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Abstract
We present an epidemiological model, which extend the classical SEIR model by accounting
for the presence of asymptomatic individuals and the effect of isolation of infected individuals
based on testing. Moreover, we introduce two types of home quarantine, namely gradual
and abrupt one. We compute the equilibria of the new model and derive its reproduction
number. Using numerical simulations we analyze the effect of quarantine and testing on
the epidemic dynamic. Given a constraint that limits the maximal number of simultaneous
active cases, we demonstrate that the isolation rate, which enforces this constraint, decreases
with the increasing testing rate. Our simulations show that massive testing allows to control
the infection spread using a much lower isolation rate than in the case of indiscriminate
quarantining. Finally, based on the effective reproduction number we suggest a strategy to
manage the epidemic. It consists in introducing abrupt quarantine as well as relaxing the
quarantine in such a way that the epidemic remains under control and further waves do not
occur. We analyze the sensitivity of the model dynamic to the quarantine size, timing and
strength of the restrictions.
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1 Introduction

As Covid-19 vaccines are still not widely available in many countries, home quarantine mea-
sures remain the most effective intervention tool for controlling the epidemic. Restrictions
imposed by home quarantine policies on businesses and individuals help to decrease the num-
ber of social contacts and thus slow down the spread of the disease. These restrictions differed
in their scale, forms and timings in the states and countries where they were implemented by
the government and health authorities.

However, massive lock-downs are not a sustainable solution for economic, social and
psychological reasons. The situation is complicated by the asymptomatic Covid-19 infection.
The asymptomatic individuals can account for as many as 40–45% of infections [17] and can
transmit the virus to others for an extended period of time.

Asymptomatic infection, the latent infectious phase of the disease and cases with mild
symptoms can be detected by diagnostic tests. As such, massive diagnostic testing of the
population and isolation of positively tested individuals can potentially offer an alternative
to indiscriminate quarantining of large population groups [15]. The isolation strategy based
on diagnostic screening was implemented by a number of organizations, business and gov-
ernment authorities. For example, major airlines such as American Airlines and Lufthansa
added on-site pre-flight rapid testing facilities at a number of American and German airports.
The Duke University comprehensive Covid-19 testing program received results from 16,146
tests administered to students and faculty from November 7–13, 2020. The Chinese city of
Qingdao reported testing its entire population of nine million people for Covid-19 over a
period of five days in October, 2020. Slovakia tested 3.6 million people—two thirds of its
population—in two days on October 31–November 1, 2020 and repeated testing the same
population in a week’s time in the first attempt of a large-scale blanket testing campaign
in Europe. These massive testing efforts were assisted by new pulling technologies and the
development of affordable rapid tests such as Abbott’s BinaxNOW.

The health and government authorities are concerned with keeping the number of active
cases below the level dictated by the capacity of the health care system. Several recent studies
have attempted to predict and analyze the effect of quarantinemeasures on the dynamics of the
Covid-19 pandemic using compartmental models of mathematical epidemiology. A variant
of the standard well mixed SEIR model

Ṡ = −βSI ,
Ė = βSI − ωE,

İ = ωE − δ I ,
Ṙ = δ I ,

(1)

was used to analyze the effect of social distancing and reducing the number of contacts
[13]. Another implementation of the quarantine policy was studied in [19], where the authors
adapted the SIRmodel assuming that all the infected individuals are isolated after the incuba-
tion period. Stochastic age-structured transmission models were applied to explore a range of
intervention scenarios [9]. A model with a two-threshold switching prevention strategy pre-
dicted that flattening the curve can lead to periodic recurrence of the disease [7]. The authors
of all the above mentioned studies conclude that the interventions are effective in reducing
the infection peak; however, extreme interventions are likely to be required to contain the
infection spread.

Amid the ongoing efforts of bringing the Covid-19 epidemic under control continues, it
is important to explore different scenarios using a variety of models and modeling assump-
tions. In this paper, we are interested in estimating the potential of massive diagnostic testing
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measures for reducing the quarantining rate, which enforces a given constraint on the max-
imum of active cases. A few earlier studies addressed the role of testing in the trajectory
of the epidemic. In particular, the discrete time adaptation of the SEIR model proposed in
[4] suggests that the isolation based on testing interventions can make unnecessary costly
lockdownmeasures. Two types of testing strategy have been introduced in [2], namely testing
the whole population and testing just symptomatic cases and their contacts. They showed
that both strategies lead to the 90 percent reduction of the total cases.

Several mathematical models for Covid-19 including modelling both of testing and quar-
antine have been appearing since the beginning of the pandemic. In [1] they build a detailed
agent-based model of Covid-19 transmission in the Boston metropolitan area with suscep-
tible, latent, asymptomatic, latent symptomatic, presymptomatic, infectious asymptomatic,
infectious symptomatic, hospitalized, hospitalized in intensive care and recovered individu-
als. They found by numerical simulations that a period of strict social distancing followed
by a robust level of testing, contact-tracing and household quarantine could keep the disease
within the capacity of the healthcare system while enabling the reopening of economic activ-
ities. In [18] the authors analysed several strategies to replace the quarantine through rapid
antigen testing. They assumed that all contacts are successfully identified and traced and,
once traced, are subject to one of several quarantine-based strategies. At the time being, the
number of publications is very high, so it is difficult to keep track of everything that is being
published.

Below we propose a new compartmental model, which accounts for indiscriminate quar-
antine measures, targeted detection and isolation of infected individuals based on diagnostic
testing. We compute the basic reproduction number R0 for this model and show that for
R0 < 1 only one infection free equilibrium point exists, which is globally stable. For R0 > 1
endemic equilibrium occurs.

Similar model studying slightly different features was introduced recently in [3], where
they exhibit a series of simulations and compare different levels of isolation and testing. They
conclude, as expected, that isolation (social distancing) and testing among asymptomatic
cases are fundamental actions to control the epidemic, and the stricter these measures are
and the sooner they are implemented, the more effective they are in flattening the curve of
infections. They assume that the isolation rate and testing rate are time dependent, which is
the advantage of their model.

In order to better understand the mechanism of managing the epidemic, we aim to analyze
the quantitative properties of our proposed model. Also contrary to other papers our model
considers imperfect quarantine. We compute the trajectories of the infected and quarantined
populations in the case when indiscriminate quarantining is applied and in the case when
targeted quarantining is facilitated by diagnostic testing. We then evaluate the relative effi-
ciency of the testing effort by matching the parameters of both scenarios to ensure that they
produce the same infection peak. As the measure of the efficiency, the time-integral of the
total quarantined population over the duration of the epidemic is used.

Based on the effective reproduction number we suggest a strategy tomanage the epidemic.
It consists in introducing the abrupt quarantine at the time when certain threshold is reached
and releasing the quarantine abruptly again at a later time. Although during the second phase
of the epidemic of Covid-19 such strategies were used in many countries - schools and
other facilities were closed basically from day to day, not many papers attempt to model this
complex problem mathematically. The most important question is to set the parameters of
the quarantine i.e. its timing and size in such a way that the epidemic gets under control.
We demonstrate that if this is chosen carefully further waves will not occur. An uncertain
parameter in the model is the strictness of the restrictions which in reality is difficult to
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predict. Therefore the final effect of quarantining is strongly influenced also by how well
people obey the imposed restrictions. Therefore any successful intervention strategy has to
be accompanied by good public communication.

The paper is organized as follows: The compartmental model with asymptomatic groups
is presented in the next section.We describe in details the flows between compartments. Then
we derive equlibria and reproduction number of the proposed model.

The second section we end by an overview of the related epidemiological parameters. The
values used in the numerical simulations are based on the average characteristics of Covid-19
that we distilled from the current literature.

The results are presented in Sect. 3. In the first part we concentrate on the quantitative
properties of the model. We numerically analyze the effect of the imposed home quarantine
on the dynamics of IsQ . In the second part we introduce an intervention strategy proposed
to manage epidemic without occurrence of the next waves. We discuss the role of the main
factors which are part of the intervention strategy.

2 TheModel

2.1 Model Description

Several recent studies have reported that the coronavirus can be transmitted during the incuba-
tion period before the first symptoms develop. Moreover, a significant portion of individuals
with Covid-19 lack symptoms [8]. These characteristics of Covid-19 together with the state
imposed quarantine and testing motivate the following extension of the SEIR model:

Ṡ = μ − βSIa − β(1 − ρ)S
(
IaQ + IsQ

) − μS,

ṠQ = −β(1 − ρ)SQ Ia − β(1 − ρ)2SQ
(
IaQ + IsQ

) − μSQ,

Ė = βSIa + β(1 − ρ)S
(
IaQ + IsQ

) − ωE − μE,

ĖQ = β(1 − ρ)SQ Ia + β(1 − ρ)2SQ
(
IaQ + IsQ

) − ωEQ − μEQ,

İa = kωE − δ Ia − ψ Ia − μIa,

İaQ = kωEQ − δ IaQ − ψ IaQ − μIaQ,

İsQ = (1 − k)ω
(
E + EQ

) + ψ
(
Ia + IaQ

) − δ IsQ − μIsQ,

Ṙ = δ
(
Ia + IsQ

) − μR,

ṘQ = δ IaQ − μRQ,

(2)

see Fig. 1. Here S denotes the density of susceptible individuals who are not quarantined and
SQ is the density of susceptible individuals at home quarantine. A similar labeling convention
is adopted for other groups of individuals, where the subscript Q refers to the subpopulation
at home quarantine. It is assumed that the exposed individuals labeled E and EQ have been
infected but are not infectious yet, and show negative test results if tested for the virus.
The compartment IsQ includes infectious individuals with symptoms and those infectious
individuals without symptoms who tested positively for the virus (which corresponds to the
published statistics such as the graphs provided byWHO[20]). It is therefore the compartment
of detected active cases. The individuals from the compartment IsQ are all quarantined.
Infectious asymptomatic individuals labeled Ia and IaQ show positive test results if tested
for the virus, in which case they are transferred to the compartment labeled IsQ . That is,
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testing an asymptomatic infectious non-quarantined individual results in their quarantining.
Upon recovery, the individuals from compartments Ia are recruited to the compartment R,
and individuals from compartment IaQ are recruited to the compartment RQ . Moreover we
assume that there is no need to isolate those individuals who recovered from the infection, i.e.
individuals from compartment IsQ are recruited to the compartment R. Contact tracing per
se is not included in the model but can be accounted for as a factor increasing the isolation
rates. Two different types of tests are used to detect the presence of the virus during the illness
and the presence of antibodies after the illness. For simplicity we do not consider tests for
antibodieswhich detect that a personhadCovid-19 in the past but now is healthy. Thereforewe
assume that one can impose home quarantine also on the individuals in compartment R. We
exclude reinfection, although a few cases have been reported. The quarantined population
is composed of the groups SQ, EQ, IaQ, IsQ, RQ . We assume a constant total population
size, and we scale its density to unity, hence the equation for the density of the recovered
quarantined population RQ = 1 − S − SQ − E − EQ − Ia − IaQ − IsQ − R is redundant.

Parameters β, ω and δ have the same interpretation as for the SEIR model (1), i.e. β rep-
resents the transmission rate, ω is the rate at which an exposed individual becomes infectious
and δ is the recovery rate. We cover a demographic effect through the parameter μ. The
parameter ψ denotes the testing rate, i.e. the rate of detection and isolation of asymptomatic
individuals. The fraction of individuals who do not develop symptoms when infected we rep-
resent by parameter k. Assuming Ia(0) = IaQ(0) = IsQ(0) = 0, the ratio of the symptomatic
population to the asymptomatic population remains (1 − k) : k at all positive times.

We propose to consider two types of home quarantine, namely abrupt and gradual quar-
antine. Abrupt quarantine at time tswi tch can be simply described as one timemovement from
non-quarantine departments to the quarantined ones with rate χ . For simplicity we assume
indiscriminate quarantining, i.e. the same rate χ is applied on all non-quarantined depart-
ments. The exact time point tswi tch is often set by the health authorities and its determination
may depend on various factors, e.g. the number of infected people, lack of hospital beds,
occurrence of more serious mutations, etc. In addition, we define initial abrupt quarantine as
the abrupt quarantine imposed at the time tswi tch = 0, i.e. exactly at time when the first cases
appear. Initial abrupt quarantine was applied e.g. in Slovakia, in March 2020 - all schools
have been closed right after the first confirmed case.

On the other hand, gradual quarantine is spread in time and again can depend on dif-
ferent factors such as the immediate number of infected people or positively tested people,
available hospital beds, etc. In our model we assume that the total gradual quarantining
rate is proportional to IsQ and decreases with the increasing proportion of the total quar-
antined population. Assuming indiscriminate quarantining, the rate of quarantining from
a particular compartment is proportional to the density of the population associated with
this compartment. For example, the rate of quarantining from the S-compartment is set to
χ IsQ(S + Ia + E + R)S/(S + Ia + E + R) = χ IsQ S.

Finally, the model (2) allows for the possibility of imperfect isolation with ρ ∈ [0, 1],
representing the isolation effectiveness as in [11]. Let us note that the actual value of this
parameter depends on how people behave, i.e. how they follow the imposed restrictions. Nat-
urally, the value of ρ can strongly influence the epidemic development. So people themselves
by their responsible behaviour can influence the situation, or eventually some effective state
controlling tools can also play an important role.
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Fig. 1 Compartmental diagram of model (2). Arrows show the flows (with the corresponding rate parameters)
between the compartments. Red dashed arrows indicate the transfer induced either by abrupt or gradual
quarantine. The dashed rectangle includes the quarantined populations

2.2 Theoretical Background

First of all note that for interpretation reasons we are interested only in solutions whose all
components are non-negative and less or equal then 1. The proposed model (2) exhibits a
continuum of equilibrium states when μ = 0, for which Ia = IsQ = IaQ = EQ = E = 0
and S + SQ + R + RQ = 1.

For μ �= 0 the model has the infection-free equilibrium (1, 0, 0, 0, 0, 0, 0, 0, 0) and the
endemic equilibrium:

S = abc

βω(kρc + (1 − ρ)a)
,

SQ = 0,

E = μ (βω(kρc + (1 − ρ)a) − abc)

βωb(kρc + (1 − ρ)a)
,

EQ = 0,

Ia = kμ(βω(kρc + (1 − ρ)a) − abc)

βab(kρc + (1 − ρ)a)
,
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IaQ = 0,

IsQ = μ(c(1 − k) + ψ)(βω(kρc + (1 − ρ)a) − abc)

βabc(kρc + (1 − ρ)a)
,

R = δ(βω(kρc + (1 − ρ)a) − abc)

βb(kρc + (1 − ρ)a)
,

RQ = 0, (3)

where a = (ψ + μ + δ), b = (μ + ω) and c = (δ + μ).
The basic reproduction number R0 is given by the expression

R0 = βω(kρ(δ + μ) + (δ + μ + ψ)(1 − ρ))

(δ + μ)(μ + ω)(δ + μ + ψ)
. (4)

Let us note that all involved parameters are non-negative.

Theorem 1 If R0 < 1, the system (2) has only one infection free equilibrium. If R0 > 1, the
system (2) has additionally an endemic equilibrium given by expressions (3).

Recall that we are interested in solutions in the region where all variables are bigger or equal
than 0 and less than 1. The condition for the existence of the endemic equilibrium is

kρ(δ + μ) + (1 − ρ)(μ + ψ + δ) > 0,

which is always satisfied and

(δ + μ)(μ + ω)(δ + μ + ψ)

βω(kρ(δ + μ) + (δ + μ + ψ)(1 − ρ))
< 1, (5)

which is equivalent to R0 > 1.

Lemma 1 R0 is decreasing with increasing ψ and ρ.

Proof The statement follows from the direct differentiation of (4) by ψ and ρ resp.:

∂R0

∂ψ
= −(μ + ω)βωkρ

((μ + ω)(δ + μ + ψ))2
< 0.

Similarly

∂R0

∂ρ
= βωk(δ + μ) − βω(δ + μ + ψ)

(δ + μ)(μ + ω)(δ + μ + ψ)
< 0

since k < 1. ��
Theorem 2 If R0 < 1 the infection free equilibrium of the system (2) is globally stable.

Proof Let us assume firstψ = 0. In this case the eigenvalues at the infection free equilibrium
can be easily computed and there are as follows: −μ − ω, −δ − μ, (with multiplicity 2),
−μ, (with multiplicity 4) and the last two eigenvalues are

λ = −δ − 2μ − ω − √
4βkωρ − 4βωρ + 4βω + δ2 − 2δω + ω2

2

and

ν = −δ − 2μ − ω + √
4βkωρ − 4βωρ + 4βω + δ2 − 2δω + ω2

2
.
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Let us note that the last two eigenvalues are always real since the positive sign of the discrimi-

nant 4βkωρ−4βωρ+4βω+δ2−2δω+ω2 is equivalent to the condition (δ−ω)2

4βω(1−k) + 1
1−k ≥ ρ,

which is always satisfied since ρ ≤ 1. Let us note that all eigenvalues except the last one, are
always negative, ν.

We show that ν < 0 if R0 < 1 and if R0 > 1 then ν > 0. This follows easily if we realize
that

ν = −δ − 2μ − ω +
√

(δ + 2μ + ω)2 + 4(μ + ω)(δ + μ) (R0 − 1)

2
.

For the general case where ψ is possibly non-zero, the eigenvalues are as follows: −μ − ω,

−δ−μ, −μ, (with multiplicity 4) and the last three eigenvalues are still possible to calculate,
but the expressions are several lines long and difficult to handle. We can prove the statement
by using Hurwitz criterion. The last three eigenvalues are solutions of the following cubic
polynomial

λ3 + A2λ
2 + A1λ + A0 = 0,

where

A2 = 2δ + 3μ + ω + ψ,

A1 = δ2 + 4δμ + 3μ2 − βω + 2δω + 2μω + δψ + 2μψ + ωψ + βωρ − βkωρ

and

A0 = δ2μ + 2δμ2 + μ3 − βδω + δ2ω − βωμ + 2δωμ + μ2ω + δμψ + μ2ψ

−βωψ + δωψ + μωψ + βδωρ − βδkωρ + βμωρ − βkμωρ + βωψρ.

We want to show that if R0 < 1, then A1A2 − A0 > 0, which means by Hurwitz criterion
that all the eigenvalues have negative real part and the statement follows. To show the later
we rewrite A1A2 − A0 as

A1A2 − A0 = (a + b + c)(ab + ac + bc

−βω(kρ + (1 − ρ))) − abc + βω(ρkc + (1 − ρ)a),

where a = ψ + μ + δ, b = μ + ω, c = δ + μ. Let us note that a > 0, b > 0 and c > 0.
Now R0 < 1 is equivalent to the condition

βωρkc + βω(1 − ρ)a < abc.

Therefore

βωρk < ab,

which implies

(a + b)(βωρk) < (a + b)ab

and

βω(1 − ρ) < bc,

which implies

(b + c)(βω(1 − ρ)) < (b + c)bc.

This all together implies that A1A2 − A0 > 0, and the statement for general ψ follows. ��
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2.3 SettingModel Parameters

The values of the epidemiological parameters used in the numerical simulations presented
below are based on the average characteristics of Covid-19 published so far.

One key parameter is the average duration of the infectious period. The period of infec-
tiousness (or period of communicability) is defined as the time interval during which an
infectious agent may be transferred directly or indirectly from an infected person to another
person [10]. According to [16], Covid-19 can be transmitted by an infected individual before
the symptoms develop. The average infectious period is the reciprocal of the parameter δ. The
period of infectiousness is difficult to estimate directly. According to [16], the mean incuba-
tion period of Covid-19 is 6 days. In [5], the serial interval of Covid-19 was estimated as the
weighted mean of the published parameters and described by the gamma distribution with
the mean serial interval of 4.56 days (credible interval (2.54, 7.36)) and standard deviation
4.53 days (credible interval (4.17 − 5.05)).

With a serial interval shorter than the average incubation period (4.56 < 6), we expect that
a significant number of transmissions occur before the index case has symptoms. Following
[9], the period of infectiousness is assumed to be 5.5 days, 2 days before and 3.5 days after
symptom onset. This data translates into the values δ = 1/5.5, ω = 1/4 of our model
parameters.

Another key parameter is the transmission rate β, which can be expressed as the product
of the average number of daily contacts which a susceptible individual has with infected indi-
viduals and the probability of transmission during each contact. The value of this parameter,
which is not directly observable, is inferred from the estimation of the basic reproduction
number R0.

The value of R0 for Covid-19 has been estimated within the range of 2.24 ≤ R0 ≤ 3.58
[23]. Taking into account the theoretical relation between R0 and β (see (4)) and the setup
of the other model parameters, we assume in our numerical analysis β = 0.6.

The value of the parameter k, which measures the proportion of asymptomatic individuals
among the infected population, is set to 0.5 in accordance with the estimate from [21].
According to [22] the average value of the parameterμ (the birth/death rate) is set to 0.01/365.

The coefficient (1 − ρ) ∈ [0, 1] measures the decrease in the transmission rate due to
isolation. We assume that parameter ρ is a part of intervention strategy: its value can be
determined according to current epidemiological situation and reflects the strength of the
imposed quarantine restrictions. Values of ρ close to one mean that quarantined individuals
are perfectly isolated and their ability to spread the disease is strongly limited. The exact value
of ρ is not directly measurable. However, there are attempts to quantify the effectiveness of
the government restrictions (see e.g. [12]). Such rankings can be considered as a basis for
setting the values of the parameter ρ.

The values of the parameter ψ will be specified for each particular simulation. In general
we assume ψ ∈ [0, 0.5]. This restriction is due to the limited availability of tests and the
limited number of tests that can be performed in one day. This assumption is not essential
for the results interpretation and now-days with the increased availability of test, can be
extended.

To summarize, if not explicitly stated otherwise, the values of the epidemiological param-
eters used in the simulations presented below are as follows: β = 0.6, ω = 1/4, δ = 1/5.5,
μ = 0.01/365 and k = 0.5. Initial conditions are chosen in accordance with the real sit-
uation in the city where the population size N is approximately 500,000. All simulations
of model (2) are initiated with E(0) = 2/N . We assume that initially all other individuals
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Fig. 2 Comparison of the graphs of IsQ and Ia + IaQ + IsQ for model (1) and model (2). Parameter ψ = 0

are susceptible. The initial division between S and SQ compartment is specified for each
analyzed case.

3 Results

The current epidemiological situation is raising many questions about the dynamics of the
virus spread and the effectiveness of the imposed quarantine policies. The proposed model
(2) aims to explore some plausible scenarios depending on the size of the initial quarantine,
gradual quarantining rate, quarantine effectiveness and the testing rate.

We first compare the classical SEIR model (1) and model (2), see Fig. 2a. Model (2)
reduces to (1) in the special case when k = 0, ρ = 0, ψ = 0, μ = 0. The grey curve in
Fig. 2a depicts the time evolution of the infected population for this case. Let us note that
the IsQ compartment in model (2) fully corresponds to the I compartment in (1) under this
parameters setup. Taking k = 0.5 with other parameters unchanged in model (2), we observe
the decrease of the infected population by a half because half of the infected individuals don’t
show symptoms: instead of being included in the IsQ they are now logged in the compartment
Ia . Setting ρ = 0.5 leads to a slower infection spread due to quarantine.

Let us note that typical Covid-19 statistics such as graphs provided by WHO [20] record
confirmed cases only. However, according to some sources including [21], the data suggest
that up to 80% (we assume 50% in simulations) of infections can be mild or asymptomatic.
Therefore, one can expect that the propagation of the disease by unregistered cases might
play a significant role in its spread, possibly evenmore significant than the symptomatic cases
because the latter are usually quarantined and therefore spread the virus less. It remains a
controversial topic whether symptomatic and asymptomatic cases are equally infectious and
in particular whether symptomatic and asymptomatic individuals produce the same numbers
of antibodies, which would suggest that they spread the disease approximately equally. We
assume equal transmission rates from symptomatic and asymptomatic individuals in our
model (2) for simplicity. Figure 2 shows that the proportion of asymptomatic individuals in
the population can have a significant impact on the height of themaximumof IsQ (grey versus
dotted and dashed dotted curves), i.e. the number of infected symptomatic individuals at the
peak of the epidemic. As a result, countries with different proportions of symptomatic versus
asymptomatic individuals (e.g. due to different age structure of the population or for other
immunity reasons) might show different dynamics of the epidemic, although other conditions
are similar. Introducing a reduction of the transmission due to quarantine by setting ρ = 0.5
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Fig. 3 Effect of the initial abrupt quarantine size on IsQ and Ia + IaQ + IsQ . Parameters ρ = 0.5 and ψ = 0

lowers the infection peak and simultaneously prolongs the epidemic (dashed versus dotted
curves).

3.1 Response of theModel to Variations of the Quarantine Size

Themost effective way to slow down the spread of a disease which is not vaccine preventable,
is probably to impose isolation and quarantine on the population or a selected subpopulation.
Weassume that symptomatic andpositively testing individuals are isolated (either at a hospital
when symptoms are severe, or at home). Further, the model assumes home quarantining of
part of the untested population, including healthy and asymptomatic individuals who stay at
home due to various state/business restrictions (such as school closures etc.). We assume that
these interventions result in a decreased transmission rate.

Firstwe analyzed the effect of the initial abrupt quarantine. Figure 3 shows how the number
of infected symptomatic individuals depends on the initial quarantine size. As expected, the
infection peak of IsQ lowers with increasing SQ(0) (SsQ(0) + SaQ(0), respectively), but
simultaneously the duration of the epidemic increases.

Another way to control the home quarantine size in model (2) is by using a positive
isolation rate χ . Below this strategy is referred as the gradual quarantining. The setup allows
χ to depend on time or to be controlled by the phase variables such as IsQ through a feedback
loop but, for simplicity, we assume χ to be constant.

Figure 4 compares the above two approaches to controlling the quarantine size in ourmodel
(2). The same infection peak and a similar profile of the function IsQ(t) can be achieved either
with nonzero χ or with nonzero SQ(0), see Fig. 4a. The total quarantined population is twice
larger than IsQ because equal proportions of symptomatic and asymptomatic individuals are
assumed, see Fig. 4b. Figure 4c shows that the total quarantined population is initially smaller
for the gradual quarantining strategy than for the abrupt quarantine strategy but eventually has
to exceed the latter to ensure the same infection peak height. The peak appears earlier with
gradual quarantining, and this effect becomes more pronounced with increasing quarantine
size (dotted versus solid curve).

3.2 Response of theModel to Variations of the Testing Rate

By testing we understand the detection and isolation of infectious asymptomatic individuals.
We assume that symptomatic cases are confirmed as positive and isolated (quarantined),
hence they all belong to the IsQ compartment.
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Fig. 4 Comparison of the effect of initial abrupt and gradual quarantine on dynamics of a IsQ population; b
Ia + IaQ + IsQ population; and c total quarantined population. Parameters ρ = 0.5 and ψ = 0

The parameterψ can be interpreted as the rate of successful detection of infectious asymp-
tomatic individuals.We assume that this rate is the same for all compartments inwhich testing
can detect infectious individuals. Newly detected cases are recruited from the compartments
Ia and IaQ . Therefore the compartment IsQ is interpreted as the compartment of confirmed
active cases.

As our simulations show, the time interval from the advent of the epidemic to the infection
peak and the total duration of the epidemic increase with the increasing testing rate ψ , see
Fig. 5. Further, a significant increase in the testing rate decreases the epidemic peak. However,
for a relatively low testing rate, for instance if ψ = 0.1, a small increase in the number of
confirmed active cases is observed, compared to the case when ψ = 0 (dashed dotted curve
versus the dotted curve in Fig. 5). Under low detection rate, the decrease of the spread of
infection due to quarantining of positively tested asymptomatic individuals can be masked
by the apparent increase of the IsQ population due to newly detected cases. However, the
total number of cases (i.e. IsQ + IaQ + Ia) always decreases with increasing testing rate, as
Fig. 5b shows.

3.3 Indiscriminate QuarantiningVersus Massive Testing

Due to economic and social reasons, it is clear that lockdowns applied in many countries
cannot last for very long. Therefore there is a demand to find amore economically sustainable
solution to replace massive home quarantine measures. One reasonable possibility seems to
be effective testing. The grey curve in Fig. 6a shows the evolution of the infected population
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Fig. 5 Effect of testing on dynamics of IsQ and Ia + IaQ + IsQ . Parameter ρ = 0.5

for model (2) with 13.5% of the total population quarantined at the initial moment and zero
testing rate; the dashed curve corresponds to the situation where nobody stays in quaran-
tine initially but of total population is screened daily for Covid-19 (more precisely, 10% of
infected asymptomatic individuals are successfully detected daily). Under both setups the
total infected population Ia+ IaQ + IsQ follows approximately the same trajectory. However,
comparing the dynamics of the quarantined population, we see that it is significantly smaller
at all times when testing is used than in the case when indiscriminate quarantining is applied,
see the dashed and grey curves in Fig. 6b. A similar observation can be made when instead
of abrupt quarantining the gradual quarantining strategy with the parameter χ is applied,
see the black solid curves in Fig. 6a, b. Again, the quarantined population is significantly
smaller when quarantining is based on testing than in the case when indiscriminate gradual
quarantining is used, while the trajectories of the infected population are similar for both
scenarios. Recall that the number of active symptomatic cases is proportional to the total
infected population and equals (1 − k)(Ia + IaQ + IsQ).

Figure 6c, d presents similar results for a range of values of the testing rate. We compare
the scenario with a positive testing rate ψ and zero initial quarantine size SQ(0) = 0 to the
scenarios with ψ = 0, SQ(0) > 0 and with ψ = 0, χ > 0, SQ(0) = 0. The first scenario
corresponds to quarantining based on testing, while the second and third scenarios correspond
to indiscriminate abrupt and gradual quarantining, respectively. Given a ψ > 0 in the first
scenario, the SQ(0) > 0 and χ > 0 in the second and third scenarios are selected in such a
way as to ensure that the height of the infection peak in all the three scenarios is the same (as in
Fig. 6a). This constraint defines SQ(0) and χ in the second and third scenarios, respectively,
as functions of the testing rate ψ used in the first scenario, see the graphs in Fig. 6c. For each
point of these graphs, we also compute the time-integral of the total quarantined population
over the duration of the epidemic; the latter is technically defined as the the time interval
[0, te] where te is the moment after the infection peak when IsQ(te) = 0.1/N . Figure 6d
shows that the time-integral of the quarantined population is by an order ofmagnitude smaller
when quarantining is based on massive testing than in the case when indiscriminate (abrupt
or gradual) quarantining is applied.Moreover, the ratio of the value of this time-integral in the
case of indiscriminate quarantining to its value in the case of quarantining based on testing
increases with the increasing testing rate.

These observations indicate that effective testing might be a way to replace massive quar-
antine measures. Moreover, they may help to explain why some countries such as South
Korea and Singapore, which implemented massive rapid free testing and an extremely good
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Fig. 6 Indiscriminate quarantining versus quarantining based on testing. Parameter ρ = 0.5. a Dynamics of
the total infected population, Ia + IaQ + IsQ , for a selected testing rate ψ and the corresponding value of
SQ(0) and χ resulting in the same height of the peak of Ia + IaQ + IsQ . b Dynamics of the total quarantined
population corresponding to the graphs on panel a; the same color coding is used. c For every point (ψ0, s0)
of the dotted curve, the testing rate ψ = ψ0 with zero indiscriminate quarantining (SQ(0) = 0) in the same
peak of infection Ia + IaQ + IsQ as the initial quarantine SQ(0) = s0 with zero testing (ψ = 0). For every
point (ψ0, χ0) of the solid curve, the testing rate ψ = ψ0 with zero indiscriminate quarantining (SQ(0) = 0)
results in the same peak of infection as the indiscriminate quarantining rate χ = χ0 with zero testing and zero
initial quarantine (ψ = 0, SQ(0) = 0). d The ratio of the time-integral of the total quarantined population in
the case of indiscriminate quarantining to the value of this integral in the case of quarantining based on testing
under the constraint that the infection peak is the same for both scenarios. The dotted and solid curves show
the dependence of this ratio on ψ and correspond to the curves of the same colors, respectively, on panel c

system of contact tracing, have beenmost successful in containing the first phase of Covid-19
outbreak.

3.4 Managing epidemic Using Abrupt Quarantine

As we have already mentioned quarantine can be considered as one the most effective pre-
vention strategy especially in the case of a new infectious disease. In the previous sections we
studied and compared the quantitative properties of the gradual and initial abrupt quarantine
on epidemic dynamic. However, the pool of the available strategies is much larger as we
could observe during the 2020–2021 period. The implemented strategies differed in many
factors, especially in size, strenght and timing. However, the aim of any strategy is the same:
to decrease the disease spread and to stop the epidemic.
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In this section we extend our quantitative analysis and concentrate on the effect of the
abrupt quarantine in general. In the initial phase of Covid-19 epidemic quarantine was intro-
duced just few days after the first cases occurred. This was understandable, the disease had
many unknown factors and this decision gained time to explore it more. However, in general
to introduce the quarantine early may not be the best decision since relaxing the quarantine
may bring other epidemic waves as we observed for Covid-19 in many countries during the
fall 2020.

It is an interesting problem to determine the ideal timing of the introduction of the abrupt
quarantine in our model. The second related question is the size of the imposed quarantine.

We first propose a simplified control strategy which aims to prevent the arrival of the next
epidemic waves. Let’s assume that initially nobody is quarantined, i.e. SQ(0) = EQ(0) =
Ia(0) = RQ(0) = 0. Once the critical level Iup of the observed cases IsQ is achieved, home
quarantine is applied on χ̄ percentage of non-quarantined population (i.e. SQ+EQ+IaQ+RQ).
Let us denote tswi tch the time, when the threshold level Iup of IsQ has been achieved for the
first time. Assuming indiscriminate quarantining, the rate of quarantining from a particular
compartment is proportional to the density of the population associated with this compart-
ment.

The abrupt quarantine immediately decreases the number of non-quarantined population.
We will use the following notation:

Snew (tswi tch) = S (tswi tch) − χ̄ S (tswi tch) ,

SnewQ (tswi tch) = SQ (tswi tch) + χ̄ S (tswi tch) ,

Enew (tswi tch) = E (tswi tch) − χ̄E (tswi tch) ,

Enew
Q (tswi tch) = EQ (tswi tch) + χ̄E (tswi tch) ,

I newa (tswi tch) = Ia (tswi tch) − χ̄ Ia (tswi tch) ,

I newaQ (tswi tch) = Ia (tswi tch) + χ̄ Ia (tswi tch) ,

Rnew (tswi tch) = R (tswi tch) − χ̄R (tswi tch) ,

Rnew
Q (tswi tch) = RQ (tswi tch) + χ̄R (tswi tch) .

(6)

Further disease transmission depends on the following three factors:

1. the level of the quarantine χ̄ ,
2. the strictness of the imposed quarantine ρ,
3. the threshold at which the abrupt quarantine is imposed, Iup .

Due to the complexity of the proposed Model (2), we study the dependence of the epi-
demics development on the parameters χ , ρ and Iup numerically. Different scenarios are
depicted in Fig. 7. In Fig. 7a we study the effect of different sizes of abrupt quarantine for
fixed parameters ρ = 0.7 and Iup = 0.01. If the quarantine is not sufficiently large (cor-
responding to χ = 0.2, 0.3), the epidemic continues to spread. Figure 7b shows different
scenarios for different levels of Iup , keeping ρ and χ̄ fixed. If the value of Iup is set up too
high, the restrictions have no effect on the epidemic. If this value is too low, the time of the
epidemic is prolonged and second wave develops. Figure 7c shows different scenarios under
different values of the parameter ρ, measuring the quarantine efficiency, keeping Iup and
χ̄ fixed. The higher the ρ, the effect of the imposed restrictions is more effective. Figure 7
illustrates that choosing the right strategy is a complex problem. The governments can in
practice directly influence the epidemic spread by choosing to impose the restrictions at the
right time and they have to be strong enough to avoid second waves of epidemic. The sit-
uation also strongly depends on how people well behave, i.e. how they follow the imposed
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Fig. 7 Number of IsQ cases under different quarantine parameters. a ρ = 0.7, Iup = 0.01, χcri t = 0.545 b
ρ = 0.7, χ̄ = 0.4, c χ̄ = 0.4, Iup = 0.01. In all simulations ψ = 0

restrictions. This fact can be influenced by people themselves or by some effective control
tools.

Based on the above observations we want to determine the best strategy how to handle
the epidemic. Assuming that the parameters ρ and Iup are fixed, we propose to determine
the value of the parameter χ̄ in such a way that the effective reproduction number (defined
below) drops to 1 at the time when we impose abrupt quarantine and thus the spread of the
disease will slow down. 1

Standard measure of the disease spread is the so-called effective reproduction number.
For model (2) the effective reproduction number can be defined as:

Re = R0
(
S + (1 − ρ)SQ

)
, (7)

where R0 is the basic reproduction number, see (4).
We determine the size of the abrupt quarantine in such away that the effective reproduction

number will become less then 1 at the time when quarantine is introduced, i.e.:

R0

(
Snew (tswi tch) + (1 − ρ)SnewQ (tswi tch)

)
< 1, (8)

1 Alternatively, we can fixed ρ and χ , or Iup and χ , and determine the critical value of the parameter Iup
and χ resp. ρ. The process of finding the appropriate critical values would be similar as described below.
Figure 7a–c enable us to compare graphically the time development of IsQ under critical and non-critical
values of the parameter in question.
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Fig. 8 Critical level of the abrupt
quarantine χ̄cri t as a function of
threshold level Iup for different
values of the parameter ρ.
Parameter ψ = 0

which using (6) leads to the condition

χ̄ >
1

ρS (tswi tch)

(
S (tswi tch) + (1 − ρ)SQ (tswi tch) − 1

R0

)
, (9)

which is equivalent to

χ̄ >
Re(tswi tch) − 1

ρR0S(tswi tch)
. (10)

Furthermore, if at time tswi tch nobody is in home quarantine, i.e. SQ(tswi tch) = 0, condi-
tion (10) reduces to:

χ̄ >
1

ρ

(
1 − 1

R0S(tswi tch)

)
. (11)

Let us note that the condition (11) for initially fully susceptible population, i.e. S = 1
and perfect home quarantine (ρ = 1) actually resembles the conditions for the threshold
vaccination level needed to achieve the collective immunity (for more details see e.g. [6]).

The values of S(tswi tch) and SQ(tswi tch) depend on the threshold Iup and the parameter
ρ. We denote the critical level from condition (10) as χ̄cri t , i.e.:

χ̄cri t := Re (tswi tch) − 1

ρR0S (tswi tch)
.

Due to the complexity of the proposed Model (2), we study the critical level of the abrupt
quarantine χ̄cri t as a function of the threshold level Iup for different values of the parameter ρ
numerically. Our results are graphically depicted in Fig. 8. Let us note that the threshold level
Iup determines directly the time at which the home quarantine is imposed. The higher level
of Iup corresponds to the latter phase of the epidemic. In Fig. 8 the point when the particular
curve crosses the Iup-axis corresponds to the level of the epidemic peak for a given value of
the parameter ρ. Naturally, closer to the peak, the lower proportion of the population needs
to be quarantined in order to get Re < 1. Further, observe that for small values of ρ it is
impossible to reduce Re below 1 in the early stages of epidemic (i.e. when Iup is small) since
the parameter χ̄ cannot exceed 1. Finally, Fig. 8 illustrates the importance of the parameter ρ
in the control of the disease spread: a more strict compliance of quarantine can substantially
reduce the proportion of the population needed to impose to home quarantine in order to stop
spreading the disease.

123



S216 Journal of Dynamics and Differential Equations (2024) 36:S199–S222

3.5 Relaxing the Quarantine Measures

Strict quarantine measures or possibly a total lock-down can get the epidemic under control
but naturally lead to huge economic losses. The impact of the interruption of the eco-
nomic/social activities is probably even stronger if the restrictions are imposed for longer
time. The question of when it is safe to relax the quarantine restrictions? is answered quite
inconsistently by different states and countries. The primary aim of this section is to demon-
strate how the timing of different relaxation strategies can influence the development of the
epidemic.

Similarly as for the question when to quarantine, strategy to relax home quarantine covers
not only the decision when to relax. Equally important is to ask how much of the quarantine
can be relaxed in order to avoid new infection waves.

Let us denote as Idown the relaxation threshold, trelax the first time when IsQ drops below
this relaxation threshold Idown and χ the proportion of quarantine which will be released at
time trelax . We consider Idown < Iup . Our strategy is as follows: Similarly as in the proposed
quarantine strategy described in the previous section we assume that the decision to relax
the quarantine depends on the number of detected active cases: Whenever IsQ drops below
relaxation threshold Idown certain portion of the quarantine, χ, is released. More formally,
we model the relaxation of quarantine at time trelax as one time movement of χ-proportion
of the quarantined population to non-quarantine departments:

Snew (trelax ) = S (trelax ) + χ SQ (trelax )

SnewQ (trelax ) = SQ (trelax ) − χ SQ (trelax )

Enew (trelax ) = E (trelax ) + χEQ (trelax )

Enew
Q (trelax ) = EQ (trelax ) − χEQ (trelax )

I newa (trelax ) = Ia (trelax ) + χ IaQ (trelax )

I newaQ (trelax ) = Ia (trelax ) − χ IaQ (trelax )

Rnew (trelax ) = R (trelax ) + χRQ (trelax )

Rnew
Q (trelax ) = RQ (trelax ) − χRQ (trelax )

(12)

Here again,we assume that the populationwhich leaves quarantine is uniformly distributed
between departments. The important question is how to set the threshold Idown and the
parameter χ so the epidemic will be under control.

Ideally, after relaxing home quarantine we still want to ensure

Re(trelax ) < 1,

i.e.:
Re (trelax ) = R0

(
Snew (trelax ) + (1 − ρ)SnewQ (trelax )

)
< 1, (13)

which using (12) leads to the condition

χ <
1

ρSQ (trelax )

(
1

R0
− (

S (trelax ) + (1 − ρ)SQ (trelax )
))

(14)

or equivalently

χ <
1 − Re(trelax )

ρR0SQ (trelax )
. (15)
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Fig. 9 Relaxation of quarantine. χ
cri t

dependence on the threshold Idown for different values of ρ. a Iup =
0.002, b Iup = 0.014. In all simulations ψ = 0

Since χ ∈ [0, 1], condition (15) can be fulfilled only if Re < 1 at the time of relaxation.
Let us denote χ

cri t
the proportion of quarantine for which there is equality in (15), i.e.:

χ
cri t

:= 1 − Re (trelax )

ρR0SQ (trelax )
. (16)

Let us note that the values of S(trelax ) and SQ(trelax ) depend on the threshold Idown and
the parameter ρ. Due to the complexity of the proposed model (2), we study the relation
between the parameters χ , ρ and Idown and the epidemic development numerically. Our
results are graphically depicted on Fig. 9.

Figure 9 illustrates how χ
cri t

depends on the threshold Idown for different values of ρ.

Since the results depend also on the parameter Iup we consider two situations. Figure 9a
shows the epidemic development for Iup=0.002, i.e. for the case when the abrupt quarantine
has been introduced relatively early. Figure 9b shows results for Iup = 0.014, i.e. for the case
when the abrupt quarantine has been introduced later and thus closer to the epidemic peak.
Let us note that the size of the originally imposed restrictions is different for each case with
different ρ.

As we can observe, early introduction of the abrupt quarantine (small Iup) limits the
possibilities to relax the quarantine without re-growing. Only for sufficiently low values of
the relaxation threshold Idown a small proportion of quarantined population can be released
(we assume that the effective reproduction number Re stays below 1 after relaxation). This
observation corresponds to what happened during spring 2020 e.g. in Slovakia: early quaran-
tine implies that the size of the susceptible department stays almost unchanged. Without any
other changes (e.g. vaccination) quarantine results only in postponing the epidemic: every
relaxation of higher size can restart the epidemic.

In Fig. 9b the flexibility of the relaxation is much higher. However the price paid for the
possibility of bigger size release due to later introduction of the abrupt quarantine is the
higher epidemic peak/size. In both cases the critical value of χ

cri t
decreases with the decline

of the ρ value. It is important to notice that we assume that even after relaxation the strength
of the remaining quarantine is still determined by the parameter ρ. This means that to ensure
Re < 1 for lower values of ρ larger portion of the population has to quarantined.

As our results indicate, the decision to relax quarantine restrictions should be taken very
carefully and with respect to all above mentioned factors.
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Fig. 10 Relaxation of the abrupt quarantine. Parameter ρ = 0.7 and ψ=0. Level of relaxation χ is determined
according to (16), i.e. we set χ = χcri t . a Iup = 0.002, χ̄ = χ̄cri t = 0.61, b Iup = 0.014, χ̄ = χ̄cri t = 0.50

Fig. 11 Different relaxation levels χ
cri t

. Parameter ρ = 0.7 and ψ=0. a Iup = 0.002, χ̄cri t = 0.61,
Idown = Iup/2. b Iup = 0.01, χ̄cri t = 0.54, Idown = Iup/2

First let us analyze how the level of Idown , i.e. the timing of the reopening, can influence
further epidemic development. For this analysis we consider two situationswhich differ in the
critical level Iup . More precisely, we assume Iup = 0.002 and Iup = 0.014. In both cases at
time tswi tch when the IsQ grows up to Iup for the first time, we impose the abrupt quarantine
of size χ̄ = χ̄cri t . We compare several release strategies which differ in the setup of the the
critical levels of Idown (see Fig. 10). The level of χ was determined for each set of parameters
according to the relation (16), i.e. we set χ = χ

cri t
. Figure 10 illustrates that under such

careful reopening strategy, the exact timing does not play a significant role. However, it is
important to notice here that for reopening which happens too early (i.e. Idown close to Iup)
only insignificant proportion of the quarantined individuals can be released, otherwise the
second wave of the disease outbreak cannot be avoided. On the other hand, when abrupt
quarantine is introduced later, i.e. boundary Iup is higher, significantly higher proportion of
the quarantined individuals can be released without the fear of the second wave (see Fig. 9b).

Further, a cautionary reopening seems to be an important factor when making decisions
to relax quarantine restrictions. Figure 11 shows the possible development of epidemic under
different choices of the relaxation parameter χ . Naturally, for the relaxation level χ > χ

cri t
further epidemic waves can appear. This effect is demonstrated in Fig. 11a, b.

Moreover, the Iup value (and thus the Idown value, since here we assume Idown = Iup/2)
determines the length of the epidemic period regardless of the relaxation level χ

cri t
. In our
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Fig. 12 Replacing abrupt
quarantine by testing introduces
at the relaxation time determined
by the critical boundary Idown .
Parameters ρ = 0.7 and
Idown = Iup/2

illustrative example a shift from Iup = 0.002 to Iup = 0.01 shortens the epidemic period by
approximately one half.

On the other side, longer period of the first wave with the low peak can be considered as
the advantage of the early quarantine restrictions: this period can be used as a preparation for
the second wave, as happened in many countries during the spring 2020 with the Covid-19
infection. Let us note that because of the economic/social reasons it is not possible to impose
the quarantine forever, the second wave cannot be avoided without changing the size of the
susceptible pool. Thus as our simulations demonstrate the price paid for the low first wave can
be a huge and long-lasting second wave. This situation describes the epidemic development
for instance in Slovakia, where during the first wave the peak of confirmed cases reached
max. 1000 and lasted around 2.5 months, while in the second wave the peak rose over 58,000
and the critical situation lasted from October to April (for more details see [14]).

So far in our relaxation experiments we have considered ψ = 0. As we have showed in
Sect. 3.3 quarantine can be replaced by effective testing. Therefore in our next experiment
we analyze the role of testing in the relaxation strategy. For simplicity in this experiment we
assume that testing with efficiency rateψ > 0 is introduced starting at the time of relaxation.
The effect of the testing rate on the critical relaxation level χ

cri t
is graphically depicted in

Fig. 12.
As expected, the increase in the effective testing rate results in the increase of the χ

cri t
,

i.e. with the presence of testing a higher proportion of quarantine can be released without
the appearance of the second wave. However, for the case of the early imposed quarantine
(i.e. low Iup) even the effective testing (within the range of admissible values of ψ) does not
permit to release the quarantine completely. As we can see χ

cri t
= 1 can be achieved only

for the Iup = 0.014 and ψ > 0.25. However, increasing availability of different kinds of
tests (e.g. home self-tests) can increase the proportion of positively performed tests and thus
decrease the need of quarantine.

As we have already mentioned, abrupt quarantine measures are determined by three main
factors: size, strength and timing. In our experiments timing of the quarantine introduction
and relaxation is presented by critical boundaries Iup and Idown . Our last experiment illus-
trates that choosing these thresholds is not enough, part of a careful quarantine management
must also be the size of the quarantine (assuming here ρ fixed). We present two illustrative
examples. In both we consider a fixed long-time abrupt quarantine strategy determined by the
parameters Iup , Idown , χ̄ , χ and ρ. By long term we understand that the strategy is applied
repeatably whenever the value of IsQ rises above the Iup , resp. falls below Idown boundary.

Figure 13 demonstrates that if the parameters values of the quarantine measures are not
chosen carefully, further epidemicwavesmight occur. Figure 13a compares the IsQ dynamics
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Fig. 13 Cycling quarantine. Parameters: ρ = 0.7 and ψ = 0. a χ̄ = 0.9, χ = 1, Idown = Iup/2. b χ=1,
Iup = 0.002, Idown = Iup/2

under different setup of Iup values for fixed ρ. We assume here that Idown = Iup/2. For the
illustrative purposes we set the value of the parameter χ̄ to 0.9, i.e. we introduce a large-
scale quarantine. Further we assume χ = 1, i.e. once IsQ falls below the critical boundary
Idown , the quarantine measures are completely relaxed. As our results suggest the earlier
introduction of quarantine (i.e. low Iup threshold) results in the repeating need of abrupt
quarantine. On the other hand the later introduction of quarantine (i.e. higher Iup values)
might result in high successive epidemic peaks. Thus finding of the reasonable compromise
might be an interesting but complex optimization problem. We do not attempt to solve it
here.

Figure 13b compares the IsQ dynamics under different setup of the parameters χ̄ with
fixed boundaries Iup and Idown . We can observe that the χ̄ < χ̄cri t values prevent us from
the need of the oscillating quarantine. But the price paid for this kind of strategy is a high
epidemic peak. On the other hand, our simulations illustrate that the values χ̄ > χ̄cri t lead
to similar oscillating IsQ dynamics between the same thresholds. The switching between the
thresholds is more frequent as the value of χ̄ increases, which is undesirable. Therefore to
choose values above χ̄cri t in this case seems to be inefficient. Due to economic and social
consequences of quarantine the relaxation value χ̄cri t is thus an important parameter of the
intervention strategy.

4 Conclusions

Several issues involved inmodeling the spread of an epidemic in a populationwere discussed.
We presented a modified SEIR model, which accounts for symptomatic and asymptomatic
individuals. In addition we introduced two intervention strategies: indiscriminate quarantin-
ing of part of the population and isolation of positively tested individuals.

We determined the reproduction number and calculated the equilibria of the model. The
reproduction number depends on several parameters. Two of them are part of the interven-
tion strategy, the testing rate and the level of quarantine measures. We have shown that the
reproduction number decreases as any of these parameters increases.

In the numerical analysis we used average values of epidemiological parameters according
to the current publications onCovid-19.We introduced two types of home quarantine, namely
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gradual and abrupt. We have shown that under gradual one larger proportion of population
needs to stay in the home quarantine in order to achieve the similar epidemic development.

The course of the current pandemic was influenced not only by the initial lack of infor-
mation about the new disease, but also by the lack of previous practical experiences with
managing the epidemic on a global scale. The construction of theoretical models and sub-
sequent numerical simulations helps to compensate for the lack of empirical observations
and thus clarify the impact of the intervention strategies on the development of the epidemic.
The aim of our work was to summarize the most important qualitative properties among the
individual factors that affect the course of the disease.

The model predicts that dynamics of infection are similar for both intervention strategies.
However, massive testing allows to control and contain the infection spread using a much
lower isolation rate than in the case of indiscriminate quarantining. In particular, given a
constraint that limits the maximal number of simultaneous active cases, the isolation rate
decreases with the increasing testing rate. Further, we demonstrate that massive testing mea-
sures can help to decrease the size of the quarantine, which enforces the above constraint, by
an order of magnitude and more.

In the last part of our work, we proposed a strategy that would avert the re-emergence
of the epidemic even after the release of quarantine measures. Our aim was to demonstrate
that the developments we have seen in several countries were not at all surprising. As an
example, we mentioned Slovakia, where after early strict restrictions during the spring of
2020,which ensured the end of the first wave, a larger andmuch longer secondwave arrived in
the autumn of 2020. Our results show that the second wave, after the almost complete release
of the measures we observed during the summer of 2020 in many European countries, was
inevitable without available vaccination. Unfortunately, only a few wanted to admit it, so the
measures usually came late. Although the presented model does not take into account all
the details (e.g. the emergence of new mutations), we believe that our analysis provides a
comprehensive overview of the basic quantitative observations that can help to manage the
epidemic.

The next step in this research would be to build the optimization model and determine
the optimal intervention strategy. In this work we provided a preliminary analysis and pre-
sented how the timing, size and the strength of the abrupt quarantine affects the epidemic
development.
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