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Abstract
We develop a technique, pseudo-suspension, that applies to invariant sets of homeomor-
phisms of a class of annulus homeomorphisms we describe, Handel–Anosov–Katok (HAK)
homeomorphisms, that generalize the homeomorphism first described by Handel. Given
a HAK homeomorphism and a homeomorphism of the Cantor set, the pseudo-suspension
yields a homeomorphism of a new space that combines features of both of the original home-
omorphisms. This allows us to answer a well known open question by providing examples
of hereditarily indecomposable continua that admit homeomorphisms with positive finite
entropy. Additionally, we show that such examples occur as minimal sets of volume pre-
serving smooth diffeomorphisms of 4-dimensional manifolds.We construct an example of a
minimal, weakly mixing and uniformly rigid homeomorphism of the pseudo-circle, and by
our method we are also able to extend it to other one-dimensional hereditarily indecomposable
continua, thereby producing the first examples of minimal, uniformly rigid and weakly mixing
homeomorphisms in dimension 1. We also show that the examples we construct can be real-
ized as invariant sets of smooth diffeomorphisms of a 4-manifold. Until now the only known
examples of connected spaces that admit minimal, uniformly rigid and weakly mixing home-
omorphisms were modifications of those given by Glasner and Maon in dimension at least 2.
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1 Introduction

Of fundamental importance in dynamics is the understanding of the long term behaviour of
a system as reflected by how the system behaves when restricted to its limit sets. With time,
we have increasing understanding that the invariant sets even of smooth systems can have
intricate topology as we now describe. A metric space with at least two points is a continuum
if it is compact and connected. A continuum X is indecomposable if it is not the union of two
of its proper subcontinua, and when additionally every subcontinuum of a continuum X is
indecomposable, then X is hereditarily indecomposable. Although such spaces might seem
extremely rare, Bing showed that in any Euclidean spaces E most continua are hereditarily
indecomposable, in the sense that they form a dense Gδ set in the hyperspace of subcontinua
of E [7]. This phenomenon resembles the one of irrational numbers in R: seemingly atypical
objects in the space are in fact generic. Two prominent examples of hereditarily continua
are the pseudo-circle [7] and the pseudo-arc [45], which recently played a key role in the
characterization of homogeneous continua in R

2 [37]. When first introducing the notion of
strange attractors, Ruelle and Takens [61] identify the dyadic solenoid, an indecomposable
but not hereditarily indecomposable continuum, as an attractor. Later, Handel [34] and subse-
quently Herman [36] used the so-called Anosov-Katok fast approximation method to provide
examples of smooth maps of two dimensional manifolds with Bing’s pseudo-circle as a min-
imal set. In these examples the maps can be chosen to be C∞-smooth, volume preserving
diffeomorphisms. Handel’s example has the additional property that a slight perturbation
yields the existence of a C∞-smooth diffeomorphism of the annulus for which the pseudo-
circle is an attracting minimal set [34] with the same homeomorphism when restricted to
the invariant pseudo-circle. Kennedy and Yorke [41–43] described C∞-smooth dynamical
systems in dimensions greater than 2 with uncountably many minimal pseudo-circles and
satisfying the stability condition that any small C1 perturbation also has this same property.
More recently hereditarily indecomposable continua have appeared in complex dynamics.
In [21] Chéritat extended Herman’s construction to show that the pseudo-circle occurs as
the boundary of a Siegel disk for a holomorphic map. Subsequently, in the context of Ere-
menko’s conjecture, Rempe constructed examples of entire functions whose Julia sets have
components that are pseudo-arcs [57], thereby strengthening the results from [60]. Many of
these examples indicate that hereditarily indecomposable continua occur quite naturally with
zero entropy within smooth systems. While positive entropy on indecomposable continua in
smooth systems, such as the dyadic solenoid, is quite natural, these examples indicate that
there might be an obstruction to positive entropy on hereditarily indecomosable continua
occuring as limit sets in smooth systems.

We say that a map T : X → X of a metric space X is of intermediate complexity when its
topological entropy satisfies 0 < htop(T ) < +∞. In this paper, we focus on exotic invariant
sets that demonstrate previously unknown behaviour of entropy. While the model we choose
for many of our examples is the pseudo-circle, our method applies in a much more general
setting. The fundamental question in this line of investigation was posed by Marcy Barge in
1989 (see [50]).

QUESTION 1.1 (M. Barge). Given a real number r ≥ 0, does there exist a homeomorphism
of the pseudo-arc with topological entropy r.

Barge’s question, still open after 30 years, motivated the writing of this paper. This leads
to the following related well known question (see e.g. [11,51]).

QUESTION 1.2 Is there a hereditarily indecomposable continuum X that admits a homeo-
morphism with positive finite entropy?
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This question has important implications for the possible ways that hereditarily indecom-
posable continua occur as invariant sets of smooth systems. Ito [39] has shown that any
C1 diffeomorphism on a compact finite-dimensional Riemannian manifold must have finite
topological entropy. Although these questions have remained unsolved until now, there are
some partial results indicating that the answer to both may be in the negative. Specifically,
Boroński and Oprocha [11] established that if the hereditarily indecomposable continuum
X is presented as an inverse limit of a single map f : G → G of a graph G, then the corre-
sponding shift map has either 0 or infinite topological entropy, which followed the analogous
result of Mouron [52] for the case that G is the arc. Furthermore, if the graph G is a circle,
then the only admissible value of entropy is infinity. Since attractors can often be presented
as such shifts (see [4,5,17,18,64]), these results indicate that there might be an obstruction
to the existence of hereditarily indecomposable continua as invariant sets of intermediate
complexity. And by the result of Ito, this might lead one to conjecture that any hereditar-
ily indecomposable continuum occurring as an invariant set of a smooth map would be of
0 entropy as in the previously known examples. However, here we establish the following
result (its proof is presented in Sect. 8).

Theorem 1.3 There exist an hereditarily indecomposable continuum �C satisfying:

(1) �C occurs as an invariant minimal set for a volume preserving diffeomorphism F of a 4
dimensional manifold

(2) The restriction F |�C has positive finite topological entropy and
(3) F |�C is topologically weak mixing.

What is more, in Sect. 7 we obtain the following result, which demonstrates a wide variety
of values of entropy that can be obtained.

Corollary 1.4 For every β ∈ (0,∞) and every t ∈ Q+ there exists a one-dimensional
hereditarily indecomposable continuum Xβ and a homeomorphism Ft : Xβ → Xβ such
that htop(Ft ) = t ·β. In particular, there exists an uncountable collection of one-dimensional
hereditarily indecomposable continua, each of which admits a dense set in R of entropy
values for its homeomorphisms.

We construct these examples using the technique of pseudo-suspension that we introduce
in Sect. 3. This technique can be considered as an adaptation of the classic suspension
(or mapping cylinder) construction as it applies to homeomorphisms of the annulus. In
particular, for each transitive homeomorphism h : C → C of the Cantor set C, we construct
a one-dimensional continuum that supports self homeomorphisms that can be considered
as the lifts of homeomorphisms of the pseudo-circle or more general cofrontiers. When
the homeomorphism h : C → C is minimal and the cofrontier is the pseudo-circle, the
constructed continuum is hereditarily indecomposable.

There is another important observation related to our construction. It would seem that
since Handel’s homeomorphism is obtained as a limit of rigid rotations that its dynamics
would also be similar to a rotation. In particular, it is natural to expect that it would be
uniformly rigid and distal. While the first claim is true, the second one is false. Following
observation of Thurston, presented by Handel in [34] we easily obtain that Handel’s example
is topologically weakly mixing (see Corollary 5.4). This way we obtain an example of a
minimal, weakly mixing and uniformly rigid homeomorphism of the pseudo-circle, and by
our method we are also able to extend it to other one-dimensional hereditarily indecomposable
continua. It is worth mentioning that until now the only known constructions of weakly
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mixing, minimal and uniformly rigid homeomorphisms were those in dimension at least 2;
see e.g. [26,30,31,33,46,66]. However, previously there was no known example on continua
of dimension one. Indeed, one of the starting points to this research was Joe Auslander’s
question on whether there exist of proximal pairs in Handel homeomorphism, which he
raised after the authors’ talk on the results in [10] at the AIMS conference in Madrid in 2014.
Initially it seemed evident that no such pairs may exist and all pairs are distal, but it seemed
of interest to determine whether an adaptation of Anosov-Katok fast approximation method,
employed by Handel, could yield new examples with such pairs or Li-Yorke chaos. It was
during such considerations that the authors were led to realize that Handel’s homeomorphism
is weakly mixing and that this is intertwined with the lack of semi-conjugacy to a circle
rotation. We also obtain results that establish a link between the nature of the rotation set of a
self homeomorphism of the pseudo-circle and its topological entropy. In particular, we have
the following (see Sect. 10 for a proof):

Theorem 1.5 Let � ⊂ A be an essential pseudo-circle attracting all the points from Int A

and assume that H : A → A is a homeomorphism such that H |� has a nondegenerate
rotation set. Then htop(H |�) = htop(H) = +∞.

This extends a recent result of Passeggi, Potrie and Sambarino [56], who showed that a
nondegenerate rotation interval of an annulus homeomorphism H on an invariant attracting
cofrontier K implies positive entropy of H |K .

2 Preliminaries

We assume that the reader is familiar with basic notions of topological dynamics, such as
minimality, topological mixing and topological entropy (for more details we refer the reader
to monographs [29,48,65]).

2.1 Handel–Anosov–Katok homeomorphisms

In [34] Handel employed the so-called Anosov–Katok fast approximation method to obtain
a cofrontier in the annulus A with special properties. In this section we will present minimal
ingredients that are essential to obtain examples sharing key properties with those obtained
by Handel.

2.1.1 Notation for the Annulus

The universal covering of A = [0, 1] × R/Z is given by q : [0, 1] × R → A, where q =
id[0,1] × p and p is the quotient map R → R/Z. We endow [0, 1] × R with the metric given
by adding the Euclidean metrics in the factors, and A is given the rotation invariant metric d
for which q is a local isometry. Here and in what follows πi denotes the projection of A onto
its i-th factor (i = 1, 2). We use ρ to denote the standard complete C0 metric in the space of
all self homeomorphisms of A.

We say that a homeomorphism H : A → A is a Handel-Anosov-Katok homeomorphism,
or a HAK homeomorphism for short, if H is a uniform limit (relative to ρ) of a sequence of
annulus homeomorphisms (Hn)n∈N satisfying the following approximation scheme.

We assume first that we are given a decreasing sequence An (n ∈ N) of closed annuli
satisfying for each n ∈ N, An+1 ⊂ An and A1 ⊂ Int A. Moreover, we presume given a
convergent series

∑∞
i=1 εi < +∞, (εi > 0) and denote γn = ∑∞

i=n εi .
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(1) For each n ∈ N there exist a homeomorphism fn : An → A with small vertical fibers;
that is, the fibers of the projection π1 ◦ fn have diameters less than εn/2.

(2) For each n ∈ N we have a rational rotation Rn : A → A such that for δn corre-
sponding to εn/4 in the uniform continuity of f −1

n there exists a rectangle Dn =
[0, 1] × [0, αn] ⊂ A such that the sets Ri

n(Dn), R
j
n (Dn) either have disjoint interiors

or are equal,
⋃

i∈Z
Ri
n(Dn) = A and αn < δn . We denote the period of Rn by pn ; that is,

Rpn
n = id and pn is the smallest positive integer satisfying this property. We also require

that pn+1 ≥ pn .
(3) For each n ∈ N there is a homeomorphism gn : A → A such that ρ(gn, id) < εn and

gn |An = f −1
n ◦ Rn ◦ fn and gn |A\An−1 = id where we put A0 = A,

(4) Hn = gn ◦ gn−1 ◦ . . . ◦ g1,
(5) Hn(An+1) ⊂ Int An+1,
(6) ρ(Hi

n, H
i
n+1) < εn for i = 1, . . . , qn and qn = mpn for some m ≥ 1.

If we want our examples to be smooth (say C∞), it suffices to replace ρ by the analogous
Cn-metric ρn in (4) and (6) for each n. It follows from (1)–(6) that ρ(Hn, Hn+ j ) ≤ γn and
so (Hn)n∈N is a Cauchy sequence, implying Hn converges to a Ck diffeomorphism H in the
respective space.

First observe that Hn(An) = An because clearly g1(A1) = A1 and by (5) and induction
we have

Hn(A \ An) = gn(Hn−1(A \ An)) = gn(A \ An) = A \ An

which then gives

Hn+m(A \ An) = gn+m ◦ . . . gn+1 ◦ Hn(A \ An) = gn+m ◦ . . . gn+1(A \ An)

= id(A \ An) = A \ An .

This immediately gives H(An) = An for each n.
Put D0

n = f −1
n (Dn) and for each i = 1, . . . , pn − 1 denote Di

n = gin(D
0
n) =

f −1
n (Ri

n(Dn)). Now for any z ∈ Di
n denote by Iz the interval of the form [0, 1] × {a}

such that fn(z) ∈ Iz ⊂ Ri
n(Dn). Since Rn is an isometry, for any x, y ∈ Di

n there are p ∈ Ix
and q ∈ Iy such that d(p, q) ≤ diam π1(Dn) < δn . But then by (1) we have:

d(x, y) ≤ diam( f −1
n (Ix )) + diam( f −1

n (Iy)) + d( f −1
n (p), f −1

n (q))

< εn/4 + εn/4 + εn/2 = εn .

This implies that

(7) for each n and each 0 ≤ j < pn we have diam D j
n < εn .

Denote

� =
∞⋂

n=1

An .

Clearly � is closed, connected and H(�) = �. It is easy to see that � is a cofrontier, and by
(5) it is an attracting set for H . We shall call � a HAK attractor of the HAK homeomorphism
H .

Definition 2.1 A homeomorphism H : X → X of the metric space X is uniformly rigid if
there is a subsequence of iterates Hni (ni ↗ ∞) such that the sequence Hni converges
uniformly to idX as i → ∞.
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If we fix any x ∈ �, then for each n there is i such that x ∈ Di
n . For simplicity of notation

assume that x ∈ D0
n . For any y ∈ � there is 0 ≤ j < pn such that y ∈ D j

n and then

H j
n (x) ∈ D j

n which gives by (6) and (7) that

d(H j (x), y) ≤ d(H j (x), H j
n (x)) + d(H j

n (x), y) ≤ γn + εn .

This shows that orbit of every x ∈ � is dense in �. Furthermore, since H pn
n = id we see

that d(H pn (x), x) < γn . This shows that H is uniformly rigid. Additionally observe that by
(6) we have

(8) if x ∈ D j
n then Hi (x) ∈ Bγn (D

(i+ j) mod pn
n ) for j = 0, . . . , qn, where Br (S) denotes the

set of all points of A within r of S relative to d.

By the above discussion, we have the following.

Proposition 2.2 If H is a HAK homeomorphism satisfying (1)–(6), then H is minimal and
uniformly rigid.

2.2 Uniform Rigidity and Rotation

Let π̃1 denote projection onto the first coordinate of [0, 1] × R. For any subset S ⊂ A, we
let S̃ denote q−1(S). For simplicity, for (t, r) ∈ [0, 1] × R and j ∈ Z we will simply write
(t, r) + j to denote (t, r + j).

Here we see the consequences that a homeomorphism H of � ⊂ A is uniformly rigid,
regardless of the origin of H .

Lemma 2.3 If (�, H) is uniformly rigid then for every ε > 0 and every N there are k > 0
and j ∈ Z such that for each y ∈ �̃ we have

|π̃1(H̃
k(y)) − π̃1(y) − j | < ε.

Proof First note that �̃ is connected, as it is the common boundary of K̃1 and K̃2, where
K1 and K2 are the two components of A \ � (see [63, Theorem 1.(iii)’]). Without loss of
generality we may assume that ε < 1/4. By uniform rigidity, there is k > 0 such that
|Hk(x) − x | < ε for each x ∈ �. Since the universal cover q : �̃ → � is a local isometry,
for each y ∈ �̃ there is jy ∈ Z such that

∣
∣
∣π̃1(H̃

k(y)) − π̃1(y) − jy
∣
∣
∣ < ε.

Since ε < 1/4, the vector jy is uniquely determined and the map g : y 
→ jy is continuous.
But as �̃ is connected, g must be constant. ��

Theorem 2.4 If (�, H) is uniformly rigid then for every ε > 0 there are N > 0 and αε ∈ R

such that for every n ≥ N and every y ∈ �̃ we have
∣
∣
∣
∣
∣

π̃1(H̃n(y)) − π̃1(y)

n
− αε

∣
∣
∣
∣
∣
< ε.
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Proof Let j and k correspond to ε/4 as provided by Lemma 2.3. For every y in �̃ and every
positive integer i we have

|π̃1(H̃
ik(y)) − π̃1(y) − i j |

≤ |π̃1(H̃
ik(y))

−π̃1(H̃
(i−1)k(y)) − j | + . . . + |π̃1(H̃

k(y)) − π̃1(y) − j |
< iε/4.

Fix any N > 0 such that for every n > N and every i satisfying ik ≤ n < (i + 1)k we have:

• for each s = 0, 1, . . . , k we have |π̃1(H̃ s(x)) − π̃1(x)| < nε/4 for every x ∈ �̃

• j/N < ε/4

Put αε = j
k . If we fix any n > N and pick i such that ik ≤ n < (i + 1)k then

∣
∣
∣
∣
∣

π̃1(H̃n(y)) − π̃1(y)

n
− αε

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

π̃1(H̃n(y)) − π̃1(H̃ ik(y))

n

∣
∣
∣
∣
∣
+ 1

n

∣
∣
∣π̃1(H̃

ik(y)) − π̃1(y) − i j
∣
∣
∣ +

∣
∣
∣
∣
i j

n
− αε

∣
∣
∣
∣

<
ε

4
+ iε

4n
+

∣
∣
∣
∣
ik j

nk
− jn

nk

∣
∣
∣
∣ ≤ ε

2
+ j

n
< ε.

The proof is completed. ��
As an immediate consequence of Theorem 2.4 we obtain the following.

Corollary 2.5 If (�, H) is uniformly rigid then there is a well defined rotation number α for
H |�.

3 Pseudo-suspensions

3.1 Basic Construction

A standard, yet extremely useful technique to construct examples in dynamics is given by
suspensions of Cantor dynamical systems. One can consider a time-t map of the resulting
suspension flow as a modification of a rigid rotation of the circle to some richer dynamical
system that incorporates the dynamics of the Cantor dynamical system. Unfortunately, there
are two limitiations of this approach. First of all, the space supporting the new time-t home-
omorphisms is relatively simple (a kind of solenoid), and the resulting systems always have
a rotation as a factor.

In this section we will develop a technique which allows us to replace the circle in the sus-
pension construction by a continuum occurng as an invariant set of a HAK homeomorphism.
That way we will be able to construct spaces with much richer structure. Additionally, the
rotation factor is replaced by the HAK homeomorphism as a factor, which leaves much more
freedom in finding dynamical properties in these new constructions.

We now describe the classical suspension of a Cantor system h : C → C as a fiber bundle
in order to see how it compares with our construction below. The universal covering of R/Z

yields a principal Z-bundle ζ = (R, p, R/Z) where p is the quotient map as before. We then
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give C the Z-space structure induced by h, n.c 
→ h−n(c), yielding the fiber bundle ζ [C] as
desribed in [38, Chapt.4.5]. The total space RC of ζ [C] is the suspension of h and is given
by R × C/ ≈, where (r , c) ≈ (

r ′, c′) if and only if there is an n ∈ Z satisfying r ′ = r + n
and c′ = h−n(c). If we denote the quotient map Qh : R × C → RC , then we have

R × C
Qh

RC
qh

R/Z

where qh is a bundle projection of ζ [C], qh : RC → R/Z, qh ((r , c)) = p(r) whose fibers
are copies of C .

For our construction we replace R/Z with a given cofrontier � presented as an essentially
embedded subspace of the annulus A. Recall that a continuum � ⊂ Int A is essential if A\�

has two connected components U+, U−, each of which contains a different component of the
boundary of A. Additionally we consider a given minimal homeomorphism h : C → C of
the Cantor set C . For different choices of � and h there will be different resulting spaces
and dynamics.

The construction begins with the principal Z-bundle ξ = ([0, 1] × R, q, A) , where q :
[0, 1]×R → A is the universal covering map as before. We then giveC the Z-space structure
induced by h, n.c 
→ h−n(c), as before. This yields the fiber bundle ξ [C] with total space
([0, 1]×R)C the quotient space ([0, 1]×R)×C/ ≈, where ((s, r), c) ≈ (

(s′, r ′), c′) if and
only if s = s′ and there is an n ∈ Z satisfying r ′ = r + n and c′ = h−n(c), and we denote
the quotient map as Q : ([0, 1] × R) × C → ([0, 1] × R)C .

Now we have the following,

[0, 1] × R × C
Q

([0, 1] × R)C
qC

A

where the map qC is the bundle projection given by qC [((s, r), c)] = q((s, r)), which is
well-defined since any representative of the same ≈ class differs from ((s, r), c) in the first
pair of coordinates by a deck transformation of the covering q.

Definition 3.1 The subspace �C := (qC )−1(�) associated to the homeomorphism h : C →
C is the pseudo-suspension of h.

The pseudo-suspension of h is the total space of the restricted bundle η := (�C , qC , �)

of the fiber bundle ξ [C], see [38] for details on restricted bundles. Later in Sect. 3.3 we shall
see how η can equivalently be regarded as an induced bundle.

In general, the space �C will locally be the product of an open set of � and a clopen set
of C . When we take � to be a pseudocircle, we shall see in Theorem3.6 that the space �C

is hereditarily indecomposable.

3.2 Lifting Homeomorphisms

Here we describe how to lift a HAK homeomorphism of � to �C (e.g. Handel’s homeo-
morphism from [34] on the pseudo-circle or the example of Jäger-Koropecki [40]). With the
appropriate choice of h, the lifted homeomorphism can be chosen to have positive but finite
entropy. Handel’s homeomorphism has the important additional property that it extends to a
homeomorphism H : A → A that is smooth and area preserving.

As the bundle ξ [C] is locally trivial, the notion of bundle here coincides with that in
Spanier [62], and so the bundle projection qC : ([0, 1] × R)C → A is a fibration, meaning
it has the homotopy lifting property with respect to all spaces [62, Cor. 14; p. 96]. The maps
qC and H ◦qC are homotopic maps ([0, 1]×R)C → A since H is homotopic to the identity.
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But since the identity map to which H is homotopic can be lifted, there is a map HC making
the following diagram commute

([0, 1] × R)C

qC

HC
([0, 1] × R)C

qC

A
H

A .

(3.1)

Now H−1 is also homotopic to the identity and so can be lifted to a map H−1
C in the same

way, and due to the functoriality of the lifting we see that HC is a homeomorphism. Also,
since H(�) = �, we obtain that the restriction of HC is a homeomorphism on �C .

The quotient map Q can be regarded as the map onto the orbit space of the Z action α on
[0, 1] × R × C given by

n. ((t, r), c) = (
(t, n + r), h−n(c)

)
.

As α acts properly discontinuously, Q is a covering projection [62, Thm. 7, p. 87] in the
sense that each point of ([0, 1]×R)C has an open neighborhood U which pulls back by Q to
a disjoint union of open subsets, each of which Q maps homeomorphically onto U (that is,
U is evenly covered). So, again Q has the homotopy lifting property. Thus we obtain again
a lifting making the following diagram commute:

[0, 1] × R × C

Q

H̃C [0, 1] × R × C

Q

([0, 1] × R)C
HC

([0, 1] × R)C .

(3.2)

Notice that the whole homotopy lifts (although the homotopy cannot leave �C or its
lift fixed). Thus, just as the identity map, H̃C does not permute the path components of
[0, 1] × R × C , which are given by [0, 1] × R × {c}.
Definition 3.2 A subset of the pseudo-suspension �C of the form Q ([0, 1] × R × {c})∩�C

for some c ∈ C is a pseudo-component.

Thus we see that the pseudo-components are not permuted by HC .

3.3 The Topology of the pseudo-suspension

We start by further exploring the relation between the pseudo-suspension of a homeomor-
phism h : C → C and its suspension. For a fixed h, observe then that we have the bundle
morphism from η := (�C , qC , �) to the bundle of the suspension ζ [C] determined by the
commutative diagram

�C

qC

F
RC

qh

�
f

R/Z,

(3.3)

where f : � → R/Z is given by projection onto the circle factor, (s, [r ]) 
→ [r ] and
similarly F maps the class of ((s, r), c) to the class of (r , c) . In fact, we can alternately
regard (�C , qC , �) to be the bundle induced from ζ [C] by the map f , [38, Prop. 2.5.5].
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The space RC is locally homeomorphic to (0, 1) × C and so is a matchbox manifold.
In what follows, by a proper subcontinuum of X we mean a subcontinuum K � X that

contains more than one point. For completeness, we provide a proof of the following well
known result.

Proposition 3.3 The only proper subcontinua of the suspension RC are arcs.

Proof Suppose that K is a proper subcontinuum of RC . Then the complement RC \ K
contains a basic open set U ≈ G × (−1, 1), where G is a clopen subset of C . As G is totally
disconnected, the first return map r to the section G×{0} of the minimal suspension flow φ on
RC is continuous. As h is minimal, r is a homeomorphism. Thus RC is homeomorphic to the
suspension of r via a homeomorphism T : RC → Susp(r) that sends K to a homeomorphic
copy contained in the neighbourhood Susp(r) \ h(U ) that is homeomorphic to G × [0, 1].
But clearly the only continua with more than a point in G × [0, 1] are arcs. ��

We recall the following definition for clarity. We refer the unfamiliar reader to [53, XI].

Definition 3.4 The composant of the point x of the space X is the union of all proper sub-
continua of X containing x .

In an indecomposable continuum the composants partition the space, each composant is
dense and there are uncountably many composants. Proposition 3.3 then has the following
known corollary.

Corollary 3.5 The path components of RC coincide with the composants of RC .

Theorem 3.6 The pseudo-suspension �C of a minimal homeomorphism h : C → C is a
continuum. If additionally � is the pseudo-circle then the only proper subcontinua of �C

are pseudo-arcs and consequently, �C is hereditarily indecomposable.

Proof To show that �C is compact, we regard it as the bundle induced by the map f in
Equation 3.3. As such, �C is a closed subset of the compact space � ×RC ([38, Ch2.5]) and
hence compact. To see that �C is connected, we begin by relating the universal cover of � to
our previous constructions. The principal bundle ξ = ([0, 1] × R, q, A) corresponding to the
universal cover of A has the restricted bundle ψ = (�̃, q, �) where �̃ := q−1(�). The total
space �̃ is a connected space that admits a two point compactification that is homeomorphic
to the pseudo-arc P (e.g. see [6,47]). Now we can supplement the commutative Diagram 3.3
as follows:

�̃ × C

Q

F̃
R × C

Qh

�C
F

RC .

(3.4)

Thus, each pseudo-component of �C is the continuous bijective image of �̃ and each
pseudo-component is mapped bijectively by F onto a path component of RC . By the density
of the orbit of each c ∈ C under the action of h, we see that each psueudo-component is
dense in �C , which is therefore connected.

Now assume that � is the pseudo-circle and let K be a proper subcontinuum of �C . Then
F(K ) will be a subcontinuum of RC , which by Proposition 3.3 is an arc A or a point. We
shall assume without loss of generality that it is an arc as the other case follows by the same
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argument. This arc A lifts via Qh to an arc Ã ⊂ R×{c} for some c ∈ C . (There are many such
lifts, we choose just one.) By construction, K̃ := F̃−1( Ã) ⊂ �̃ × {c}. Moreover, Q maps K̃
onto K in �C by the commutativity of the diagram. Now the restriction of Q to �̃ × {c} is a
continuous bijection that is not closed, which is thus a homeomorphisms when restricted to
a compact subset. Thus, we finally obtain that K is homeomorphic to a subcontinuum of the
pseudo-arc P we obtain by forming the two point compactification of �̃ × {c}. Thus, as any
proper subcontinuum of P is homeomorphic to P , we obtain that K is homeomorphic to P .
As P is indecomposable, we obtain that RC is hereditarily indecomposable. ��
Remark 3.7 One should bear in mind that when � is the pseudo-circle then each pseudo-
component of �C contains uncountably many distinct composants.

4 Minimality

One important property of HAK homeomorphism H is that it can be uniformly approximated
as closely as desired by a periodic homeomorphism for all iterations up to and including the
period of the periodic homeomorphism (that is, the identity map). As we have seen in previous
section, it then follows directly that H is uniformly rigid.

Thus, for every ε > 0 we can find positive integers s and k such that H̃ s(t, r) ∈ B((t, r)+
k, ε). We shall require a stronger version of this that is satisfied if we increase the convergence
rate of the Cauchy sequence Hn → H of the periodic homeomorphisms Hn obtained by HAK
conditions (1)–(6). For example, if we put qn = apn for some integer a in (6) then for any
given ε > εn p, we may find positive integers s and k such that H̃ s j (t, r) ∈ B((t, r)+ k j, ε)
for j = 1, . . . , p. Recall that a homeomorphism h is totally transitive (minimal) if for every
k ∈ Z, hk is transitive (minimal). By standard Baire arguments, if h : C → C is totally
transitive, then there exists a point c ∈ C such that c has dense orbit under hk for every
k ∈ Z. By the above comments, the assumptions of the following theorem are satisfied if h
is totally transitive and values of sequence qn in HAK conditions are increasing sufficiently
fast to ensure appropriate rates of convergence of the approximating homeomorphisms fn .

Theorem 4.1 Suppose that there are c ∈ C and (t, r) ∈ �̂ such that for every ε > 0 there
are positive integers k, s and p such that:

(1) for every x ∈ C there is 0 ≤ i ≤ p such that h−ik(c) ∈ B(x, ε),
(2) for every 0 ≤ j ≤ p we have H̃ s j (t, r) ∈ B((t, r) + k j, ε).

Then HC is transitive and z = Q((t, r), c) ∈ �C has a dense forward orbit under the action
of HC .

Proof Fix any ε > 0, any x ∈ C and let k, p, s be provided by assumptions and let i be
provided by (1). Then

H̃C
s j

((t, r), c) ∈ B((t, r) + k j, ε) × {c} ≈ B((t, r), ε) × {h−k j (c)} ⊂ B((t, r), ε) × B(x, ε).

This shows that the ω-limit set of z = Q((t, r), c) contains

ω(z, HC ) ⊃ Q((t, r) × C) = q−1
c (t, r).

But the orbit of (t, r) under H is dense in �, which shows that Q({H̃ i (t, r) : i = 0, 1, . . .}×
C) is dense in �C and hence �C = ω(z, HC ) since any ω-limit set is closed. This proves
that z has dense forward orbit under HC and hence HC is transitive. ��
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It should be noted that in the above, for any fixed estimate we make we are only considering
H to be determined up to some finite, uniformly approximating stage fn . This allows us to
make meet the requirements for p that might increase without control as ε → 0. However,
this could restrict the rotation numbers allowed for the H we use to those well approximated
by the rational numbers given by the rotation numbers of fn .

Corollary 4.2 If h : C → C is minimal and topologically weak mixing and Hn → H suffi-
ciently fast, then HC is minimal.

Proof It is not hard to check that when h is weakly mixing then (C, hk) is minimal for every
k = 1, 2, . . . (e.g. see [25, 8, p.129]). Then fixing ε > 0 and k we can take the same integers
s, p for every point c ∈ C in (1) in Theorem 4.1. In other words every z = Q((t, r), c) ∈ �C

has dense forward orbit under the action of HC which ends the proof. ��

5 Weakmixing

Here we examine the mixing properties of the homeomorphisms that we construct. Recall
that a homeomorphism h : X → X is (topologically) weak mixing if for any non-empty
open sets Ui , Vi (i = 1, 2) there is a k ≥ 1 such that hk(Ui ) ∩ Vi �= ∅ (i = 1, 2); that
is, the system h × h : X × X → X × X is topologically transitive, in analogy with the
notion of weak mixing from ergodic theory. It is known that for a minimal homeomorphism
of a compact Hausdorff space h : X → X that weak mixing is equivalent to having no non-
trivial equicontinuous factors, (see e.g, [25, V, Thm. 1.19, p. 408]). This has a particularly
digestible interpretation in terms of eigenfunctions. Recall that a (continuous) eigenfunction
of h : X → X is a continuous map χ : X → R/Z satisfying the property that for some
α ∈ R/Z with associated rotation Rα , χ ◦ f = Rα ◦χ , and in this setting α is the eigenvalue
associated to χ. Thus, provided that χ is onto, χ provides a semi-conjugacy with Rα. We
then have the following well known theorem, see, e.g., [25, Thm. II 4.19, p. 82].

Theorem 5.1 Let h : X → X be a minimal homeomorphism of a compact Hausdorff space
X. Then every continuous eigenfunction of h is constant iff h is weakly mixing.

It often happens that homeomorphisms of disconnected spaces admit eigenfunctions that
are not constant and yet not surjective. Although this is likely well known, for completeness
we show that this is not possible in our context.

Lemma 5.2 If χ is an eigenfunction of a minimal homeomorphism h : X → X of a compact
and connected Hausdorff space X whose image contains more than one point, then χ is
surjective.

Proof We first observe that by the minimality of h that if χ(X) contains at least two points,
the associated eigenvalue α cannot be the identity element. Suppose then that under our
hypotheses that χ(X) contains two distinct points, that the associated eigenvalue α is not
the identity element, but that χ is not surjective. Then χ(X) = A for some arc A. But since
χ ◦ h = Rα ◦ χ, χ(X) must contain Rα(A), which is a distinct arc from A but of the same
length, a contradiction. Thus χ must be surjective. ��
Corollary 5.3 Let h : X → X be a minimal homeomorphism of a compact and connected
Hausdorff space X. Then h is not semi-conjugate to a rotation of R/Z iff h is weakly mixing.
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Following a suggestion of Thurston, in [34] Handel shows that a homeomorphism
H : � → � of the type he constructs is not semi-conjugate to a rotation of R/Z (or
any homeomorphism of R/Z).

Corollary 5.4 A Handel homeomorphism H : � → � is weakly mixing. �
Remark 5.5 By Proposition 6.7 in [30], a minimal uniformly rigid homeomorphism of a
compact zero dimensional space is always equicontinuous. So any example of a minimal,
uniformly rigid and weakly mixing homeomorphism must be at least one-dimensional. In
that sense Handel’s example is optimal.

Theorem 5.6 Let HC : �C → �C be the lift of a weakly mixing HAK homeomorphism of the
cofrontier � to the pseudo-suspension of the weakly mixing homeomorphism h : C → C .

Then HC is weaklymixing and in particular HC does not admit a semi-conjugacy to a rotation
of R/Z.

Proof By the results of [3], to establish weak mixing, it is sufficient to show that for any
nonempty open setsU , V ⊂ �C there is an l > 0 such that Hl

C (U )∩U �= ∅ and Hl
C (U )∩V �=

∅. We consider first the lift H̃ of H to the universal cover [0, 1] × R of A, and take K such
that if H̃(t, p) = (t ′, p′) then |t ′ − t | ≤ K , which we know to exist since H̃ is Z periodic in
the second factor. For any nonempty open set U of [0, 1] × R, U + Z intersects (0, 1)2 in a
non-empty open set. Fix then any nonempty open setsU1,U2 ⊂ (0, 1)2. By the weak mixing
of H , there are s > 0, a nonempty open U3 ⊂ U1 and (t, r) ∈ (0, 1)2 such that (t, r) ∈ U1,
H̃ s(t, r) ∈ U1 +Z and H̃ s(U3) ⊂ U2 +Z. There exists a ∈ Z such that H̃ s(t, r)−a ∈ [0, 1].
Note that |a| ≤ Ks. Since H is minimal, there exists a syndetic set A ⊂ N such that
H̃n(t, r) ∈ U3 + Z for every n ∈ A. Let N be such that for every n ∈ A there is 0 < i < N
such that n + i ∈ A. We may assume that N > s. Fix any nonempty open sets V1, V2 ⊂ C .
By the weak mixing of h there exist points c−3K N , . . . , c3K N , c′−3K N , . . . , c′

3K N ∈ V1

and m > 0 such that h−m−i (ci ) ∈ V1 and h−m−i (c′
i ) ∈ V2 for every |i | ≤ 3K N , see,

e.g., [25, II,4.12, p.79]. There exists l > 0 such that if we denote H̃ l(t, r) = (u, v) then
(u, v) ∈ U3 + Z and there is 0 ≤ i < K N such that m + i ≤ v < m + i + 1. Furthermore,
if we put H̃ s(u, v) = (u′, v′) ∈ U2 + Z then |u − u′| ≤ sK < K N . Let j be such that
m + i + j ≤ v′ < m + i + j + 1. Taking all the above constants into account we obtain that

(H̃ l(t, r), cm+i ) ≈ ((u − m − i, v), h−m−i (cm+i )) ∈ U3 × V1 ⊂ U1 × V1

(H̃ l(H̃ s(t, r) − a), c′
m+i+ j−a) ≈ ((u′ − m − i − j, v′), h−m−i− j+a(c′

m+i+ j−a))∈U2×V2.

Since QC is an open map from the product space, this suffices to above mentioned condition
to establish weak mixing [3]. ��

A natural question to ask at this point is whether the pseudo-circle is the only HAK
attractor that admits weak mixing?

Remark 5.7 There exists a HAK attractor topologically distinct from the pseudo-circle that
admits weakly mixing homeomorphisms.

A detailed description will be given in a separate publication.

6 Computation of entropy

We present estimates of topological entropy of homeomorphisms induced on the space
([0, 1] × R)C . While in our constructions H is a very special minimal map on the pseudo-
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circle, we in fact only use that htop(H) = 0 and rotation number is well defined and positive
for every point of �.

We denote by rn(ε, T ) the smallest cardinality of (n, ε)-spanning set for T and by sn(ε, T )

the maximal cardinality of an (ε, n)-separated set for T .

Theorem 6.1 Assume that H is a HAK homeomorphism with a nonzero rotation number α

on �. Then htop(HC ) = |α|htop(h).

Proof Replacing H with H−1 if necessary, without loss of generality we may assume that
α > 0. We assume that the distance between points in [0, 1] × R × C is the maximum of
the distances calculated for the coordinates in [0, 1] × R and C . For simplicity, the metric is
always denoted by d .

Since α > 0 for every sufficiently large positive integer k there is and integer p such that
p−1
k < α <

p+1
k . By Theorem 2.4 we see that there exists N such that for every n > N we

have

p − 1

k
<

π1(Hn(x)) − π1(x)

n
≤ p + 1

k

for every x , and consequently for every x we have

n(p − 1) < π1(H
kn(x)) − π1(x) ≤ n(p + 1). (6.1)

Denote D = [0, 1] × [−1, 2] × C and that (e.g. by (6.1)) we may assume that k is
sufficiently large to ensure that

H̃ k
C ([0, 1] × [−1,∞) × C) ⊂ [0, 1] × [2,∞) × C . (6.2)

Fix any ε > 0. Since each sufficiently small set in ([0, 1] × R)C is evenly covered, there
exists an open cover {Ui }si=1 of D such that Q|Ui is a homeomorphism onto its image and
diam(Q(Ui )) < ε. Let δ be a Lebesgue number of the cover {Ui }si=1 (for D).

Fix any positive integer n > N and let:

• An be the lift to [0, 1]2 of an (n, δ)-spanning set of Hk with cardinality rn(δ, H),
• Bn be an (n(p + 2), δ)-spanning set for h−1 with cardinality rn(p+2)(δ, h−1).

Without loss of generality we may assume that the quotient map q : [0, 1]2 → [0, 1] ×
(R/Z) = A is a local isometry and so for every y ∈ [0, 1]2 ∩ �̃ there is x ∈ An such that
d(H̃ ik(x), H̃ ik(y)) < δ for i = 0, . . . , n. Take any y ∈ �C and take its lift

((t, u), c) ∈ ([0, 1)2 × C) ∩ Q−1(y) ⊂ �̃ × C

Let (t ′, u′) ∈ An and c′ ∈ Bn be such that

d(H̃ ik(t, u), H̃ ik(t ′, u′)) < δ

for i = 0, . . . , n and

d(h− j (c), h− j (c′)) < δ

for j = 0, . . . , r(p + 2) − 1. Note that by (6.1) and (6.2) we have H̃ ki (t, u) ∈ [0, 1] ×
[0, n(p + 1) + 2) for each i = 0, . . . , n and therefore there is 0 ≤ j < n(p + 1) + 2 such
that such that H̃ ik

C ((t, u), c) ⊂ [0, 1] × [ j, j + 1) × C . Note that n > N is large, hence we
may assume that

j + 2 ≤ n(p + 1) + 4 < n(p + 2). (6.3)
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But then H̃ ki
C ((t ′, u′), c′) ⊂ [0, 1] × [ j − 1, j + 2) × C and so we have

H̃ ik
C ((t, u), c) ≈ (H̃ ik(t, u) − j, h− j (c)) ∈ D,

H̃ ik
C ((t ′, u′), c′) ≈ (H̃ ik(t ′, u′) − j, h− j (c′)) ∈ D.

Note that by (6.3) we obtain

d(H̃ ik(t, u) − j, h− j (c), H̃ ik(t ′, u′) − j, h− j (c′))
≤ max{d(H̃ ik(t, u), H̃ ik(t ′, u′)), d(h− j (c), h− j (c′))}
≤ δ

which yields d(Hik
C (y), Hik

C (z)) < ε. We obtain that for some sufficiently small γ < δ

lim sup
n→∞

1

n
log rn(H

k
C , ε) ≤ lim sup

n→∞
1

n
log(rn(δ, H

k) + rn(p+2)(δ, h
−1))

≤ lim sup
n→∞

1

n
log(rn(δ, H

k) + lim sup
n→∞

1

n
log(rn(γ, h−p−2)

When we pass with ε → 0 then also δ → 0 and γ → 0, which in the limit gives

htop(HC ) = 1

k
htop(H

k
C ) ≤ htop(H) + 1

k
htop((h

−1)p+2) = p + 2

k
htop(h

−1).

Increasing k we see that p/k → α which finally gives

htop(HC ) ≤ αhtop(h
−1).

For the proof of converse implication fix any ε > 0. Let k and p be as before, in particular
(6.1) is satisfied. Let γ < ε be such that if r , t ∈ C and d(r , t) < γ then d(hi (r), hi (t)) < ε

for i = −2s, . . . , 2s where s is such that H̃ k(D) ⊂ [0, 1] × [0, s). Since each sufficiently
small set in ([0, 1] × R)C is evenly covered, there exists δ > 0 such that if (x, r), (x, t) ∈
[0, 1]2 × C and d(Q(x, r), Q(x, t)) < δ then d(r , t) < γ .

Fix any n > N and let Cn be an (n(p + 1), ε)-separated set for h−1 with cardinality
rn(p−1)(ε, h−1). Fix any x ∈ �̃ ∩ [0, 1]2 and define E = {(x, c) : c ∈ Cn}. We claim that
Cn is an (n, δ)-separated set for H̃ k

C .
Take any two distinct points (x, r), (x, t) ∈ E and let 0 ≤ j < n(p + 1) be such that

d(h j (r), h j (t)) > ε. Since by (6.1) we have H̃nk(x) ∈ [0, 1]× [n(p− 1),∞), by definition
of s there is 0 ≤ i < n such that if we denote H̃ ik(x) = (q, u) then u − j ∈ (−2s, 2s). Let
w ≥ 0 be an integer such that u ∈ [w,w + 1). Then

H̃ ik
C ((x, r) ≈ (H̃ ik(x) − w, h−w(t)) ∈ D,

H̃ ik
C ((x, t) ≈ (H̃ ik(x) − w, h−w(r)) ∈ D

and clearly d(h−w(t), h−w(r)) > γ because otherwise d(h− j (t), h− j (r)) < ε which is a
contradiction. But then

δ < d(Q(H̃ ik
C ((x, r)), Q(H̃ ik

C ((x, t))) = d(Hik
C (Q(x, r)), Hik

C (Q(x, t)))

which shows that the set Q(E) is (n, δ)-separated for H̃ k
C . We have the following

lim sup
n→∞

1

n
log sn(H

k
C , δ) ≥ lim sup

n→∞
1

n
log(sn(p−1)(ε, h

−1))

≥ lim sup
n→∞

1

n
log(sn(γ, h−(p−1))
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which in turn gives htop(HC ) ≥ p−1
k htop(h−1) and finally we obtain desired inequality

htop(HC ) ≥ αhtop(h
−1)

which completes the proof. ��
Corollary 6.2 For every β ∈ [0,∞] there exists a one-dimensional hereditarily indecompos-
able continuum M and a minimal homeomorphism F : M → M with htop(F) = β.

Proof If β = 0 then it is enough to use the homeomorphism F from the example of Handel
[34]. Generally, use the method of Handel [34] to construct a homeomorphism (�, H |�)

of the pseudo-circle � with a rotation number α > 0. First consider β ∈ (0,∞). Take a
Bernoulli automorphism defined by a measure ν with entropy hν = β/α. Every Bernoulli
automorphism is a Kolmogorov automorphism, and in particular μ is strongly mixing. For
β = +∞ it is enough to consider a Bernoulli shift with countable alphabet N. We see
that it is ergodic with infinite entropy, because for any n it factors onto Bernoulli shifts
with an n-element alphabet with probabilities {p1, p2, . . . , pn−1, 1 − ∑n−1

j=1 pi }. But this
system is embedded in a compact system (the full shift over an alphabet which is one point
compactification of N).

Since entropy of a measure is an isomorphism invariant, by the Lehrer extension of the
Jewett-Krieger theorem (see [49], cf. [65, §4.9]) we obtain a topologically mixing homeo-
morphism f : C → C of a Cantor set C which is uniquely ergodic with respect to μ, and so
if we put h = f −1 then htop(h−1) = hμ( f ) = β/α and h is minimal and mixing. Now it is
enough to apply Theorems 6.1, 3.6 and 4.1 to end the proof to see that F = HC is transitive
with htop(F) = β and �C is hereditarily indecomposable. ��

7 Admissible values of entropy

It is well known that the rotation set of annulus map is a topological invariant [15]. The
situation is a bit more delicate for cofrontier maps, as it is not immediately clear that the
rotation set is independent of embedding, in especially if the rotation set consists of a single
irrational number, and although any cofrontier homeomorphism extends to an annulus map
it is obvious that distinct extensions could produce distinct rotation sets. However, it follows
from the arguments used in [15, P1. p. 257] that the rotation sets are indeed independent of
embeddings. For completeness sake we sketch the argument from [15].

Proposition 7.1 SupposeC and K are two topologically inequivalent embeddings of a cofron-
tier in the annulus A. Let F : C → C, G : K → K and H : C → K be homeomorphisms
such that F ◦ H = H ◦ G, with rotation sets R(F) and R(G). Then R(F) = R(G).

Proof Choose lifts f , g, and h of F,G and H respectively. Let f = ( f1, f2), g = (g1, g2),
h = (h1, h2). Note that the difference h1( f n(x̃))− f n1 (x̃) is uniformly bounded for all x̃ ∈ C
and there exists a ỹ ∈ K such that ỹ = h̃(x̃). Therefore for any n we have the following

lim
n→∞

f n1 (x̃)

n
= lim

n→∞
f n1 (x̃) + h1( f n(x̃)) − f n1 (x̃)

n
= lim

n→∞
h1( f n(h−1(ỹ)))

n
.

It follows that R(F) = R(H−1 ◦ F ◦ H) = R(G). ��
Now recall that for every rational number p

q there exists an annulus homeomorphism with

an invariant pseudo-circle such that its rotation set is { p
q }. The same holds for its restriction
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to the pseudo-circle. Indeed, fix a rational p
q and let the pseudo-circle � be embedded in an

annulus A. Then the q-fold covering (Aq , τq) contains the q-fold covering �q = τ−1
q (�)

of �, which is homeomorphic to the pseudo-circle [35]. Let σ be a generator of the deck
transformation group of (Aq , τq). Then σ p : Aq → Aq is a periodic homeomorphism with
σ p(�q) = �q . It is easy to see, from the fact that σ is a deck transformation, that the rotation
set of σ p is equal to { p

q }, and it is the same for σ p|�q . As σ is a deck transformation, σ p is
conjugate to an isometry. Consequently, without violating any essential properties of HAKs
that are required in the proof of Theorem 6.1, on the pseudo-circle we can compose a HAK
homeomorphism with a periodic homeomorphism with unique rotation number p

q to get the
following corollary.

Corollary 7.2 For every β ∈ (0,∞) and every t ∈ Q+ there exists a one-dimensional
hereditarily indecomposable continuum Xβ and a homeomorphism Ft : Xβ → Xβ such
that htop(Ft ) = t ·β. In particular, there exists an uncountable collection of one-dimensional
hereditarily indecomposable continua, each of which admits a dense set in R of entropy
values for its homeomorphisms.

We say that M is a Mycielski set if it can be presented as a countable union of Cantor sets.

Theorem 7.3 There is a dense Mycielski set M ⊂ R such that each α ∈ M can be obtained
as the rotation number of a minimal homeomorphism in Handel’s construction.

Proof Fix any nonempty open set U ⊂ R. We are going to show that there exists a Cantor
set C ⊂ U such that each number in C represents the rotation number of a homeomorphism
obtained by Handel’s method. Fix any γ ∈ U and any ε > 0 such that [γ − ε, γ + ε] ⊂ U .
The rotation number of Handel’s example α = limn→∞ αn is obtained as a sequence of
approximations in such a way that α1 = γ and consecutive numbers bn = αn+1 − αn are
sufficiently small. We can always decrease bn (this may also force us to decrease all bi for
i > n), but it can be done inductively. Therefore we can select a sequence bn in such a way
that if we denote b1

n = bn and b0
n = bn/3 then

(1) each bn > 0,
(2)

∑∞
n=1 bn < ε/2,

(3)
∑∞

n=k+1 bk < bn/6,

(4) for any sequence i1, . . . , in ∈ {0, 1} the sequence of rotations αn = ∑n
j=1 b

i j
j can be

used in Handel’s construction in [34] (all conditions required in this construction up to
step n are satisfied).

By the above conditions, for any sequence x ∈ {0, 1}N we can construct a Handel’s home-
omorphism with the rotation number αx = limn→∞

∑n
k=1 b

xk
k . It is not hard to see that the

assignment x 
→ αx is continuous and that if x �= y then αx �= βx . Therefore we obtain a
closed and uncountable set of rotation numbers of Handel’s homeomorphism in U . This set
clearly contains a cantor set finishing the first part of the proof. But now, to construct M it
is enough to take union of all Cantor sets that can be constructed for sets from a countable
basis of open set U for the topology on R. ��

Extending the above observations on k-fold coverings of HAK’s, we obtain the following.

Corollary 7.4 For every β ∈ (0,∞) there exists a dense Mycielski set M ⊂ (0,+∞) and a
one-dimensional hereditarily indecomposable continuum Xβ such that:
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(1) β ∈ M and Q+M = M,
(2) for every t ∈ M there is a weakly mixing homeomorphism Ft : Xβ → Xβ such that

htop(Ft ) = t .

8 Smooth extensions

To form the pseudo-suspension we endowed C with a Z-space structure induced by a home-
omorphism h : C → C . The minimal homeomorphisms of C used in the construction of the
minimal maps of �C in are subshifts of {0, 1}Z. Pick any such subshift h and consider the full
shift s of {0, 1}Z. It is well known that there is aC∞-smooth diffeomorphism f : M → M of
a compact, 2-dimensional manifold M with an invariant Smale horseshoe � with restriction
f |� that is topologically conjugate to s. Thus, there is an invariant, minimal subset K ⊂ M
such that f |K is topologically conjugate to h.

As in Sect. 3.1, we now begin with the principal Z-bundle ξ = ([0, 1] × R, q, A) . We
then give M the Z-space structure induced by f , n.x 
→ f −n(x), giving us the fiber bundle
ξ [M]. The total space ([0, 1]×R)M of ξ [M] is the quotient space ([0, 1]×R)×M/ ≈, where
((s, r), x) ≈ (

(s′, r ′), x ′) if and only if s = s′ and there is an n ∈ Z satisfying r ′ = r +n and
x ′ = f −n(x), and we denote the quotient map as QM : ([0, 1] × R) × M → ([0, 1] × R)M .

A direct way of describing the smooth structure of ([0, 1] × R)M is in terms of induced
functional structures, see, e.g, [20, II,2 and 4].

Definition 8.1 A functional structure on a topological space X is a function FX on the
collection of open subsets of X satisfying:

(1) For each open U ⊂ X , FX (U ) is a subalgebra of all continuous real valued functions on
U ;

(2) FX (U ) contains all constant functions;
(3) For open U ⊂ V , if f ∈ FX (U ), then f |V ∈ FX (V ); and
(4) For open U = ∪Uα and a continuous function f on U , if f |Uα ∈ FX (Uα) for all α,

then f ∈ FX (U ).

And in this case (X , FX ) is called a functionally structured space. If U is an open subset of
X , then (U , FU ) is the functional structure of U induced by FX .

A C∞ n--dimensional manifold with boundary X is a second countable functionally
structured Hausdorff space such that for each point x ∈ X there is a neighbourhood U ⊂ X
of x and there is a corresponding open set V ⊂ R

n+ such that (U , FU ) is isomorphic to
(V ,C∞), where C∞ assigns to V the C∞ functions on V . Here R

n+ is the set of points in R
n

with non-negative first coordinate, and two functionally structured spaces (Y , FY ), (Z , FZ )

are isomorphic if there is a homeomorphism h : Y → Z such that FY = FZ ◦ h, where h
denotes the function h induces on the collection of open subsets.

Now consider a C∞ functional structure of ([0, 1] × R) × M obtained from the product
structure, and endow ([0, 1] × R)M with the functional structure induced by QM , (([0, 1] ×
R)M , F([0,1]×R)M ). That is, for an open U ⊂ ([0, 1] × R)M ,

(g : U → R) ∈ F([0,1]×R)M (U ) iff g ◦ QM ∈ F([0,1]×R)

(
Q−1

M (U )
)

.

This will give ([0, 1]×R)M a functional structure that is locally isomorphic to that of R
4+

since two sufficiently small open sets in ([0, 1] × R) × M that are mapped to the same open
set in ([0, 1] × R)M will differ by translations of the R factor and a corresponding iterate of
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the C∞ map f in the M factor, see, [20, II,Ex. 4.2]. Thus, ([0, 1]×R)M is a C∞ manifold of
dimension 4 with boundary with this functional structure. Just as in Sect. 3.2 we have the fiber
bundle projection qM : ([0, 1]×R)M → A which has the homotopy lifting property. We give
A the C∞ structure induced by qM and construct a Handel diffeomorphism H : A → A with
an attracting pseudo-circle � as before. We then have the lifted homeomorphisms HM , H̃M

as in Equations 3.1 and 3.2

[0, 1] × R × M

QM

H̃M [0, 1] × R × M

QM

([0, 1] × R)M

qM

HM
([0, 1] × R)M

qM

A
H

A.

(8.1)

Notice that H̃M isC∞-smooth since locally it is the product of the lift of H to the universal
cover [0, 1] × R of A and the identity on M . As we have endowed ([0, 1] × R)M with the
smooth structure induced by QM , HM is then equally smooth. Now HM has a topological
copy of �C as an invariant minimal set with intermediate complexity, and by choosing the
rotation number of H as described in Sect. 6, the restricted map on �C can have entropy of
all values as described in Corollary 7.2.

Piecing this together, we finally obtain the main theorem.

Theorem 8.2 There exist hereditarily indecomposable continua admitting homeomorphisms
of intermediate complexity. Moreover, there exist an hereditarily indecomposable continuum
�C satisfying:

(1) �C occurs as an invariantminimal set in a smooth diffeomorphism F of the 4 dimensional
manifold ([0, 1] × R)M and

(2) The restriction F |�C is weakly mixing homeomorphism of intermediate complexity.

Remark 8.3 In the above theorem, it should be observed that for a single such diffeomorphism
F as above, we obtain any continuum that can be generated by a subshift of {0, 1}Z since
this shift is conjugate to a subset of Smale’s horseshoe.

Remark 8.4 If the diffeomorphism f : M → M is isotopic to the identity, then the manifold
([0, 1] × R)M will be diffeomorphic to M × A. In particular, if we start with M as a disc,
then we can easily obtain �C as an invariant set of a diffeomorphism on R

4.

In the above we were aiming to find smooth maps for which �C occurs as an invariant
set within an attractor, which is based on the Handel example in which � occurs as an
attractor. But Handel also constructs examples for which H : A → A preserves area. It is
such examples that we now use to construct another family of examples.

Proof of Theorem 1.3 For this example we take a hyperbolic automorphism f : T
2 → T

2

to construct our diffeomorphism of ([0, 1] × R)T2 as above. Using Markov partitions, one
can construct a subshift of finite type �A and a finite-to-one factor map g : �A → T

2

(see e.g. Theorems 4.3.5. and 4.3.6 in [2].) Since �A is a mixing shift of finite type with
positive entropy, using standard methods (e.g. the one introduced by Grillenberger in [32,
Section §2]), we can find a mixing strictly ergodic (hence minimal) subshift W ⊂ �A with
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positive entropy. The image g(W ) will be a minimal, invariant subset of T
2 and so clearly

also weakly mixing. But g is finite-to-one, and hence the entropy of f on g(W ) is the
same as σ on W (first proved by Bowen [16], but see also [24, Theorem 7.1]). As before, this
yields the desired hereditarily indecomposable continuum �C with associated weakly mixing
homeomorphism of intermediate complexity and we need only show that the diffeomorphism
HT2 preserves volume. But H preserves the area on A and f preserves the area element of
T

2 that is induced from the area element of R
2 by the covering map R

2 → T
2. Thus, if we

endow ([0, 1] × R)T2 with the volume element induced by the quotient map QM using the
indicated area elements in the product covering space, we see that HM preserves volume. ��

Observe that in the above example f is not homotopic to the identity, making it more
difficult to describe the manifold ([0, 1] × R)T2 in more basic terms. Also, there will be a
plethora of subshifts W that one can take, leading to many different invariant hereditarily
indecomposable continua within ([0, 1] × R)T2 with the properties listed above. However,
it will be a more restrictive collection since not all subshifts would be included as in the
previous construction.

It is also worth mentioning that the Cantor set can never appear as an attractor in a manifold
(or even locally connected compact metric space).1 However, any homeomorphism of the
Cantor set can be realized as the restriction of a homeomorphism F of a compact manifold (of
dimension three or higher) to an isolated invariant set (i.e., a compact set equal to ∩n∈ZFnU
for some open set U ) [19].

9 Pseudo-solenoids

In this section we shall investigate the lift of Handel’s homeomorphism to pseudo-solenoids
and establish some of its properties: minimality, weak mixing, uniform rigidity and zero
entropy. Recall that a pseudo-solenoid can be viewed as a principal bundle over the pseudo-
circle with the bundle structure that is induced by the principal bundle structure of a standard
Vietoris solenoid over a circle, see [58]. We shall now put this bundle structure into the context
of the pseudo-suspension as developed earlier. For a given sequence P = (p1, p2, p3, . . .)

of prime numbers pi , there is the corresponding adding machine aP : C → C and the
corresponding solenoid

�P = lim←−{(R/Z, pi ) : i ∈ N}

obtained by taking the inverse limit of the covering maps the circle [x] pi
→ [pi x]. Moreover,
the solenoid �P can be viewed as the suspension of the matching adding machine aP , [1].
The P-adic pseudo-solenoid �P is then the total space of the induced bundle as indicated in
the below Diagram that corresponds to the earlier Diagram 3.3

�P

qP

F
�P

qaP

�
f

R/Z

(9.1)

and as such is the pseudo-suspension of aP . But as the bundle for �P is principal, the same
will be true for the �P bundle map, unlike the typical general fiber bundle in a pseudo-
suspension . And while we have the lifted homeomorphism HP : �P → �P as before,

1 We are grateful to Mike Boyle for bringing this this fact to our attention.

123



Journal of Dynamics and Differential Equations (2023) 35:1175–1201 1195

because the adding machineaP is equicontinuous, not weakly mixing and not totally minimal,
none of the arguments we previously used to establish the weak mixing and minimality of the
lifted homeomorphism will apply to this case. Instead, we will have to exploit the alternative
representation of �P as an inverse limit

�P = lim←−{(�, τi ) : i ∈ N}
where τi is a covering map of � of degree pi . Consideration of the lifting construction of

HP and the nature of the inverse limit, leads to the following commutative diagram

�P :
HP

�

H

�
τ1

H1

· · ·
τ2

�

Hi−1

�
τi

Hi

· · ·

�P : � �
τ1

· · ·
τ2

� �
τi

· · ·

(9.2)

where each Hi is the lift of H via the covering map τi ◦· · ·◦τ1 obtained as before using the
lifting property of fibrations. Thus, HP is the inverse limit of the homeomorphisms indicated
in the Diagram. Each covering map τi ◦ · · · ◦τ1 extends to coverings of A of the same degree,
and so each of the Hi is a Handel homeomorphism that can be realized using the intersections
of crookedly nested annuli obtained from lifting the nested annuli in the base copy of A. As
each of the lifted maps Hi is again a Handel homeomorphism, it shares all the qualitative
properties of the original H , though the rotation number may be altered.

Proposition 9.1 Let X = lim←−{(Xi , fi ) : i ∈ N} with each Xi a compact metric space and all
bonding maps fi : Xi+1 → Xi continuous surjections. Suppose that h : X → X is a home-
omorphism given by h ((xi )) = (hi (xi )), where each hi : Xi → Xi is a homeomorphism.
Then,

(1) h is weakly mixing if and only if each hi is weakly mixing,
(2) h is minimal if and only if each hi is minimal and
(3) h is uniformly rigid if and only if each hi is uniformly rigid.

In particular, for each P, HP is weakly mixing, minimal and uniformly rigid.

Proof The proofs of (1) and (2) are standard and can be found, for example, in [25, IV,Prop
1.5, p.275] and so we proceed to (3). Assume then that each hi is uniformly rigid. Using
standard arguments of metrics for inverse limits, one can find for each ε > 0 a corresponding
N and εN > 0 so that if the N -th coordinates of two points of X differ by no more than
εN in XN , then the two points differ by no more than ε in X . Let ε > 0 then be given.
As the homeomorphism hN is uniformly rigid, there exists an (arbitrarily large) k so that
hkN is within εN of idXN in the uniform metric. Hence, hk is within ε of idX . Thus, h is
uniformly rigid. It is clear that the uniform rigidity of h implies that of each hi . Since we
have established each of the three properties for the general Handel homeomorphism, the
result follows. ��

Thus, we now have a large family of minimal, uniformly rigid and weakly mixing home-
omorphisms found quite easily using inverse limit representations. It is natural to wonder
whether similar techniques could be applied to the more general examples we considered
earlier to establish these same properties. In [27] Fearnley proved that any two hereditarily
indecomposable circularly chainable continua are homeomorphic iff their one dimensional
Čech cohomology groups are isomorphic. Moreover, the family of circle-like hereditar-
ily indecomposable continua is characterized as the family of all pseudo-solenoids �P as
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described here, the psuedo-circle and the pseudo-arc (cf. results of Fearley [28] and Rogers,
Jr. [59]). The pseudo-circle is circle-like and hence the same is true of any inverse limit of
pseudo-circles. As any pseudo-suspension will have non-trivial cohomology, we know that
the only continua other than the pseudo-circle that we will obtain in an inverse limit of Han-
del homeomorphisms of pseudo-circles are precisely these pseudo-solenoids. In a similar
vein, while this inverse limit approach could be applied to finite sheeted covering spaces of
pseudo-solenoids, this would not result in any new examples as any finite-sheeted covering
space of �P is again homeomorphic to �P [9].

Theorem 9.2 For each P, the homeomorphism HP of the P-adic pseudo-solenoid �P is
uniformly rigid, minimal and weakly mixing. Moreover, there is a volume preserving diffeo-
morphism F of a 4-dimensional manifold which has an invariant set X that is homeomorphic
to �P and F |X is topologically conjugate to HP .

Proof In light of Proposition 9.1, we need only find the smooth example as stated. To construct
the diffeomorphism F as in the statement of the theorem, we apply a construction very
similar to that in Theorem 1.3, only instead of a hyperbolic map of a torus, we choose an
area preserving diffeomorphism of a disk with an invariant adding machine aP that can be
extended to S2, (e.g. see [22]). ��

The diffeomorphism of S2 in Theorem 9.2 can be constructed to be isotopic to the idS2 ,

and so the manifold can be chosen to be S2 × A. The fact that HP has zero entropy follows
directly from the fact that it is uniformly rigid, hence does not have asymptotic pairs (cf. [8]).

10 Nondegenerate rotations sets and infinite entropy—Proof of
Theorem 1.5

Let U = [U1, ...,U7] be a taut chain cover of a continuum X . Following [52] we say that
H : X → X stretches U if H(U3) ⊂ U1 and H(U5) ⊂ U7 (or H(U5) ⊂ U1 and H(U3) ⊂
U7). We say that H is a stretching map of X if there exists a taut chain cover U of X and
positive integer n such that Hn stretches U .

A function f : {1, . . . ,m} → {1, . . . , n} is called a pattern provided | f (i+1)− f (i)| ≤ 1
for i ∈ {1, . . . ,m − 1}. A pattern f : {1, . . . , 2k + 5} → {1, . . . , 7} is a k-fold provided that
k is odd and

f (i) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

i, i ≤ 5

3, i = 3 + 4m for some m ∈ N,

4, i = 4 + 2m for some m ∈ N,

5, i = 5 + 4m for some m ∈ N,

6, i = 2k + 4,

7, i = 2k + 5.

The following Theorem is a very useful tool, proved first by Oversteegen and Tymchatyn
in [55]:

Theorem 10.1 Let C be a hereditarily indecomposable continuum and let U = {U1, . . . ,Un}
be an open taut chain cover of C. Let f : {1, . . . ,m} → {1, . . . , n} be a pattern on U . Then
there exists an open taut chain cover V of C such that V follows the pattern f in U .
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The following fact is a simple extension of the result in [52] inspired by an earlier paper
by Kennedy and Yorke [44]. The idea of the proof is essentially the same.

Theorem 10.2 Let U = {U1, . . . ,U7} be a taut chain cover of the pseudo-arc C and assume
that f : C → C stretches U . Then, for every k ≥ 2 there exists an invariant set D ⊂ U4 such
that (D, f |D) is an extension of the full shift on k symbols (�+

k , σ ).

Proof Fix any odd integer k ≥ 2. Let V = {V1, . . . , V2k+5} be a k-fold refinement of U . For
every index i0 ∈ {1, . . . , k} there exists a continuum Yi0 ⊂ V2i0+2 such that Yi0 ∩V2i0+1 �= ∅
and Yi0 ∩ V2i0+3 �= ∅.

Since H(Yi0) is a continuum intersecting both V1 and V2k+5, for each index i0 ∈ {1, . . . , k}
there exists a continuumYi0,i1 ⊂ H(Yi0)∩V2i1+2 such thatYi1∩V2i1+1 �= ∅ andYi1∩V2i1+3 �=
∅.

Proceeding inductively, for every finite sequence of indexes i0, i1, . . . , in there exist con-
tinua Yi0 , . . . , Yi0,...,in such that Yi0,...,ik+1 ⊂ H(Yi0,...,ik )∩V2ik+1 for each k = 0, . . . , n− 1.
This implies that

n⋂

k=0

H−k(Yi0,...,ik ) �= ∅

and so there exists a point zi0,...,in such that we have Hk(zi0,...,in ) ∈ Yi0,...,ik for each k =
0, . . . , n. Using compactness, for every x ∈ �+

k we can find a point zx such that Hk(zx ) ∈
V2xk+2. For every x ∈ �+

k denote by Dx the set such that Hk(z) ∈ V2xk+2 for every z ∈ Dx

and every k ≥ 0. Clearly each Dx is closed and nonempty. Furthermore, directly from
definition we have that H(Dx ) ⊂ Dσ(x) and that the sets Dx are pairwise disjoint.

Denote D = ⋃
x∈�+

k
Dx . Note that for every k if lim j→∞ p j = q and each Hk(p j ) ∈

V2i+2 for some i then also Hk(q) ∈ V2i+2. This shows that if z ∈ D then there is always
x ∈ �+

k such that z ∈ Dx . Therefore D = D. Define π : D → �+
k by putting π(z) = x

whenever z ∈ Dx . By the previous observations we have that π is continuous, surjective, and
π ◦ H = σ ◦ π . The proof is completed by the fact that D ⊂ ⋃k

i=1 V2i+2 ⊂ U4. ��
Recall the universal covering of A = [0, 1]×R/Z is given by q : [0, 1]×R → A, where

q = id[0,1] × p and p is the quotient map R → R/Z. A continuum E ⊂ Int A is essential if
A \ E has two connected components U+, U−, each of which contains a different component
of the boundary of A.

Lemma 10.3 Let A ⊂ A be an essential annulus containing the pseudo-circle � and let
H : A → A be a homeomorphism such that H(A) ⊂ Int A. Assume that there are periodic
points p0, p1 ⊂ Awith different rotation numbers and two contractible continuaC0,C1 ⊂ A

such that:

(1) pi ∈ Ci and Hni (Ci ) ⊂ Ci where ni is the period of pi ,
(2) Ci is inessential and intersects both boundary components of A.

Then H has infinite entropy.

Proof Denote Ã = [0, 1] × R. Let g be an iterate of H such that p0, p1 are fixed points of
g and let G be the lift of g such that G(q0) = q0 − j and G(q1) = q1 + k where j, k are
positive integers and qi is a lift of pi .

There exists a continuum Di ⊂ Ci which intersects both boundary components of A (see
Theorem 14.3 in [54]). Note that G(C̃0) ⊂ C̃0 − j and G(C̃1) ⊂ C̃1 + k, here C̃i is a lift of
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Ci . Then, if we denote by D̃i a lift of Di then there exists m > 0 such that Gm(D̃0) is on the
left of D̃0, D̃1 and Gm(D̃1) are on the right of D̃0, D̃1. Let �̃ be a lift of � and denote by P
its two point compactification by points −∞,∞ which is homeomorphic to the pseudo-arc
(see [6,47]). Then G extends to P by putting G(−∞) = −∞ and G(∞) = ∞. Denote by
U4 the intersection of P with the open set contained between the continua D̃0, D̃1 in A and
denote by U3 and U5 the intersections of P with sufficiently small neighborhoods of D̃0, D̃1

respectively, such that there are neighborhood U1 of −∞ and U7 of ∞ satisfying Gm(U3) ⊂
U1 and Gm(U5) ⊂ U7 and U1 ∩U3 ∪U4 ∪U5 ∪U7 = ∅ and U7 ∩U1 ∪U3 ∪U4 ∪U5 = ∅.
Then there are open sets U2,U6 such that U1, . . . ,U7 is a taut chain cover of P . This shows
that G is a stretching map of P . By Theorem 10.2, for every l ≥ 2 we obtain a Gm-invariant
set Ql ⊂ P such that Gm on Ql is an extension of full shift on l symbols. Clearly we may
assume that Ql ⊂ �̃ for each l, since we can always remove the fixed points −∞,∞ from Ql

by removing at most two symbols from the alphabet of the corresponding shift �l . Since Ql

is bounded in �̃, the map π |Ql is finite-to-one and hence htop(H) ≥ htop(H |Ql ) = 1
m log(l),

which completes the proof. ��
The following fact is special case of Proposition 3.9 in [56].

Lemma 10.4 Let� ⊂ A be the pseudo-circle attracting all the points from Int A and assume
that H : A → A is a homeomorphism such that H |� has a nondegenerate rotation set. Then
there are periodic points p0, p1 ∈ � and inessential contractible continua C0,C1 such that
pi ∈ Ci , Hni (Ci ) ⊂ Ci where ni is the period of Ci , C0 ∩ C1 = ∅ and Ci ∩ U+ �= ∅,
Ci ∩ U− �= ∅ for i = 0, 1.

Proof of Theorem 1.5 Observe that statement of Lemma 10.4 complements the assumptions
of Lemma 10.3, therefore we have just completed the proof of Theorem 1.5. ��

11 Concluding Remarks

Our results here give us large new classes of examples satisfying these same three properties.
However, it is not yet entirely clear when our lifted homeomorphisms HC satisfy these
conditions. By consideration of the pseudo-solenoid, we see that the condition that h : C → C
be weakly mixing is not necessary for the weak mixing of the lifted homeomorphism to �C .

Similarly, since adding machines are very far from totally transitive, we see that the total
transitivity of h is not a necessary condition for the minimality of the lifted homeomorphism
to �C . This naturally leads to the following question.

QUESTION 11.1 Can one find necessary and sufficient conditions for h : C → C to guarantee
that the lift of a given HAK homeomorphism HC is minimal? What about weakly mixing if
the original HAK is weakly mixing?

In our proof of minimality for the lifted homeomorphism, we used HAK homeomorphisms
with rotation numbers that are very well approximated by rational numbers.

QUESTION 11.2 Are there weakly mixing minimal homeomorphisms h : C → C such that
HAKhomeomorphismswith certain rotation numbers do not lift tominimal homeomorphisms
HC?

Proof of Corollary 7.2 strongly relies on the possible values of rotations numbers in HAK
homeomorphism. From the construction it is not clear if all values are admissible. This leads
to the following question, closely related to the original question of Barge (see [50]).
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QUESTION 11.3 Is there a hereditarily indecomposable continuum X such that for every
t ≥ 0 there is a homomorphism Ft : X → X of entropy htop(Ft ) = t?

One way to address the above question in the affirmative would be to answer the following
one.

QUESTION 11.4 For every α ∈ R is there an indecomposable cofrontier Xα that admits a
homeomorphism Fα : Xα → Xα with a well defined rotation number α? Can Xα be realized
as the pseudo-circle?

It is also unknown wheather a minimal homeomorphism of an indecomposable cofrontier
must be weakly mixing.

QUESTION 11.5 (cf. [40]) Is there an indecomposable cofrontier that admits aminimal home-
omorphism semi-conjugate to an irrational circle rotation?

Note that in the proof of Theorem 1.5 we strongly rely on the fact that � is an attractor. It
is not clear whether this is a necessity or only a technical assumption needed in our argument.
This leads to the following natural question.

QUESTION 11.6 Suppose that H : � → � is a homeomorphism of the pseudo-circle embed-
ded in the plane with a nondegenerate rotation set. Is htop(H) = +∞?

The answer to the above question can be an important step towards the characterization
of values of entropy admissible for homeomorphism of pseudo-circle.

QUESTION 11.7 Does there exists a hereditarily indecomposable continuum supporting min-
imal homeomorphism with infinite entropy?

Finally, it would be of interest to know more about embedability of pseudo-suspensions.

QUESTION 11.8 Let h : C → C be a Cantor set homeomorphism. Suppose that the suspen-
sion of h embeds in a manifold M. Does every pseudosuspension of h embed in M?

Some additional recent results concerning related constructions of 1-dimensional minimal
spaces, by various modifications of the suspension method, or from hereditarily indecom-
posable continua, can be found in [12–14,23].
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14. Boroński, J. P., Kennedy, J., Liu, X-C., Oprocha, P.: Minimal non-invertible maps on the pseudo-circle

submitted, arXiv:1810.07688
15. Botelho, F.: Rotation sets of maps of the annulus. Pac. J. Math. 133, 251–266 (1988)
16. Bowen, R.: Entropy for group endomorphisms and homogeneous spaces. Trans. Am. Math. Soc. 153,

401–414 (1971)
17. Boyland, P., de Carvalho, A., Hall, T.: Inverse limits as attractors in parameterized families. Bull. Lond.

Math. Soc. 45, 1075–1085 (2013)
18. Boyland, P., de Carvalho, A., Hall, T.: New rotation sets in a family of torus homeomorphisms. Inv. Math.

204, 895–937 (2016)
19. Boyle, M., Schmieding, S.: Isolating zero dimensional dynamics on manifolds. Talk at the conference

“New developments around x2 x3 conjecture and other classical problems in Ergodic Theory”, Cieplice,
May (2016)

20. Bredon, G.E.: Topology and Geometry. GTM, vol. 139. Springer-Verlag, New York (1993)
21. Chéritat, M.: Relatively compact Siegel disks with non-locally connected boundaries. Math. Ann. 349,

529–542 (2011)
22. Clark, A., Hurder, S.: Embedding solenoids in foliations. Topol. Appl. 158, 1249–1270 (2011)
23. Downarowicz, T., Snoha, L., Tywoniuk, D.: Minimal spaces with cyclic group of homeomorphisms. J.

Dyn. Differ. Equ. 29(1), 243–257 (2017)
24. de Melo, W., van Strien, S.: One-Dimensional Dynamics. Ergebnisse der Mathematik und ihrer Grenzge-

biete (3) [Results in Mathematics and Related Areas (3)], vol. 25. Springer-Verlag, Berlin (1993)
25. de Vries, J.: Elements of Topological Dynamics. Mathematics and Its Applications, vol. 257. Kluwer

Academic Publishers Group, Dordrecht (1993)
26. Fathi, A., Herman, M.R.: Existence de difféomorphismes minimaux. Astérisque 49, 37–59 (1977)
27. Fearnley, L.: Classification of all hereditarily indecomposable circularly chainable continua. Trans. Am.

Math. Soc. 168, 387–401 (1972)
28. Fearnley, L.: Characterizations of the continuous images of the pseudo-arc. Trans. Am. Math. Soc. 111,

380–399 (1964)
29. Glasner, E.: Ergodic Theory Via Joinings. Mathematical Surveys and Monographs, vol. 101. American

Mathematical Society, Providence (2003)
30. Glasner, S., Maon, D.: Rigidity in topological dynamics. Ergod. Theory Dyn. Syst. 9, 309–320 (1989)
31. Glasner, S., Weiss, B.: On the construction of minimal skew products. Israel J. Math. 34, 321–336 (1980)
32. Grillenberger, C.: Constructions of strictly ergodic systems. II. K -Systems. Z. Wahrsch. und Verw. Gebiete

25, 335–342 (1972/73)
33. Gunesch, R., Katok, A.B.: Construction of weakly mixing diffeomorphisms preserving measurable Rie-

mannian metric and smooth measure. Discrete Contin. Dyn. Syst. 6, 61–88 (2000)

123

https://doi.org/10.1007/s10884-020-09845-4
https://doi.org/10.1007/s10884-020-09845-4
http://arxiv.org/abs/1810.07688


Journal of Dynamics and Differential Equations (2023) 35:1175–1201 1201

34. Handel, M.: A pathological area preserving C∞ diffeomorphism of the plane. Proc. Am. Math. Soc. 86,
163–168 (1982)

35. Heath, J.W.: Weakly confluent, 2 -to-1 maps on hereditarily indecomposable continua. Proc. Am. Math.
Soc. 117, 569–573 (1993)

36. Herman, M.: Construction of some curious diffeomorphisms of the Riemann sphere. J. Lond. Math. Soc.
34, 375–384 (1986)

37. Hoehn, L.C., Oversteegen, L.G.: A complete classification of homogeneous plane continua. Acta Math.
216(2), 177–216 (2016)

38. Husemöller, D.: Fibre Bundles. GTM, vol. 20, 3rd edn. Springer, Berlin (1994)
39. Ito, S.: An estimate from above for the entropy and the topological entropy of a C1-diffeomorphism.

Proc. Jpn. Acad. 46, 226–230 (1970)
40. Jäger, T., Koropecki, A.: Poincaré theory for decomposable cofrontiers, to appear in Annales Henri

Poincaré
41. Kennedy, J., Yorke, J.A.: Pseudocircles in dynamical systems. Trans. Am. Math. Soc. 343, 349–366

(1994)
42. Kennedy, J., Yorke, J.A.: Bizarre topology is natural in dynamical systems. Bull. Am. Math. Soc. 32,

309–316 (1995)
43. Kennedy, J., Yorke, J.A.: Pseudocircles, diffeomorphisms and perturbable dynamical systems. Ergod.

Theory Dyn. Syst. 16, 1031–1057 (1996)
44. Kennedy, J., Yorke, J.A.: Topological horseshoes. Trans. Am. Math. Soc. 353, 2513–2530 (2001)
45. Knaster, B.: Un continu dont tout sous-continu est indécomposable. Fund. Math. 3, 247–286 (1922)
46. Kocsard, A., Koropecki, A.: A mixing-like property and inexistence of invariant foliations for minimal

diffeomorphisms of the 2-torus. Proc. Am. Math. Soc. 137, 3379–3386 (2009)
47. Kuperberg, K., Gammon, K.: A short proof of nonhomogeneity of the pseudo-circle. Proc. Am. Math.

Soc. 137, 1149–1152 (2009)
48. Kurka, P.: Topological and Symbolic Dynamics. Cours Spécialisés [Specialized Courses], vol. 11. Société

Mathématique de France, Paris (2003)
49. Lehrer, E.: Topological mixing and uniquely ergodic systems. Israel J. Math. 57(2), 239–255 (1987)
50. Lewis, W.: Continuum Theory and Dynamics Problems. Continuum Theory and Dynamical Systems

(Arcata, CA, 1989). Contemporary Mathematics, vol. 117, pp. 99–101. American Mathematical Society,
Providence, RI (1991)

51. Mouron, C.: A chainable continuum that admits a homeomorphism with entropy of arbitrary value. Houst.
J. Math. 35, 1079–1090 (2009)

52. Mouron, C.: Entropy of shift maps of the pseudo-arc. Topol. Appl. 159, 34–39 (2012)
53. Nadler, S.: Continuum Theory: An Introduction. Monographs and Textbooks in Pure and Applied Math-

ematics, vol. 158. Marcel Dekker, New York (1992)
54. Newman, M.: Elements of the Topology of Plane Sets of Points. Dover Publications Inc, New York (1992).

(Reprint of the second edition)
55. Oversteegen, L., Tymchatyn, E.: On hereditarily indecomposable compacta. In: Geometric and Algebraic

Topology, vol. 18, pp. 407–417. Banach Center Publications, PWN, Warsaw (1986)
56. Passeggi, A., Potrie, R., Sambarino, M.: Rotation intervals and entropy on attracting annular continua.

Geom. Topol. 22, 2145–2186 (2018)
57. Rempe, L.:Arc-like continua, Julia sets of entire functions, and Eremenko’s Conjecture. Preprint available

at http://pcwww.liv.ac.uk/~lrempe/Papers/arclike_9.pdf
58. Rogers, J.T., Jr.: Aposyndetic continua as bundle spaces. Trans. Am. Math. Soc. 283, 49–55 (1984)
59. Rogers, J.T., Jr.: Pseudo-circles and universal circularly chainable continua. Ill. J. Math. 14, 222–237

(1970)
60. Rottenfußer, G., Rückert, J., Rempe, L., Schleicher, D.: Dynamic rays of bounded-type entire functions.

Ann. Math. 173, 77–125 (2011)
61. Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys. 20, 167–192 (1971)
62. Spanier, E.H.: Algebraic Topology. McGraw-Hill, New York (1966)
63. Stone, A.H.: Incidence relations in unicoherent spaces. Trans. Am. Math. Soc. 65, 427–447 (1949)
64. Williams, R.F.: One-dimensional non-wandering sets. Topology 6, 473–487 (1967)
65. Walters, P.: An Introduction to Ergodic Theory. GTM, vol. 79. Springer, Berlin (1982)
66. Yancey, K.B.: Topologically weakly mixing homeomorphisms of the Klein bottle that are uniformly rigid.

Topol. Appl. 160, 1853–1861 (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://pcwww.liv.ac.uk/~lrempe/Papers/arclike_9.pdf

	New Exotic Minimal Sets from Pseudo-Suspensions of Cantor Systems
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Handel–Anosov–Katok homeomorphisms
	2.1.1 Notation for the Annulus

	2.2 Uniform Rigidity and Rotation

	3 Pseudo-suspensions
	3.1 Basic Construction
	3.2 Lifting Homeomorphisms
	3.3 The Topology of the pseudo-suspension 

	4 Minimality
	5 Weak mixing
	6 Computation of entropy
	7 Admissible values of entropy
	8 Smooth extensions
	9 Pseudo-solenoids
	10 Nondegenerate rotations sets and infinite entropy—Proof of Theorem 1.5
	11 Concluding Remarks
	Acknowledgements
	References




