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Abstract
We introduce a dynamical system to the problem of finding zeros of the sumof twomaximally
monotone operators. We investigate the existence, uniqueness and extendability of solutions
to this dynamical system in a Hilbert space. We prove that the trajectories of the proposed
dynamical system converge strongly to a primal–dual solution of the considered problem.
Under explicit time discretization of the dynamical system we obtain the best approximation
algorithm for solving coupled monotone inclusion problem.
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Existence and uniqueness of solutions · Extendability of solutions · Projected dynamical
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1 Introduction

Let H, G be Hilbert spaces. We consider the problem of finding p ∈ H such that

0 ∈ Ap + L∗BLp, (P)

where A : H → H, B : G → G are maximally monotone operators, L : H → G is a
bounded, linear operator. Togetherwith problem (P)we consider the dual problem formulated
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as finding v∗ ∈ G such that

0 ∈ −L A−1(−L∗v∗)+ B−1v∗. (D)

To problems (P) and (D) we associate Kuhn-Tucker set defined as

Z :={(p, v∗) ∈ H× G | −L∗v∗ ∈ Ap and Lp ∈ B−1v∗}. (Z)

The set Z is nonempty if and only if there exists a solution of the primal problem (P) and
to the dual problem (D) (see [26, Corollary 2.12]).

Our aim in this paper is to investigate, for a given x0, w̄ ∈ H×G, the following dynamical
system, solution of which asymptotically approaches solution of (P)-(D),

ẋ(t) = Q(w̄, x(t), Tx(t))− x(t), t ≥ 0, (S)

x(0) = x0,

where T : H × G → H × G, fixed point set of the operator T is Z (FixT = Z ), with Z
defined by (Z) andQ : (H× G)3 → H× G,

Q(w̄, b, c):=PH(w̄,b)∩H(b,c)(w̄), (1)

is the projection P of the element w̄ onto the set H(w̄, b)∩ H(b, c) which is the intersection
of two hyperplanes of the form

H(z1, z2):={h ∈ H× G | 〈h − z2|z1 − z2〉 ≤ 0}, z1, z2 ∈ H× G. (2)

In particular, H(w̄, b) = {h ∈ H× G | 〈h − b|w̄ − b〉 ≤ 0}.
Under explicit discretization with step size equal to one the system (S) becomes the best

approximation algorithm for finding fixed point of T introduced in [2, Proposition 2.1] (see
also [6, Theorem 30.8]),

xn+1 = Q(w̄, xn, xn+1/2), n ∈ N (3)

with the choice of xn+1/2:=T(xn) and the starting point x0. The characteristic feature of this
algorithm is the strong convergence of the sequence xn to a fixed point of T (see also [5]). In
contrast to this, a dynamical system investigated, e.g. in [11], is related to other primal–dual
method which exhibits weak convergence.

In case when A = ∂ f , B = ∂g, f : H → R ∪ {+∞}, g : H → R ∪ {+∞} are
proper convex, lower semicontinuous (l.s.c.) functions, the problem (P) (if solvable) reduces
to finding a point p ∈ H solving the following minimization problem (see [27])

minimizep∈H f (p)+ g(Lp) (4)

and (D) reduces to finding a point v∗ ∈ G solving the following maximization problem

maximizev∗∈G − f ∗(−L∗v∗)− g∗(v∗). (5)

First order dynamical systems related to optimization problems have been discussed by
many authors (see, e.g., [1,4,9,10,12]). In those papers, a natural assumption is that the vector
field F is globally Lipschitz and consequently, the existence and uniqueness of solutions to
the dynamical system is guaranteed by classical results (see e.g. [13, Theorem 7.3]). For
instance, Abbas, Attouch and Svaiter considered the following system in [1]

ẋ(t)+ x(t) = proxμΦ(x(t)− μB(x(t))),

x(0) = x0,
(6)
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where Φ : H → R∪ {+∞} is a proper, convex and l.s.c. function defined on a Hilbert space
H, B : H → H is β-cocoercive operator and proxμΦ : H → H is a proximal operator
defined as

proxμΦ(x) = arg min
y∈H{Φ(y)+ 1

2μ
‖x − y‖2}.

Furthermore, Boţ and Csetnek, in [9], studied the dynamical system

ẋ(t) = λ(t)(T (x(t))− x(t)), t ≥ 0

x(0) = x0,
(7)

where T : H → H is a nonexpansive operator, λ : [0,∞) → [0, 1] is a Lebesguemeasurable
function. By applying in (7) operator T defined as T = Jγ A(I d − γ B), where A : H → H
is a maximally monotone operator, the system (7), under special discretization (see e.g. [9,
Remark 8]), leads to the forward-backward algorithm for solving operator inclusion problems
in the form

find x ∈ H s.t . 0 ∈ A(x)+ B(x).

For other discretizations see e.g., [28, Section 2.3].
The most essential difference between (S) and the systems (6), (7) is that, in general, one

cannot expect the vector field Q given in (S) is globally Lipschitz with respect to variable x
as it is the case of dynamical systems (6) and (7).

The contribution of the present investigation is as follows. We formulate the problem and
provide preliminary facts in Sects. 2 and 3, respectively. In Sect. 4 we prove the existence and
uniqueness of solutions to dynamical system (S) by studying a more general problem (DS-0).
Extendability of solutions to dynamical system (DS-0) is studied in Sect. 5. The behaviour
at +∞ of solutions to (DS-0) is investigated in Sect. 6. In Sect. 7 we present applications of
the results obtained for (DS-0) to projected dynamical systems (PDS).

2 Formulation of the Problem

Suppose that the set Z given by (Z) is nonempty. Then for all x ∈ H × G, Z ⊂ H(x, Tx).
Let w̄ ∈ H× G and z̄ = PZ (w̄). Let us define an open ball in Hilbert spaceH× G centered
at a ∈ H× G with some radius R > 0 as follows:

B(a, R):={x ∈ H× G | ‖a − x‖ < R}
and its closure by

B̄(a, R):={x ∈ H× G | ‖a − x‖ ≤ R}.
We limit ourselves to a closed subset D ⊂ H × G such that for all x ∈ D we have

z̄ ∈ H(w̄, x). This latter conditions ensures that z̄ is an equilibrium point of

Q(w̄, ·, T(·)) : D → D.

The fact that

x ∈ B̄

(
w̄ + z̄

2
,
‖w̄ − z̄‖

2

)
if and only if 〈z̄ − x |w̄ − x〉 ≤ 0, (8)
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implies the following

Z ⊂ H(w̄, x) �⇒ z̄ ∈ H(w̄, x) ⇐⇒ x ∈ B̄

(
w̄ + z̄

2
,
‖w̄ − z̄‖

2

)
.

Therefore, we will limit our attention to Q(w̄, ·, T(·)) given by (1) to be defined on D ⊂
B̄

(
w̄+z̄
2 ,

‖w̄−z̄‖
2

)
.

Let us note that for x = w̄ we have H(w̄, x) = H × G. This motivates us to restrict our
investigations to set D̂:=D \ B(w̄, r) for some r > 0 such that D̂ is nonempty.

System (S) is an autonomous dynamical system of the form

ẋ(t) = F(x(t)), t ≥ 0, (DS)

x(0) = x0 ∈ D̂ \ {z̄},
where F : D̂ → X , X - Hilbert space, is a continuous function, locally Lipschitz on
D̂ except a single point z̄ ∈ D̂, and D̂ is a closed and bounded set in X . Indeed, when
F(x):=Q(w̄, x, Tx) − x , where T : H × G → H × G is defined as in (30) and Q :
(H× G)3 → H× G is defined in (2), the system (DS) reduces to (S). For other applications
we refer the reader to Sect. 7.

A survey of existing results on solvability and uniqueness of solutions going beyond the
classical Cauchy–Picard theorem from finite to infinite settings journey can be found in [20].

Main difficulties in investigating the existence to autonomousODE in infinite-dimensional
settings are due to the lack of compactness, see [22,Remark5.1.1]. For instance, the continuity
of the right-hand side vector field F is not enough to obtain the counterpart of Peano’s theorem
in infinite-dimensional spaces [17], even in Hilbert spaces [34].

In [18] Godunov proved that in every infinite-dimensional Banach space there exists a
continuous vector field F such that there is no solution to the related (DS) whereas the global
Lipschitz condition, due to Cauchy-Lipschitz-Picard-Lindeloff, of the right-hand side field
ensures the uniqueness and/or extendability of the solution, see [13, Theorem 7.3]. Some
attempts to weaken the global Lipschitz condition of the right-hand side vector field have
been done in the context of the existence of solutions, see, e.g., [22, Theorem 5.1.1] and
[19,23,30,31] and the references therein. It is observed that the local Lipschitzness of the
vector filed allows to prove the local existence and uniqueness for the related problems. For
instance, one can adapt [22, Theorem 5.1.1] to the case of autonomous differential system in
the following way

Corollary 1 Define the rectangle R0 = {x ∈ X |‖x − x0‖ ≤ β} for some β > 0. Let
f : R0 → X . Assume that ‖ f (x)‖ ≤ M̃ for x ∈ R0 and ‖ f (x1)− f (x2)‖ ≤ K‖x1− x2‖ for
x1, x2 ∈ R0, where K and M̃ are nonnegative constants. Let α > 0 such that α ≤ β

M̃
. Then

there exists one and only one (strongly) continuously differentiable function x(t) satisfying

ẋ(t) = f (x(t)), |t − t0| ≤ α; x(t0) = x0.

Let us note that Corollary 1 is non-applicable to system (DS) in case when x0 /∈ intD̂
(see also Remark 4 below). Moreover, it was shown that local Lipschitzness condition is
not enough to guarantee existence of trajectories on [t0,+∞) (see e.g., [21] and references
therein). Instead of this, in Sects. 4 and 5 we will be using modified standard techniques to
show the existence and uniqueness of solutions to (DS).

In [14] a smooth vector field is constructed such that the respective autonomous dynamical
system has a bounded maximal solution which is not globally defined.
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In finite-dimensional settings, under the assumption of local Lipschitzness and some
boundedness of the vector field, the existence and uniqueness of the trajectory on [t0,+∞)

are shown in [32] by Xia and Wang. The authors applied their results to investigations of
projected dynamical systems.

3 Preliminaries

In this section we formulate the system (S) (and (DS)) in the general form.
Let w̄, z̄ ∈ X and the associated norm in Hilbert space X be defined as ‖ · ‖ = √〈·|·〉. Let

D ⊂ X be a closed convex subset of X such that w̄, z̄ ∈ D and

〈z̄ − x | w̄ − x〉 ≤ 0 for all x ∈ D. (9)

Note that the condition (9) immediately implies that w̄ and z̄ are boundary points of the set
D.

Let r be such that ‖w̄ − z̄‖2 > r > 0. Throughout this paper, we consider set D̂ related
to D (see Fig. 1):

D̂ = {x ∈ D | ‖x − w̄‖2 ≥ r}. (10)

We consider the following Cauchy problem

ẋ(t) = F(x(t)), t ≥ t0 ≥ 0, (DS-0)

x(t0) = x00 ∈ D̂ \ {z̄},
where F : D̂ → X is a continuous function on D̂ and locally Lipschitz on D̂ \ {z̄} and
bounded on D̂ (‖F(x)‖ ≤ M , M > 0, x ∈ D̂).

Moreover, we assume:

(A) z̄ is the only zero point of F in D̂, i.e. F(x) = 0 iff x = z̄.
(B) for all x ∈ D̂, for all h ∈ [0, 1] we have x + hF(x) ∈ D̂.

Together with assumptions (A), (B) we also consider the following assumption related to the
behaviour of projection1:

(C) 〈F(x)|w̄ − x〉 ≤ 0 for all x ∈ D̂.

Remark 1 The motivation for considering a nonconvex set D̂ comes from the following
observation. Consider F : D → X defined as

F(x) = PC(x)(w̄), (11)

where PC(x)(w̄) is the projection of w̄ onto C(x), C : D ⇒ X is a multifunction given
by C(x) = H(w̄, x) ∩ H(x, g(x)) (see formula (2) for H(·, ·)) and g : X → X satisfies
z̄ ∈ H(x, g(x)) for all x ∈ X . Under a suitable assumption on g, the function F given by
(11) is locally Lipschitz on D \ {w̄, z̄} (see e.g. [7]), continuous on D \ {w̄} and bounded on
D.

Throughout the paper we use the following concept of solutions for dynamical systems
(DS-0) and (DS) and its extendibility.

1 Here, for f (x):=F(x)+ x (so that F(x) = f (x)− x) we have that z̄ ∈ H(w̄, f (x)).
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Fig. 1 Illustration of the considered sets

Definition 1 Let

T = [t0, T ), t0 < T ≤ +∞ or T = [t0, T ], t0 < T < +∞.

Solution of

ẋ(t) = F(x(t)), t ≥ t0 ≥ 0, (DS-A)

x(t0) = x00 ∈ A \ {z̄},
where F : A → X , A ⊆ X , on interval T is any function

x(·) ∈ C1(T , A)

satisfying

1. initial condition x(t0) = x0;
2. equation ẋ(t) = F(x(t)) for all t ∈ T , where the differentiation is understood in the

sense of strong derivative on space X , where at the boundary point of the interval T , in
the case when it belongs to T , the differentiation is understood in the one-sided way.

Definition 2 A solution x(t) to problem (DS). on interval T1 = [0, T ] (or T1 = [0, T )) is
called non-extendable if there is no solution x2(·) ∈ C1(T2, D̂) on any interval T2 of this
problem satisfying conditions:

1. T2 � T1;
2. ∀t ∈ T1, x2(t) = x(t).

Remark 2 If x(t) is a solution of Cauchy problem (DS-0) on interval T = [0, T ] (or T =
[0, T )), then restriction of x(t) on any interval T1 = [t0, t1] ⊂ T (or T1 = [t0, t1) ⊂ T ) is a
solution of Cauchy problem (DS-0) on T1 with initial condition x0 = x(t0).

The main results on the existence, uniqueness and extendibility of solutions to (DS) read as
follows.

Theorem 1 (Existence and uniqueness) Suppose that assumptions (A), (B) and (C) hold.
There exists a unique solution of (DS-0) on [t0,+∞).

Theorem 2 (Behavior at +∞) Let x(t) be a solution of (DS-0) on [t0,+∞). Assume that
for every increasing sequence {tn}n∈N, tn →+∞

x(tn)⇀x̃ �⇒ x̃ = z̄, (12)
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where x(t) is a unique solution of (DS-0).
Then the trajectory x(t) satisfies the condition limt→+∞ x(t) = z̄, where convergence is

understood in the sense of the norm of X .

Remark 3 Condition (12) can be seen as a continuous analogue of condition (iv) of Proposi-
tion 2.1 of [2]. Namely, to obtain the strong convergence of the sequence generated by (3) it
is assumed in Proposition 2.1 of [2] that for any strictly increasing sequence {kn} ⊂ N the
following implication holds:

xkn⇀x̃ �⇒ x̃ = z̄.

4 Solutions to (DS-0) on Closed Intervals

In this section we consider the existence and uniqueness of solutions to (DS-0) defined on
closed intervals, namely, [t0, T ], where T > t0 is finite. In deriving existence and uniqueness
results, we modify two standard approaches (with the help of assumptions (A)–(C)): Euler
method (Sect. 4.1) and contraction mapping principle (Sect. 4.2). To this aim we will use the
following proposition.

Proposition 1 Assume that (C) holds. Then any solution x(t) of (DS-0) satisfies the condition

‖x(t)− w̄‖ is nondecreasing with respect to t ≥ t0.

Proof Let us note that x(t) is continuously differentiable on [t0,+∞), therefore by (C) we
have

1

2

d

dt
‖x(t)− w̄‖2 = 〈ẋ(t) | x(t)− w̄〉

= 〈F(x(t)) | x(t)− w̄〉 ≥ 0.

��

Now we show the uniqueness of trajectories.

Proposition 2 Let t0 ≥ 0 and let x0 ∈ D̂ \ {z̄}. Assume that assumptions (A) and (C) holds.
If (DS-0) is solvable in a given interval [t0, T ], then the solution is unique on this interval.

Proof Nowwe show the uniqueness of solutions of (DS-0) on [t0, T ]. Suppose that x1(·) and
x2(·) solve (DS-0) on interval [t0, T ]. Let t̄ ∈ [t0, T ] be such that

t̄ := sup{t ∈ [t0, T ] | ‖x1(t)− x2(t)‖ = 0}. (13)

Let us note that x1(t0) = x00 = x2(t0). Consider two cases:

Case 1 : x1(t̄) = x2(t̄) = z̄. Then, by Proposition 1, ‖x1(t) − w̄‖ ≥ ‖z̄ − w̄‖ and
‖x2(t) − w̄‖ ≥ ‖z̄ − w̄‖ for t ≥ t̄ . However, since z̄ ∈ D̂ and, by (8),
D̂ ⊂ D ⊂ B̄( w̄+z̄

2 ,
‖w̄−z̄‖

2 ),

{x ∈ X | ‖x − w̄‖ ≥ ‖w̄ − z̄‖} ∩ D̂ = {z̄}.
Therefore, by assumption (A), x1(t) = x2(t) = z̄ for all t ∈ [t̄, T ].
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Case 2 : x1(t̄) = x2(t̄) �= z̄ and t̄ < T . Then, by the local Lipschitzness of F(·) on
D̂ \{z̄} there exists a neighbourhood of x1(t̄), namelyU (x1(t̄)) such that F is locally
Lipschitz in U (x1(t̄)) with some constant Lx1(t̄), i.e.,

∀x1, x2 ∈ U (x1(t̄)) ‖F(x1)− F(x2)‖ ≤ Lx1(t̄)‖x1 − x2‖.
Since x1 and x2 are Lipschitz functionswith constantM there exists a neighbourhood
V (t̄) ∩ [t0, T ] such that

∀t ∈ V (t̄) ∩ [t0, T ] x1(t) ∈ U (x1(t̄)) ∧ x2(t) ∈ U (x1(t̄)).

Then for t ∈ V (t̄) ∩ [t0, T ]
d

dt

(
1

2
‖x1(t)− x2(t)‖2

)
= 〈ẋ1(t)− ẋ2(t)|x1(t)− x2(t)〉

= 〈F(x1(t))− F(x2(t))|x1(t)− x2(t)〉 ≤ Lx1(t̄)‖x1(t)− x2(t)‖2.
By using Gronwall’s inequality for the function t → ‖x1(t)− x2(t)‖2 we obtain that
‖x1(t)− x2(t)‖2 ≤ 0, i.e., x1(t) = x2(t) for t ∈ V (t̄) ∩ [t0, T ]. This contradicts 13
with t̄ �= T .

��
Proposition 3 x(t) is a solution of (DS-A) on I = [t0, T ] (T > t0 is arbitrary) if and only if
it satisfies the condition

x(t) = x0 +
∫ t

t0
F(x(s)) ds, ∀t ∈ I, (14)

where the integral is understood in the sense of Riemann and x(t) ∈ D̂, t ∈ I.

Let us define

Bt0,T :=C([t0, t0 + T ]; D̂)

and

B
R
t0,x0,T :={x ∈ Bt0,T | sup

t∈[t0,t0+T ]
‖x(t)− x0‖ ≤ R}.

Let us note that Bt0,T is a complete metric space due to the fact that D̂ is a closed subset
of a Hilbert space X . Moreover, in the sequel we consider on D̂ the topology induced by the
topology of the space.

4.1 Euler Method

We start with the following construction of Euler trajectories.
For any λ ∈ (0, 1] define cλ

n , n = 0, 1, . . . as follows

cλ
0 :=x0, cλ

n+1:=cλ
n + λF(cλ

n ), n = 0, 1, . . . . (15)

Then, for any λ ∈ (0, 1] define a continuous trajectory on [t0, T ] as follows
cλ(t) = cλ

n + (t − t0 − nλ)F(cλ
n ), t ∈ [t0 + nλ, t0 + (n + 1)λ],

n = 0, 1, . . . .
(16)
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Proposition 4 Let t0 > 0 and let x0 ∈ D̂ \ {z̄}. Assume that (B) hold.
1. If X is finite-dimensional, then for all T > t0 there exists a solution of x(t) of (DS-0) on

[t0, T ] in the class Bt0,T ,
2. If X is infinite-dimensional, then there exists R > 0 and T > t0 such that there exists a

solution of x(t) of (DS-0) on [t0, T ] in the class B
R
t0,x0,T

,

Proof Let us start with the initial settings.

1. In caseX is finite-dimensional we take any T > t0. Let us note that in this case D̂ is closed
and bounded, hence compact. Since F is continuous on D̂, F is uniformly continuous,
i.e.

∀ε > 0 ∃δ > 0 ∀x1, x2 ∈ D̂ ‖x1 − x2‖ < δ �⇒ ‖F(x1)− F(x2)‖ < ε.

2. In case X is infinite-dimensional let T = R
M + t0, where R is such that F(·) is Lipschitz

on B(x0, R). Let mλ:=�(T − t0)λ−1�. Let us note that, by the fact that x0 ∈ D̂ \ {z̄} and,
by assumption (B), for any λ ∈ (0, 1] and all t ∈ [t0, T ], cλ(t) ∈ D̂. For any λ ∈ (0, 1]
function cλ(·) given by (16) is differentiable on [t0, T ] \ {t0, t0 + λ, . . . , t0 +mλλ} as a
piecewise affine function.
For all λ ∈ (0, 1] and any t ∈ [t0, T ] (t = t0 + aλ+ t̃ , a ∈ N, 0 ≤ t̃ < λ) we have

‖cλ(t)− x0‖ = ‖x0 + λ

a−1∑
n=0

F(cλ(t0 + nλ))+ t̃ F(cλ(t0 + aλ))− x0‖

≤ λ

a−1∑
i=0

M + t̃ M = M(aλ+ t̃) ≤ M(T − t0) = R

M
M = R.

Let us note that in this case F is uniformly continuous on B(x0, R) ∩ D̂, i.e.

∀ε > 0 ∃δ > 0 ∀x1, x2 ∈ B(x0, R) ∩ D̂ ‖x1 − x2‖ < δ �⇒ ‖F(x1)− F(x2)‖ < ε.

Now let us continue the proof in both cases 1. and 2. together. For any λ ∈ (0, 1] define

Δλ(t):=
⎧⎨
⎩
ċλ(t)− F(cλ(t)), t0 + nλ < t < min{t0 + (n + 1)λ, T },

n = 0, 1 . . . ,mλ,

0 t = t0, t0 + λ, . . . , t0 + mλλ.

(17)

Note that for all t ∈ [t0, T ],

cλ(t) = x0 +
∫ t

t0
ċλ(s) ds = x0 +

∫ t

t0
F(cλ(s))+Δλ(s) ds.

We have

‖Δλ(t)‖ = ‖F(cλ
n )− F(cλ(t))‖, t ∈ [t0 + nλ,min{t0 + (n + 1)λ, T }],

n = 0, 1, . . . ,mλ.

Let us note that cλ(·) is Lipschitz continuous on [t0, T ] because it is differentiable almost
everywhere and the norm of its derivative is bounded by M . Therefore

∀n = 0, 1 . . . ,mλ

sup
t∈[t0+nλ,min{t0+(n+1)λ,T }]

‖cλ(t0 + nλ)− ck(t)‖ ≤ M |nλ− t | ≤ Mλ
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Fix any ε > 0 and take λ ∈ (0, 1] such that Mλ < δ. Then for all n = 0, . . . ,mλ we have

sup
t∈[t0+nλ,min{t0+(n+1)λ,T }]

‖cλ(t0 + nλ)− cλ(t)‖

= sup
t∈[t0+nλ,min{t0+(n+1)λ,T }]

‖(t − (t0 + nλ))F(cλ
n )‖ ≤ Mλ < δ,

and consequently

∀n = 0, . . . ,mλ

sup
t∈[t0+nλ,min{t0+(n+1)λ,T }]

‖F(cλ
n )− F(cλ(t)‖ < ε.

Hence, for all λ < δ
M , we have

∀n = 0, . . . ,mλ∀t ∈ [t0 + nλ,min{t0 + (n + 1)λ, T }] ‖Δλ(t)‖ < ε.

Thus,

‖Δλ(·)‖+∞ → 0 as λ → 0 on [t0, T ].
Let {λk}k∈N be a sequence in (0, 1] such that λk → 0 as k → 0. By the Ascoli-Arzela The-

orem, there exists a uniformly convergent subsequence of {cλk (t)}k∈N, namely {cλki
(t)}i∈N,

which converges to x(t) = limi→+∞ cλki
(t) for t ∈ [t0, T ], i.e.

∃{λki }i∈N ∀ε > 0 ∃ i0 ∈ N ∀i ≥ i0 ∀t ∈ [t0, T ]
‖x(t)− cλki

(t)‖ < ε.
(18)

Therefore, for all t ∈ [t0, T ],

cλki
(t) = x0 +

∫ t

t0
F(cλki

(s))+Δλki
(s)ds, x(t) = x0 +

∫ t

t0
F(x(s))ds.

By Proposition 3, x(t) is a solution of (DS-0) on [t0, T ]. Since cλki
(t) ∈ D̂, i ∈ N,

t ∈ [t0, T ], by the closedness of D̂, we obtain that x(t) ∈ D̂, [t0, T ]. ��
Corollary 2 Let t0 ≥ 0, x0 ∈ D̂ \ {z̄} be arbitrary fixed. Assume that assumptions (A), (B),
(C) are satisfied. Then there exist R > 0, T ′ > 0 such that for all T ∈ [t0, T ′) there exists
solution to (DS-0) on [t0, t0 + T ] and it is unique in the class B

R
t0,x0,T

.

Proof The proof follows from Propositions 2 and 4. ��

4.2 ContractionMapping Principle for an ExtendedVector Field F

We consider the following Cauchy problem

ẋ(t) = F̃(x(t)), t ≥ 0, (DS-1)

x(0) = x00 ∈ D̂ \ {z̄},
where F̃ : X → X is such that F̃(x) = F(x) for all x ∈ D̂ and F̃ is continuous on X .

Lemma 1 ([16, Lemma 1.2]) Let X , Y be Banach spaces, � ⊂ X closed and f : � → Y
continuous. Then there is a continuous extension f̃ : X → Y of f such that f̃ (X) ⊂
conv f (�) (:=convex hull of f (�)).
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Proposition 5 Let t0 ≥ 0, x0 ∈ D̂ \ {z̄}. Then there exists T > 0 such that there exists a
solution of (DS-1) on interval [t0, t0 + T ].
Proof For a given x ∈ C([t0, t0+T ];X ), define S[x] to be the function on [t0, t0+T ], given
by

S[x](t):=x0 +
∫ t

t0
F̃(x(τ )) dτ, t ∈ [t0, t0 + T ], (19)

where F̃ is an extension of F given by Lemma 1. In the following, the boundedness of F or
F̃ will be used as per their restrictive sense.

Step 1. If x ∈ C([t0, t0 + T ]; D̂), then S(x) makes sense, since the right hand side is well
defined.

Step 2. Let us prove that S[x](·) ∈ C([t0, t0+T ];X ) for any T > 0 and for x ∈ C([t0, t0+
T ];X ). Assume t1, t2 ∈ [t0, t0 + T ] with t1 < t2. It is evident that

S[x](t2) = S[x](t1)+
∫ t2

t1
F̃(x(τ )) dτ. (20)

Then the continuity of S[x] gives us as t2 → t1,

‖S[x](t2)− S[x](t1)‖X =
∥∥∥∥
∫ t2

t1
F̃(x(τ )) dτ

∥∥∥∥
X
≤ max

τ∈[t0,t0+T ]
‖F̃(x(τ ))‖X · |t2 − t1|.

Thus S : C([t0, t0 + T ];X ) −→ C([t0, t0 + T ];X ).
Step 3. Denote C0:=C([t0, t0+T ];X ). Consider the following form of a ball in C0, where

we intend to look for a fixed point.

C0D :=
{
x(t) ∈ C0 | |x − x0|C0 ≡ max

t∈[t0,t0+T ] ‖x(t)− x0‖X ≤ 1/2, x0 ∈ D̂
}

.

Clearly,C0D(⊆ C0) is a complete metric space with the metric induced by the norm
of C0. Let us show that for choosing T small enough the operator S maps C0D into
itself and has a fixed point.We have, by Step 2, S[x](·) ∈ C0, whenever x(·) ∈ C0D .
We now show that S[x](·) ∈ C0D . It follows from (20) that

|S[x] − x0|C0 = max
t∈[t0,t0+T ] ‖S[x](t)− x0‖X = max

t∈[t0,t0+T ]

∥∥∥∥
∫ t

0

(
F̃(x(τ ))

)
dτ

∥∥∥∥X
≤ max

τ∈[t0,t0+T ] ‖F̃(x(τ ))‖X T=:cT .

Therefore, for a choice of T ≤ 1/2c,

|S[x] − x0|C0 ≤ 1/2.

Hence, S[x](·) ∈ C0D implies S : C0D → C0D for every T ≤ 1/2c.
Step 4 We shall show now that a sequence {xn(·)}n≥1 ⊆ C0D is a Cauchy sequence.

Lets start with the initial point {x0} ∈ D̂ be given and define x0(·):=x0. Denote
x1(·):=S[x0](·), and that xn+1(·):=S[xn](·), n = 1, 2, . . . . Moreover, the follow-
ings hold successively.

|xn+1 − xn |C0 = |S[xn] − S[xn−1]|C0 ≤ cT |xn − xn−1|C0

≤ · · · ≤ (cT )n |x1 − x0|C0 = (cT )n max
t∈[0,T ] ‖x1(t)− x0‖X ≤ cnT n+1‖F(x0)‖X .
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Let m, n ∈ N such that m > n and cT = δ ∈ [0, 1] then
|xm − xn |C0 ≤ |xm − xm−1|C0 + |xm−1 − xm−2|C0 + · · · + |xn+1 − xn |C0

≤ (δm + δm−1 + · · · + δn+1)‖F(x0)‖X
c

= δn+1 ‖F(x0)‖X
c

m−n∑
k=0

δk

≤ δn+1 ‖F(x0)‖X
c

∞∑
k=0

δk
δ<1= δn+1‖F(x0)‖X

c(1− δ)
.

Let ε > 0. Moreover, since δ ∈ [0, 1), we can find a large number N ∈ N so that

δN+1 < εc(1− δ)/‖F(x0)‖X .

Therefore, for m, n > N ∈ N,

|xm − xn |C0 ≤ ε.

Hence, we have that the sequence {xn(·)}n≥1 ⊆ C0D is Cauchy. Therefore,
{xn(·)}n≥1 converges to some x̄(·) ⊆ C0D , where x̄(·) satisfies

x̄(t) = x0 +
∫ t

0
F̃(x̄(τ )) dτ, ∀t ∈ [t0, t0 + T ]. (21)

By Proposition 3, x̄(·) is a solution of (DS-1) for t ∈ [t0, t0 + T ].
��

Remark 4 The proof of the above proposition will not work in the formulation of F̃ defined
only on set D̂. This comes from the fact that the operator

S[x](·) : D̂ → C([t0, t0 + T ];X )

maymap a function x(·) outside of D̂ forwhichwe cannot apply Step 4. in the proof.However,
in the case when x0 ∈ int D̂, the following corollary holds.

Corollary 3 We have the following relationships between (DS) and (DS-1):

1. if x0 ∈ intD̂, then there exists a function x(·) ∈ C1([t0, t0 + T ]; D̂), which is a unique
solution of (DS) and (DS-1) on [t0, t0 + T ] for some T > 0;

2. if x0 ∈ ∂D̂ and assumption (B) holds, then the solution of (DS) is unique on [t0, t0 + T1]
for some T1 > 0 and the solution of (DS-1) exists on [t0, t0 + T2] for some T2 > 0.

Proof The proof will follow the lines of the proof of Proposition 5 up to Step 3 by replacing
F̃ with F and then we proceed as follows.

We consider the following two cases.

Case 1. Suppose x0 ∈ D̂ such that ρ:= inf
y∈∂D̂

‖x0 − y‖H=:dist(x0, ∂D̂) > 0.

Case 2. Suppose x0 ∈ D̂ such that ρ = 0. Then one can follow the proof of Proposition 5.

We look for a solution to (DS) for Case 1. Let us consider

C0D :=
{
x(t) ∈ C0 | |x − x0|C0 ≡ max

t∈[t0,t0+T ] ‖x(t)− x0‖X ≤ ρ/2, x0 ∈ D̂
}

.

Given the fact that x0 ∈ D̂:={x ∈ D | ‖x − w̄‖2 ≥ r > 0}, it implies ρ:=||x0 − w̄|| > 0.
Let us consider the following two possible cases for fixed r > 0,
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(i) if ρ > 2r , then consider the ball B ρ
2
(x0) ⊂ D̂;

(ii) if ρ < 2r , then consider the ball Br− ρ
2
(x0) ⊂ D̂.

Thereafter, as in Step 4 of Proposition 5 we show the existence of Cauchy sequence in C0D .

Step 5. Moreover, C0D is a closed subset of C0. Indeed, it is an implication of the facts of
continuity of S and

xn ∈ D ⇒ lim
n→∞ xn=:x̂ ∈ D, since D is closed in H .

Step 6. Finally, D  x̂ must be a fixed point of S : C0D → C0D . Indeed,

x̂ = lim
n→∞ xn = lim

n→∞ S[xn−1] continuity of S= S
[
lim
n→∞ xn−1

]
= S[x̂].

Hence, we reach at the solution to (DS). ��

In the following example we show that the existence of solutions of (DS) is not guaranteed
without assumption (B), however there are still solutions of (DS-1) due to Proposition 5.

Example 1 Let X = R
2, w̄ = (−1, 0), z̄ = (1, 0), D̂ = B̄((0, 0), 1) \ B((−1, 0), 1) and let

F : D̂ → X be defined as

F((x1, x2)) = (1− x1, 0), (x1, x2) ∈ D̂

Then assumption (A) and (C) is satisfied. Consider x0 = x(0) = (0,−1). Then there is no
solution of (DS). By extending F(x) in a continuous way:

F̃((x1, x2)) = (1− x1,0), (x1, x2) ∈ X ,

we obtain that one solution of (DS-1) is x(t) = (1− e−t ,−1).

The following example shows that by considering (DS-1) under assumption (B) we may
loose the uniqueness of solutions in the sense of Definition 1.

Example 2 Let X = R
2, w̄ = (0,−1), z̄ = (1, 0), D̂ = [0, 1] × [−1, 0] \ B((0,−1), 1) and

let F : D̂ → X be defined as

F((x1, x2)) = (1− x1, 0− x2), (x1, x2) ∈ D̂.

Then assumptions (A), (B) and (C) are satisfied. Consider x0 = x(0) = (0, 0). By extending
F(x) in the continuous way:

F̃((x1, x2)) =
⎧⎨
⎩

(1− x1, 0− x2), (x1, x2) ∈ D̂,

(1− x1, x1), (x1, x2) ∈ Γ :={(1− e−s, e−s + s − 1), s ∈ (0, 1]},
continuous, otherwise on X .

We obtain that there are more solutions than one of the system (DS-1). For example:

(x1(t), x2(t)) = (1− e−t , e−t + t − 1), t ∈ [0, 1],
(x1(t), x2(t)) = (1− e−t , 0), t ∈ [0, 1].
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5 Extendability of Solutions to (DS-0)

In this section we prove Theorem 1.
The proof is based on two lemmas, Lemmas 2 and 5 (see “Appendix”). The proposed

approach follows the lines of Lecture 3 of the lecture notes [3]. The crucial assumptions
are (A), (B) and (C) (see Lemma 2 below). For more general results and examples on the
extendability of solutions, see e.g., [21] and the references therein.

Let

T = [t0, T ), t0 < T ≤ +∞ or T = [t0, T ], t0 < T < +∞.

As a consequence of the results of Proposition 4 and Corollary 2 we have the following
’non-branching’ result.

Lemma 2 Suppose that assumptions (A), (B) and (C) are satisfied. Let x1(t), x2(t)be solutions
to problem (DS) in the sense of Definition 1 on T1, T2, respectively. Then one of these solutions
is a prolongation of the other (in particular, they coincide if T1 = T2).

Proof On the contrary, suppose that

x1(t) �≡ x2(t) on T1 ∩ T2.

Consider the set

T �=:={t ∈ T1 ∩ T2|x1(t) �= x2(t)}.
Let us note that t0 /∈ T �= (by initial condition of (DS)). Furthermore, the set T �= is open
in the set T1 ∩ T2, because it is an inverse image of (t0,+∞) under continuous mapping
t → ‖x1(t)− x2(t)‖ defined on T1 ∩ T2.

Put

T ∗ = inf T �=.

Let us note that T ∗ /∈ T �= (hence x1(T ∗) = x2(T ∗)). Indeed, if T ∗ = t0 then, t0 /∈ T �=
because x1(t0) = x2(t0).

If T ∗ > t0, then T ∗ is a boundary point of T �=, so T ∗ /∈ T �= since T �= is open in
T1 ∩ T2. This means that in any right-hand side half-neighbourhood2 of the point T ∗ there
exists t1 > T ∗ such that t1 ∈ T �=

� T1 ∩ T2, and the intersection of this right-hand side
half-neighbourhood with T �= is nonempty.

Take any α > T ∗ and t1, t1 ∈ T �= ∩ [T ∗, α). By Remark 2, functions x1(t), x2(t) are
solutions to Cauchy problem {

ẋ(t) = F(x(t)), t > T ∗
x(T ∗) = x1(T ∗)

(22)

on interval [T ∗, t1]. Since x1(t), x2(t) ∈ D̂ for all t ∈ [T ∗, t1] and the set D̂ is bounded, we
have

R12 = max
i=1,2 sup

t∈[T ∗,t1]
‖xi (t)− x1(T

∗)‖ < +∞. (23)

2 By the right-hand side half-neighbourhood of a given t ∈ R we mean an interval in a form [t, α) for any
α > t .
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By Corollary 2 , there exists T ′ > t0, such that for any T ∈ (t0, T ′], solution of the Cauchy
problem (22) on interval [T ∗, T ∗ + T ] satisfying

‖x(t)− x1(T
∗)‖ ≤ R12 (24)

is unique. Taking T = min{T ′, t1−T ∗}we come to a contradictionwithCorollary 2, because,
by (23) the condition (24) holds both for x1(t) and x2(t), but the functions x1(t) and x2(t)
are different in any right-hand side half-neighbourhood of T ∗. ��

Now we are ready to prove Theorem 1.

Proof of Theorem 1 By Corollary 2, there exists solution of problem (DS-0) on some interval
[t0, T ] (T > t0) in the class B

R
t0,x0,T

for some R > 0. By Lemma 2, for any two solutions of
our problem (DS-0) on different intervals, one is the prolongation of the other.

Consider now, for any T > t0, all functions from C1([t0, T ], D̂). Among these functions
there exist solutions of problem (DS-0) or not. Put

T = {T > t0|∃ solution to (DS − 0) from C1([t0, T ]; D̂)},
T0 = supT.

(25)

If T0 = +∞, there exists solution x̃(t) ∈ C1([t0,+∞), D̂) to problem (DS-0). Indeed,
by taking a monotone increasing sequence Tn → +∞ and the corresponding sequence of
solutions {xn(t)}, by Lemma 2 we get, for all n ∈ N solution xn+1 is the prolongation of xn .
Hence, the function

x̃(t) =
{
xn(t), t ∈ [Tn−1, Tn), n ≥ 2
x1(t), t ∈ [t0, T1)

is a solution defined on [t0,+∞). Other solutions (which do not coincide with the restrictions
of x̃(t) on smaller intervals) do not exist by Lemma 2. In the rest of the proof, we show that
this is the only possible case.

Consider now T0 < +∞. Then two cases are possible:

(a) T0 ∈ T,
(b) T0 /∈ T.

In case (a) there exists a solution x(·) ∈ C1([t0, T0]; D̂) to problem (DS-0). But then, by
Corollary 2, applied to our problem (DS-0) with t0 = T0 solution can be extended beyond
T0 and both one-sided derivatives ẋ−(T0) and ẋ+(T0) exist and both equal F(x(T0)): left -
by the definition of solutions on [t0, T0], right - by the definition of solution to our problem
with the beginning of the interval from T0. As a consequence, we get a solution on a larger
interval and arrive to a contradiction with the definition of T0. This excludes case (a).

In case (b), by the arguments analogous to the case T0 = +∞, we get the existence and
uniqueness of solutions x(t) of (DS-0) on the semi-interval [t0, T0). Case (b) splits in two
subcases:

1. lim supt→T−0
‖x(t)‖ = +∞ (i.e. solution is unbounded in any left-sided interval of T0),

2. lim supt→T−0
‖x(t)‖ < +∞.

The subcase 1 is impossible in view of the boundedness of the set D̂. Now we show that
the subcase 2 is also impossible.

Indeed, let the function x(t) be bounded on the whole half-interval [0, T0):
∃C ≥ 0∀t ∈ [t0, T0), ‖x(t)‖ ≤ C .
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We have

∀t ∈ [t0, T0), ‖F(x(t))‖ ≤ M .

However, from the equation (DS-0), it follows that the function x(t) is Lipschitz continuous
with a constant M on (t0, T0), since ‖ẋ(t)‖ ≤ M for all t ∈ (t0, T0).

Hence, by Lemma 5 (see “Appendix”), there exists the limit

Y0 = lim
t→T−0

x(t).

Let us put Y0 to be the value of x(t) at T0. The obtained function Y (t) will be continuous
from the left at T0. Then, by Lemma 3 (see “Appendix”), the function F(Y (T0)) is also
continuous from the left at T0 and hence

lim
t→T−0

F(x(t)) = lim
t→T−0

F(Y (t)) = F(Y0).

Since for t < T0 we have ẋ(t) = F(x(t)), from the last formula we get

lim
t→T−0

ẋ(t) = F(Y0).

However, by Lemma about extendability at point (Lemma 4, see “Appendix”), it follows that
the function x(t) can be extended from [t0, T0) onto [t0, T0] with preservation of continuous
differentiability (let us denote the obtained function by Y (t)) and Ẏ (t0) = F(Y0) and Y (t)
is a solution on [t0, T0]. We arrive to a contradiction in the subcase 2 of case (b) (solutions
on [t0, T0] do not exist). ��

6 Behaviour of Trajectories at+∞
In this section we prove Theorem 2 and provide other results concerning the convergence of
trajectories.

Proposition 6 Let x(t), t ∈ [t0,+∞) be a solution of (DS-0). Suppose that there exists an
increasing sequence {tn}n∈N, tn →+∞, such that x(tn) → z̄. Then x(t) → z̄ as t →+∞.

Proof Let {tn}n∈N, tn → +∞ be such that x(tn) → z̄. We will show that for all ε > 0, for
every increasing sequence {sn}n∈N, sn → +∞ there exists n0 ∈ N such that for all n ≥ n0,
‖x(sn)− z̄‖ ≤ ε. Take any ε > 0 and an increasing sequence {sn}n∈N, sn →+∞.

We have

d

dt
‖x(t)− w̄‖2 = 2〈F(x(t)) | x(t)− w̄〉 ≥ 0,

hence the function ‖x(·)− w̄‖2 is nondecreasing. Moreover, by (9) (see also Lemma 6) and
convergence of x(tn), for all ε′ > 0 there exists n′0 ∈ N such that for all n > n′0

‖x(tn)− w̄‖2 ≥ ‖w̄ − z̄‖2 − ε′.

Take ε′ = ε and n0 such that sn0 ≥ tn′0 .

Then, by (9) and the fact that ‖x(·)− w̄‖2 is nondecreasing we obtain: for all n ≥ n0

‖x(sn)− z̄‖2 ≤ ‖w̄ − z̄‖2 − ‖x(sn)− w̄‖2 ≤ ‖w̄ − z̄‖2 − ‖x(t ′n0)− w̄‖2 ≤ ε.

��
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Now we give now the proof of Theorem 2.

Proof of Theorem 2 By (12), we have x̃ = z̄, i.e., x(tnk ) converges weakly to z̄. By (9), the
following inequality holds for this subsequence

‖x(tnk )− w̄‖2 + ‖x(tnk )− z̄‖2 ≤ ‖w̄ − z̄‖2, k = 1, 2, . . .

and hence

lim inf
k→∞ ‖x(tnk )− w̄‖2 + lim inf

k→∞ ‖x(tnk )− z̄‖2 ≤ ‖w̄ − z̄‖2. (*)

Since the norm is weakly lower semicontinuous, we also have

‖z̄ − w̄‖2 ≤ lim inf
k→∞ ‖x(tnk )− w̄‖2.

This and (∗) implies

lim inf
k→∞ ‖x(tnk )− z̄‖2 = 0.

Consequently, there is a subsequence tnkm such that

lim
m→∞‖x(tnkm )− z̄‖ = 0.

Thus we have shown that for any sequence {tn}n∈N, tn → ∞, there exists a subsequence
{tnkm }m∈N such that the above condition holds.

This means that ‖x(t)− z̄‖ → 0 as t →+∞. ��
In the next two propositions we propose variants of Theorem 2 in which we replace

assumption (12) by other assumptions.
In the finite-dimensional case, the assertion of Theorem 2 can be obtained without assum-

ing (12). Instead we need to assume a strengthened form (*) of the assumption (C) on vector
field F .

Recall that the assumption (C) says that 〈F(x)|w̄ − x〉 ≤ 0 for all x ∈ D̂.

Proposition 7 Let X be a finite-dimensional space, let x(t), t ∈ [t0,+∞) be a solution of
(DS-0) and assume that

〈F(x(t)) | w̄ − x(t)〉 < 0 ∀ t ∈ [t0,+∞)x(t) �= z̄. (C*)

Then lim
t→+∞ x(t) = z̄.

Proof Let g(t):= d
dt ‖x(t) − w̄‖2, t ≥ t0. We start by showing that there exists a sequence

{tk}, tk →+∞ such that lim
k→+∞ g(tk) = 0.

On the contrary, suppose that there exist ε > 0 and t ′ ≥ t0 such that g(t) > ε for all
t > t ′. Hence, for all t > t ′

‖x(t)− w̄‖2 − ‖x(t0)− w̄‖2 =
∫ t

t0
g(s)ds

=
∫ t ′

t0
g(s) ds +

∫ t

t ′
g(s) ds ≥

∫ t ′

t0
g(s) ds +

∫ t

t ′
ε ds

=
∫ t ′

t0
g(s) ds + (t − t ′)ε.
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By taking

t >
1

ε

(
‖z̄ − w̄‖2 − ‖x(t0)− w̄‖2 −

∫ t ′

t0
g(s) ds

)
+ t ′,

we arrive to ‖x(t)− w̄‖2 > ‖z̄ − w̄‖, i.e. x(t) /∈ D̂ - a contradiction. In this way, we proved
that there exists a sequence {tk}k∈N such that tk →+∞ and lim

k→+∞ g(tk) = 0.

Since X is finite-dimensional and D̂ is closed, bounded, hence compact. There exists a
subsequence of {tk}k∈N, namely {tkn }n∈N such that x(tkn ) converges and lim

n→+∞ x(tkn ) = x̃ ∈
D̂. Without loss of generality, we may assume that the sequence {tkn }n∈N is increasing.

By (8),

d

dt
‖x(t)− w̄‖2 = 2〈F(x(t))|x(t)− w̄〉 ≥ 0 for all t ≥ t0.

We have

0 = lim
n→+∞ g(tkn ) = lim

n→+∞ 2〈F(x(tkn )) | x(tkn )− w̄〉 = 2〈F(x̃) | x̃ − w̄〉, (26)

hence, by assumption, x̃ = z̄. Now the assertion follows from Proposition 6. ��
Remark 5 By examining the above proof, we see that the assertion of Proposition 7, remains
true in infinite-dimensional Hilbert space X

under additional assumption (to (*)) on F :

F can be extended to conv D̂ in such way that (W-S)

F : conv D̂ → X is a weak-to-strong continuous on conv D̂,

i.e., for any weakly convergent sequence D̂  xn⇀x̄ we have lim
n→+∞ F(xn) = F(x̄), where

the limit is strong.
The need of using this additional assumption follows from the fact that if vn → v and

un⇀u, then 〈vn |un〉 → 〈v|u〉. Indeed,
|〈vn |un〉 − 〈v|u〉| = |〈vn − v|un〉 + 〈un |v〉 − 〈v|u〉|

≤ ‖un‖‖vn − v‖ + |〈un |v〉 − 〈v|u〉|.
This fact allows to show (26).

The following proposition is a variant of Proposition 7 valid in infinite-dimensionalHilbert
space under a more restrictive form (C**) below of condition (*).

Proposition 8 LetX be an infinite-dimensional space and let x(t), t ∈ [t0,+∞) be a solution
of (DS-0). Assume that for all t ∈ [t0,+∞) such that x(t) �= z̄, we have

〈F(x(t)) | w̄ − x(t)〉 < α(t), (C**)

where α : [t0,+∞) → R− is an integrable function on any interval [t0, T ], T > t0 and
there exist T ′ > t0,

√
T ′ − t0√

T ′ > 1
2 (‖w̄ − z̄‖2 − ‖x(t0)− w̄‖2) and ε ≤ −1√

T ′
such that sup

[t0,T ′]
α(s) < ε. Then lim

t→+∞ x(t) = z̄.
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Proof Let us note that in the case when there exists t ′ ∈ [t0,+∞) such that x(t ′) = z̄, then
x(t) = z̄ for all t > t ′ since F(x(t ′)) = F(z̄) = 0.

Consider now the situation that x(t) �= z̄ for any t ∈ [t0,+∞). By contradiction, suppose
that x(t) � z̄. Then, in view of Proposition 6, there exists ε > 0 such that x(t) /∈ B(z̄, ε)
for all t ∈ [t0,+∞).

We have that for all t > T ′

‖x(t)− w̄‖2 − ‖x(t0)− w̄‖2 =
∫ t

t0

d

ds
‖x(s)− w̄‖2 ds

= 2
∫ t

t0
〈F(x(s))|x(s)− w̄〉 ds ≥ −2

∫ t

t0
α(s) ds

≥ −2(t − t0) · sup
s∈[t0,t]

α(s)

≥ −2(t − t0) · ε.
Thereby for such t >

‖w̄−z̄‖2
2c + t0 we arrive to a contradiction with x(t) ∈ D̂ ⊂ D. ��

Proposition 9 LetX be an infinite-dimensional space and let x(t), t ∈ [t0,+∞) be a solution
of (DS-0). Assume that for all ε such that 0 < ε < ‖x0−z̄‖wehave inf

x∈D̂\B(z̄,ε)
〈F(x)|w̄−x〉 <

0. Then lim
t→+∞ x(t) = z̄.

Proof If there exists t ′ ∈ [0,+∞) such that 〈F(x(t ′)) | w − x(t ′)〉 = 0 then we are done -
in view of assumptions of the Proposition, x(t ′) = z̄, and by (9) , Proposition 1, x(t) = z̄ for
all t ≥ t ′.

Suppose that for all t ∈ [0,+∞) we have 〈F(x(t)) | w − x(t)〉 < 0. For any t > t0

‖z̄ − w̄‖2 − ‖x(t0)− w̄‖2 ≥ ‖x(t)− w̄‖2 − ‖x(t0)− w̄‖2 =
∫ t

t0

d

ds
‖x(s)− w̄‖2 ds

= 2
∫ t

t0
〈F(x(s)) | x(s)− w̄〉 ds ≥ −2(t − t0) · sup

s∈[t0,T ]
〈F(x(s))|x(s)− w̄〉

= 2(t − t0) · inf
s∈[t0,T ]

〈F(x(s))|w − x(s)〉
Therefore inf

s∈[t0,t]
〈F(x(s))|w− x(s)〉 → 0 as t →+∞. Note that α(s):=〈F(x(s))|w− x(s)〉

is a continuous function on every [t0, t], t > t0. Hence, there exists an increasing sequence
{tn}n∈R+ , tn →+∞ such that 〈F(x(tn))|x(tn)− w̄〉 → 0. We claim that x(tn) → z̄.

Suppose on the contrary, that x(tn) � z̄ as n → +∞. Then there exists ε > 0 and a
subsequence {tnk }k∈N such that x(tnk ) ∈ D̂ \ B(z̄, ε). Since inf

x∈D̂\B(z̄,ε)
〈F(x)|w̄ − x〉 < 0

we have that there exists c < 0 such that 〈F(x(tkn ))|w̄ − x(tkn )〉 < c, a contradiction to
lim

k→+∞〈F(x(tkn ))|w̄ − x(tkn )〉 = 0 .

Hence x(tn) → z̄. Now the assertion follows from Proposition 6. ��

7 Projective Dynamical System

In this section, we give an example of the system (DS-0). Let w̄, z̄ ∈ X . We consider the
projective dynamical system

ẋ(t) = PC(x(t))(w̄)− x(t), (PDS)
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x(t0) = x0 ∈ D̂, t0 ≥ 0,

where C : D̂ ⇒ X is a multifunction such that:

(A′) for all x ∈ D̂, z̄ ∈ C(x) and PC(x)(w̄) = x iff x = z̄,
(B ′) for all x ∈ D̂ we have PC(x)(w̄) ∈ D,
(C ′) 〈PC(x)(w̄)− x | w̄ − x〉 ≤ 0 for all x ∈ D̂,
(D′) for all x ∈ D̂, C(x) is closed and convex.

Condition (D′) ensures that the projection onto C(x), x ∈ D̂ is uniquely defined.
The condition 〈PC(x)(w̄)− x | w̄− x〉 ≤ 0 for all x ∈ D̂ is equivalent to the condition that

PC(x)(w̄) ∈ H(w̄, x) for any x ∈ D̂. This implies that for any x ∈ D̂ and for any h ∈ C(x)
we have 〈h − x | w̄ − x〉 ≤ 0. The later implies PC(x)(w̄) ∈ H(w̄, x). Therefore, (C′) is
equivalent to the condition:

∀x ∈ D̂∀h ∈ C(x), 〈h − x |w̄ − x〉 ≤ 0.

Remark 6 Let us comment on the conditions (A′), (B′), (C′). The condition (A′) is equivalent
to saying that z̄ is the only stationary point of the vector field F(x) = PC(x)(w̄) − x inside
the considered set D̂. The condition (B′) together with the convexity of set D ensures that
for any λ ∈ [0, 1], and for any x ∈ D̂ ⊂ D it is (1 − λ)x + λPC(x)(w̄) ∈ D. The condition
(C′) ensures that PC(x) ∈ H(w̄, x) and the function t !→ ‖x(t)− w̄‖ is nondecreasing (see
e.g., Proposition 1), where x(t) is a solution of (PDS) (whenever it exists).

As consequences of Theorems 1 and 2 we can formulate the following theorems.

Theorem 3 Suppose that (A′), (B′), (C′), (D′) holds. Assume that x !→ PC(x)(w̄) is locally
Lipschitz continuous on D̂ \ {z̄} and continuous on D̂. Then the system (PDS) has a unique
solution on [t0,+∞).

Proof First, let us show that (A), (B), (C) hold. (A′) implies that z̄ is the only stationary point
of (PDS), hence (A) holds.

Recall that D is a closed, convex subset of B( w̄+z̄
2 ,

‖w̄−z̄‖
2 ) and D̂ is given as in (10). By

(D′), the projection PC(x)(w̄) is well defined for all x ∈ D̂. By (B′) and (C′), assumption (B)
is satisfied since for all x ∈ D̂ ⊂ D and for any h ∈ [0, 1]

x + h(PC(x)(w̄)− x) = (1− h)x + hPC(x)(w̄) ∈ D,

‖x + h(PC(x)(w̄)− x)− w̄‖2 = ‖x − w̄‖2
− 2h〈PC(x)(w̄)− x | w̄ − x〉 + h2‖PC(x)(w̄)− x‖2 ≥ ‖x − w̄‖2 ≥ r ,

i.e. x + h(PC(x)(w̄)− x) ∈ D̂. Note that by taking h = 1 we obtain that PC(x)(w̄) ∈ D̂ for
any x ∈ D̂. Assumption (C′) is equivalent to (C) for F(x) = PC(x)(w̄)− x . Observe that the
mapping F(x) = PC(x)(w̄)− x is bounded on D̂. Indeed for any x ∈ D̂ we have

‖PC(x)(w̄)− x‖ ≤ ‖PC(x)(w̄)‖ + ‖x‖ ≤ 2R,

where R = supx∈D̂ ‖x‖. Now, system (PDS) is of the form of (DS-0) with F(x) =
PC(x)(w̄)−x and all the assumptions of Theorem 1 are satisfied. The assertion of the theorem
follows from Theorem 1. ��
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Theorem 4 Suppose that (A′), (B′), (C′), (D′) holds. Assume that x !→ PC(x)(w̄) is locally
Lipschitz continuous on D̂\{z̄} and continuous on D̂. Let x(t) be a solution of (PDS). Assume
that for every increasing sequence {tn}n∈N, tn →+∞

x(tn)⇀x̃ �⇒ x̃ = z̄, (27)

Then x(t) → z̄ as t →+∞.

Proof By the proof of Theorem 3, (PDS), assumptions (A), (B) and (C) are satisfied, and
by assumption F(x) = PC(x)(w̄) is locally Lipschitz continuous. Now the assertion follows
from Theorem 2. ��

To investigate the local Lipschitzness of x !→ PC(x)(w̄) on D̂ \ {z̄} (and the continuity of
x !→ PC(x)(w̄) on D̂) one should take into account the form of multifunction C. Behaviour
of the projection of a given w̄ onto polyhedral multifunction C given by a finite number
of linear inequalities and equalities were investigated in e.g. [8, Corollary 2], see also [25,
Theorem 6.5].

Proposition 10 LetT : X → X , which appears in system (S), be a firmly quasinonexpansive
operator, i.e.,

∀x ∈ X ∀y ∈ FixT, ‖Tx − y‖2 + ‖Tx − x‖2 ≤ ‖x − y‖2.
Assume that w̄ ∈ X , w̄ /∈ FixT and z̄ = PFixT(w̄), and let D = B( w̄+z̄

2 ,
‖w̄−z̄‖

2 ), D̂ = {x ∈
D|‖x − w̄‖2 ≥ r} for some r ∈ (0, ‖w̄ − z̄‖2). Then the assumptions (A′), (B′), (C′), (D′)
holds for the system (PDS) with C : D → X defined as C(x):=H(w̄, x) ∩ H(x, Tx).

Proof By [6, Corollary 4.25], we have

FixT =
⋂
x∈X

{y ∈ X | 〈y − Tx | x − Tx〉 ≤ 0 =
⋂
x∈X

H(x, Tx). (28)

Assumption (A′) follows from (28) i.e., FixT  z̄ ∈ H(x, Tx) for all x ∈ D̂ and
x ∈ FixT ∩ D̂ ⇐⇒ x = z̄. Assumption B′ follows from fact that for any x ∈ D̂ ⊂ D,
z̄ ∈ C(x), hence z̄ ∈ H(w̄, PC(x)(w̄)) and therefore PC(x)(w̄) ∈ B( w̄+z̄

2 ,
‖w̄−z̄‖

2 ) = D
(see (8)). Assumption (C′) follows from fact that for any x ∈ D, C(x) ⊂ H(w̄, x), hence
PC(x)(w̄) ∈ H(w̄, x). Assumption (D′) is satisfied since H(w̄, x) ∩ H(x, Tx) is closed,
convex. ��

Depending upon the choice of the operator T in Proposition 10 we obtain dynamical
systems of the form (PDS) related to different algorithms.Within our approachwe encompass
the following dynamical systems related to the following algorithms.

Ex 1. When T : X → X is firmly quasinonexpansive and (I d − T) is demiclosed at
0, dynamical system (DS-0) corresponds to the best approximation algorithm for
finding a point z̄ from the set of fixed points of T, i.e., for finding z̄ ∈ X such that
z̄ = PFixT(w̄) (see [6, Theorem 30.8]).

Ex 2. When T = JA, where A : X ⇒ X is maximally monotone, dynamical system
(DS-0) corresponds to the best approximation algorithm for finding x ∈ X such
that 0 ∈ Ax (see [6, Corollary 30.11]). Let us recall that resolvent operator of A is
defined as JA : X → X , JA = (I d − A)−1.
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Ex 3. When T = (1/2)(I d + Jγ A ◦ (I d − γ B)), A : X ⇒ X is maximally monotone,
B : X → X is β-cocoercive, γ ∈ [0, 2β], dynamical system (DS-0) corresponds
to the best approximation algorithm for finding x ∈ X such that 0 ∈ Ax + Bx (see
[6, Corollary 30.12]).

Ex 4. When T : H× G → H× G is defined as

T(x) = PH(x)(x), H(x):={h ∈ H× G | 〈h|s∗(x)〉 ≤ η(x)}, (29)

and, for any x = (p, v∗) ∈ H× G,

s∗(x):=(a∗(x)+ L∗b∗(x), b(x)− La(x));
η(x):=〈a(x)|a∗(x)〉 + 〈b(x) | b∗(x)〉;
a(x):=Jγ A(p − γ L∗v∗), b(x):=JμB(Lp + μv∗);
a∗(x):=γ A(p − γ L∗v∗), b∗(x):=μB(Lp + μv∗), γ, μ ∈ (0, 1),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(30)

dynamical system (DS-0) corresponds to the best approximation algorithm for find-
ing (p, v∗) ∈ H× G such that

0 ∈ Ap + B(Lp) and 0 ∈ −L A−1(−Lv∗)+ B−1v∗

(see [2]). Let us recall that for any γ > 0, γ A : H → H is Yosida approximation of
A, γ A = 1

γ
(I d − Jγ A).

For other multifunctions C and other properties of projections onto moving sets, see, e.g.,
[29, Theorem 3.1], [15, Theorem 3.10], [33, Theorem 2.1], [24, Proposition 5.2] and [25,
Example 6.4].
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Appendix: Auxiliary Lemmas

Remark 7 Fact 8 implies that D ⊂ B̄( w̄+z̄
2 ,

‖w̄−z̄‖
2 ), hence D is bounded. Moreover, this

easily implies

‖w̄ − z̄‖ = d:= sup
x,y∈D

‖y − x‖,

that is, the pair z̄, w̄ realizes maximal distance between two points in D (the diameter of D).

Lemma 3 Let x(·) ∈ C([a, b], D̂); [a, b] ⊂ R+. Then the function f (t):=F(x(t)) is con-
tinuous: f (·) ∈ C([a, b];X )
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Lemma 4 (About extendibility) Let x(t) be defined and differentiable in a continuous way
in left-sided neighbourhood of t0, i.e.

x(·) ∈ C1((t0 − γ, t0); D̂) (31)

and assume that the limit

x1:= lim
t→t0−

ẋ(t) (32)

exists and x1 ∈ F(D̂). Then

1. x(t) is extendable in a continuous way to function x̃(·) ∈ C1((t0 − γ, t0]); D̂);
2. ˙̃x� = x1 (where � denotes the left derivative of x(·) at t0).
Proof of Lemma 4 It follows from the existence of the left-hand limit that the derivative is
bounded in some left-sided half-neighbourhood of t0:

∃ζ ∈ (0, γ ] ∃L > 0 ∀t ∈ (t0 − ζ, t0) ‖ẋ(t)‖ ≤ L. (33)

By the weakened formula for finite increments, we obtain Lipschitz continuity of the
function x(t) on (t0 − ζ, t0) with some constant L . Therefore, for the function x(t), the
Cauchy condition for the existence of the left derivative at time t0 is satisfied, and

∃ x0 = lim
t→t−0

x(t). (34)

Put

x̃(t) =
{
x(t), t ∈ (t0 − γ, t0);
x0 t = t0.

It is obvious that, the function constructed in this way is continuous on (t0 − ζ, t0]. Now, it
is enough to show that ˙̃x�(t0) = x1, i.e.

lim
t→t−0

1

t − t0
(x(t)− x0) = x1,

or

lim
Δt→0

1

Δt
(x0 − x(t0 −Δt)) = x1.

To use the formula of Newton-Leibniz we introduce a function

z(t) =
{
x ′(t), t ∈ (t0 − γ, t0);
x1 t = t0.

By (31) and (32), function z(t) is continuous on (t0 − ζ, t0]. We cannot yet claim that
˙̃x(t0) = x1, our aim is to prove it.

For any δ ∈ (0, ζ ) we can rewrite the formula of Newton-Leibniz as
∫ t0−δ

t0−Δt
z(t) dt = x(t0 − δ)− x(t0 −Δt). (35)

We take the limit with δ tending to zero. Then on the one hand, x(t0− δ) → x0 (see (34)).
On the other hand, ∫ t0−δ

t0−Δt
z(t) dt →

∫ t0

t0−Δt
z(t) dt,
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because

‖
∫ t0

t0−Δt
z(t) dt −

∫ t0−δ

t0−Δt
z(t) dt‖ = ‖

∫ t0

t0−δ

z(t) dt‖ ≤
∫ t0

t0−δ

‖z(t)‖ dt ≤ δL → 0.

Here, we used continuity of z(t), estimation (33) and, from fact (32) with (32), estimation
‖z(t0)‖ ≤ L .

Taking the limit on both sides in (35) we obtain
∫ t0

t0−Δt
z(t) dt = x0 − x(t0 −Δt). (36)

Then from (35) and (36) we have
∫ t

t0−Δt
z(τ ) dτ = x̃(t)− x̃(t0 −Δt)

for all t ∈ [t0−Δt, t0], where the function inside the integral is continuous. Now applying at
the point t = t0 the theorem on differentiation of the integral with respect to the upper limit,
we obtain

˙̃x�(t0) = z(t0) = x1,

as required. ��

Lemma 5 Let x(t) be a Lipschtiz function on (a, b), a, b ∈ R with Lipschitz constant L and
values in Hilbert space X . Then the limit limt→b− x(t) exists.

Proof It is enough to show that x(t) has the Cauchy property at b−, in the sense that

∀ε > 0 ∃δ > 0 ∀t1, t2 ∈ (a, b)

b − t1 < δ ∧ b − t2 < δ �⇒ ‖x(t1)− x(t2)‖ < ε.
(37)

Since x(t) is Lipschitz on (a, b) we have

∀t1, t2 ∈ (a, b) ‖x(t1)− x(t2)‖ < L|t1 − t2|.
Let us take any ε > 0 and δ = ε

2L . Then for any t1, t2, 0 < b − t1 < δ, 0 < b − t2 < δ we
have

‖x(t1)− x(t2) ‖ < L|t1 − t2| < L(|b − t1| + |b − t2|) < ε,

which proves (37). ��

Lemma 6 For all x ∈ D we have

‖x − z̄‖2 ≤ ‖w̄ − z̄‖2 − ‖w̄ − x‖2.

Proof This follows from (9): we have

‖w̄ − z̄‖2 = ‖w̄ − x‖2 + 2〈w̄ − x | x − z̄〉 + ‖x − z̄‖2 ≥ ‖w̄ − x‖2 + ‖x − z̄‖2,
for all x ∈ D. ��
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