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Abstract
Weprovide a unified analytic approach to study the asymptotic dynamics ofYoungdifferential
equations, using the framework of random dynamical systems and random attractors. Our
method helps to generalize recent results (Duc et al. in J Differ Equ 264:1119–1145, 2018,
SIAM J Control Optim 57(4):3046–3071, 2019; Garrido-Atienza et al. in Int J Bifurc Chaos
20(9):2761–2782, 2010) on the existence of the global pullback attractors for the generated
random dynamical systems. We also prove sufficient conditions for the attractor to be a
singleton, thus the pathwise convergence is in both pullback and forward senses.

Keywords Stochastic differential equations (SDE) · Young differential equations · Young
integrals · Exponential stability · Random dynamical systems · Random attractors

1 Introduction

This paper studies the asymptotic behavior of the stochastic differential equation

dyt = [Ayt + f (yt )]dt + g(yt )dZt (1.1)

where A ∈ R
d×d , f : R

d → R
d , g : R

d → R
d×m are globally Lipschitz continuous

functions, and Z is a two-sided stochastic process with stationary increments such that almost
sure all realizations of Z are in the space C p−var(R,Rm) of continuous paths with finite p
- variation norm, for some 1 ≤ p < 2. An example for such a process Z is a fractional
Brownian motion BH [20] with Hurst index H > 1

2 . It is well known that Eq. (1.1) can be
solved in the path-wise approach by taking a realization x ∈ C p−var(R,Rm) (which is also
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called a driving path) and considering the Young differential equation

dyt = [Ayt + f (yt )]dt + g(yt )dxt , t ∈ R+, y0 ∈ R
d . (1.2)

This way, system (1.2) is understood in the integral form

yt = y0 +
∫ t

0
[Ays + f (ys)]ds +

∫ t

0
g(ys)dxs, ∀t ∈ R+, y0 ∈ R

d , (1.3)

where the second integral is understood in theYoung sense [24]. The existence and uniqueness
theorem for Young differential equations is proved in many versions, e.g. [6,17–19,21,25].

Our aim is to investigate the role of the driving noise in the longterm behavior of system
(1.1). Namely we impose assumptions for the drift coefficient so that there exists a unique
equilibrium for the deterministic system μ̇ = Aμ+ f (μ)which is asymptotically stable; and
then raise the questions on the asymptotic dynamics of the perturbed system, in particular
the existence of stationary states and their asymptotic (stochastic) stability [14] with respect
to almost sure convergence.

These questions could be studied in the framework of random dynamical systems [3].
Specifically, results in [11] and recently in [4,9] reveal that the stochastic Young system (1.1)
generates a random dynamical system, hence asymptotic structures like random attractors
are well-understood. In this scenarios, system (1.1) has no deterministic equilibrium but is
expected to possess a random attractor, although little is known on the inside structure of the
attractor and much less on whether or not the attractor is a (random) singleton.

We remind the reader of a well-known technique in [15,16,23] to generate RDS and to
study random attractors of system (1.2) by a conjugacy transformation yt = ψg(ηt , zt ),
where the semigroup ψg generated by the equation u̇ = g(u) and η is the unique stationary
solution of the Langevin equation dη = −ηdt + dZt . The transformed system

żt =
(∂ψg

∂u

)−1
(ηt , zt )

[
Aψg(ηt , zt ) + f (ψg(ηt , zt )) + ηCψg(ηt , zt )

]
(1.4)

can then be solved in the pathwise sense and the existence of random attractor for (1.4) is
equivalent to the existence of randomattractor for the original system. This conjugacymethod
works in some special cases, particularly if g(·) is the identity matrix, or more general if
g(y) = Cy for some matrix C that commutes with A (see further details in Remark 3.10).
For more general cases, the reader is refered to [8,9] and the references therein for recent
methods in studying the asymptotic behavior of Young differential equations.

Another approach in [8,11] uses the semigroup technique to estimate the solution norms,
which then proves the existence of a random absorbing set that contains a random attractor
for the generated random dynamical system. Specifically, thanks to the rule of integration
by parts for Young integrals, the "variation of constants" formula for Young differential
equations holds (see e.g. [25] or [8]), so that yt in Eq. (1.3) satisfies

yt = �(t)y0 +
∫ t

0
�(t − s) f (ys)ds +

∫ t

0
�(t − s)g(ys)dxs, ∀t ≥ 0, (1.5)

where �(t) is the semigroup generated by A. By constructing a suitable stopping times
{τk}k∈N, one can estimate the Hölder norm of y on interval [τn, τn+1] in the left hand side
of (1.5) by the same norm on previous intervals [τk, τk+1] for k < n following a recurrent
relation, thereby can apply the discrete Gronwall Lemma (see Lemma 3.12 in the Appendix).
However this construction of stopping times only works under the assumption that the noise
is small in the sense that its Hölder seminorm is integrable and can be controlled to be
sufficiently small.
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In this paper, we propose a different approach in Lemma 3.3, which first estimates the
Euclidean norm ‖yn‖ of y at time n in (1.5) by applying the continuousGronwall Lemma, and
then estimate Young integrals in the right hand side by the p-variation norms ‖y‖p−var,[k,k+1]
using Proposition 3.2. Thanks toTheorem2.4 and its corollaries, these norms ‖y‖p−var,[k,k+1]
are estimated by ‖yk‖, which leads to a recurrent relation between ‖yn‖ and previous terms
‖yk‖. As a consequence, one can apply the discreteGronwall Lemma3.12 and yield a stability
criterion in Theorem 3.4. Therefore, the method works for a general source of noises, and
the stability criterion matches the classical one for ordinary differential equations when the
effect of driving noise is cleared. Moreover, the same arguments can be applied for stochastic
process Z with lower regularity (for instance Z is a fractional Brownian motion BH with
1
3 < H < 1

2 ), in that case equation (1.3) is no longer a Young equation but should be
understood as a rough differential equation and can be solved by Lyon’s rough path theory
[18] (see also [10,22]).

The paper is organized as follows. Section 2 is devoted to present preliminaries and main
results of the paper, where the norm estimates of the solution of (1.2) is then presented
in Sect. 2.1. In Sect. 3.1, we introduce the generation of random dynamical system from
the equation (1.1). Using Lemma 3.3, we prove the existence of a global random pullback
attractor in Theorem 3.4. Finally in Sect. 3.3, we prove that the attractor is both a pullback
and forward singleton attractor if g is a linear map in Theorem 3.9, or if g ∈ C2

b for small
enough Lipschitz constant Cg in Theorem 3.11.

2 Preliminaries andMain Results

Let us first briefly make a survey on Young integrals. Denote by C([a, b],Rr ), for r ≥ 1, the
space of all continuous paths x : [a, b] → R

r equipped with supremum norm ‖x‖∞,[a,b] =
supt∈[a,b] ‖xt‖, where ‖·‖ is the Euclidean norm of a vector inRr . For p ≥ 1 and [a, b] ⊂ R,
denote by C p−var([a, b],Rr ) the space of all continuous paths x ∈ C([a, b],Rr ) which
is of finite p−variation, i.e. |||x |||p−var,[a,b] := (

sup�(a,b)
∑n

i=1 ‖xti+1 − xti ‖p
)1/p

< ∞
where the supremum is taken over the whole class �(a, b) of finite partitions � = {a =
t0 < t1 < · · · < tn = b} of [a, b] (see e.g. [10]). Then C p−var([a, b],Rr ), equipped
with the p−var norm ‖x‖p−var,[a,b] := ‖xa‖ + |||x |||p−var,[a,b], is a nonseparable Banach
space [10, Theorem 5.25, p. 92]. Also for each 0 < α < 1, denote by Cα−Hol([a, b],Rr )

the space of Hölder continuous paths with exponent α on [a, b], and equip it with the
norm ‖x‖α−Hol,[a,b] := ‖xa‖ + supa≤s<t≤b

‖xt−xs‖
(t−s)α . Note that for α > 1

p , it holds that

Cα−Hol([a, b],Rr ) ⊂ C p−var([a, b],Rr ).
We recall here a result from [6, Lemma 2.1].

Lemma 2.1 Let x ∈ C p−var([a, b],Rd), p ≥ 1. If a = a1 < a2 < · · · < ak = b, then

k−1∑
i=1

|||x |||pp−var,[ai ,ai+1] ≤ |||x |||pp−var,[a1,ak ] ≤ (k − 1)p−1
k−1∑
i=1

|||x |||pp−var,[ai ,ai+1] .

Now, for y ∈ Cq−var([a, b],Rd×m) and x ∈ C p−var([a, b],Rm) with 1
p + 1

q > 1, the

Young integral
∫ b
a ytdxt can be defined as

∫ b
a ysdxs := lim|�|→0

∑
[u,v]∈� yu(xv − xu), where

the limit is taken over all the finite partitions � of [a, b] with |�| := max[u,v]∈�
|v − u| (see [24,

pp. 264–265]). This integral satisfies the additive property and the so-called Young-Loeve
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estimate [10, Theorem 6.8, p. 116]

∥∥∥
∫ t

s
yudxu − ys[xt − xs]

∥∥∥
≤ (1 − 21−

1
p − 1

q )−1 |||y|||q−var,[s,t] |||x |||p−var,[s,t] , ∀[s, t] ⊂ [a, b]. (2.1)

Fromnowon,we only considerq = p for convenience.We impose the following assumptions
on the coefficients A, f and g and the driving path x .

Assumptions

(H1) A ∈ R
d×d is a matrix which has all eigenvalues of negative real parts;

(H2) f : Rd → R
d and g : Rd → R

d×m, are globally Lipschitz continuous functions. In
addition, g ∈ C1 such that Dg is also globally Lipschitz continuous. Denote byC f ,Cg

the Lipschitz constants of f and g respectively;
(H3) for a given p ∈ (1, 2), Zt is a two-sided stochastic process with stationary increments

such that almost sure all realizations belong to the space C p−var(R,Rm) and that

	(p) :=
(
E |||Z |||pp−var,[−1,1]

) 1
p

< ∞. (2.2)

For instance, Z could be anm−dimensional fractional Brownian motion BH [20] with
Hurst exponent H ∈ ( 12 , 1), i.e. a family of centered Gaussian processes BH = {BH

t },
t ∈ R or R+ with continuous sample paths and the covariance function

RH (s, t) = 1
2 (t

2H + s2H − |t − s|2H ), ∀t, s ∈ R.

Assumption (H1) ensures that the semigroup �(t) = eAt , t ∈ R generated by A
satisfies the following properties.

Proposition 2.2 Assume that A has all eigenvalues of negative real parts. Then there exist
constants CA ≥ 1, λA > 0 such that the generated semigroup �(t) = eAt satisfies

‖�‖∞,[a,b] ≤ CAe
−λAa, (2.3)

|||�|||p−var,[a,b] ≤ |A|CAe
−λAa(b − a), ∀ 0 ≤ a < b, (2.4)

in which |A| := sup
‖x‖=1

‖Ax‖
‖x‖ .

Proof The first inequality is due to [1, Chapter 1, §3]. The second one is followed from the
mean value theorem

‖�(u) − �(v)‖ =
∥∥∥∥
∫ v

u
A�(s)ds

∥∥∥∥ ≤
∫ v

u
|A|CAe

−λAsds ≤ |A|CAe
−λAa(v − u),

for any u < v in [a, b] where e−λA · is a decreasing function. 
�
Our main results (Theorems 3.4, 3.9, 3.11) could be summarized as follows.

Theorem 2.3 Assume that the system (1.1) satisfies the assumptions H1 − H3, and further
that λA > C f CA, where λA and CA are given from (2.3), (2.4). If

λA − CAC f > CA(1 + |A|)eλA+2(|A|+C f )
{[

2(K + 1)Cg	(p)
]p +

[
2(K + 1)Cg	(p)

]}
,

(2.5)
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where 	(p) is defined in (2.2) and K in (2.7), then the generated random dynamical system
ϕ of (1.1) possesses a pullback attractor A(x). Moreover, in case g(y) = Cy + g(0) is a
linear map satisfying (2.5) or in case g ∈ C2

b with the Lipschitz constant Cg small enough,
this attractor is a singleton, i.e.A(x) = {a(x)} a.s., thus the pathwise convergence is in both
the pullback and forward directions.

For the convenience of the readers, we introduce some notations and constants which are
used throughout the paper.

L := |A| + C f , L f := CAC f , λ := λA − L f ; (2.6)

K := (1 − 21−
2
p )−1, α := log

(
1 + 1

K + 1

)
; (2.7)

M0 := ‖ f (0)‖
L

+ ‖g(0)‖
(K + 1)Cg

; (2.8)

M1 := KCAe
λA (1 + |A|); (2.9)

M2 := max

{
CA

eλ − 1

λ
, M1Cg

(
1

L
+ 1

(K + 1)Cg

)
, M1Cg

}
max{‖ f (0)‖, ‖g(0)‖};

(2.10)

Ĝ := CAe
λA (1 + |A|)e4L

{[
2(K + 1)Cg	(p)

]p +
[
2(K + 1)Cg	(p)

]}
. (2.11)

2.1 Solution Estimates

In this preparatory subsection we are going to estimate several norms of the solution. To
do that, the idea is to evaluate the norms of the solution on a number of consecutive small
intervals. Here we would like to construct, for any γ > 0 and any given interval [a, b], a
sequence of greedy times {τk(γ )}k∈N as follows (see e.g. [5,6,8])

τ0 = a, τk+1(γ ) := inf{t > τk(γ ) : |||x |||p−var,[τk (γ ),t] = γ } ∧ b. (2.12)

Define
N = Nγ,[a,b](x) := sup{k ∈ N, τk(γ ) ≤ b}, (2.13)

then due to the superadditivity of |||x |||pp−var,[s,t]

N − 1 ≤
N−2∑
k=0

γ −p |||x |||pp−var,[τk ,τk+1] ≤ γ −p |||x |||pp−var,[τ0,τN−1]

≤ γ −p |||x |||pp−var,[a,b] ,

which yields N ≤ 1 + γ −p |||x |||pp−var,[a,b] . (2.14)

From now on, we fix p ∈ (1, 2) and γ := 1
2(K+1)Cg

, and write in short N[a,b](x) to specify
the dependence of N on x and the interval [a, b].

We assume throughout this section that the assumption (H2), (H3) are satisfied. The
following theorem presents a standardmethod to estimate the p−variation and the supremum
norms of the solution of (1.2), by using the continuous Gronwall lemma and a discretization
scheme with the greedy times (2.12).
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Theorem 2.4 There exists a unique solution to (1.2) for any initial value, whose supremum
and p−variation norms are estimated as follows

‖y‖∞,[a,b] ≤
[
‖ya‖ + M0N[a,b](x)

]
eαN[a,b](x)+2L(b−a), (2.15)

‖y‖p−var,[a,b] ≤
[
‖ya‖ + M0N[a,b](x)

]
eαN[a,b](x)+2L(b−a)N

p−1
p

[a,b](x), (2.16)

where L, α and M0 are given by (2.6), (2.7) and (2.8) respectively.

Proof There are similar versions of Theorem 2.4 in [19, Proposition 1] for Young equations
or in [5, Lemma 4.5] and [22, Theorem 3.1] for rough differential equations with bounded
g, thus we will only sketch out the proof here for the benefit of the readers. To prove (2.15),
we use the fact that |||g(y)|||p−var,[s,t] ≤ Cg |||y|||p−var,[s,t] and apply (2.1) with K in (2.7) to
derive

‖yt − ys‖ ≤
∫ t

s
(L‖yu‖ + ‖ f (0)‖)du + |||x |||p−var,[s,t]

(
‖g(ys)‖

+KCg |||y|||p−var,[s,t]
)

so that |||y|||p−var,[s,t] ≤
∫ t

s
L |||y|||p−var,[s,u] du + (‖ f (0)‖ + L‖ys‖)(t − s)

+ |||x |||p−var,[s,t]
(
‖g(ys)‖ + (K + 1)Cg |||y|||p−var,[s,t]

)
.

As a result,

|||y|||p−var,[s,t] ≤
∫ t

s
2L |||y|||p−var,[s,u] du + 2(‖ f (0)‖ + L‖ys‖)(t − s) + 2 |||x |||p−var,[s,t] ‖g(ys)‖

(2.17)
whenever (K + 1)Cg |||x |||p−var,[s,t] ≤ 1

2 . Applying the continuous Gronwall Lemma [2,
Lemma 6.1, p 89] for |||y|||p−var,[s,t] yields

|||y|||p−var,[s,t] ≤ 2(‖ f (0)‖ + L‖ys‖)(t − s) + 2 |||x |||p−var,[s,t] ‖g(ys)‖

+
∫ t

s
2Le2L(t−u)

[
2(‖ f (0)‖ + L‖ys‖)(u − s) + 2 |||x |||p−var,[s,u] ‖g(ys)‖

]
du

≤
(
M0 + K + 2

K + 1
‖ys‖

)
e2L(t−s) − ‖ys‖ (2.18)

whenever |||x |||p−var,[s,t] ≤ γ = 1
2(K+1)Cg

. Now construct the sequence of greedy times
{τk = τk(γ )}k∈N on interval [a, b] as in (2.12), it follows from induction that

‖yτk+1‖ ≤ ‖y‖∞,[τk ,τk+1] ≤ ‖y‖p−var,[τk ,τk+1] ≤
(
eα‖yτk‖ + M0

)
e2L(τk+1−τk )

≤
[
‖ya‖ + M0(k + 1)

]
eα(k+1)+2L(τk+1−τ0), ∀k = 0, . . . , N[a,b](x) − 1,

which proves (2.15) since τN[a,b](x) = b. On the other hand, it follows from inequality of
p-variation seminorm in Lemmas 2.1 and (2.18) that for all k = 0, . . . , N[a,b](x) − 1,

|||y|||p−var,[a,b] ≤ N
p−1
p

[a,b](x)
N[a,b](x)−1∑

k=0

{
‖yτk‖

(
eα+2L(τk+1−τk ) − 1

) + M0e
2L(τk+1−τk )

}

≤ N
p−1
p

[a,b](x)
[
‖ya‖ + M0N[a,b](x)

]
eαN[a,b](x)+2L(b−a) − ‖ya‖
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which proves (2.16). 
�
By the same arguments, we can prove the following results.

Corollary 2.5 If in addition g is bounded by ‖g‖∞ < ∞, then

‖y‖p−var,[a,b] ≤
[
‖ya‖ +

(‖ f (0)‖
L

∨ 2‖g‖∞
)
(1 + |||x |||p−var,[a,b])N[a,b](x)

]
e2L(b−a)N

p−1
p

[a,b](x),
(2.19)

in which a ∨ b := max{a, b}.
Corollary 2.6 The following estimate holds

‖y‖p−var,[a,b] ≤
[
‖ya‖ +

(‖ f (0)‖
L

∨ 2‖g(0)‖
)

(1 + |||x |||p−var,[a,b])N[a,b](x)
]

×

×eαN[a,b](x)+2L(b−a)N
p−1
p

[a,b](x). (2.20)

The lemma below is useful in evaluating the difference of two solutions of Eq. (1.2). The
proof is similar to [6, Lemma 3.1] and will be omitted here.

Lemma 2.7 Let y1, y2 be two solution of (1.2). Assign

Q(t) = Q(t, y1, y2) := g(y1t ) − g(y2t ), t ≥ 0

where g satisfies (H2).
(i) If in addition, Dg is of Lipschitz continuity with Lipschitz constant C ′

g, then

|||Q|||p−var,[u,v] ≤ Cg
∣∣∣∣∣∣y1 − y2

∣∣∣∣∣∣
p−var,[u,v] + C ′

g‖y1 − y2‖∞,[u,v]
∣∣∣∣∣∣y1∣∣∣∣∣∣p−var,[u,v] . (2.21)

(i i) If g is a linear map, then |||Q|||p−var,[u,v] ≤ Cg
∣∣∣∣∣∣y1 − y2

∣∣∣∣∣∣
p−var,[u,v].

Thanks to Lemma 2.7, the difference of two solutions of (1.2) can be estimated in p-var norm
as follows.

Corollary 2.8 Let y1, y2 be two solutions of (1.2) and assign zt = y2t − y1t for all t ≥ 0.
(i) If Dg is of Lipschitz continuity with Lipschitz constant C ′

g then

‖z‖p−var,[a,b] ≤ ‖za‖(N ′[a,b](x))
p−1
p 2N

′[a,b](x)e2L(b−a), ∀a ≤ b (2.22)

in which

N ′[a,b](x) ≤ 1 + [2(K + 1)(Cg ∨ C ′
g)]p |||x |||pp−var,[a,b] (1 + ∣∣∣∣∣∣y1∣∣∣∣∣∣p−var,[a,b])

p. (2.23)

(i i) If in addition g is a linear map then

‖z‖p−var,[a,b] ≤ ‖za‖eαN[a,b](x)+2L(b−a). (2.24)

Proof The proof use similar arguments to the proof of Theorem 2.4, thus it will be omitted
here. The the readers are referred to [19, Proposition 1], [6, Theorem 3.9] for similar versions.


�
Remark 2.9 It follows from (2.14) that

N
p−1
p

[a,b](x) ≤
(
1 + [2(K + 1)Cg]p |||x |||pp−var,[a,b]

) p−1
p
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≤ 1 + [2(K + 1)Cg]p−1 |||x |||p−1
p−var,[a,b] ,

N
2p−1

p
[a,b] (x) ≤

(
1 + [2(K + 1)Cg]p |||x |||pp−var,[a,b]

) 2p−1
p

≤ 2
p−1
p

(
1 + [2(K + 1)Cg]2p−1 |||x |||2p−1

p−var,[a,b]
)
.

As a result, the norm estimates (2.16), (2.19), (2.20) have the same form

‖y‖p−var,[a,b] ≤ ‖ya‖
1(x, [a, b]) + 
2(x, [a, b]) (2.25)

in which 
i (x, [a, b]) are functions of |||x |||p−var,[a,b]. Similarly, (2.22) (for a fixed solution
y1) and (2.24) can also be rewritten in the form (2.25) with 
2 ≡ 0.

In the following, let y be a solution of (1.2) on [a, b] ⊂ R
+ and μ be the solution of the

corresponding deterministic system, i.e

μ̇t = Aμt + f (μt ), t ∈ [a, b] (2.26)

with the same initial condition μa = ya . Assign ht := yt − μt . The following result, which
is used in studying singleton attractors in Theorem 3.11, estimates the norms of h with the
initial condition ‖ya‖, up to a fractional order.
Corollary 2.10 Assume that g is bounded. Then for a fixed constant β = 1

p ∈ ( 12 , 1), there
exists for each interval [a, b] a constant D depending on b − a such that

‖h‖∞,[a,b] ≤ D
(
‖ya‖β + 1

)
|||x |||p−var,[a,b] N[a,b](x), (2.27)

‖h‖p−var,[a,b] ≤ D
(
‖ya‖β + 1

)
|||x |||p−var,[a,b] N

2p−1
p

[a,b] (x). (2.28)

Proof The proof follows similar steps to [13, Proposition 4.6] with only small modifications
in estimates for p - variation norms and in usage of the continuous Gronwall lemma. To
sketch out the proof, we first observe from (2.26) with r = b − a that

‖μt − μs‖ ≤
∫ t

s
(‖ f (0)‖ + L‖μu‖)du ≤ eLr (L‖μa‖ + ‖ f (0)‖)(t − s), a ≤ s ≤ t ≤ b.

(2.29)
Next, it follows from H2 and the boundedness of g by ‖g‖∞ that

‖ht − hs‖ ≤
∫ t

s
L‖hu‖du + ‖g‖∞ |||x |||p−var,[s,t] + K |||x |||p−var,[s,t] |||g(h + μ)|||p−var,[s,t] .

(2.30)
Observe that due to the boundedness of g,

‖g(ht + μt ) − g(hs + μs)‖ ≤ Cg‖ht − hs‖ + (2‖g‖∞ ∨ Cg)‖μt − μs‖β

≤ Cg‖ht − hs‖ + D(1 + ‖μa‖β)(t − s)β, ∀a ≤ s < t ≤ b

where the last estimate is due to (2.29) and D is a generic constant depending on b− a. This
leads to

|||g(h + μ)|||p−var,[s,t] ≤ Cg |||h|||p−var,[s,t] + D(1 + ‖μa‖β)(t − s)β . (2.31)

Replacing (2.31) into (2.30) yields
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|||h|||p−var,[s,t]

≤
∫ t

s
L |||h|||p−var,[s,u] du + L‖hs‖(t − s) +

[
‖g‖∞ ∨ D(1 + ‖μa‖β)

]
|||x |||p−var,[s,t]

+KCg |||x |||p−var,[s,t] |||h|||p−var,[s,t]

which is similar to (2.17). Using similar arguments to the proof of Theorem 2.4 and taking
into account (2.19), we conclude that

‖h‖∞,[a,b] ≤ e2Lr
[
‖ha‖ + D(1 + ‖μa‖β) |||x |||p−var,[a,b] N[a,b](x)

]
,

for a generic constant D. Finally, (2.27) is derived since ha = 0. The estimate (2.28) is
obtained similarly. 
�

3 RandomAttractors

3.1 Generation of RandomDynamical Systems

In this subsection we would like to present the generation of a random dynamical system
from Young equation (1.1). Let (�,F,P) be a probability space equipped with a so-called
metric dynamical system θ , which is a measurable mapping θ : R × � → � such that
θt : � → � is P− preserving, i.e. P(B) = P(θ−1

t (B)) for all B ∈ F, t ∈ R, and θt+s =
θt ◦ θs for all t, s ∈ R. A continuous random dynamical system ϕ : R × � × R

d → R
d ,

(t, ω, y0) �→ ϕ(t, ω)y0 is then defined as a measurable mapping which is also continuous in
t and y0 such that the cocycle property

ϕ(t + s, ω)y0 = ϕ(t, θsω) ◦ ϕ(s, ω)y0, ∀t, s ∈ R, ω ∈ �, y0 ∈ R
d (3.1)

is satisfied [3].
In our scenario, denote byC0,p−var([a, b],Rm) the closure ofC∞([a, b],Rm) inC p−var([a, b],
R
m), and by C0,p−var(R,Rm) the space of all x : R → R

m such that x |I ∈ C0,p−var(I ,Rm)

for each compact interval I ⊂ R. Then equip C0,p−var(R,Rm) with the compact open topol-
ogy given by the p−variation norm, i.e. the topology generated by the metric:

dp(x1, x2) :=
∑
k≥1

1

2k
(‖x1 − x2‖p−var,[−k,k] ∧ 1).

Assign

� := C0,p−var
0 (R,Rm) := {x ∈ C0,p−var(R,Rm)| x0 = 0},

and equip with the Borel σ− algebra F . Note that for x ∈ C0,p−var
0 (R,Rm), |||x |||p−var,I and

‖x‖p−var,I are equivalent norms for every compact interval I containing 0.
To equip this measurable space (�,F)with a metric dynamical system, consider a stochastic
process Z̄ defined on a probability space (�̄, F̄, P̄)with realizations in (C0,p−var

0 (R,Rm),F).
Assume further that Z̄ has stationary increments. Denote by θ the Wiener shift

(θt x)· = xt+· − xt ,∀t ∈ R, x ∈ C0,p−var
0 (R,Rm).

It is easy to check that θ forms a continuous (and thus measurable) dynamical system (θt )t∈R
on (C0,p−var

0 (R,R),F). Moreover, the Young integral satisfies the shift property with respect
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to θ , i.e. ∫ b

a
yudxu =

∫ b−r

a−r
yr+ud(θr x)u (3.2)

(see details in [6, p. 1941]). It follows from [4, Theorem 5] that, there exists a probability
P on (�,F) = (C0,p−var

0 (R,Rm),F) that is invariant under θ , and the so-called diagonal
process Z : R × � → R

m, Z(t, x) = xt for all t ∈ R, x ∈ �, such that Z has the same law
with Z̄ and satisfies the helix property:

Zt+s(x) = Zs(x) + Zt (θs x),∀x ∈ �, t, s ∈ R.

Such stochastic process Z has also stationary increments and almost all of its realizations
belongs to C0,p−var

0 (R,Rm). It is important to note that the existence of Z̄ is necessary to
construct the diagonal process Z .
When dealing with fractional Brownian motion [20], we can start with the space C0(R,Rm)

of continuous functions onR vanishing at zero, with the Borel σ−algebraF , and theWiener
shift and the Wiener probability P, and then follow [12, Theorem 1] to construct an invariant
probability measure PH = BH

P on the subspace Cν such that BH ◦ θ = θ ◦ BH . It can be
proved that θ is ergodic (see [12]).
Under this circumstance, if we assume further that (2.2) is satisfied, then it follows from
Birkhorff ergodic theorem that

	(x, p) := lim sup
n→∞

(
1

n

n∑
k=1

|||θ−k x |||pp−var,[−1,1]

) 1
p

= 	(p) (3.3)

for almost all realizations xt = Zt (x) of Z . Particularly, in case Z = BH = (BH
1 , . . . , BH

m )

where BH
i are scalar fractionalBrownianmotions (not necessarily independent),we can apply

Lemma 2.1 in [6] with the estimate in [9, Lemma 4.1 (iii), p.14] to obtain that 	(p) < ∞.

Proposition 3.1 The system (1.1) generates a continuous random dynamical system.

Proof The proof follows directly from [4] and [6, Section 4.2], so we only sketch out the
proof here. First, for each fixed driving path x ∈ �, Eq. (1.1) is solved in the path-wise sense
by Young equations (1.2) and (1.3) for the starting point y0 at time 0 in the forward time if
t > 0, or in the backward time for t < 0 by the backward Young equation

yt = y0 +
∫ 0

t
[Ays + f (ys)]ds +

∫ 0

t
g(ys)dxs, ∀t ≤ 0, y0 ∈ R

d ,

(see details in [6, Theorem 3.8]). Define the mapping ϕ(t, x)y0 := yt (x, y0), for t ∈ R, x ∈
�, y0 ∈ R

d , which is the pathwise solution of (1.1), then it follows from the existence and
uniqueness theorem and the Wiener shift property (3.2) that ϕ satisfies the cocycle property
(3.1) (see [6, Subsection 4.2] and [11] for more details). Also, it is proved in [6, Theorem 3.9]
that the solution yt (x, y0) is continuous w.r.t. (t, x, y0), hence given a probability structure
on �, ϕ is a continuous random dynamical system. 
�

3.2 Existence of Pullback Attractors

Given a random dynamical system ϕ on R
d , we follow [7], [3, Chapter 9] to present the

notion of random pullback attractor. Recall that a set M̂ := {M(x)}x∈� a random set, if
y �→ d(y|M(x)) is F-measurable for each y ∈ R

d , where d(E |F) = sup{inf{d(y, z)|z ∈
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F}|y ∈ E} for E, F are nonempty subset of Rd and d(y|E) = d({y}|E). An universe D is
a family of random sets which is closed w.r.t. inclusions (i.e. if D̂1 ∈ D and D̂2 ⊂ D̂1 then
D̂2 ∈ D).

In our setting, we define the universe D to be a family of tempered random sets D(x),
which means the following: A random variable ρ(x) > 0 is called tempered if it satisfies

lim
t→±∞

1

t
log+ ρ(θt x) = 0, a.s. (3.4)

(see e.g. [3, pp. 164, 386]) which, by [15, p. 220]), is equivalent to the sub-exponential growth

lim
t→±∞ e−c|t |ρ(θt x) = 0 a.s. ∀c > 0.

A random set D(x) is called tempered if it is contained in a ball B(0, ρ(x)) a.s., where the
radius ρ(x) is a tempered random variable.
A random subset A is called invariant, if ϕ(t, x)A(x) = A(θt x) for all t ∈ R, x ∈ �. An
invariant random compact setA ∈ D is called a pullback random attractor inD, ifA attracts
any closed random set D̂ ∈ D in the pullback sense, i.e.

lim
t→∞ d(ϕ(t, θ−t x)D̂(θ−t x)|A(x)) = 0. (3.5)

A is called a forward random attractor inD, ifA is invariant and attracts any closed random
set D̂ ∈ D in the forward sense, i.e.

lim
t→∞ d(ϕ(t, x)D̂(x)|A(θt x)) = 0. (3.6)

The existence of a random pullback attractor follows from the existence of a random pullback
absorbing set (see [7, Theorem 3]). A random set B ∈ D is called pullback absorbing in a
universe D if B absorbs all sets in D, i.e. for any D̂ ∈ D, there exists a time t0 = t0(x, D̂)

such that
ϕ(t, θ−t x)D̂(θ−t x) ⊂ B(x), for all t ≥ t0. (3.7)

Given a universe D and a random compact pullback absorbing set B ∈ D, there exists a
unique random pullback attractor in D, given by

A(x) = ∩s≥0∪t≥sϕ(t, θ−t x)B(θ−t x). (3.8)

Since the rule of integration by parts for Young integral is proved in [25], the "variation of
constants" formula for Young differential equations holds (see e.g. [8]), i.e. yt satisfies

yt = �(t − a)ya +
∫ t

a
�(t − s) f (ys)ds +

∫ t

a
�(t − s)g(ys)dxs, ∀t ≥ a. (3.9)

We need the following auxiliary results.

Proposition 3.2 Given (2.3) and (2.4), the following estimate holds: for any 0 ≤ a < b ≤ c

∥∥∥
∫ b

a
�(c − s)g(ys)dxs

∥∥∥
≤ KCA

[
1 + |A|(b − a)

]
|||x |||p−var,[a,b] e−λA(c−b)

[
Cg‖y‖p−var,[a,b] + ‖g(0)‖

]
.

(3.10)
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Proof The proof follows directly from (2.3) and (2.4) as follows

∥∥∥
∫ b

a
�(c − s)g(ys)dxs

∥∥∥
≤ |||x |||p−var,[a,b]

(‖�(c − a)g(ya)‖ + K |||�(c − ·)g(y·)|||p−var,[a,b]
)

≤ |||x |||p−var,[a,b]
{
‖�(c − a)‖‖g(ya)‖

+K
(|||�(c − ·)|||p−var,[a,b] ‖g(y)‖∞,[a,b] + ‖�(c − ·)‖∞,[a,b] |||g(y)|||p−var,[a,b]

) }

≤ KCA |||x |||p−var,[a,b] e−λA(c−b) ×
×

[
Cg‖ya‖ + ‖g(0)‖ + |A|(b − a)

(
Cg‖y‖∞,[a,b] + ‖g(0)‖) + Cg |||y|||p−var,[a,b]

]

≤ KCA

[
1 + |A|(b − a)

]
|||x |||p−var,[a,b] e−λA(c−b)

[
Cg‖y‖p−var,[a,b] + ‖g(0)‖

]
.


�
The following lemma is the crucial technique of this paper.

Lemma 3.3 Assume that yt satisfies (3.9). Then for any n ≥ 0,

‖yt‖eλt ≤ CA‖y0‖ + CA

λA − L f
‖ f (0)‖

(
eλt − 1

)

+
n∑

k=0

eλA KCA(1 + |A|) |||x |||p−var,�k
eλk

[
Cg‖y‖p−var,�k + ‖g(0)‖

]
,∀t ∈ �n,

(3.11)

where �k := [k, k + 1], L f and λ are defined in (2.6).

Proof First, for any t ∈ [n, n + 1), it follows from (2.3) and the global Lipschitz continuity
of f that

‖yt‖ ≤ ‖�(t)y0‖ +
∫ t

0
‖�(t − s) f (ys)‖ds +

∥∥∥
∫ t

0
�(t − s)g(ys)dxs

∥∥∥

≤ CAe
−λAt‖y0‖ +

∫ t

0
CAe

−λA(t−s)
(
C f ‖ys‖ + ‖ f (0)‖

)
ds +

∥∥∥
∫ t

0
�(t − s)g(ys)dxs

∥∥∥

≤ CAe
−λAt‖y0‖ + CA

λA
‖ f (0)‖(1 − e−λAt ) + CAC f

∫ t

0
e−λA(t−s)‖ys‖ds + βt ,

where βt :=
∥∥∥ ∫ t

0 �(t − s)g(ys)dxs
∥∥∥. Multiplying both sides of the above inequality with

eλAt yields

‖yt‖eλAt ≤ CA‖y0‖ + CA

λA
‖ f (0)‖(eλAt − 1) + βt e

λAt + CAC f

∫ t

0
eλAs‖ys‖ds.

By applying the continuous Gronwall Lemma [2, Lemma 6.1, p 89], we obtain

‖yt‖eλAt ≤ CA‖y0‖ + CA

λA
‖ f (0)‖(eλAt − 1) + βt e

λAt

+
∫ t

0
L f e

L f (t−s)
[
CA‖y0‖ + CA

λA
‖ f (0)‖(eλAs − 1) + βse

λAs
]
ds.
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Once again, multiplying both sides of the above inequality with e−L f t yields

‖yt‖eλt ≤ CA‖y0‖e−L f t + CA

λA
‖ f (0)‖

(
eλt − e−L f t

)
+ βt e

λt

+
∫ t

0
L f e

−L f s
[
CA‖y0‖ + CA

λA
‖ f (0)‖(eλAs − 1) + βse

λAs
]
ds

≤ CA‖y0‖ + CA

λ
‖ f (0)‖

(
eλt − 1

)
+ βt e

λt +
∫ t

0
L f βse

λsds. (3.12)

Next, assign p([a, b]) := KCA

[
1+|A|(b−a)

]
|||x |||p−var,[a,b]

[
Cg‖y‖p−var,[a,b] +‖g(0)‖

]
,

and apply (3.10) in Proposition 3.2, it follows that for all s ≤ t

βse
λs = eλs

∥∥∥
∫ s

0
�(s − u)g(yu)dxu

∥∥∥

≤ eλs
�s�−1∑
k=0

∥∥∥
∫

�k

�(s − u)g(yu)dxu
∥∥∥ + eλs

∥∥∥
∫ s

�s�
�(s − u)g(yu)dxu

∥∥∥

≤ eλs
�s�−1∑
k=0

e−λA(s−k−1) p(�k) + eλs p([�s�, s])

≤
�s�∑
k=0

eλse−λA(s−k−1) p(�k) ≤
�s�∑
k=0

eλAeλke−L f (s−k) p(�k). (3.13)

By replacing (3.13) into (3.12) we obtain

‖yt‖eλt ≤ CA‖y0‖ + CA

λ
‖ f (0)‖

(
eλt − 1

)

+
n∑

k=0

eλAeλke−L f (t−k) p(�k) + L f

∫ t

0

�s�∑
k=0

eλAeλke−L f (s−k) p(�k)ds

≤ CA‖y0‖ + CA

λ
‖ f (0)‖

(
eλt − 1

)
+

n∑
k=0

eλAeλk p(�k)
(
e−L f (t−k)

+
∫ t

k
L f e

−L f (s−k)ds
)

≤ CA‖y0‖ + CA

λ
‖ f (0)‖

(
eλt − 1

)
+

n∑
k=0

eλAeλk p(�k), ∀t ∈ [n, n + 1)

where we use the fact that

e−L f (t−a) +
∫ t

a
L f e

−L f (s−a)ds = 1, ∀t ≥ a. (3.14)

The continuity of y at t = n + 1 then proves (3.11). 
�
We now formulate the first main result of the paper.

Theorem 3.4 Under the assumptions (H1) − (H3), assume further that λA > C f CA, where
λA and CA are given from (2.3), (2.4). If the criterion (2.5)

λA − CAC f > CA(1 + |A|)eλA+2(|A|+C f )
{[

2(K + 1)Cg	(p)
]p +

[
2(K + 1)Cg	(p)

]}
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holds, where 	(p) is defined in (2.2), then the generated random dynamical system ϕ of
system (1.1) possesses a pullback attractor A.

Proof Step 1. To begin, we rewrite the estimate (2.15) in the short form, using (2.25) in
Remark 2.9

‖y‖p−var,�k ≤ ‖yk‖
1(x,�k) + M0
2(x,�k) (3.15)

where �k = [k, k + 1], M0 is given by (2.8) and


1(x, [a, b]) :=
(
1 + [2(K + 1)Cg]p−1 |||x |||p−1

p−var,[a,b]
)
F(x, [a, b]),


2(x, [a, b]) := 2
p−1
p

(
1 + [2(K + 1)Cg]2p−1 |||x |||2p−1

p−var,[a,b]
)
F(x, [a, b]),

F(x, [a, b]) := exp
{
α

(
1 + [2(K + 1)Cg]p |||x |||pp−var,[a,b]

)
+ 2L(b − a)

}
, (3.16)

for L, α in (2.6) and (2.7) respectively. Replacing (3.15) into (3.11) in Lemma 3.3 and using
M1, M2 in (2.9) and (2.10), we obtain

‖yn‖eλn ≤ CA‖y0‖ + (eλn − 1)
CA‖ f (0)‖

λ

+eλA KCA(1 + |A|)
n−1∑
k=0

eλk |||x |||p−var,�k

[
Cg

(
‖yk‖
1(x,�k)

+M0
2(x,�k)
)

+ ‖g(0)‖
]

≤ CA‖y0‖ + M1Cg

n−1∑
k=0

|||x |||p−var,�k

1(x,�k)e

λk‖yk‖

+M2

n−1∑
k=0

eλk
[
1 + |||x |||p−var,�k

(
1 + 
2(x,�k)

)]
. (3.17)

Assign a := CA‖y0‖, uk := eλk‖yk‖ and

G(x, [a, b]) := |||x |||p−var,[a,b] 
1(x, [a, b]), (3.18)

H(x, [a, b]) := 1 + |||x |||p−var,[a,b]
(
1 + 
2(x, [a, b])

)
(3.19)

for all k ≥ 0, where 
1,
2 are given by (3.16). Observe that (3.17) has the form

un ≤ a + M1Cg

n−1∑
k=0

G(x,�k)uk + M2

n−1∑
k=0

eλk H(x,�k).

We are in the position to apply the discrete Gronwall Lemma 3.12, so that

‖yn(x, y0)‖ ≤ CA‖y0‖e−λn
n−1∏
k=0

[
1 + M1CgG(x,�k)

]

+M2

n−1∑
k=0

e−λ(n−k)H(x,�k)

n−1∏
j=k+1

[
1 + M1CgG(x,� j )

]
, ∀n ≥ 1.

(3.20)
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Step 2. Next, for any t ∈ [n, n + 1], due to (2.15) and (2.14), we can write

‖yt (x, y0)‖ ≤ ‖yn(x, y0)‖F(x,�n) + M0
0(x,�n) (3.21)

where 
0(x, [a, b]) :=
(
1 + [2(K + 1)Cg]p |||x |||pp−var,[a,b]

)
F(x, [a, b]). (3.22)

Consequently, replacing x with θ−t x in (3.21) and using (3.20) yields

‖yt (θ−t x, y0(θ−t x))‖

≤ CA‖y0(θ−t x)‖e−λn F(θ−t x,�n)

n−1∏
k=0

[
1 + M1CgG(θk−t x, [0, 1])

]
+ M0
0(θ−t x,�n)

+M2

n−1∑
k=0

e−λ(n−k)F(θ−t x,�n)H(θk−t x, [0, 1])
n−1∏
j=k+1

[
1 + M1CgG(θ j−t x, [0, 1])

]

≤ CAF(x, [−1, 1])‖y0(θ−t x)‖e−λn sup
ε∈[0,1]

n∏
k=1

[
1 + M1CgG(θ−k x, [−ε, 1 − ε])

]

+M0
0(x, [−1, 1])

+M2F(x, [−1, 1]) sup
ε∈[0,1]

n∑
k=1

e−λk H(θ−k x, [−ε, 1 − ε])

k−1∏
j=1

[
1 + M1CgG(θ− j x, [−ε, 1 − ε])

]

≤ CAF(x, [−1, 1])‖y0(θ−t x)‖e−λn sup
ε∈[0,1]

n∏
k=1

[
1 + M1CgG(θ−k x, [−ε, 1 − ε])

]

+M0
0(x, [−1, 1]) + M2F(x, [−1, 1])b(x), (3.23)

where b(x) := sup
ε∈[0,1]

∞∑
k=1

e−λk H(θ−k x, [−ε, 1 − ε])

k−1∏
j=1

[
1 + M1CgG(θ− j x, [−ε, 1 − ε])

]
, (3.24)

(b(x) can take value ∞). Applying the inequality log(1 + aeb) ≤ a + b for a, b ≥ 0 and
using (3.18), (3.15), we obtain

log
(
1 + M1CgG(x, [−ε, 1 − ε])

)

≤ M1Cge
α+2L

[
|||x |||p−var,[−1,1] + [2(K + 1)Cg]p−1 |||x |||pp−var,[−1,1]

]

+[2(K + 1)Cg]p |||x |||pp−var,[−1,1]
K + 1

≤
[
M1e

α+2L + 2
]
[2(K + 1)]p−1C p

g |||x |||pp−var,[−1,1] + M1e
α+4LCg |||x |||p−var,[−1,1]

≤ CAe
λA+2L (1 + |A|)

{[
2(K + 1)Cg |||x |||p−var,[−1,1]

]p +
[
2(K + 1)Cg |||x |||p−var,[−1,1]

]}
.

Together with (3.3) and (2.9), it follows that for a.s. all x ,

lim sup
n→∞

1

n
log

{
sup

ε∈[0,1]

n∏
k=1

[
1 + M1CgG(θ−k x, [−ε, 1 − ε])

]}
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≤ CAe
λA+2L(1 + |A|)

{[
2(K + 1)Cg	(p)

]p +
[
2(K + 1)Cg	(p)

]}
= Ĝ, (3.25)

where Ĝ is defined in (2.11) and is also the right hand side of (2.5), and L is defined in (2.6).
Hence for t ∈ �n with 0 < δ < 1

2 (λ − Ĝ) and n ≥ n0 large enough

e(−δ+Ĝ)n ≤ sup
ε∈[0,1]

n−1∏
k=0

[
1 + M1CgG(θ−k x, [−ε, 1 − ε])

]
≤ e(δ+Ĝ)n .

Starting from any point y0(θ−t x) ∈ D(θ−t x) which is tempered, there exists, due to (3.4),
an n0 independent of y0 large enough such that for any n ≥ n0 and any t ∈ [n, n + 1]

‖yt (θ−t x, y0(θ−t x))‖ ≤ CAe
λA‖y0(θ−t x)‖F(x, [−1, 1]) exp

{
−

(
λ − Ĝ − δ

)
n
}

(3.26)

+M0
0(x, [−1, 1]) + M2F(x, [−1, 1])b(x)
≤ 1 + M2F(x, [−1, 1])b(x) + M0
0(x, [−1, 1]) =: b̂(x)

(3.27)

where F,
0 are given in (3.16) and (3.22). In addition, it follows from (2.14) and the
inequality log(1 + ab) ≤ log(1 + a) + log b for all a ≥ 0, b ≥ 1, that

log b̂(x) ≤ log[1 + M2F(x, [−1, 1])] + log[1 + b(x)]
+ log

{
1 + M0

[
1 +

(
2(K + 1)Cg

)p |||x |||pp−var,[−1,1]
]
F(x, [−1, 1])

}

≤ D + log[1 + b(x)] + [2(K + 1)Cg]p |||x |||pp−var,[−1,1] + 2 log F(x, [−1, 1])
≤ D(1 + |||x |||pp−var,[−1,1]) + log[1 + b(x)] (3.28)

where D is a constant.
Step 3.Notice that (3.3) implies lim

n→∞
|||θ−n x |||p−var,[−1,1]

n = 0. The proof would be complete

if one can proveProposition 3.5 below, that b(x) is finite and tempered a.s. Indeed, assume that
Proposition 3.5 holds, then by applying [3, Lemma 4.1.2],we obtain the temperedness of b̂(x)
in the sense of (3.4).We conclude that there exists a compact absorbing setB(x) = B̄(0, b̂(x))
and thus a pullback attractor A(x) for system (1.2) in the form of (3.8). 
�

To complete the proof of Theorem 3.4, we now formulate and prove Proposition 3.5.

Proposition 3.5 Assume that (2.5) holds. Then b(x) defined in (3.24)

b(x) := sup
ε∈[0,1]

∞∑
k=1

e−λk H(θ−k x, [−ε, 1 − ε])
k−1∏
j=1

[
1 + M1CgG(θ− j x, [−ε, 1 − ε])

]
, ∀x ∈ �

is finite and tempered a.s. [in the sense of (3.4)].

Proof From the definition of H in (3.19), by similar computations as in (3.28) using the
integrability of |||x |||p−var,[−1,1] it is easy to prove that log H(x, [−1, 1]) is integrable, thus

lim sup
n→∞

log H(θ−nx, [−1, 1])
n

= 0 a.s.

Hence, under condition (2.5), there exists for each 0 < 2δ < λ − Ĝ an n0 = n0(δ, x) such
that for all n ≥ n0,

e−δn ≤ H(θ−nx, [−1, 1]) ≤ eδn .
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Consequently,

b(x) ≤
n0−1∑
k=1

e−λk H(θ−k x, [−1, 1]) sup
ε∈[0,1]

k−1∏
j=1

(
1 + M1CgG(θ− j x, [−ε, 1 − ε])

)

+
∞∑

k=n0

e−(λ−2δ−Ĝ)k

≤
n0−1∑
k=1

e−λk H(θ−k x, [−1, 1])
k−1∏
j=1

(
1 + M1CgG(θ− j x, [−1, 1])

)
+ e−(λ−2δ−Ĝ)n0

1 − e−(λ−2δ−Ĝ)

which is finite a.s. Moreover, for each fixed x , |||x |||p−var,[s,t] is continuous w.r.t (s, t) on
{(s, t) ∈ R

2|s ≤ t} (see [10, Proposition 5.8, p. 80]). Therefore, G(x, [−ε, 1 − ε]) and
H(x, [−ε, 1 − ε]) are continuous functions of ε. Since b(x) ≤ b∗(x), the series

∞∑
k=1

e−λk H(θ−k x, [−ε, 1 − ε])
k−1∏
j=1

[
1 + M1CgG(θ− j x, [−ε, 1 − ε])

]

converges uniformly w.r.t. ε ∈ [0, 1], thus the series is also continuous w.r.t. ε ∈ [0, 1].
Hence the supremum in the definition of b(x) in (3.24) can be taken for rational ε, which
proves b(x) to be a random variable on �.

To prove the temperdness of b, observe that for each t ∈ [n, n + 1]
b(θt x) = b(θnθt−nx)

= sup
ε∈[0,1]

∞∑
k=1

e−λk H(θ−k+nθ−ε+t−nx, [0, 1])
k−1∏
j=1

[
1 + M1CgG(θ− j+nθ−ε+t−nx, [0, 1])

]

≤ sup
ε∈[−1,1]

∞∑
k=1

e−λk H(θ−k+nx, [−ε, 1 − ε])
k−1∏
j=1

[
1 + M1CgG(θ− j+nx, [−ε, 1 − ε])

]

≤ max{b(θnx), b(θn+1x)}.
For n > 0,

b(θ−nx) = sup
ε∈[0,1]

∞∑
k=1

e−λk H(θ−(k+n)x, [−ε, 1 − ε])
k−1∏
j=1

[
1 + M1CgG(θ−( j+n)x, [−ε, 1 − ε])

]

≤ eλn sup
ε∈[0,1]

∞∑
k=1

e−λ(n+k)H(θ−(k+n)x, [−ε, 1 − ε])

n+k−1∏
j=1

[
1 + M1CgG(θ−( j+n)x, [−ε, 1 − ε])

]

≤ eλnb(x).

Therefore

lim sup
n→+∞

log b(θ−nx)

n
≤ λ < ∞.

Applying [3, Proposition 4.1.3(i), p. 165] we conclude that

lim sup
t→−∞

log b(θt x)

|t | = lim sup
t→+∞

log b(θt x)

t
= 0,
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i.e. b is tempered. 
�
Corollary 3.6 Assume that f (0) = g(0) = 0 so that y ≡ 0 is a solution of (1.1). Then under
the assumptions of Theorem 3.4 with condition (2.5), the random attractor A(x) is the fixed
point 0.

Proof Using (3.26) and the fact that M0 = M2 = 0 if f (0) = g(0) = 0, we obtain

‖yt (θ−t x, y0)‖ ≤ CAe
λA F(x, [−1, 1])‖y0(θ−t x)‖ exp

{
−

(
λ − Ĝ − δ

)
n
}

(3.29)

for t ∈ �n . It follows that all other solutions converge exponentially in the pullback sense to
the trivial solution, which plays the role of the global pullback attractor. 
�
Remark 3.7 In [8,11] the authors consider a Hilbert space V together with a covariance
operator Q on V such that Q is of a trace-class, i.e. for a complete orthonormal basis (ei )i∈N of
V , there exists a sequence of nonnegative numbers (qi )i∈N such that tr(Q) := ∑∞

i=1 qi < ∞.
A V− valued fractional Brownian motion BH = ∑∞

i=1
√
qiβH

i ei is then considered, where
(βH

i )i∈N are stochastically independent scalar fractional Brownianmotions of the sameHurst
exponent H . The authors then develop the semigroup method to estimate the Hölder norm
of y on intervals τk, τk+1 where τk is a sequence of stopping times

τ0 = 0, τk+1 − τk + |||x |||β,[τk ,τk+1] = μ

for some μ ∈ (0, 1) and β > 1
p , which leads to the estimate of the exponent as

−
(
λA − C(CA, μ)eλAμ max{C f ,Cg} n

τn

)
τn, (3.30)

where C(CA, μ) is a constant depending on CA, μ. It is then proved that there exists
lim inf
n→∞

τn
n = 1

d , where d = d(μ, tr(Q)) is a constant depending on the moment of the

stochastic noise. As such the exponent is estimated as

−
(
λA − C(CA, μ)eλAμ max{C f ,Cg}d(μ, tr(Q))

)
. (3.31)

However, it is technically required from the stopping time analysis (see [8, Section 4]) that
the stochastic noise has to be small in the sense that the trace tr(Q) = ∑∞

i=1 qi must be
controlled as small as possible. In addition, in case the noise is diminished, i.e. g ≡ 0, (3.31)
reduces to a very rough criterion for exponential stability of the ordinary differential equation

C f ≤ 1

C(CA, μ)d(μ, tr(Q))
λAe

−λA .

In contrast, our method uses the greedy time sequence in Theorem 2.4, so that later we
can work with the simpler (regular) discretization scheme without constructing additional
stopping time sequence. Also in Lemma 3.3 we apply first the continuous Gronwall lemma
in (3.12) in order to clear the role of the drift coefficient f . Then by using (2.15) to give a
direct estimate of yk , we are able apply the discrete Gronwall Lemma directly and obtain a
very explicit criterion.
The left and the right hand sides of criterion (2.5)

λA − CAC f > CA(1 + |A|)eλA+2(|A|+C f )
{[

2(K + 1)Cg	(p)
]p +

[
2(K + 1)Cg	(p)

]}

can be interpreted as, respectively, the decay rate of the drift term and the intensity of the
diffusion term, where the term eλA+4(|A|+C f ) is the unavoidable effect of the discretization
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scheme.Criterion (2.5) is therefore a better generalization of the classical criterion for stability
of ordinary differential equations, and is satisfied if eitherCg or 	(p) is sufficiently small. In
particular, when g ≡ 0, (2.5) reduces to λA > CAC f , which matches to the classical result.

3.3 Singleton Attractors

In the rest of the paper, we would like to study sufficient conditions for the global attractor
to consist of only one point, as seen, for instance, in Corrollary 3.6. First, the answer is
affirmative for g of linear form, as proved in [9] for dissipative systems. Here we also present
a similar version using the semigroup method.

To begin, let y1, y2 be two solutions of (1.2) and assign zt = y2t − y1t for all t ≥ 0. Similar
to (3.9), z satisfies

zt = �(t−a)za+
∫ t

a
�(t−s)

[
f (zs+y1s )− f (y1s )

]
ds+

∫ t

a
�(t−s)Q(s, zs)dxs, ∀t ≥ a,

(3.32)
where Q(s, zs) = g(zs + y1s ) − g(y1s ). Observe that by similar computations to (3.10), it is
easy to prove that

∥∥∥
∫ b

a
�(c − s)Q(s, zs)dxs

∥∥∥ ≤ KCA(Cg ∨ C ′
g)

[
1 + |A|(b − a)

]
e−λA(c−b) |||x |||p−var,[a,b] ×

×(1 + ∣∣∣∣∣∣y1∣∣∣∣∣∣p−var,[a,b])‖z‖p−var,[a,b]. (3.33)

We need the following auxiliary result.

Lemma 3.8 Assume that all the conditions in Theorem 3.4 are satisfied. Let y1, y2 be two
solutions of (1.2) and assign zt = y2t − y1t for all t ≥ 0.

(i) If Dg is of Lipschitz continuity with Lipschitz constant C ′
g, then

eλn‖zn‖ ≤ CA‖z0‖ + eλA KCA(1 + |A|)(Cg ∨ C ′
g)

n−1∑
k=0

|||x |||p−var,�k
eλk

(
1 + ∣∣∣∣∣∣y1∣∣∣∣∣∣p−var,�k

)
‖z‖p−var,�k . (3.34)

(i i) If g(y) = Cy + g(0) then

eλn‖zn‖ ≤ CA‖z0‖ + eλA KCA(1 + |A|)Cg

n−1∑
k=0

|||x |||p−var,�k
eλk‖z‖p−var,�k . (3.35)

Proof The arguments follow the proof of Lemma 3.3 step by step, and apply Lemma 2.7,
Proposition 3.2 to obtain the estimate

eλAt‖zt‖ ≤ CA‖z0‖ + eλAtβt + L f

∫ t

0

(
‖zs‖ + eλAsβs

)
eL f (t−s)ds,

where βt = ‖ ∫ t
0 �(t−s)Q(s, zs)dxs‖ is estimated using (3.33). The rest will be omitted. 
�

Theorem 3.9 Assume that g(y) = Cy + g(0) is a linear map so that Cg = |C |. Then under
the condition (2.5),

λA − CAC f > CA(1 + |A|)eλA+2(|A|+C f )
{[

2(K + 1)Cg	(p)
]p +

[
2(K + 1)Cg	(p)

]}
,
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the pullback attractor is a singleton, i.e. A(x) = {a(x)} almost surely. Moreover, it is also a
forward singleton attractor.

Proof The existence of the pullback attractor A is followed by Theorem 3.4. Take any two
points a1, a2 ∈ A(x). For a given n ∈ N, assign x∗ := θ−nx and consider the equation

dyt = [Ayt + f (yt )]dt + g(yt )dx
∗
t . (3.36)

Due to the invarianceofAunder theflow, there existb1, b2 ∈ A(x∗) such thatai = yn(x∗, bi ).
Put zt = zt (x∗) := yt (x∗, b1) − yt (x∗, b2) then zn(x∗) = a1 − a2. By applying Lemma 3.8
with x replaced by x∗, and using Lemma 2.7 (ii), we can rewrite the estimates in (3.35) as

eλn‖zn‖ ≤ CA‖z0‖ + M1Cg

n−1∑
k=0

∣∣∣∣∣∣x∗∣∣∣∣∣∣
p−var,�k

eλk‖z‖p−var,�k . (3.37)

Meanwhile, using Corollary 2.8(i i) and Remark 2.9, with M0 in (2.8) now equal to zero, we
obtain

‖z‖p−var,[a,b] ≤ ‖za‖
1(x
∗, [a, b]),

in which 
1 defined in (3.16). As a result, (3.37) has the form

eλn‖zn‖ ≤ CA‖z0‖ + M1Cg

n−1∑
k=0

∣∣∣∣∣∣x∗∣∣∣∣∣∣
p−var,[0,1] 
1(x

∗, [0, 1])eλk‖zk‖

≤ CA‖z0‖ + M1Cg

n−1∑
k=0

G(x∗,�k)e
λk‖zk‖,

where G is defined in (3.18). Now applying the discrete Gronwall Lemma 3.12, we conclude
that

eλn‖zn‖ ≤ CA‖z0‖
n−1∏
k=0

[1 + M1CgG(x∗,�k)]. (3.38)

Similar to (3.25)

log(1 + M1CgG(x∗,�k))

≤ CAe
λA+2L(1 + |A|)

[(
2(K + 1)Cg |||θk−nx |||p−var,[0,1]

+
(
2(K + 1)Cg |||θk−nx |||p−var,[0,1]

)p]
.

Therefore it follows from (3.38) that

lim sup
n→∞

1

n
log ‖zn‖ ≤ −λ + lim sup

n→∞
1

n

n−1∑
k=0

log[1 + M1CgG(x∗, �k)]

≤ −λ + CAe
λA+2L (1 + |A|)

[
2(K + 1)Cg	(p) +

(
2(K + 1)Cg

)p
	(p)p

]

< 0

under the condition (2.5). This follows that limn→∞ ‖a1 − a2‖ = 0 and A is a one point set
almost surely. Similar arguments in the forward direction (x∗ is replaced by x) also prove
that A is a forward singleton attractor almost surely. 
�
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Remark 3.10 As pointed out in the Introduction section, if we use the conjugacy transforma-
tion (developed in [15,16,23]) of the form yt = eCηt zt , where the semigroup eCt is generated
by the equation u̇ = Cu and η is the unique stationary solution of the Langevin equation
dη = −ηdt + dZt (with Z is a scalar stochastic process), then the transformed system has
the form

żt = e−Cηt
[
AeCηt zt + f (eCηt zt ) + ηtCeCηt zt

]
.

However, even in the simplest case f ≡ 0, there is no effectivemethod to study the asymptotic
stability of the non-autonomous linear stochastic system

żt =
(
e−Cηt AeCηt + ηtC

)
zt . (3.39)

An exception is when A and C are commute, since we could reduce system (3.39) in the
form

żt =
(
A + ηtC

)
zt ,

thereby solve it explicitly as

zt = z0 exp{At + C
∫ t

0
ηsds} = z0 exp{At − C(ηt − η0 − Zt + Z0)}.

In this case, the exponential stability is proved using the fact that exp{−C(ηt −η0−Zt +Z0)}
is tempered. However, since A and C are in general not commute, we can not apply the
conjugacy transformation but should instead use our method described in Theorems 3.4 and
3.9.

Next, motivated by [13], we consider the case in which g ∈ C2
b andCg is also the Lipschitz

constant of Dg. Notice that our conditions for A and f can be compared similarly to the
dissipativity condition in [13]. However, unlike the probabilistic conclusion of existence and
uniqueness of a stationary measure in [13], we go a further step by proving that for Cg small
enough, the random attractor is indeed a singleton, thus the convergence to the attractor is in
the pathwise sense and of exponential rate.

Theorem 3.11 Assume that g ∈ C2
b with ‖g‖∞ < ∞, and denote byCg the Lipschitz constant

of g and Dg. Assume further that λA > CAC f and

E |||Z |||
4p(p+1)

p−1
p−var,[−r ,r ] < ∞, ∀r > 0. (3.40)

Then system (1.2) possesses a pullback attractor. Moreover, there exists a δ > 0 small
enough such that for any Cg ≤ δ the attractor is a singleton almost surely, thus the pathwise
convergence is in both the pullback and forward directions.

Proof Step 1. Similar to [13, Proposition 4.6], we prove that there exist a time r > 0, a
constant η ∈ (0, 1), and an integrable random variable ξr (x) such that

‖yr (x, y0)‖p ≤ η‖y0‖p + ξr (x). (3.41)

First we fix r > 0 and consider μ, h as defined in Lemma 2.10 on [0, r ], i.e μt is the solution
of the deterministic system μ̇ = Aμ+ f (μ) which starts at μ0 = y0 and ht = yt −μt . Then
using (3.12)

‖μr‖ ≤ CA‖y0‖e−λr + CA
‖ f (0)‖

λ
.
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On the other hand, due to (2.27) in Corollary 2.10 and (2.14),

‖hr‖ ≤ ‖h‖∞,[0,r ] ≤ ξ0(x)(1 + ‖y0‖β),

where β = 1
p and ξ0 is a polynomial of |||x |||p−var,[0,r ] of the form

ξ0(x) = D |||x |||p−var,[0,r ]
(
1 + |||x |||pp−var,[0,r ]

)
,

where D is a constant.
Now for ε > 0 small enough, we apply the convex inequality and Young inequality to

conclude that

‖yr‖2p ≤ (‖hr‖ + ‖μr‖)2p ≤ (1 + ε)2(2p−1)
[
(CAe

−λr )2p + εβ
]
‖y0‖2p + ξr (x), (3.42)

where

ξr (x) = ξr

(1
ε
, x

)
≤ D

ε
2p−1+ 2p

p−1

(
1 + |||x |||

2p2(p+1)
p−1

p−var,[0,r ]
)

for some generic constant D (depends on r ). Thus ξr is integrable due to
2p2(p+1)

p−1 ≤ 4p(p+1)
p−1

and (3.40). By choosing r > 0 large enough and ε ∈ (0, 1) small enough such that

CAe
−λr < 1 and η := (1 + ε)2(2p−1)

[
(CAe

−λr )2p + εβ
]

< 1

we obtain (3.41).
Step 2. Next, for simplicity we only estimate y at the discrete times nr for n ∈ N, the

estimate for t ∈ [nr , (n+1)r ] is similar to (3.21). From (3.41), it is easy to prove by induction
that

‖ynr (x, y0)‖2p ≤ ηn‖y0‖2p +
n−1∑
i=0

ηiξr (θ(n−i)r x), ∀n ≥ 1;

thus for n large enough

‖ynr (θ−nr x, y0)‖2p ≤ ηn‖y0‖2p +
n∑

i=0

ηiξr (θ−ir x) ≤ 1 +
∞∑
i=0

ηiξr (θ−ir x) =: Rr (x).

In this case we could choose b̂(x) in (3.27) to be b̂(x) = Rr (x)
1
2p so that there exists a

pullback absorbing set B(x) = B(0, b̂(x)) containing our random attractorA(x). Moreover,
due to the integrability of ξr (x), Rr (x) is also integrable with ERr = 1 + Eξr

1−η
.

Step 3. Now back to the arguments in the proof of Theorem 3.9 and note that Dg is also
globally Lipschitz with the same constant Cg . Using Lemma 2.7 (i) and rewriting (3.34) in
Lemma 3.8 for x∗ yields

eλn‖zn‖ ≤ CA‖z0‖+M1Cg

n−1∑
k=0

∣∣∣∣∣∣x∗∣∣∣∣∣∣
p−var,�k

eλk
(
1+∣∣∣∣∣∣y1∣∣∣∣∣∣p−var,�k

)
‖z‖p−var,�k (3.43)

where the p-variation norm of z can be estimated, due to Corollary 2.8(i), as
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‖z‖p−var,�k ≤
(
N ′

�k
(x∗)

) p−1
p
2
N ′

�k
(x∗)

e2L‖za‖, (3.44)

with N ′
�k

(x∗) ≤ 1 + [2(K + 1)Cg]p
∣∣∣∣∣∣x∗∣∣∣∣∣∣p

p−var,�k
(1 + ∣∣∣∣∣∣y1∣∣∣∣∣∣p−var,�k

)p.

(3.45)

This together with (3.43) derives

eλn‖zn‖ ≤ CA‖z0‖ +
n−1∑
k=0

Ike
λk‖zk‖

where Ik = M1Cg
∣∣∣∣∣∣x∗∣∣∣∣∣∣

p−var,�k

(
1 + ∣∣∣∣∣∣y1∣∣∣∣∣∣p−var,�k

)(
N ′

�k
(x∗)

) p−1
p
2
N ′

�k
(x∗)

e2L .

(3.46)

By applying the discrete Gronwall Lemma 3.12, we obtain

‖zn‖ ≤ CA‖z0‖e−λn
n−1∏
k=0

(1 + Ik)

which yields
1

n
log ‖zn‖ ≤ 1

n
log

(
2CAb̂(x

∗)
)

− λ + 1

n

n−1∑
k=0

log(1 + Ik). (3.47)

On the other hand, due to (2.14), (2.19) and (3.27), it is easy to prove with a generic constant
D that
∣∣∣∣∣∣y1∣∣∣∣∣∣p−var,�k

≤ D
(
1 + ∣∣∣∣∣∣θ(k−n)x

∣∣∣∣∣∣2p−1
p−var,[0,1]

)(
1 + b̂(θ(k−n)x) + ∣∣∣∣∣∣θ(k−n)x

∣∣∣∣∣∣
p−var,[0,1]

)
,

thus

[2(K + 1)Cg]
∣∣∣∣∣∣x∗∣∣∣∣∣∣

p−var,�k
(1 + ∣∣∣∣∣∣y1∣∣∣∣∣∣p−var,�k

)

≤ D
{ ∣∣∣∣∣∣θ(k−n)x

∣∣∣∣∣∣
p−var,[0,1] + ∣∣∣∣∣∣θ(k−n)x

∣∣∣∣∣∣2
p−var,[0,1] + ∣∣∣∣∣∣θ(k−n)x

∣∣∣∣∣∣2p
p−var,[0,]

+ ∣∣∣∣∣∣θ(k−n)x
∣∣∣∣∣∣2p+1
p−var,[0,]

}
×

×[1 + b̂(θ(k−n)x)] =: F̂(θ(k−n)x).

All together, Ik is bounded from above by

Ik ≤ DCg F̂(θ(k−n)x)
[
1 + F̂ p−1(θ(k−n)x)

]
exp

{
log 2

[
1 + F̂ p(θ(k−n)x)

]}
(3.48)

where the right hand side of (3.48) is a function of θ(k−n)x . The ergodic Birkhorff theorem
is then applied for (3.47), so that

lim sup
n→∞

1

n
log ‖zn‖ ≤ −λ + E log

{
1 + DCg

[
F̂(x) + F̂ p(x)

]
eDF̂ p(x) log 2

}
a.s. (3.49)

Apply the inequalities

log(1 + x + y) ≤ log(1 + x) + log(1 + y),

log(1 + xy) ≤ log(1 + x) + log(1 + y),

log(1 + xey) ≤ x + y, x, y ≥ 0,
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it follows that

log
{
1 + DCg

[
F̂(x) + F̂ p(x)

]
eDF̂ p(x) log 2

}
≤ D

(
1 + F̂(x) + F̂ p(x)

)
. (3.50)

To estimate F̂ p(x), we apply Cauchy and Young inequalities to obtain, up to a generic
constant D > 0,

F̂ p(x) ≤ D
[
1 + |||x |||2p−var,[0,1] + |||x |||4p−var,[0,1] + |||x |||4pp−var,[0,1] + |||x |||4p+2

p−var,[0,1] + b̂2(x)
]p

≤ D
[
1 + |||x |||2pp−var,[0,1] + |||x |||4pp−var,[0,1] + |||x |||4p2p−var,[0,1] + |||x |||4p2+2p

p−var,[0,1] + b̂2p(x)
]
.

Hence the right hand side in the last line of (3.50) is integrable due to (3.27) and the integra-

bility of |||x |||
4p(p+1)

p−1
p−var,[−1,1] in (3.40) and of b̂(x)2p in Step 2. On the other hand, the expression

under the expectation of (3.49) tends to zero a.s. as Cg tends to zero. Due to the Lebesgue’s
dominated convergence theorem, the expectation converges to zero as Cg tends to zero. As
a result, there exists δ small enough such that for Cg < δ we have ‖zn‖ = ‖a1 − a2‖ → 0
as n tends to infinity exponentially with the uniform convergence rate in (3.49). This proves
a1 ≡ a2 a.s. and A is a singleton.

Step 4. Let y1t = y(t, x, a(x)), y2t = y(t, x, y0(x)) be the solutions starting from a(x),
y0(x) respectively at t = 0. SinceA is invariant, y1t = a(θt x). By repeating the arguments in
Step 3 (x∗ is replaced by x), we conclude thatA(x) = {a(x)} is also a forward attractor. 
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Appendix

Lemma 3.12 (Discrete Gronwall Lemma) Let a be a non negative constant and un, αn, βn

be nonnegative sequences satisfying

un ≤ a +
n−1∑
k=0

αkuk +
n−1∑
k=0

βk, ∀n ≥ 1

then un ≤ max{a, u0}
n−1∏
k=0

(1 + αk) +
n−1∑
k=0

βk

n−1∏
j=k+1

(1 + α j ), ∀n ≥ 1. (3.51)
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Proof Put

Sn := a +
n−1∑
k=0

αkuk +
n−1∑
k=0

βk, Tn := max{a, u0}
n−1∏
k=0

(1 + αk) +
n−1∑
k=0

βk

n−1∏
j=k+1

(1 + α j ).

Wewill prove by induction that Sn ≤ Tn for all n ≥ 1. Namely, the statement holds for n = 1
since S1 = a + α0u0 + β0 ≤ max{a, u0}(1 + α0) + β0 = T1.

We assume that Sn ≤ Tn for n ≥ 1, then due to the fact that un ≤ Sn we obtain

Sn+1 = a +
n−1∑
k=0

αkuk +
n−1∑
k=0

βk + αnun + βn = Sn + αnun + βn

≤ Sn + αn Sn + βn ≤ Tn(1 + αn) + βn

≤
⎡
⎣max{a, u0}

n−1∏
k=0

(1 + αk) +
n−1∑
k=0

βk

n−1∏
j=k+1

(1 + α j )

⎤
⎦ (1 + αn) + βn

≤ max{a, u0}
n∏

k=0

(1 + αk) +
n∑

k=0

βk

n−1∏
j=k+1

(1 + α j ) = Tn+1.

Since un ≤ Sn , (3.51) holds. 
�
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