i j
1 , ..., q

i j
k−1, q

i j
k+1, ..., q

i j
m ).

We do exactly the same in the case lim j→∞ q
i j
k is contained in the line segment connecting

lim
j→∞ q

i j
k−1 and lim

j→∞ q
i j
k+1.

These cases are responsible for possibly having m̃ < m. From now on, we can assume
m̃ = m. Then, due to (16), we have that

lim
j→∞

(
q

i j
k+1 − q

i j
k

)
�= 0,

and because of the strict convexity of Ti j (for strictly convex body T̃ one has that pi �= p j

is equivalent to NT̃ (pi ) ∩ NT̃ (p j ) = {0}), there is a unique p
i j
k ∈ ∂Ti j with

q
i j
k+1 − q

i j
k ∈ NTi j

(p
i j
k ).

Then, since q
i j
k+1 − q

i j
k converges for j → ∞, this is also true for p

i j
k : we write

lim
j→∞ p

i j
k =: p∗

k .

This can be argued for every k ∈ {1, ..., m}. Since
lim

j→∞ NTi j
(p

i j
k ) ⊆ NT (p∗

k ) and lim
j→∞ NK (q

i j
k ) ⊆ NK (q∗

k ) ∀k ∈ {1, ..., m}

by possibly going to a subsequence and by specifying themeaning of the limits by: a sequence
of cones (Ci )i∈N converges to some convex cone if the sequence

(Ci ∩ Bn
1 (0))i∈N

dH -converges to C ∩ Bn
1 (0), we get{

q∗
k+1 − q∗

k ∈ NT (p∗
k ),

p∗
k+1 − p∗

k ∈ −NK (q∗
j+1).

Therefore, q∗ is a closed (K , T )-Minkowski billiard trajectory.

123



Journal of Dynamics and Differential Equations

It remains to show that
�T (q∗) = �T (q). (17)

For that, we show that q∗ is an �T -minimizing element in Fcp
n+1(K ). We assume by contra-

diction that there is a�q in Fcp
n+1(K ) with

�T (�q) < �T (q∗). (18)

Since for all j ∈ N, qi j ,mi j is an �Ti j
-minimizing element of Fcp

n+1(K ), it follows that

�Ti j
(qi j ,mi j ) � �Ti j

(�q) ∀ j ∈ N.

Using the dH -convergence of (Ti )i∈N to T and [16, Proposition 3.11(vi)], this implies

�T (qi j ,mi j ) � �T (�q) ∀ j ∈ N.

Then, using [16, Proposition 3.11(v)], we obtain

�T (q∗) � �T (�q),

a contradiction to (18). Therefore, q∗ is an �T -minimizing element of Fcp
n+1(K ). This implies

(17). ��
So far, in the general case, it is not knownwhether there is an example in order to sharpen the

statement of this theorem, i.e., whether every minimizer �T -minimizing element of Fcp
n+1(K )

has a translate which is an �T -minimizing closed (K , T )-Minkowski billiard trajectory.

6 Proof of Theorem 5

Proof (Proof of Theorem 5) Ad(i) : For all i ∈ N, let qi be an �T -minimizing closed (Ki , T )-
Minkowski billiard trajectory. Then, by Theorem 2 (or Theorem 4), for all i ∈ N, qi is an
�T -minimizing closed polygonal curve in Fcp

n+1(Ki ).
Since (Ki )i∈N dH -converges to K , for all ε > 0, there is an i0 = i0(ε) ∈ N such that

(1 − ε)K ⊂ Ki ⊂ (1 + ε)K ∀i � i0.

This means by [16, Proposition 3.11(i)] (which also holds for proper inclusions) that

Fcp
n+1((1 + ε)K ) ⊂ Fcp

n+1(Ki ) ⊂ Fcp
n+1((1 − ε)K ) ∀i � i0. (19)

By (19) and the fact that, for all i ∈ N, qi is an �T -minimizing element of Fcp
n+1(Ki ), for

ε > 0 and i0 = i0(ε) big enough, we have that

qi ∈ Fcp
n+1((1 − ε)K ) and qi ⊂ Bn

R(0) ∀i � i0,

where by Bn
R(0) we denote the n-dimensional ball in R

n of sufficiently large radius R > 0
that contains K . Via a standard compactness argument (see the proof of Theorem 2), there
is a strictly increasing sequence (i j ) j∈N and a closed polygonal curve

q ∈ Fcp
n+1((1 − ε)K ) ∀ε > 0

such that (qi j ) j∈N dH -converges to q and every qi j has m � n + 1 vertices/bouncing points
(we note that, in general, the qi s can have a varying number of vertices/bouncing points).
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We show that q is an �T -minimizing element of Fcp
n+1(K ). Since the aforementioned is

true for any ε > 0, we have

q ∈
⋂
ε>0

Fcp
n+1((1 − ε)K ) ⊆ Fcp

n+1(K ),

where the last inclusion follows from the fact that any closed polygonal curve with at most
n + 1 vertices that can be translated into K̊ can also be translated into (1 − ε)K̊ for ε > 0
small enough. Therefore, q is in Fcp

n+1(K ). It remains to show that q is �T -minimizing. We
assume by contradiction that there is a q̃ ∈ Fcp

n+1(K ) with

�T (̃q) < �T (q).

We choose ε > 0 such that
�T ((1 + ε)̃q) < �T (q). (20)

Then, by [16, Proposition 3.11(ii)],

(1 + ε)̃q ∈ (1 + ε)Fcp
n+1(K ) = Fcp

n+1((1 + ε)K ).

From (19), it follows for j big enough that

(1 + ε)̃q ∈ Fcp
n+1(Ki j ),

and hence
�T ((1 + ε)̃q) � �T (qi j )

since qi j is an �T -minimizing element of Fcp
n+1(Ki j ). Passing to the limit in j and using [16,

Proposition 3.11(v)], we obtain

�T ((1 + ε)̃q) � �T (q),

a contradiction to (20). Therefore, q is an �T -minimizing element of Fcp
n+1(K ).

We show that q is an �T -minimizing closed (K , T )-Minkowski billiard trajectory. Since
(qi j ) j∈N dH -converges to q , under the assumption that q also has m vertices q1, ..., qm

(satisfying qk �= qk+1 and the condition thatqk is not contained in the line segment connecting

qk−1 and qk+1 for all k ∈ {1, ..., m}; see Footnote 1), it follows that (q
i j
k ) j∈N converges to

qk for all k ∈ {1, ..., m} (see again the aforementioned identification given in the proof

of Theorem 2). Then, from the dH -convergence of (Ki )i∈N to K and q
i j
k ∈ ∂Ki j for all

k ∈ {1, ..., m} and all j ∈ N, it follows that qk ∈ ∂K for all k ∈ {1, ..., m}. By referring to
Theorem 2 (T is strictly convex; here Theorem 4 would not be enough), q then satisfies all
the conditions in order to be an �T -minimizing closed (K , T )-Minkowski billiard trajectory.
If q has less than m vertices, i.e., if

lim
j→∞ q

i j
k = lim

j→∞ q
i j
k+1 for a k ∈ {1, ..., m},

or lim j→∞ q
i j
k is contained in the line segment connecting

lim
j→∞ q

i j
k−1 and lim

j→∞ q
i j
k+1,

then, without loss of generality, we can neglect the k-th vertex of qi j for all j ∈ N, but get
the same result: all the vertices of q are on ∂K and q satisfies all other conditions in order to
be an �T -minimizing closed (K , T )-Minkowski billiard trajectory.

Ad(ii) : We can copy completely the proof of point (ii) within the proof of Theorem 4. ��
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