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Abstract

Motivated by studies of the Greenberg-Hastings cellular automata (GHCA) as a caricature of
excitable systems, in this paper we study kink-antikink dynamics in the perhaps simplest PDE
model of excitable media given by the scalar reaction diffusion-type 8-equations for excitable
angular phase dynamics. On the one hand, we qualitatively study geometric kink positions
using the comparison principle and the theory of terraces. This yields the minimal initial
distance as a global lower bound, a well-defined sequence of collision data for kinks- and
antikinks, and implies that periodic pure kink sequences are asymptotically equidistant. On
the other hand, we study metastable dynamics of finitely many kinks using weak interaction
theory for certain analytic kink positions, which admits a rigorous reduction to ODE. By
blow-up type singular rescaling we show that distances become ordered in finite time, and
eventually diverge. We conclude that diffusion implies a loss of information on kink distances
so that the entropic complexity based on positions and collisions in the GHCA does not simply
carry over to the PDE model.

Keywords Scalar parabolic equations - Kink dynamics - Comparison principle

Mathematics Subject Classification 35K55 - 35B05 - 37L.25

1 Introduction

Many spatially extended physical, chemical and biological systems form so-called excitable
media, in which a supercritical perturbation from a stable equilibrium triggers an excitation
that is transferred to its neighbours, followed by refractory return to the rest state.

Perhaps the simplest dynamical system that realises a caricature excitable medium is the
1D Greenberg-Hastings cellular automata (GHCA) [25,26]. Its key features are that spatial
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Fig. 1 Space-time plots of pulse positions for GHCA a and positions (2) of (1), b with fy = 0.05 for initial
data with four pairs of pulses and kinks/antikinks, respectively; marked are the associated annihilation events.
In the right panel, time is rescaled such that a single front has unit speed as in the left panel. Some details on
the numerics can be found in “Appendix C”

excitation loops embedded between rest states form local pulses that travel in one direction,
and a counter-propagating pair of such local pulses annihilates, leading to a pure rest state
locally, cf. Fig. 1a. Pulse trains can be generated from local pulses by placing these at arbitrary
positions; they will maintain their relative distance until a possible annihilation. In fact, the
topological entropy of the GHCA results from a Devaney-chaotic closed invariant subset of
the non-wandering set that consists of colliding and annihilating local pulses [16,31]. From
a dynamical systems viewpoint the non-wandering set is of prime relevance, and it turns out
that for the GHCA it can be decomposed into invariant sets with different wave dynamics
[31].

However, the modelling of excitable media is predominantly done by parabolic partial dif-
ferential equations (PDE) and systems thereof. A paradigm is the famous FitzHugh-Nagumo
(FHN) equation, derived from the Hodgin-Huxley model for nerve axons [19,27,37]. A priori,
for any such PDE model, the identification and description of pulse dynamics akin to GHCA
is a formidable task and far from completely understood even in FHN. The PDE dynamics
is in general also richer and parameter dependent, for instance self-replication of pulses has
been numerically observed [11,28], and rebound of pulses upon collision [38].

In nature and experiments, one can effectively find both, discrete and continuous excitable
media. As basic examples one may consider, for a discrete situation, a set of neurons that is
spatially arranged in the cortex, and, for a paradigm of a continuous medium, a Petri dish
with the fluid mixture for the Belouszov-Zhabotinsky reaction. Although the spatio-temporal
propagation of excitations structurally differ, characteristic propagating waves can be found
in both situations. Other examples stem from different kinds of nerve axons. Myelinated
nerve axons come with a periodic sequence of myelin cells that insulate the axon except for
gaps, the nodes of Ranvier. Hence, these create an (at least partially) discrete medium, while
unmyelinated nerve axons form an effectively continuous medium. Moreover, the action
potential in myelinated nerves propagates by an overall much faster saltatory conduction,
which has a discrete jumping character, while the temporal process in unmyelinated axons is
effectively a continuous translation. These differences appear in the aforementioned discrete
versus continuous modelling, and one may be more suitable than the other depending on the
context. A common feature is that head-on collisions of action potentials (typically) lead to
anniliation. We refer to [13,20] for more details and further references.

While the existence of arbitrary local pulse trains and their annihilation is trivial in the
GHCA, already the existence proof of a single pulse in FHN is not. It is well known that
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FHN possesses a homoclinic travelling wave solution that is spatially asymptotic to a stable
rest state and thus corresponds to a single local pulse in GHCA; by spatial reflection the
direction of motion can be reversed. However, there is no meaningful notion of a local pulse
since the spatial coupling by diffusion is effectively non-local through its infinite propagation
speed. An analogue of pulse trains on the level of initial data is a superposition of multiple
travelling wave pulses placed at a distance from each other. In the dynamics of the PDE,
diffusivity immediately couples these pulses, albeit in a weak form. In the past decades, a
number of results have been obtained that rigorously relate positions of these ‘pulses’ to an
ordinary differential equation system (ODE) [17,54]. However, to our knowledge there are
no analytical results for collisions of excitation pulses in higher order equations or systems of
PDE—the closest result is the existence of an attracting invariant manifold for a sufficiently
distant pair of counter-propagating pulses [48,53]. The situation simplifies for scalar parabolic
equations; in particular, the comparison principle for scalar parabolic equations allows to
study collisions. We note that also energy methods can be used [51], even for the fourth order
(non-excitable) Cahn-Hilliard equation [49].

In this paper we consider suitable scalar parabolic PDE for periodic phase dynamics as
models for excitable media, and study similarities and differences between this and the local
pulse dynamics of the GHCA. These so-called 6-equations for oscillator phase dynamics
[8,41] are given by

0 =0 + f(O), 0, x)eS' =R/27Z, x eR,t > 0. (1

For simplicity, we specify the nonlinearity as f(6) := cos(0 + &) + fo, where fy € (0, 1)
and ®p € (0, ) is chosen uniquely so that f(0) = 0, although all results are valid in general
for the excitable case | fy| < 1 of [41]. More specifically, up to symmetry, the presented
analysis is the same for fy € (—1, 0) and the case fy = 0 is not relevant for our purposes as
it supports standing front solutions only.

Equation (1) possesses the stable spatially homogeneous state 6 = 0 and a right-moving
(as well as left-moving upon reflection) travelling wave solution 0 (z, x) = ¢(§),&§ = +x—ct
with speed ¢ > 0. The profile ¢(£) is asymptotic to 0 € S! for |£| — oo, but with non-trivial
winding number. This means that upon lifting S' to R, the rest state maps to the sequence
2km, k € Z, and ¢ maps to heteroclinic front solutions ¢ + 27k with ¢(§) — 0 as & — oo,
and ¢(§) — 2w as & — —oo.

We remark that other wave forms occur in (1), in particular pulses (homoclinic) and
wavetrains (periodic), and—near the transition to oscillatory behaviour (| f| = 1)—also other
coherent structures are possible [8]. However, in the simple GHCA, whose local dynamics
has exactly one steady state, these have no counterpart. It might be possible to make relations
by introducing subthreshold states in GHCA that create one stable and one unstable state in
the local rule.

The choice of f explicitly relates (1) to the overdamped limit of the Sine-Gordon equation,
which also arises as a phase field model for certain complex Ginzburg-Landau equations
with broken gauge symmetry [2, eqn. (91)]. Following the terminology of the Sine-Gordon
equation, we refer to these fronts as kinks, and their left-moving spatial reflection as antikinks.

In the present context we view these as corresponding to a single local pulse in GHCA. We
are thus concerned with the evolution of initial data built from kink- and antikink sequences,
such as plotted in Fig. 1. For any given solution u(x, ¢) viewed in the lift to R, we geometrically
define the set of positions of potential kinks and antikinks through the phase 7 intercepts as
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Pu(@)) ={eR|FkeZ uE,t) = Qk+ D}, 2)

which readily turns out to be a discrete set for # > 0. We will discuss conditions under which
this set meaningfully encodes kink or antikink positions also for large + > 1. A crucial
ingredient is the theory of terraces.

Roughly speaking, a terrace is a superposition of finitely many fronts, each of them being
a heteroclinic connection between two equilibria, such that asymptotically these fronts are
separated, i.e., the distances between any two fronts diverge. To our knowledge, the terminol-
ogy was introduced in [14], even though the notion was already present in the seminal paper
[21] for fronts with distinct speeds. Since then, it appeared that this notion is fundamental
in the understanding of the long time behaviour of solutions of reaction-diffusion equations.
Polacik proved in [39] under mild assumptions, in the context of scalar homogeneous semi-
linear parabolic equations, that any front-like initial data eventually leads to a terrace profile.
These results were extended to localized initial data in [36], leading to a pair of terrace pro-
files going in opposite directions. Risler independently proved similar results in the more
general context of gradient flows in [42] for systems.

When all the considered fronts travel at asymptotically distinct speeds, the behaviour of the
terrace profile, the convergence toward it (starting from front-like initial data, for example),
as well as its stability are quite well understood, see [33,39] and references therein. On the
other hand, if two consecutive fronts have the same asymptotic speed, the question is much
more intricate since the eventual separation is powered by weak interactions. In our context,
kinks are right moving fronts, while antikinks are left moving fronts, all at the same speed.

Hence, the model (1) is suited for a comparison with GHCA as it allows to study the
combination of strong interactions, when a kink and an antikink collide, and weak interactions
when considering consecutive kinks. However, this observation already suggests a multi-
scale nature, which turns out to imply a fundamental difference for the long time dynamics
of excitation pulse positions.

We informally summarize our main results. Suited to unbounded kink-antikink initial
data, we prove global well-posedness for unbounded data, and infer that the set of geometric
positions (2) consists of isolated points that lie on smooth curves except possibly at collisions.
On the one hand, as a qualitative analysis, we rely on the comparison principle and roughly
track positions which allows us to show that the minimal initial distance is a global lower
bound for distances, and to abstractly identify collision times and locations. Moreover, as a
model for the dynamics far from collisions, we show that under periodic boundary conditions
the distances of neighboring kinks asymptotically equalise, and we numerically corroborate
that this loss of information happens more broadly. On the other hand, as a quantitative
analysis, we derive the ODE in the weak interaction regime following [17,43] for finitely
many kinks and analyse these in some detail, which extends the aforementioned qualitative
terrace results. Our analysis relies on blow-up type singular rescaling and identifies the
dynamics as being slaved to dynamics on a sphere at infinity, which, for instance, shows
that distances become ordered in finite time. The latter is again hinting a loss of information
through the dynamics: the memory of the initial distances is ‘washed out’. This suggests that
the chaotic dynamics of GHCA and the entropic complexity based on positional dynamics is
reduced by the weak interaction in the PDE, and we do not expect a topological entropy (in
a suitable sense for the PDE)—based on positions alone—which resembles that of GHCA.

This paper is organized as follows. In Sect. 2 we discuss the notions of positions and
the initial data. Section 3 is devoted to qualitative and quantitative aspects for bounded
monotone data which are composed solely of kinks (or antikinks). In Sect. 4, we focus on the
annihilation process for initial data composed of kinks and antikinks. Unbounded initial data,
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i.e., infinitely many kinks and antikinks, as well as the long-time complexity are considered
in Sect. 5. Finally, in Sect. 6 we conclude with a discussion. In the appendices we collect
some technical proofs as well as notes on the numerical implementations.

2 Kinks and Anti-kinks and their Positions

In this section we introduce initial data which has imprinted positions of kinks and anti-kinks
such that the setwise definition of ‘positions’ P (u(¢)) in (2), which is well-defined as long
as u(t) is defined, turns into meaningful individual positions for all time. In order to discuss
this further, we first turn to the notion of kinks and anti-kinks in more detail.

The aforementioned regime fy € (0, 1) is termed excitable since the ODE for spatially
constant data possesses a stable rest state and an unstable state which acts as a threshold for
undergoing an ‘excitation loop’, i.e., winding once through S'. For fy > 1 the two equilibria
have undergone a saddled-node bifurcation and the dynamics of this ODE is a permanent
oscillation. We therefore fix an arbitrary fo € (0, 1) throughout.

Travelling waves of (1) with velocity ¢ solve the ODE, considered in R?, given by

and the fundamental kinks are fronts, i.e., heteroclinic connections between the stable states
2 (k+1),2mk, k € N. They are strictly monotone decreasing in u and their unique existence
(with fp € (0, 1)) follows, e.g., by phase plane analysis, cf. [41]. For k = 0, we denote the
unique translate such that u(0) = 7 by ¢ and note that ¢ > 0; the basic antikinks are
translates of the spatial reflection ¢(—£&). As a scalar reaction-diffusion equation, fronts in
(1), and therefore ¢ as well as ¢(—-), are orbitally stable [21,46]. We note that due to the
periodicity in u, there do not exist heteroclinic orbits connecting 27k and 27k’ fork —k" # 1.

We use the term kink and antikink more losely for monotone pieces of u (-, ¢) that connect
even multiples of 7. Concerning their positions, we refer to elements in the set P from (2)
as geometric positions and will introduce a notion of analytic positions in Sect. 2.2. These
types of positions generally differ, but—as will be shown—the long term dynamics leads to
large distances for which the geometric and analytic positions will be exponentially close to
each other. In particular, P(¢(t)) = {ct} is trivially a single point for all time moving with
speed c.

As outlined before, we are interested in the relative motion of sequences kinks and
antikinks that resemble superpositions of shifted ¢ and ¢(—-). We start by considering dis-
continuous initial data built from kink or antikinks steps,

2, x <0 0, x<0O
H (x):=3n, x=0, HT(x)={x, x=0
0 x>0 2w, x > 0.

Notably, the solution with initial data H~ will converge to the above kink ¢, while that with
initial H* converges to the antikink. Next, we consider initial positions

£, <& | <..<& <& <& <. .<gf )
for m kink and n antikink steps that are shifted to these positions via

Hji(x) = H*(x — gj;l).
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For convenience, we smoothen H;‘L in such a way that the geometric positions P (ug) of
the resulting ug coincide with those in (4). This can be realised by replacing H;E with a
convolution H;:i = Pk Hji for a positive, symmetric and smooth mollifier p. supported

& 7

on [—e, ¢] and sufficiently small ef depending on the neighboring initial positions, e.g.,

sf < %min{|.§?E —5;‘:1 [, |,§jﬂ.E —éﬁl |} for2 < j < n—1 and correspondingly for j = 1, n.
Hence, we set '

m—1

n—1
upGrim,n) ==Y H- () + ) H (). )
j:() J j:() 7

with n,m € Ng := N U {0, oo}, i.e., possibly infinitely many kink or antikink steps. Due
to the separated smoothened intervals the geometric positions of uq coincide with (4), i.e.,

Pug(x;m,m) = {57, 6, &0 ET ).

In the following we omit the dependence on sf since these do not influence the results.

2.1 Well-Posedness

We consider possibly unbounded initial data, which in particular covers the case of infinitely
many kinks or antikinks. In order to ensure well-posedness, one option is to consider a weight
functionw: R — R, w(x) := C~1e=CIl for some C > 0, and the Banach space

Xo:={v() e CR) v € L)}, |vlx, = [@v]eo := suplv(x)@(x)].

xeR

Theorem 1 For f from (1) the initial value problem

ur = uyx + f(u), u(x,t) eR, (x,1) e R xRy
ux,0) =up(x) € Xo, xR

has a unique solution u € C*°(R x R.q, X).

Proof The proof directly follows nowadays classical techniques, and we refer to the milestone
monograph [34] for further details. Let us just briefly recall the main steps. Rephrasing the
initial value problem as an integral equation, the local existence of a unique solution can
be deduced from a standard fixed point argument. To this end, we consider the operator
@:C(0,T], X,) — C(0, T], X) defined by

t
Dlu] := G *ug(x) +J(x,1), J(x,1) ::/0 fRGt—s(x =W fu(s,y)dyds (6)

12
where u(x,-) € C([0,T], Xy,) for x € R and G(x,1) := G;(x) := \/[%e_%,t > 0, is
the heat kernel. Moreoever, by proving the Holder continuity of this solution, a boot-strap
argument shows smoothness of the solution both in x and 7.
As for ODE with bounded vector fields, the local existence of the solution can be extended

to global existence (¢ > 0) since T is independent of the initial condition. O

2.2 Geometric and Analytic Positions

Having established global existence, we turn to the specific notions of positions. First we
note that the geometrically defined set of positions P (u(x, t; m, n)) gives locally smooth
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curves of positions as follows. More details for different types of initial data will be given in
the subsequent sections.

Proposition 1 For any m,n € Ny, n +m > 0, consider the global solution u(x, t) from
Theorem 1 with an initial datum uo(x; m, n) as in (5). Then the following holds. For any
t > 0 the set P(u(t)) is discrete and, if n +m < 0o, consists of at most n + m elements.
There is t; > 0, 11 = oo if nm = 0, such that for 0 < t < t| the set P(u(t)) consist of
differentiable curves &, (1) < &, () <... <& (1) <& (1) <& (1) <... <&F @) that
coincide with the initial positions (4) at t = 0. Moreover, as long as any two such positions
are defined, the number of elements in P(u(t)) between these cannot increase.

This Proposition in particular yields, at least locally in time, well-defined and regularly
varying positions Sf (t); we refer to Sj_ (t) as kink positions and é;r (t) as antikink positions.

Proof This proposition is a consequence of the properties of the number of zeros for linear
parabolic equations, see [4,45] for a rigorous exposition and we refer to [40, §2.3] for an
exposition of the results used next.

Let v = 9, u be the spatial derivative of the solution. Given u, it solves a linear parabolic
equation, and at t = 0 the minimum of « yields a sign change of v at a locally unique zero.
The intervals where u is constant occur on monotone parts of # and are thus not associated
to non-trivial sign changes of v.

It follows from the zero number principle that there exists 7 € (0, oo] such that v has a
unique simple zero on (0, 7'), and has constant sign on (7', o0). Moreover, from parabolic
regularity and the implicit function theorem, there exists a C! function ¢ +> 7(t) such that
v(n(t),t) =0, forall r € (0, T). This implies that the set P(u(t)) is discrete for all t > 0
and, again from the implicit function theorem, that each point lies on a differentiable curve.

Let us now turn to the case n + m < oo. Let ﬁgE be the value of up at x — =+o00. Then
(see [50, Theorem 4.4.2], for instance)

BE() == lim u(x,1).
x—Fo0
exists for all # > 0, and are solutions of the initial value problem
BE=r(pY).  BEO) =87

in particular, due to our choice of initial condition (5), it follows that these limits are constant
steady states of the above equation. Combined with the sign properties of d,u, this proves
that P(t) consists of at most n + m elements.

It remains to prove that the cardinality of P(#) is non-increasing. We claim that if there
exists ko, fo such that u(n(#), to) = (2ko — 1)m, then u(-,t) > (2kg — 1)z for all ¢ > 1g.
This is a consequence of the maximum principle: let «(¢) be a solution of the initial value
problem

a = f(a), a(ty) = ko — D)m.

Thent +— «(t) is increasing and converges to 2kom ast — oco. Let w(x, 1) = u(x,t) —a(t).
Then, taking u as given, w solves a linear parabolic equation on (ty, 00), and w(-, t9) > 0.
It follows that w(-, #) > O for all # > o, which concludes the claim and the proof. m]

In particular, for the solution u.(x, t) with a single smoothened jump kink initial data
uy(x,0) = H,, there is a unique globally defined geometric position P (u(t)) = {£«(1)}. We
denote its speed as ¢, = %5*. Recall that the single kink speed is denoted by ¢, and the
aforementioned convergence result of u, to the kink ¢ implies c,(t) — c ast — oo.
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In order to study the evolution of distances between kinks or antikinks in more detail, it
is convenient to define the following analytic positions, which however requires sufficiently
large initial distances & — &;4+1 (1 < j < n) between neighboring kinks.

The broader task of deriving laws of motion for localized states in terms of ordinary
differential equations (“laws of motion”) dates back at least to the studies on metastable
fronts in the Allen-Cahn equation by Carr-Pego and Fusco-Hale, who derived ODEs for
the analytic positions of fronts, cf. [10,18,21]. This has been explored in various directions,
notably to infinitely many metastable pulses in arbitrary dimension [54]; we mainly follow
[17] and [43].

This allows to derive such ODE rigorously only for sequences of either kinks or antikinks,
i.e., monotone initial data, and we therefore restrict attention to (5) with m = 0. Since in
this case the overall motion of kink initial data is dominated by the drift with velocity c, we
consider the deviation from this speed by introducing the comoving frame z = x — ¢, which
introduces the term cd,u on the right hand side of (1) and yields, in the covering space R,

Uy = uz; +cug + f(u). (7

The corresponding solution u(z, t) is defined globally in # > 0 by Theorem 1. We will define
analytic positions 7; (#) that relate to the geometric positions &; by ct + n; (1) =~ & (¢).

For sufficiently large initial distances, the analytic positions are defined by writing u(z, t)
as

u(z, ) =Y i@ 0+wz 0, @ik =eE—n), ®)

i=1

with n; (1 < j < n) uniquely defined through the following orthogonality condition on w
as detailed in “Appendix A”. Let L; := 82 + ¢d, + f’(¢;) denote the linearized operator of
the right hand side of (7) in ¢;, and L} := 812 —cd; + f'(¢;) its adjoint. The remainder term
w is now supposed to be orthogonal to the adjoint eigenfunctions e} := eC@ i )(p; ,l.e.

(w,ef) = / CCTMw(z, )¢l (z,0)dz =0, 1<i<n. )
R

For initial data as in (5), w is initially nonzero, so that for the study of analytic positions
it is natural—though not necessary—to replace H,its by the fronts, i.e., ¢; as in (8). Then
w(z,0) = 0 and thus remains small at least for short time. In order to control w also for
larger times, we assume that the kinks are initially well-separated, i.e., |7;(0) — ;-1 (0)] >
12<i<n).

Remark 1 For initial data vg as in (8), the set P (vg) does not coincide with the initial positions
(4), though the error is exponentially small in the minimal distance. Moreover, for nm > 0,
the set P (vo(-; m, n)) may contain spurious points such that one generally needs to assume
a minimal distance between &, and & ]Jr .

Remark 2 For any fixed ¢ and i, the analytic kink position »; (¢) equals the (shifted) geometric
position &; (t) — ct if and only if w(§; (¢),1) = (n— 1) — Z;:L#i p&j(t)—ct—nj(t)),as
can be seen from (8). In particular, all geometric and analytic positions coincide if and only
if w vanishes simultaneously at all geometric positions. However, kinks interact eventually
repulsively, i.e., their distances eventually increase (see Sect. 3 below for details) and this
implies ||w(-,7)]| = 0 ast — oo (in L? or L®) so that both definitions asymptotically
coincide.

@ Springer



Journal of Dynamics and Differential Equations (2023) 35:2199-2235 2207

3 Bounded Monotone Initial Kink Data

In this section we consider bounded monotone data which are composed of kinks and analyse
the distances between neighboring kinks in terms of the geometric as well as analytic posi-
tions. We note that by spatial reflection the discussion equally applies to bounded sequences
of antikinks. First we track geometric positions via the comparison principle, which applies
for any initial distance, but only constrains the positions to lie within certain intervals, referred
to as gaps, that also depend on the initial data. The analytic positions provide more specific
laws of motion that apply immediately for initial data with sufficiently distant positions,
or—more abstractly—from some point in time onward with a distribution of positions for
which we just know the positions up to the gaps.

The latter relies on the results by Pola¢ik and Risler, which state that front-like initial data
converge to a terrace whose speeds converge and whose distances eventually diverge, albeit
without a quantitative estimate. For our purposes, this can be summarized as follows.

Theorem 2 ¢f. [39,42] Let —t < ug < 2m(k + 1) (k € N) be an initial datum with
limy s _ oo ug(x) = 27k, limy_, oo ug(x) = 0 and corresponding solution u. Then there exist
C! functions &, . .., & on R satisfying

lim &0 =0G=12....0, &0 =& —>00(=12...k=1D

such that the solution u(-, t) converges to the corresponding terrace:

k
uC.0) =Y ¢t —ct—§0)| =20
Jj=1 00
Remark 3 In Proposition 3 below we give a lower bound on the distances which is of course
far from optimal in the asymptotics t — oo. Naively, one might suppose that all distances
monotonically increase; however, this is not true in general, as the results in Sect. 3.2 show,
and numerical simulations illustrate, cf. Fig. 4a, b.

In order to describe the long-time behaviour of bounded solutions under kink-antikink
annihilations, we consider limit sets. For bounded monotone solutions, this has already been
done—for a much broader setup—in [39] from which we take the following definition of the
limit set

2(u) :={v :u(-+ x,,t,) - v for some sequences 1, — oo and x, € R},

where u € L®(R x RT) and the convergence is in Lﬁfc (R) (locally uniform convergence).
Compared to the standard definition of w-limit set, this allows to observe any finite piece of
the graph of u(-, ,,). For the special situation of Theorem 2, the set is given by

) ={e¢-—1):1eR}U2rj:j=0,1,...,k}, (10)

cf. [39]. Our results add the description of w and §2 in case m +n < oo and mn # 0, even
though they are consequences of (10) after pairwise annihilations of kinks and antikinks.

3.1 Qualitative Aspects: Comparison Principle

Let ug(x; n) := ugp(x; n, 0) be a monotone initial datum (5) without antikinks and associ-
ated global solution u(x, t; n); recall the positions are globally defined and differentiable
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Fig.2 Sketch of initial datum
ug(x; 4) (black) with four
antikinks at equidistant positions
£(0),i = 1,2, 3,4, such that
u(£;(0),0) = (2 + 1)z. The
blue initial datum is given by u
with position 7;(0) = &;(0) for
j =1, 2,3 while the red one is
given by i with positions

Vi (0) =&;41(0) for j =1,2,3.
For the purpose of illustration, the
curves are plotted slightly below
and above ug(x; 4), respectively

according to Proposition 1. Since the data has kinks only we omit the superindex ‘—’ and
also introduce the following notation for the speeds of positions, the nearest distances and
the minimal distance (starting from a given position):

ci(t) == %&(t), 1<i=<n, (11)

djt) :=§;(t)—&n@), 1<j<n-1 (12)

d;(t) ;= min ]dj(t), (13)
i<j<n—

as well as dmin (t) :=d | (1).

Equidistant kinks. Let us first consider initial data composed of equidistant antikinks,
cf. Fig. 2, as it is straightforward to construct sub- and supersolutions in order to compare
the speeds (11) and, consequently, to find a uniform lower bound on the distances (12).

Proposition2 Let u(x,t;n) (n > 2) be the solution with an initial datum uo(x; n), where
di(0) =dy forall1 <i <n — 1 for some constant dy > 0. Then c1(t) > c«(t) > c,(t) for
allt > 0, and c1(0) > ¢2(0) > ... > ¢,(0) . In particular, initially all distances d; (0) are
non-decreasing in t and d;(t) > do for all t > 0.

Proof We will consider solutions u(x, #; k) forinitial uq(x; k) with positions & i=1,...k
with k < n. That is, the positions of ug(x; k) build a proper subset of {§; : 1 <i < n} which
contains the positions of 1o (x; n). We compare the speeds of kinks which we therefore denote
as c/?, where we omit the argument ¢ for readability; hence, c, = c{. Recall that by c,, we
denote the speed of the solution u,(x, ) with a single smoothened jump kink initial datum
H, cf. Sect. 2.2.

We first prove the statement for n = 2. In this case, the initial datum uo (x; n) is sandwiched
by H(x — &) < up(x;n) < H(x — &) + 2x for all x € R. By the comparison principle,
for the solution u (x, t) with u.(x,0) = H(x), we have u,(x — & + 1,1) < u(x,t;n) <
ux(x —&,t)+2m forall (x, 1) € R x R,. Since both Hy and H; move with the same speed
Cx, the speeds of the kinks satisfy c% > Ccy > c% forall t > 0.

For n > 3, we choose sub- and supersolutions composed of n — 1 antikinks (cf. Fig. 2).
More precisely, let ug(x; n — 1) be the initial condition composed of n — 1 kinks with the
same n — 1 positions, &; (0) for 2 < i < n, as ug(x; n). The comparison solutions arise from
the initial data

ug(x) :==uo(x —do;n — 1), uo(x) ;= up(x;n —1) 4+ 2m.
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Fig.3 Sketch of gaps (hatched):
§,(0) <§(0)fori =1,2,4.The
associated speeds need not be
ordered. In particular, the
distances may be increasing or
decreasing

In particular, the kink positions of u are &;(0) for 1 <i < n — 1 and those of ug are &; (0)
for2 <i <n. )
Since u and u are translates of each other, their positions § . &,1 <i <n—1lareequalup

to shift by dp and have the same speeds c{“l, for all + > 0. By construction, u, < ug < ug
and thus the corresponding solutions satisfy u < u(-;n) < u for all (x,7) € R x R4 by
the comparison principle. We can therefore compare the speeds c’; with the speeds c?_] of
positions in u and i, respectively, which leads to the following relations for all # > 0:

n n—1 n—1 n n—1 . n n—1
i =c, ¢ =cj = forl < j <n, cp < Ch_)
Hence, ¢} > c:'_l > C?+1 fori = 1,...,n — 1. By iterating this construction of sub- and
: n n—1 2 n n—1 2
supersolutions, ¢{ > ¢{”" > ... > ¢{ > c and, analogously, ¢;; < ¢, <... <c¢; < cfor
allt > 0. O

We note that the proof of Proposition 2 shows that there is a hierarchy of speeds when
removing kinks on the left or right. Up to equality in the bounds, kinks for equidistant data
spread out, and the more kinks there are, the faster the spreading can be.

Non-equidistant kinks. For more general initial data, only the overall distance &, () —
&1 (¢) and the smallest distance dp;, (¢) can be controlled by our approach of sub- and superso-
lutions: lower bounds can be inferred for the distances only up to “gaps” rooted in the initial
data. In these gaps the ordering of the associated positions and speeds cannot be further
constrained by this method, cf. Fig. 3. In view of the upcoming analysis based on analytic
positions, this is not surprising since distances may behave non-monotonically.

Proposition 3 The solution to any initial ug(x; n), n > 2, satisfies the following for all t > 0:
d
a(é:n(t) —&6@) =0, c1(t) = (1) = cn(0),
di(t) > dpin(0) Ve >0, 1 <i<n-—1. (14)

Moreover, if dmin(0) = d;(0) for some 1 < j <n—1andt > 0thend;(t) is non-decreasing
forallt > 0. In particular, dnin (t) is non-decreasing at least as long as the minimal distance
is realised at the same index as initially.

Proof The proof is analogous to that of Proposition 2. Comparing u# with single kinks shifted
to &1 as a subsolution and to &, as a supersolution we immediately infer ¢1(¢) > c.(t) > ¢, (t)
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Fig.4 Simulation of kink distances (a) (with zoom (b)), positions (¢) and speeds (d), starting from an initial
condition with five kinks and fj = 0.2. As can be seen from (a) and (b), the distances need not be monotone
functions, but are eventually ordered, cf. Sect. 3.2. Moreover, the speeds of the kinks converge to the single
front speed (d)

so that % (&, () —&1(2)) = 0. Next, we replace dy in the proof of of Proposition 2 by dpin (0)
and use again ug(x) := ug(x —dmin(0); n —1), as well as u, := uo(x; n—1)+2m, cf. Fig. 3.
By the comparison principle this implies for all # > O the relations ¢}’ < c;'__ll for2 <i<n
from the supersolution, but the subsolution only yields for j such that diin (0) = d;(0) the

1

relation c';_ < cﬁ. Taken together we obtain, for all > 0,

n n—1 n
L > > ¢
c;zc;  ZCiy,

and therefore %d i (t) = 0. In particular, %dmin () = 0 as long as the minimal distance is
between &;(¢) and &1 (¢), but at least for # = 0. O

As this use of sub- and supersolutions is limited by the described gaps, a substantial part
of the next section is devoted to a deeper analysis of the behaviour of the distances in terms
of the analytic positions.
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3.2 Quantitative Aspects: Projection Scheme

The above discussion, and in particular Proposition 3, gives a first qualitative overview of
interactions between stacked fronts traveling at the same asymptotic speed c¢. The purpose of
this section is to obtain deeper insight into the relative laws of motion of the front positions,
which is however valid for sufficiently large distances only. As mentioned in Sect. 2.2, we
follow an approach that has developed out of the analysis of meta-stability of fronts in Allen-
Cahn equation in [10,18].

Recall the notion of analytic positions from (8), (9), and denote 1 := (1, ..., n,) as well
as

8j:=nj—1njr1, OSmn=min{d;,1 < j<n-—1}.

Initial data (8) with w = 0 form the nested n-dimensional manifolds (with § = 8in)

n
K=Y ¢C+z0—n):im>m>>n, ni—nip1>8i=1..,nz2¢eR
j=0

Theorem 2 shows that kinks interact eventually repulsively, which can be understood as
asymptotic stability of s for any 6 > 0. In this section we will show that, for any sufficiently
large §, KCs parametrises an n-dimensional invariant manifold M, and we study the reduced
dynamics on it. Moreover, M is globally attracting for initial data as in Theorem 2. In
particular, any initial datum with initial data from geometric positions (5) is contained in its
basin of attraction, if the initial geometric distances are sufficiently large (Fig. 4).

This analysis relies on the following results, which can be inferred from [17]. Although
the latter is not intended to specifically study stacked fronts as in his paper, but rather pulses,
our situation can be dealt with by exactly the same methods.

We reformulate the results that we use in our notation and towards our purposes, and refer
in particular to Theorems 2.1, 2.3 and 4.1 in [17] for proofs. We also provide in “Appendix
A” some more details and a derivation of the reduced ODE system, in order to close the gap
to [17].

The basic observation is the following well known decomposition in such neighborhoods,
which readily follows from an implicit function theorem, cf. “Appendix A”. Here we consider
neighbourhoods of K5 defined as Uy 5 := K5 + {v € H*(R) : |vllz1 < &}

Lemma 1 There exist 5%, ¢* > O such that for any v € Ug+ s+, there exist unique ny, - - -1, €
R” and a unique function w(z) € H>(R) satisfying

v(z) = Z(D(Z —n;) +w), / e“w(@e(z —nj)dz=0, foralll < j <n. (15)
j=0 R

We note the following direct consequence of Lemma 1 together with well-posedness.

Proposition 4 For any solution u(z, t) of (7) whose initial data lies in Ug» s« we have T, 1=
sup{t : u(z, s) € Ugx s+, 0 < s <t} > 0 and there exist unique functions n1(t), ---n,(t) €
CcY0,T,), and w(z, 1) € C' (0, T,) x R) such that (8) and (9) hold for all t € (0, T).

In particular, initial conditions u¢ (x; 0, n) from (5) with d;, sufficiently large lie in U« 5+
so that Proposition 4 applies for those as well.

Building on the decomposition (8), the following proposition, which is a combination of
results from [17], cf. “Appendix A”, gives a quantitative description of the relative motions
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as a reduced ODE for the analytic positions 1;. Relevant for the laws of motion are in
particular the eigenvalues of the linearization of (3) in the asymptotic states (¢, ¢’) = (0, 0)
and (¢, ¢") = (27, 0), which we readily determine as
—c —+/c2 —4f(0) —c++/c2 —4f(0)

<

0, u:= 0; 16
> s > > (16)

recall f'(2m) = f/(0) by periodicity of f, and note A = —u — c.

A=

Proposition 5 There exist 8, > 8%, &, < &* such that Us, s, contains an n-dimensional
exponentially attractive locally invariant manifold M, which is a graph over Ks, in terms of
corrections w = w(n) satisfying (15). The reduced n-dimensional dynamics of (7) on M is
given by the following ordinary differential equation system, which is defined for Smin > 4«
andwherea, ag,ap, > 0,andR;j(n),1 < j < n,are Cl—functions;furthermore nta > —A

for fo =~ 0.

n) = ape*m=m) 4+ Ry (n)
0 (1) = age =) — apemhOISIT) LR (), 2 < j <n—1, (17
n,(t) = —age ™ Hm-1"1) L R, ().

The remainder terms R j(n) and the correction term w(n) satisfy, for some constant C > 0,
IR;1, w2y < Ce™ W) min, (18)

Remark 4 Remark that we do not claim that © +« > X for all fy € (0, 1), which means that
the remainder terms R ; and w are not necessarily higher order compared with the a -terms
whose exponential rate is A.

In the remainder of this section we analyse (17) in more detail and in particular infer that,
if the initial distance are large enough, then the validity constraint dy,i, > J. is satisfied for all

t > 0. This is of course consistent with Theorem 2, which moreover implies that all solutions
with certain initial data eventually satisfy (8), (9) and obey (17).

Theorem 3 There is 81 > 8, such that U, s, is forward invariant for (7). In particular, the
decomposition (8), (9) and the ODE (17) are valid for all t > 0. Moreover, for any solution
u(z, t) with initial datum as in Theorem 2, there is t| > 0 such that u(-, t1) € Uy, s,.

Proof The proof is given in Sect. 3.2.4. O

The analysis of (17) is facilitated by normalizing § = wé;(t/m) and setting Smin =
min{sy, ..., 8,}, € :== min{c, c}/u, so that (17) takes the form
Sa — 6_81 + gle_(1+$)3mi“,
(19)

5. = eigf — eigj—l + gje*(l‘f"‘f)gmin7

,4
J
where gj, 1 < j < n, are bounded. Note that while Smin 1S in general only Lipschitz
continuous due to the minimum function, the products g je_(l"'s)gmi“, j = 1,2 are smooth.
For convenience, we extend their domain beyond the definition limit Simin > 8, to smooth
functions on R’} with g; bounded.

Our aim is to analyze the temporal ordering and asymptotics of the distances & ] =
1,2..., n. To this end, we consider system (19) as a perturbation of the system with g; =0
forall 1 < j < n, which we refer to as the unperturbed system.
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3.2.1 The Unperturbed Distance System

For the unperturbed system, i.e. the system,

8 = e_g‘,
~ o (20)
§i=ei—et, 2<j<n,

we directly get 5’1 > (), that is the rightmost distances is increasing. Moreoever, the distance
Sj (2 < j < n) increases if (and only if) Sj < Sj,l, i.e., if the distance between the j-th kink
and its left neighbor kink is smaller than the distance to its right neighbor. In particular, the
smallest distance at time ¢ > 0 increases. This motivates the question whether the distances
are eventually ordered and which asymptotics are implied by this ordering.

Theorem 4 There eicists T > 0 such that S,,(z) < g,,_l(t) < ... <d (t) forallt = T.
Moreover, lim;_, , 85 (t) = oo forall 1 < k < n.

Proof Let us first prove the divergence of the distances by induction over n. The statement is
clear for k = 1 since §; (t) =log(t+C), C > 0. Suppose the statement holds for §; with 2 <
k < n and, by contradiction, 5,,+1 < M forsome M > 0. Then 5,’1+1(t) >eM_o=h) 5
for ¢ large enough. Consequently, 5n+1 converges, hence lim;_, o S;l @ = 0 and thus
Sp(t) = M ast — oo, contradicting the induction hypothesis.

As to the eventual ordering, we first show the existence of some 77 > 0 such that 52 (1) <
81(r) forall + > Tj. To this end, assume by contradiction that for all # > 0 there exists some
f1 > t with &, (1) = 5 (1), i.e. Sé (t1) < 0. By the divergence of the distances, there exists
tr > t; with 5’2 (f2) > 0. Since §; increases monotonically, this implies that 8, intersects the
8>-nullcline {(31, 52) 28 = 32} infinitely often. However, this is impossible since the set
{(52, Sl) 28 < 81} = {8, 81) : Sé > (} is forward invariant. In particular, if 5 (1) = gl(t)
for some 7 > 0, then 5,(') < 8;(¢") for all ' > r. Analogously, there exists 7» > T with
83 (1) < 5 (t) for all t > T,. Likewise, for all remaining pairs of distances, there exists some
suitable time 7; > T;_1. Setting T := T} concludes the proof. O

In order to get a result similar to Theorem 4 for the perturbed system, we first refor-
mulate the problem by applying a polar blow-up transformation; this enables us to apply a
perturbation argument.

3.2.2 Polar Blow-Up

Substituting z; = e~% into (19), and setting zmax := e ~*min we obtain the system

/ 2 I+e

21 = 721 — 8121 Zmax»

o 2 . , — :

7, =—2;+2j-12j — 8jZjZmax» 2=J=n

which posssesses the non-hyperbolic equilibrium 0 = (0,0,...,0)T € R". The polar
blow-up transformation z = (z1,22, .. z)F = r@W¥(@) with r € R and ¥ =
W1, ¥, ..., ¥)T € 5" !yields

Z/l = _r2l1,12 _ r2+8g1 lII] lpng;&é‘, (21)
7= W W — W) — gt 2 < <,

@ Springer



2214 Journal of Dynamics and Differential Equations (2023) 35:2199-2235

where Zmax = %¥max, 1.€., for each ¢ there is j such that W« (1) = W¥;(t). Note that the
equilibrium 0 corresponds to r = 0. The inner product with ¥ gives

@ W) =r'() =) W =—r’%, — 0¢*) (22)
k=1

where ¥, = 11/13 — > llsz(lllk_l — ;). Using z; = r'W + r¥) together with (22) in
(21) we may divide left and right hand sides by r to obtain

W = r(Z, — ) + 00T,
W= e (o = ¥+ E) + 00,

Dividing the right hand side by r results in the desingularised radial and angular equations

¥ ==X, — O, (23)
U =¥ (Z, — ) + O@°), 24)
=W — P+ 5,) + 000, (25)

which, for r > 0, has the same trajectories as (22) and solutions are related by time rescaling.
Analogous to (20), we consider system (23)—(25) as a perturbation of the unperturbed
polar system with g set to zero (1 < j < n), i.e., zero error terms in (23)—(25), which means

r'=-X,r, (26)
W= WS, W W), 1<j<n ¥i=0. @7)
We remark that directions to infinity for (S Ty evns Sn) € Ri viewed in polar coordinates

correspond to directions to the origin in z-coordinates. Indeed, there is a bijection between
these §-directions, and the points on the sphere ¥ € §”~! with non-negative coordinates for
the blown-up z-coordinates. In terms of the z-coordinates, the real projectivized flow near
7z = 0 corresponds to the above flow on this part of the sphere, which can be related with
Grassmannian linear dynamics in z = 0, i.e., for asymptotically large distances. However,
we do not pursue this viewpoint here; the interested reader is referred to, e.g., [24,32] and
the references therein.

3.2.3 Unperturbed Polar System, Part I: Radial and Angular Dynamics

Since all distances are positive, we consider the part of the sphere with positive coordinates,
STi=8Tm) = {x = (x1,x0, ..., x)T € 8" i x; > 0Vi),
on which the following holds.

Proposition6 X, > 0 on S+. More specifically, ¥, > l1//.20/2, where the index jo is such
that W, =0for1 <k < joand Wy > Ofor jo <k <n.

Note that the index jg exists since (¥, ..., ¥,) € $7~1 does not vanish.

Proof Rewrite X, as ¥, = wj% + Yo W2 (W — W) and set fi1 (W) 1= W2 (¥ —
Yy_1) as a function in ¥, with parameter ¥ _; which has its minimum (on [0, 1]) at %!I/k, 1,
ie. fr—1(¥) > fi—1 (%'I/k,l) = _%ng—l' Hence,

4 n 4 n—1 2
3 3 _ w3 3 _
D § vl = - o ) ' v W= 3% (28)
k=jo+1 k=jo
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. k—j .
Since ¥, = glI/k,l one gets ¥ = (%) 70 ¥, by recursion and consequently,

4 "= o3k 4 S 2\F\ 15 1
3 3 3 _ 3 3
Zn 2 W)y — 27 Z (g) Wi, > ¥ (1 - 27 Z (g) - Elp/’o = Elp.io

k=jo k=0

[m}

Lemma 2 llfjf > 0for0 < ¥; < 1andthereexistT > 0,& > Osuchthat Wi(t) € (g,1—¢)
forallt > T.

Proof If ¥; =0, we have ¥; | —¥; 4+ X, = ¥;_| + X, > 0. Choosing ¥; > 0 small
enough, we therefore get lI/Jf =V;(¥;_1 —¥;+X,) > 0. This, together with Proposition 6,

implies the second statement by contradiction. O

As a consequence, the distances of the distances s ;j in the unperturbed ODE system are
bounded.

Proposition 7 Solutions to (20) satisfy |Sj — 8| > 0and Sj — 85 =01 ast — .

Proof The distances are eventually ordered (cf. Theorem 4), thus |8 j —8x| > Ofor larget > 0.

~ ~ "" s . W
To prove the boundedness, suppose that §; — 8y — oo. Then, e~ Gj=%) — % — 7: — 0.
However, due to Lemma 2, % € (1%, ﬁ) for large ¢ > 0. O
'k ) &

3.2.4 Consequences for the Perturbed Polar System

We now return to the system (23)-(25). On the sphere (i.e. for r = 0), the angular equations
(24) and (25) coincide with those of the unperturbed polar system (27). Likewise, near the
sphere (i.e. for 0 < r < 1), the radial dynamics (23) are dominated by the radial term
—X,r, cf. (26). This allows for a perturbation argument from which one can deduce that the
distances in the perturbed system diverge.

Theorem 5 There is 50 > 0 such for all solutions to (19) with Smin (Q) > So, the statements
of Theorem 4 and Proposition T hold true. In particular, there exists 81 > 0 such that for all
solutions to (19) with 8min(0) > 81 it holds that Smin () > Smin(0) for all t > 0.

Note that together with Proposition 5 this in particular implies Theorem 3.

Proof With respect to the unperturbed polar system (26)—(27), Mg := {r = 0} x S+ is an
inflowing normally hyperbolic invariant manifold (cf. [29,52]) since the transversal eigen-
values are strictly negative, cf. Proposition 6, and the boundary is repulsive due to Lemma 2.
By robustness of such invariant manifolds, M possesses a non-trivial local basin of attrac-
tion I” for the unperturbed and perturbed polar systems (23)—(25). Theorem 4 implies that
any solution to the unperturbed system with angular initial data in ST enters I" in finite
time, which therefore also holds for the perturbed system if initial distances are sufficiently
large. These solutions thus converge to M. The property that eventually ¥; € (g, 1 — &),
cf. Lemma 2, is likewise structurally stable and thus remains valid for the perturbed polar
system. In particular, this property means that all distances & j diverge.

Without loss of generality, we can choose I to lie in the n-dimensional local stable
manifold W* of My in the unperturbed system, which we write as W*(S™) since My is
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trivially parameterized by ST. Now, for the perturbed and unperturbed polar system, W*(S+)
is foliated by one-dimensional strong stable fibers W** (&), respectively,

wish = [ wew, (29)
vesSt

which are pairwise disjoint and each intersect My in their base point ¥ € S*. The dynamics
of the base points is given by (27) for both the perturbed and unperturbed polar systems, but
the fibers differ in general.

The key point is that the flows of both (26)—(27) and (23)—(25) in I" are slaved to the
base point flow such that the perturbed flow inherits the properties of the unperturbed flow as
claimed. More specifically, let ¥ (¢), ¥ (0) € ST be asolution to (27). Then the perturbed and
unperturbed flows map their respective fibre W** (¥ (0)) into their respective fibre W** (¥ (z));
using the foliation (29) for local coordinates of the perturbed system near the sphere, the
base flow (which is always the same) decouples from the transverse fibre flow, which differs
between perturbed and unperturbed flow.

Since the base point flow leads to an eventually ordering of the distances for the unper-
turbed polar system, cf. Theorem 4, the slaving implies the same for the perturbed system
(19). The remaining claims follow analogously. These imply that there is &, such that 8§y, ()
grows strictly if Smin > S*, which implies the existence of an 81 < 8, as claimed. O

3.2.5 Unperturbed Polar System, Part II: Local Stability

Here we add more details to the dynamics of the unperturbed polar system: we prove that there
is a unique equilibrium point in S, and it is locally exponentially stable. For illustration, let
us first consider the simplest cases n = 2 and n = 3, cf. Fig. 5.
For n = 2, the system (27), with X, = l1/13 — Y l1/22 + 4/23, reads
V) =W (—¥ + o)
Uy =W (P — ¥ + Xy).

Let us first assume that ¥ # 0 which implies ¥; = X for an equilibrium. If ¥, # 0,
then ¥, = 2% and thus ¥, = +,/1, and yields the two equilibria £ 5 := % ( /1, 2\@ .

For @, = 0 we find the two equilibria E3 4 := (£1,0) and for @; = 0 the last two,
Es5 6 := (0, £1). In total, the system has Sy := 2(22 — 1) = 6 equilibria.

For n = 3, the situation is already a bit more complicated. We have X3 = l1/13 -y %2 +
w3 — WhW? + W3 and need to distinguish the following different cases depending on the
number 0 < k < 2 of zero coordinates, each giving a pair of equilibria:

(i)k:O:E1,2:i< .2 ﬁ,3,/ﬁ)
(ii)kzl:E3,4=i( 12 §,0>,E5,6=i(\ﬁ,o,\/§>,&,g=i(o,\/§,2ﬁ)
(iii) k=2 Eo,jo = (£1,0,0), Eqy 12 = (0, £1,0), Ey3,14 = (0,0, £1)

In total, the system has S3 := 223 -1) =14 equilibria.
For general n € N the following holds.

Proposition 8 For n € N, system (27) posesses S, = 2(2" — 1) equilibria. Specifically,
there are (i) 2n equilibria which have exactly one non-zero component (which is therefore
+1) and (ii) S, — 2n — 2 equilibria with 2 < j < n — 1 non-zero components.
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Proof Letn € N and S, denote the number of equilibria ¥ = (¥, ..., ¥,) of dimension .
First note that ¥; # 0implies for equilibria ¥; = X, +¥;_| by (27). Thus, ¥; | =0, ¥; #
0 implies ¥; = X, and adjacent non-zero entries come as a sequence (X, 2%, ..., kX)),

where 2 < k < n. Hence, an intermediate zero coordinate between two non-zero coordinates
results in a triple (X, 0, X,).

Consequently, if ¥; = 0, the S,,—1 equilibria of dimension n — 1 occur with shifted index;
this in particular includes the vectors with ¥; = £1forsome 2 < j < n and zero coordinates
otherwise. Denote the number of remaining equilibria with ¥ # 0 by M,,. By the discussion
above, M, is the number of possibilities to have k € {0, 1,...,n — 1} zero entries on the
positions different from ) # 0 (in particular including (£1,0, 0, ..., 0)). This number is
given by M, =23 j_ (" 1).

All together,

n n—1 n
S, = M, +S,,1_ZM =2 Z( ):2221—1:2(2"—1).
Jj=1k=0 j=I
O

By the previous lemma, the unique equilibria with non-zero coordinates only are given

by Ex := (¥, 2%, 3Y, ..., n¥), where ¥| = + /W

Local stability of E . In the following, we focus on E := E_ since for the question of
divergence of the distances in the perturbed ODE-system this is the only relevant asymptotic
state. In fact, we expect that it is a global attractor on ST as can be illustrated by simulations
forn = 2andn = 3, cf. Fig. 5. However, it seems difficult to prove this rigorously in general.
Instead, by linearizing (27) in E and determining the eigenvalues of the Jacobian, we show
that E is locally stable on "~

Theorem 6 The equilibrium E is locally exponentially stable on S"~'. The eigenvalues of
the linearisation in E are given by —%n(n +1)(2n+1),2 <k < n. For the full unperturbed
polar system in R", E possesses the unstable eigendirection transverse to My spanned by
(1,2, ...,n)T with corresponding eigenvalue %n(n +1)2n + 1).

Proof The somewhat lengthy proof is given in “Appendix B”. O

4 Bounded Initial Kink-Antikink Data and their Annihilation

Having discussed pure kink or antikink initial data, we now turn to initial data which are
composed of kinks and antikinks, that is, initial data (5) with n +m < oo and nm #* 0,
cf. Fig. 6 for illustration. Here we constrain ourselves to bounded data and consider the
unbounded case in Sect. 5. We aim to infer information about the process by which the
respective inner pair of kink and antikink with positions & ;—L (t) annihilate each other.

4.1 Annihilation Process
In case m = n, the equal number of pairs of kinks and antikinks completely annihilate each

other in the sense that the solution converges to the rest state 2 n given by the asymptotic
state of the initial data.
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(a) (b)

Fig. 5 Phase portraits and equilibrium E (marked as red point) for a n = 2 and b n = 3, respectively.
For better visibility, the phase portrait is restricted to the upper hemisphere for n = 3. As these simulations
suggest, E is a global attractor on ST for these cases

Fig.6 Sketch of initial datum (5)
withm =n =4
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Proposition 9 Letr ug(x, n,n) be an initial datum (5) with m = n,0 < n < oo. Then,
lim; oo u(-,t) = 2mn, where the convergence is uniform in x € R. In particular,
o (uo(x;n)) = 2(uo(x; n)) = {2mn}.

Proof Consider subsolutions with initial data the pure kink- or antikink sequence u¢(x; n, 0),
uo(x; 0, n) built from the kink- or antikink positions of uo(x; n, n), respectively. According
to Theorem 1.1 [39] the kinks and antikinks move with uniform positive, respectively negative
speed. The comparison principle implies the claim. O

The following proposition describes the corresponding annihilation process in some more
detail by showing that the kinks-antikink pairs get annihilated successively from “bottom to
top” as expected intuitively.

Proposition 10 Let ug(x; n,n) be an initial datum (5) with n < oo and corresponding
solution u(x, t). Then, there are unique times ) < t| < t» < ...t, such zhatéj_ ) = €i+ (),
1 < j < n,i.e., the successively innermost kink and antikink collide at these times. Moreover,
there are unique times t]A € (tj,tj+1), 1 < j < n—1, suchthat argmin, g {u(x, t;‘)} =2nj,
i.e., at these times the successively innermost kink and antikink annihilate.

To ease notation we set t(’)“ =0.
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Proof As shown in the proof of Proposition 1, for all # > 0, the solution « (x, ¢) is monotoni-
cally decreasing on (—oo, 1(t)) with lim,_, _ u(x, t) = 27n and monotonically increasing
on (n(t), co) with limy_ o u(x,t) = 2mn. Together with Proposition 9, this shows that
the posmonsé (t),1 < i < n, collide at some unique time #; > 0, respectlvely, ie.,

u(n(;),t;) = i — Dz and u(-,t;n) > (2i — 1) for t > t;; therefore S (1) exist
for [0, #;] only. In particular, #; < #;41. Analogously, we identify the annihilation times
tlA € (ti, ti+1)- O

Next we show that during the annihilation process of the innermost kink-antikink pair, the
distances between the remaining kinks (antikinks) satisfy a uniform lower bound.

Proposition 11 Let u(x, t) be the solution corresponding to an initial condition as above.
Then, di(t) > dt (0) and if j* are indices such that d= (0) = d;j=(0) then d = (t) are non-

min min
decreasing as long as defined, i.e., t < tj, respectively. In particular, |§/._+1 ) — $/+1 ®)] >

dt (0)+d. O + 15 (t)—g.*(r)|forallze(o,t,].

min min

Proof Due to reflection symmetry, it suffices to prove the claims for the case ‘+’. In the proof
of Proposition 3, we have constructed initial conditions u, and iy whose corresponding
solutions u(x, t), u(x, t) are sub- and supersolutions, which imply the non-decrease of the
minimal distance. In the present case the same subsolutions can be used. However, it are not
providing supersolutions on R, but only on (—oo, n(t)) since u(-, t) is minimal at n(¢) and
u(x, t) can be above u(x, t) only for x > 7n(¢). The claims now follow from the statement of
Proposition 3. O

Itis tempting to suppose that the minimal distance between kinks or antikinks, respectively,
that arises after annihilations can be used as a lower bound. However, it seems difficult to
construct super- and subsolutions to substantiate this.

Let us now turn to the case of initial data with unequal number of kinks and antikinks,
m # n; without loss of generality m < n. In this situation, the first min{m, n} innermost
kink-antikink pairs annihilate and a stacked front of either kinks or antikinks remains after
some finite time.

Proposition 12 Let ug(x; m, n) be an initial datum (5) withm < n < oo and mn # 0. The
kinks and antikinks at Sii (1), 1 <i < m, collide and annihilate in the sense of Proposition
10. Moreover; the limit sets are given by

o(uo(x; m,n)) = {2rn},
uo(x;m,n)) ={2nj:m §j§n}U{<pj.'(~—v):m < j<n,veR}

Proof In the course of the annihilation process of the m innermost kink-antikink pairs, u (x, )
gets uniformly close to 2wm for x < n(t). Meanwhile, the distances d;.r (m < j <n)of
the remaining kinks are bounded from below by Proposition 11, which means the solution
gets arbitrarily close to a propagating terrace. Since 27 m is a stable steady state, the solution
u(x, t) converges to a propagating terrace and [39, Theorem 1.1] implies the statement. 0O

Towards a more complete picture, let us briefly consider initial data with local maxima
built by pairs of kinks and antikinks, cf. Fig. 7. For each such maximum with sufficiently
large distance of kink and antikink, one can construct a stationary subsolution using phase
plane analysis for the equation uy, + f(u) = 0; this shows that kinks and antikinks cannot
annihilate at local maxima, but only between local minima as described before. In particular,
the limit sets w(ug) and $2(uo) are completely determined by the numbers m, n between
maxima.
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Fig.7 Sketch of initial datum
with local maximum and
subsolution (red). Kink and
antikink which built the local
maximum cannot collide
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< 40 40 40
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%0 10 i 00 010 10
(a) (b)

Fig. 8 Simulations to illustrate the loss of information (fy = 0.2). a Information encoded in the initial kink
distances is locally “washed out” at + = 250,000, independent of three ‘fast’ annihilations due to incoming
kinks as plotted in (b). Here the initial datum is composed of antikinks only and the incoming kinks are
artificially generated at later times by changing the boundary values; this avoids otherwise prohibitively
expansive numerics as one can use a small spatial domain to catch both the slow weak interaction and the
much faster pulse motion. See “Appendix C” for details on the implementation

5 Unbounded Kink or Kink-Antikink Data

Unbounded initial data is most relevant for the comparison with the dynamics of the
cellular automaton GHCA, such as its non-wandering set dynamics and topological entropy.
However, for unbounded data several useful results cannot be directly applied, e.g., those on
terraces in [39].

Nevertheless, the zero number argument is still applicable (the growth condition of [4, p.
80] is satisfied for u € X,,) so that we readily infer an analogue to Proposition 10 in case
m = n = 0o: we can repeatedly choose initial data composed of finite kink-antikink pairs as
subsolutions and obtain an infinite sequence of strictly increasing collision and annihilation
times.

However, numerical simulations of (1) (lifted to u(x, ) € R), cf. Figs. 8, 9, suggest that
distances equilibrate asymptotically in time. Hence, initial distance information encoded far
from an eventual collision is lost over time, is “washed out”—at least on the scale of the
initial data. Indeed, this is consistent with our results on the dynamics of analytic positions
for monotone data, and large initial distances. Therefore, as suspected from weak interaction
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Fig. 9 Simulation of a kink distances and b corresponding solutions done with pde2path by freezing under
periodic boundary conditions and with fo = 0.2, cf. “Appendix C”. The initial datum converges to an
equidistant state

induced by diffusion, we cannot expect entropy and dynamics for (1) with unbounded initial
data are directly analogous to GHCA.

We first corroborate the equilibration of distances for unbounded initial data by consid-
ering periodic boundary conditions and show that all solutions converge locally uniformly
to equidistant staircases. Second, we discuss implications for complexity measures based on
positional dynamics.

5.1 Periodic Boundary Conditions

Unbounded superpositions of equidistant kinks (and, analogously, antikinks) are parametrized
by the uniform distance ¢ > 0, and the problem is transformed into a boundary value problem
under periodic boundary conditions, up to phase rotation.

More precisely, for given £ € Ry and j € N, we consider the initial-boundary value
problem

6r = bxx + f(0), —t=x=t (30a)
6(0, x) = 6p(x), —t<x<t (30b)
O(=0) =0(0) +2mj, 6(=0) <0 =<6(0) (30c)
6'(—0) = 0'(¢) (30d)

and prove in Proposition 15 below that solutions of (30) converge to a unique equidistant
staircase in terms of the w-limit set of 6.
To this end, we first consider travelling wave solutions 0 (x, t) = u(x — at) =: u(z) and

focus on the following boundary value problem, where ' = -

Proposition 13 For each triple (¢, j, a) € Rt x N x R, the boundary value problem

{ u +au' + f(u) =0,
u(—¢) =2mj,ul) =0,

—C<x<?l

(31a)
0<u<2mj (31b)

has a unique, monotonously decreasing solution u with dyu < 0 on (—£, £). Moreover; there
exists a unique a({, j) such that the unique solution u of (31) corresponding to (£, j,a(¥, j))
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additionally satisfies u’'(—€) = u’(€). This a({, j) is given by
-1

¢
at, j) = (FQ2nj) — F(0)) (/Z(u’)de) )

where F' = f. In particular, limy_ga(¢, j) = 0.
We remark that the case j = 1 is essentially contained in [41, Thm 3.5].

Proof Sub- and super solutions are given by u = 0 and & = 2xj, respectively, which
shows the existence of a solution u. Applying Theorem 1.4 [5] (“sliding method”) to £2; :=
[—£, £], together with the maximum principle, implies the monotonicity and uniqueness of
this solution.

Moreover, this unique solution (i) depends continuously on a and (ii) is strictly decreasing
initsdependenceona (i.e.ifa; < as,thenus < ujin £2¢, where | and u» are the solutions of
(31) corresponding to (¢, j, a;),i = 1,2, cf. Corollary 5.1 [6]). By Lemma 5.2 [6], one infers
that (iii) lim,—, o # = 27 j and lim,_, oo # = 0, both uniformly in x. Items (i)-(iii) together
imply the existence of a unique solution u and a unique a (¢, j) such that u’(—£) = u’(£).

Astoa(l, j) and its asymptotics, one multiplies equation (31a) by " and integrates to get

4 4
a(Z,j)/ ') dx = —/ "W 4 u f(u)ydx = FQ2mj) — F(0),
—¢ -0

—1
where i/ (—€) = u'(€) is used. We obtain a(f, j) = (F(27 j) — F(0)) (ff[(u’)2 dx) By
the Cauchy-Schwarz inequality,

4 4 2:2
/ W dx = 7
» 20

and thus a(¢, j) — Oas ¢ — 0. ]

Remark 5 Since f is 2 -periodic, the statement clearly remains true for boundary conditions
u(l) =2nkandu(—¢) =2n(k+ j), j, k € N, and the solution is just u + 2w k; in particular
(30c), (30d) hold. We also remark that F (2 j) # F(0) for our nonlinearity f.

In the following, we focus on the unique solution u of (31) corresponding to the triple
(¢, j,a(®, j)).Duetoits additional property u’(—€) = u’(£), itis the relevant solution for the
purposes of this section. As a consequence of the previous proposition, its shape is determined
by single periodic solutions in the following sense; in particular all kinks in u are equidistant.

Proposition 14 Let u denote the unique solution of (31) which corresponds to the triple
(€, j,a(l, j)). Thenu consists of j space shifted and phase rotated copies of the solution ii of
(31)c0rresp0ndlng to (E 1, a(E 1)) with{ = Z/] Inparticular,a(l, j) = a(Z 1), u/(£6) =

i (:I:E) < 0 and u has time period T = E/a(E 1).

Proof We split the interval [—¢, £] into j intervals I := [£541, £5], (0 <s < j—1) of width
2!7, where £ := ¢ — 2s¢. In particular, £ > £,y and £y = £, £; = —£. On each interval,
we consider a space shifted and phase rotated version of & which together build a solution
due to equal derivatives at the boundaries. More precisely, let v(x) := u(x — (j — 1)¢) be
the spatial shift of i to the rightmost interval Iy and, fors € {0, 1...j — 1}, set

Ux) =v(x + 2sl7) + 27s, x € [g.

@ Springer



Journal of Dynamics and Differential Equations (2023) 35:2199-2235 2223

The function U is thus defined on [—£, £] and solves (31) with a = a(f, 1) and, moreover,
U'(—¢) = U’(¢). By the uniqueness result of Proposition 13, it follows that U = u and,
in particular, a(¢, j) = a(f, 1) and u'(£0) = ﬁ’(:tf). By the construction of U, the same
proposition implies i’ (+€) < 0 since u’(x) < 0 for all x € (—¢, £). o

Having established the unique solution of problem (31) with u’(—£) = u’(£), we next
show that solutions of (30) converge to this solutions in the following sense; without loss
of generality, we choose 6(¢) = 0 and consider continuous initial conditions 0 < 6y <
2rj,jeN

Proposition 15 Let u be a solution of rm (30) with 0 (£) = 0 and initial datum 0 < 6y < 27 j
for some j € N. Then, the w-limit set of 6y consists of the orbit associated to the unique
solution of (31) corresponding to (£, j,a(l, j)).

Proof This is basically a consequence of [22, Theorem 1] which characterises the limit set by
providing a dichotomy between stationary and periodic solutions. However, in order to apply
this theorem, we need to transform (30) into a problem with periodic boundary conditions.

To this end, we consider w(x, t) := 6(x, t) + %;K) which transforms the problem into
Wy = Wyxx + g('xﬂ UJ), (323)
j(x — ¢
w(0, x) = wo(x) = Gp(x) + % (32b)
w(—€) = w(=4£), (32¢)
W' (=€) = w'(£) (32d)

W). In particular, there is a one-to-one relation between

where g(x, w) = f (w -
solutions of (30) and (32). Let u# denote the unique solution of (31) associated with
£, j,a, j)). Since W(x,t) = i(x — a(0)t) + w is a periodic solution solution of
(32), the mentioned dichotomy implies that w(wg) consists of the periodic orbit associated
with W and transforming back proves the statement. O

Remark 6 The previous proposition shows that solutions of (30) converge locally uniformly
to (some translate of) the corresponding unique solution of (31), i.e., the kinks become
equidistant, cf. Fig. 9. For a general analysis of convergence in one-dimensional semilinear
heat equations, including other types of boundary conditions and nonlinearites, we refer to
[1,12,35] and references therein.

5.2 Complexity Considerations

The motivation to consider kink-antikink dynamics in the #-equations emerges from our anal-
ysis of GHCA and their (topological) complexity [31]. The understanding of this complexity
mainly relies on the observation that for GHCA the original and somehow abstract definitions
of topological entropy [3,7] can be substantiated by considering simpler but equivalent defi-
nitions. In this regard, one combinatorial approach is to count the number W,, , of possible
realizations of the dynamics on bounded space-time windows [—m, m] x [0, n — 1], where
m € Z,n € N, and to determine the exponential growth rate of W, , as the size of these
windows increases [16,31]. On the other hand, the decomposition of the non-wandering set
reveals that the topological complexity is completely determined by the invariant subsystem
consisting of bi-infinite configurations which are composed of counter propagating pulses,

o Oy wR Op oo w0, O, wh, O w0, ), (33)
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where 0; : (0,...,0) are zero blocks of length k € N and w®" represent local pulses,
i.e., blocks that move to the right and left under the CA-dynamics, respectively. Thus, a
more tailored way to encode the topological complexity of GHCA relies on the construction
of a topological conjugacy by defining a proper homeomorphism that maps counter prop-
agating configurations to admissible sequences of collision sequences in the form of pairs
(Pns Sn)nen C Z x N of collision positions p, and times s,,.

We stress that the consistency of these two approaches to determine the topological entropy
is crucially based on the specific dynamics and topological setup of GHCA and is far from
general validity.

Nevertheless, for 6-equations, tracking the geometric or analytic kink and antikink posi-
tions provides a mapping from kink-antikink initial data to collision sequences and thus
allows for a comparison with those of GHCA with its encoded complexity. Hence, insight
into position dynamics of kink, antikink and kink-antikink initial data is a preqrequisite for
at least a first heuristic insight into the underlying complexity of the dynamics

As we have shown, bounded initial data give finite sequences of this kind, but for unequal
numbers of kinks and antikinks the positional dynamics remains non-trivial also after the
final collision in terms of terraces. This eventually occurs on an exponentially slow time scale
and distances of terraces eventually diverge, cf. Propositions 23, so that we do not expect a
significant contribution to any position-based complexity measure. This may be corroborated
further based on our lower bounds for the distances and the ODE for large initial distances,
which severely constrains the positions and thus a priori reduces a position based complexity.
This metastable slow dynamics already occurs before collisions and thus modifies the relation
of initial positions and collision sequence. However, this is a perturbation for any fixed number
of n initial kinks and antikinks, and we conjecture this can be compensated by a perturbation
of initial positions.

In contrast, the above result on equilibration of distances strongly suggest that this is
no longer true for unbounded kink-antikink initial data. While the dynamics of (semi-
Junbounded kink or antikink data resembles the pure shift dynamics of (semi-)infinite pulse
configurations of GHCA, the dynamics of unbounded kink-antikink data bears resemblance
to that of infinite counter propagating pulses of GHCA—up to the aforementioned equilib-
riation of distances for ‘late’ collisions.

For a direct comparison to the complexity of GHCA in terms of positions, a more specific
question is whether any given admissible sequence of collision positions and times for GHCA
can also be realized by appropriate initial kink-antikink data. To be more concrete, let x =
(xn)nez denote a configuration of the form (33) with pulse positions p;” (right-moving)
and pl-+ (left-moving), respectively, which realizes a given sequence (p,, Sp)nenN of collision
points and times. On the one hand, if we choose kink and antikink positions to be exactly the
same, Sii = pii, in general one cannot expect to observe the given collisions positions and
times (cf. “washing out”, Fig. 8). On the other hand, this does not rule out the possibility that
a time-rescaled sequence (pj,, Ts,)neN, With suitable scaling factor 7, can be attained from
modified initial kink and antikink positions, especially because the equilibration of distances
is a phenomenon under large distances, i.e., far from collisions only. This shows that more
general quantitative knowledge about the position dynamics, including less restrictive initial
data, is required in order to analyze these aspects rigorously.
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6 Discussion

Motivated by studies of the Greenberg-Hastings cellular automaton (GHCA) as a caricature
of excitable systems, in this paper we have considered the #-equations describing oscillatory
phase dynamics, as the perhaps simplest PDE model of excitable media. Since the non-
wandering set of GHCA in essence consists of certain excitation pulse sequences [31], we have
focussed on the analogue of such data in #-equations, which consists of kinks and antikinks.
Moreover, in GHCA the topological entropy can be related to kink-antikink collisions. We
have therefore analyzed the dynamics of bounded and unbounded kink-antikink initial data,
including pure kink and antikink data. To this end, we have defined geometric and analytic
positions of kinks and antikinks, the first used for a qualitative analysis of bounded and
unbounded data, the latter for quantitative results concerning bounded monotone data. For
bounded initial data, the theory of terraces shows that, up to spatial reflection, the w-limit set
indeed consists essentially of finite kink-sequences that weakly interact [39,42].

As to the qualitative analysis, we have shown that the set of geometric positions is well-
defined and consists of isolated points that lie on smooth curves up to collisions. Using
the comparison principle, we have revealed that the minimal initial distance is a global
lower bound for distances and that collision times and positions can be tracked abstractly.
As a model for unbounded data far from collisions, we have considered monotone data
with periodic boundary conditions and have shown that the initial distances asymptotically
equilibrate. Consequently, information encoded in these distances is lost over time which
indicates that for the PDE, contrary to GHCA, an analogous topological entropy based on
positions alone cannot be expected.

As a quantitative analysis, for bounded monotone data, we have derived ODE for the
analytic positions of the kinks (antikinks) within the weak interaction regime. By blow-up
type singular rescaling and a perturbation argument, we have shown that the dynamics is
slaved to spherical dynamics and distances become ordered in finite time, and eventually
diverge; again, this incorporates a loss of information in terms of initial distances.

The combination of comparison principle and weak interaction theory has revealed that
the kink-antikink collision dynamics in the PDE is a multi-scale problem, in contrast to the
single scale nature of the GHCA. The fast time scale is essentially determined by the speed of
an individual kink, while the slow time scale stems from ‘tail” interaction that is exponentially
slow in the kink (or antikink) distances.

In order to combine these approaches for unbounded data, it would be interesting to study
whether the approach of [54] can be used to admit infinitely many kinks (antikinks) in order to
justify ODE for the positions, and whether the approach of [9,47]—which requires different
speeds of the kinks (antikinks)—can be adapted to derive motion laws for non-monotone
solutions from kink-antikink initial data. This might allow to estimate complexity measures
adapted to the PDE context, and thus quantify the impact of the slow weak interaction on the
fast collision dynamics.

Concerning models of excitable media from systems of PDE, such as the famous FitzHugh-
Nagumo equations, there are two major issues. First, the interaction of excitation pulses no
longer needs to be pure annihilation, but rebounds and even pulse replication is possible [11,
28,38]. Second, while weak interaction theory can be generalised to systems, the comparison
principle cannot. Nevertheless, the heuristic conclusions extend to this case: weak and strong
interaction yield a multi-scale problem and diffusion effects positional dynamics in a non-
trivial way for infinitely many pulses, thus impacting positional complexity.
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Lastly, we mention that the comparison principle has been replaced by energy methods
in the Allen-Cahn and Cahn-Hilliard equations [49,51]. However, typical PDE systems of
excitable media do not seem to possess an energy structure that could be exploited.
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A Law of motion - ODE for the kink distances

This appendix is devoted to the derivation of the differential system (17). As explained in
the introduction of Sect. 3.2, we follow the scheme presented in [17,43] that we adapt to our
situation for the convenience of the reader.

Preliminaries We consider the parabolic problem (7), i.e. already in the moving framework
z = x — ct. It admits a family of standing wave profiles {¢(- — &) 4 2k, & e R, k € Z},
where ¢ is the unique standing wave of (7) connecting 2w = ¢(—00) and 0 = ¢(+00) such
that ¢(0) = m. Analyzing (3), it is a well known fact that ¢ satisfies

)2 —a_e* (14 0(e7%)) 2 <0,

() = {a+ekz (1 + O(eiyz)) 7> 0, (34)

for positive a_, a4, y, and where A, u are the eigenvalues of the linearized system at the
asymptotic states (¢, ¢’) = (0, 0) and (¢, ¢’) = (27, 0), cf. (16).

Linearizing (7) at these equilibria gives the same linear operator by periodicity of f given

by
| DL Ccx — X
L { v —> 0,;v + cdv + f/(p)v. (35

For the purpose of our analysis, one can take X = L%(R) and D(£) = H%(R). Due to the
translation of the steady state equation, the operator £ has a kernel: L¢' = 0. Since ¢’ has
constant sign and considering the behavior of f'(¢) as z — =00 it follows from Sturm-
Liouville theory that O is the largest eigenvalue of £, it is simple, and isolated: N'(L) =
N (llz) = ¢'R. It is a common result (see [46] or [44] for instance) that there exists a closed
subspace X| >~ R(L) of X such that X = X & N(L). The space X is the kernel of an
element of the dual X'* that we denote e*, with the normalization (¢, e*) = 1. It is defined
through the usual inner product

(¥, e") = A/Re“w/(z)tlf(z)dz, (36)
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where A is the normalization constant. It follows that the projection onto A/ (£) is given by
Py = (¢, e")¢.
In our situtation, we are dealing with multiple fronts defined by their positions n; > 1, >
- > 1n,. With a straighforward abuse of notation, we denote

0j=@C—n).  Lj=dz+co+ fp). €2z TG

Notice that if the 7; depend on time, so do these objects.
Projection Scheme Let us now turn to the proof of Lemma 1 and define the map

UcCcR" — R
D : 37
{(m,---,nn)'—>((w,e’{),--n(w,e;i)) 7)
where w = v — 37_ ¢;. The Jacobian
09 o
% = [(‘p;‘a e;-k) - 51‘,,/'<w,ec(z m)‘ﬂl{/) ﬁj:l

has diagonal entries close to 1 for 0 < e, 8~ small enough, i.e. w small and distances
In; — 1| large enough, while the off-diagonal entries are close to zero. The implicit function
theorem gives the desired result.
Reduced ODE We turn out to the derivation of (17). Let us emphasize once again that we
refer to [17] for further details and proofs of all the underlying estimates.

To get the reduced ODE equation we use the Ansatz (8). It yields

n
j=1
where L[v] := 9,;v + cd;v + f(v) denotes the nonlinear operator associated with our
problem. Let us project (38) onto the kernel of E’;, forall j € {1,...,n}:
== Y mitel o)) + (€] w) = (ef, Llul). (39)
i#]

d . )
First, since a(e;‘., w) = 0, it follows that (ejf, wy) = n’jAf e“z_"f)w(z)(p}/(z)dz. The

R
system for the positions n = (11, ..., 7n,)T is therefore given by An = B, where ; =
(e;‘-, L[u]) and the matrix A = (q; ;) is given by

a;i=—1+ A/Rec(zfnf)w(z)q)}’(z)dz
ai.j ={e}, ¢;) fori # j.

Notice that if i # j, a;j = O (e~#dmin) and that aj; = —1 4+ O(J|lwl), therefore in the
expected asymptotics the matrix A is nearly equal to —I,,. The reduced ODE for the positions
becomes

— ;1) = (e} (1), LIu(1)]) + hot, (40)

where the higher order terms hot are of order ||w|| 2w + e~ Hmin > nlf . In the following,
we explain how this reduced ODE (40) leads to (17). For the sake of simplicity, during our
computation we will include any other negligible terms into ‘hot’, without changing its name,
keeping in mind the leading order we are interested in. We also focus on the (most intricate)
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situation 1 < j < n, the two specific cases j = 1 and j = n being similar. Let us first notice
that from (8),

Llul =) (¢ +cgf) + wez + cwe + f (Z i + w)

i=1 i=1

=f (Z Wi) - Z fo) + O (Ilwllyaxm)
izl

i=1

80 (40) becomes

— () = < (Z w,) Zf(wi)> + hot. (41)

i=1
The above bracket is an integral over R (see (36)). Let us fix M large enough, such that
0 < M < min, to be determined later. We split the integration over three domains
R =(—00,njy1 +MJU[nj1+M,nj—1 —M]U[n;j—1 — M, 00),
so that
— ;) =I; + L+ I{ +hot. (42)

Leading order terms: integration around the front Let us first focus on /5, since it is the most
important term. Notice that for z € [n;+1 + M, nj—1 — M] one has, from (34) and classical
invariant manifold theory that

{ 0i(z) = ape*@) + hot, fori > j 3)

21 — @i (z) = a_e*EM) £ hot, fori < j,

and that their derivatives satisfy similar estimates. Then, using the 2w —periodicity of f, and
linearizing at ¢; and 0, one has (see also (51) and (52)):

1 nj-1—M n n
~h= / e3(2) (f (Z @i <z)> - flg (z))) dz
" i=1

jr1tM i=1
nj—1—M .

=/ e\ flei+d) @ -2+ o | — fl@)
nj+1+M i<j i>j

=Y flei—2m) =) flg) | dz

i<j i>j
nj—1—M

= f . i) (f'(@j@) = f1O) [ Y (0@ —27) + ) ¢i(2) | dz + hot
nj+1+

i<j i>j

(44)

where the higher order terms in (44) are of order hot = O ((8 j+4 j_l)e_Z“M ) as can be

seen by (43). We split the integral in (44) between the left interacting fronts (i > j) and the
right interacting fronts (i < j). Once again, the leading order terms are determined by the
closest fronts, ¢ and ¢;_ respectively. It follows that

1 nj—1—M
Al :/ 5@ (f'(9j(@) = f1O) (pj-1(2) — 27) dz
n

A j+1+M
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nj-1—M
+ / T @ (f @)~ £10) (941() dz + hot
n

j+1+M
L =I} + I} + hot.

From (43) and the definition of e}ﬂ we infer that

1 =00 Aay [ €@ (79 - /(O0)) dz + hot
R

= — aLe’MiNi+1) 4 hot, (45)
IR = — e imni=D pg_ f " (@) (f'(¢(2) — f'(0)) e"“dz + hot
R
=ageMMi=i-1) 4 hot, (46)

where the coefficients ar,, ar are precisely those given in (17). To complete our derivation
of (17) it remains to determine the sign of these coefficients. We present the computation for
ay, the case ar being similar. It uses estimates (34) for ¢ and its derivatives up to order 2, as
well as the observation that ¢’ f'(¢) = —¢”" — c¢”. It follows that

aL = — Aay fR ' (@) (f'(9(2) — f1(0))) e*dz
=—Aay /R e M (=" (2) = c¢"(2) = f1(0)¢'(2)) dz (47)
=Aa, (Zpdzaf +cpa_ + (u? +ep + £1(0) /R e*“zfp/(z)dz> (48)
with three successive integration by parts from (47) to (48). Finally, notice that u” 4+ cu +

f/(0) =0, and one gets
ap, = Aaya_pu u+c) > 0. (49)

A quite similar computation gives
ar = Aaya_r(2r+c) >0 (50)

Negligible terms: integration away from the front It remains to prove that the integral I,
is actually the one that drives the dynamics, and to discuss which value of M would be
appropriate.We focus on /|~ for the computations, the situation being similar for / 1+ .Le us
first notice that linearizing at any front, we obtain that for all 7z € R,

f <Z vi (z)> = S @i@) =0 (7)), (51)
i=1 i=1

while, linearizing around at ¢ 11, we have that for all z € [n;41, nj+1 + M],

f (Z ¥i (Z)) _ Z Flpi() =0 (eM(Z—'?j) + eA(z—ﬂj—z)) ) (52)
i=1 i=1

Then, once again we split the integration domain into two.
| . nj+1+M n n

<= /m QD e | =D flei@) | dz
i=1 i=1
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Nj+1 n n nj+1+M n n
=/ € (f (Z%’) —Zf(%‘)> dZ+/ e <f (Z%‘) —Zf((ﬂi)) dz
- i=1 i=1 " i=1 i=1

j+1

=J1+ Jr.
Combining (51), (34) and the definition of ejf, we get that
nj+1 S, n n
i = / CETG =N Y i@ ) =D flpi())dz
- i=1 i=1

|l <cC / CETID G 7 = Bomin < €/ Dmin (53)

o0

for some positive constant C. On the other hand, using (52) and (34), one has that for some
positve constant C, possibly distinct from the above one,

nj+1+M
|2l = C/ e~ Memn) (em,n}.) + ek(z—nm)) dz
n

Jj+l1

<c (e(fzufc)(sij) n Me/\(s,-+8,-_1)> e (e(fZ;hc)(émirM) + MeZMmin) . (54)
Combining (53) and (54), we get, for some positive constant C,
7| <c (eu—u/z)amm 4 (2= Grin=M) Mezxamin) ) (55)
Similar computations give the following estimates, for some positive constant C,
17| = € (e300 4 (G Bmn =) . ppe=2pbn) (56)

It remains to choose M and determine o > 0 such that both 1", / 1+ , and the higher order
terms in (44) are of order e~ FT®dmin | 45 long as 8y is large enough. Let us fix o > 0 small

1
enough, and ¢ = % cwe fix M = (5 + 8) Smin, and the estimates are as required.

B Proof of Theorem 6 (local stability of E)

We write X, = Y j_; l1/k3 — Z;i 1 lPkZH so0 (27) becomes
¥ (qxﬁ — - YL - Wklpszrl)v Jj=1
V=Y (‘I’f — VY W W ZZk;l, vl - ZZ;{:':H‘ | 'Ilkq/k2+]) s 2=j=n—1
J J=LJ

¥, ("I/n3 I ‘pnfllpnz + ZZ;} l[/k3 - Zﬁ;f lpk‘pkzﬂ) ’ j=n

In the following, x4 denotes the characteristic function which is either 1 if condition A is
satisfied or O otherwise. For instance, for giveni € N, y;—; = 1 if i = 2 and 0 otherwise.

The Jacobian J := (gg] )1 is then given by
'/1<i,j<n

2 AW 2R+ SR W - S W, i=1
= 1307 = 2x= WY — VW — 2V, 2<i<n— |

3U W2 — 2UN W, 1 W, i=n

afi
ov;
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and,for2 <j<n—1landl <i <n,
3 2 2 3 -1 2 .
Wit =20+ A7 = 2WWE = 3 Yy W - Y Wy =
k] ke(j—1,7}
v + 3'1/]-271'1/]' — 'J/f = 2x(j>2)¥j2¥j1¥;, i=j—1
0F; _ 13w;wd, —2wdw;y — v, i=j+l<n
Wi 3w, w2 — 2w, i=j+l=n
3‘1/j‘1’i2—‘1’j‘1/iz+l—2X([>1)‘1’_/‘1’i—1’1/i, l<i<j-2
3R — 20 W — Xiiam YA j+2<i<n
Finally, for j =nand 1 <i <n,
-1 -2 .
of AW =20, + Wy =3, W Y W - YT . i=n
n .
Y7 =¥ — Wy? +3Wnlpnz_] =2, 2,1y, i=n-—1
1
3, WE — W WA = 2x sy P i1 Wi, else

It remains to determine the eigenvalues of J (E). To this end, since n is fixed throughout, we

seth :=n(n+1)2n+1) = 2n* +3n’+nand p = 2, o := YT/B. Thena = |/ rer b

sothat E = «(1,2,...,n)T. After some straightforward computations, the first and last row
of J(E) are given by

of -B-1, i=1 of n(n*+2n—p), i=n
8;(E):a3- -1, 2<i<n—1 al;(E)=a3- n(g—1), i=n—1
! n2+2n, i=n ! —n, else
For2 < j<n—1and1 <i < n, the entries are
—Jjd+Bm), i=j
JBm) -1, i=j-1
o f; —J, i=j+1l<n
aqi(E)=a3- mwn?—2n, i=j+1l=n
’ —J l<i<j-2
Jjnn+2), J+t2=<i=n
-7, j+2<i<n

Let C :={cy, ca, ..

., ¢n) := a3 J(E), where ¢; are the column vectors. First note that

the radial direction from E, vy := (1,2,3,...,n)T, is an eigenvector of C with eigenvalue
A1 := 2B > 0. However, this unstable direction is transverse to the invariant sphere and thus
irrelevant here. Also by invariance, all remaining eigenvectors are orthogonal to vy.

A basis of the orthogonal complement (span(v;))* is given by

Vi={v,v3,...,0,},

v;:=(j,0,...,0,—-1,0,...,0)7,

j=2,...,n—1,

where the entry —1 in v; is on the j-th position. In order to reduce the matrix C onto the
tangential dynamics, we orthogonalize the vectors v;, j = 1,2,...,n by Gram-Schmidt
and normalize afterwards. This results in the column vectors of the matrix W given by

wy =qvy, wg=q(1,2,... k-

1, —ag, 0, ...

b O)T7

with a; = % 25211 2= é(k — 1)(2k — 1) and normalizing constants

J6

N —12
._ 2 —
ne= (Z' ) BN ICES N

i=1

~12
@i (Zi2+az) _
i=1

k=2,3,...,n,

6

VHEZS2 11
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We claim that changing the basis with W yields the lower triangular matrix
A0 0 .00
0bro 0 ... O
WTCW= 0 b3,2 b3’3 0
0 by2by3...byn.
with diagonal entries
k
by =—kB = _En(n +D@2n+1) <0.
In order to prove this, we first note that with
di = (wg-cp, W €2, ..., Wi -Cy)T

we have by ; = dj - wy so it remains to determine dy foreach k € {2,3, ..., n}.
For2 <k<m—landl1<j<n-—1,

—qx Yi—) % + kargr, k< j

—qk Y421 i + kargr (1 + B). k=
WECT = —qe X % = a1+ ) — kargi (B — 1), k=j+1

—qr leg{ijfﬁll; i? = a1+ B) +kakgi + (G + D*qe(B = 1), k= j+2

For2 <k <n—1,wehave wy - ¢, = gxn(n + 2) (Zf:ll iz — kak>; finally, for j < n,

woocj=—qu| Y. PHjA+H) =G+ DB =1 +amn®+2n—p)
1<i<n—1,
ig¢{j.j+1}

and w, - ¢, = qy (n(n +2) Z?:_ll i’ — ann(n2 +2n — ﬂ))

This leads to the form by = A + Az + A3 with (after straightforward computations)

k—

A=Y ljg [k +G+D2B-D-Pa+p- Y 2
iz 1<i<k—1,
i¢{j.j+1}

_ 3 +42 75 p
T \2% -1 k+1 2k+1/)"7

k—2
Az = —(k — g} (Zﬂ + (k= D1+ B) + kag (B — 1))

i=1
N 36 3 3) 8
T\2k+1 k+1 2k—1 ’

k—1
. 3 6
A3 ;:akqizlz—kagq,?(l +8) = <2k+1 +3—k— m) B,
i=1
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and thus by = —kpB. We conclude that the eigenvalues of C are
Ao ==E28, A =—kB, 3<k=<n.

and thus E is locally exponentially stable on S"~ 1. O

C Implementation of the simulations

In this section, we briefly describe the numerical methods and software used in the illustrating
figures. The software packages we use are JCASIM [23] for simulating cellular automata,
PDE2PATH [30] for PDE simulation, continuation and bifurcation package, and MATHEMAT-
ICA.

The space-time plot of the Greenberg-Hastings cellular automaton (Fig. 1a) has been
created with JCASIM via an adaption of the method transition, where we specify the
transition from one generation of cell states to the next according to the Greenberg-Hastings
rule for ¢ = 2 excited and r = 4 refractory states.

The phase portraits on the spheres (Fig. 5) have been created with MATHEMAT-
ICA using the standard routines ParametricNDSolveValue, ParametricPlot and
ParametricPlot3D, respectively.

For the simulations of the PDE (1) plotted in 1b, Figs. 4, 8 and 9, we have used PDE2PATH
with fo = 0.05 or fy = 0.2, respectively. As discretization of the interval (-1x, 1x) by
mesh width 2*1x/dsc we have chosen 1x=10 and dsc=500 which corresponds to a mesh
width of & = 0.04. Initial data p.u (1:p.nu) have been step functions with equilibrium
levels at eq+2*pi*jfor j =1,2,..., k. k e N.

For the time stepping the PDE2PATH routines tints or tintsfreeze have been used
since most simulations go over a rather long time period in order to catch exponentially small
interaction effects between kinks (antikinks). t int s freeze removes the translational sym-
metry so that the required spatial interval need not be excessively long. In particular, since
annihilations of kinks and antikins on the one side and interactions of kinks (antikinks) on the
other side happen at different time scales (the annihilations being much faster), it is nearly
impossible to observe both aspects simultaneously (even when choosing very large distances
or a large space interval). We have circumvented this problem in Fig. 8 by starting with
pure kink data “sending in“ antikinks from the left space boundary repeatedly after time has
allowed for observable exponentially small effects between the kinks that are left after each
annihilation. This has been done by calling tintsfreeze multiple times and using the
perturbed result as initial condition for the next call.

The detection of the kink (antikink) positions has been done via a function that stores
the (geometrically defined) positions for each time step. The differences between these posi-
tions are the basis for the distance plots in Figs. 4, 8 and 9. For better illustration we have
smoothened the distance plots by averaging the data and interpolating by splines using the
MATLAB routine interpl. Finally, for general information about PDE2PATH and, in par-
ticular, the simulation with periodic boundary conditions (Fig. 9), we refer to [15] and the
PDE2PATH webpage, respectively.

References

1. Angenent, S.B., Fiedler, B.: The dynamics of rotating waves in scalar reaction diffusion equations. Trans.
Am. Math. Soc. 307(2), 545-568 (1988)

@ Springer



2234 Journal of Dynamics and Differential Equations (2023) 35:2199-2235

20.

21.

22.

23.

25.

26.

217.

28.

29.

30.

31.

Aranson, L.S., Kramer, L.: The world of the complex Ginzburg-Landau equation. Rev. Modern Phys.
74(1), 99-143 (2002)

Adler, R.L., Konheim, A.G., McAndrew, M.H.: Topological entropy. Trans. Am. Math. Soc. 114(2),
309-319 (1965)

Angenent, S.: The zero set of a solution of a parabolic equation. J. Reine Angew. Math 390, 79-96 (1988)
Berestycki, H., Nirenberg, L.: On the method of moving planes and the sliding method. Boletim da
Sociedade Brasileira de Matemdtica - Bulletin/Brazilian Mathematical Society 22(1), 1-37 (1991)
Berestycki, H., Nirenberg, L.: Travelling fronts in cylinders. Non-linear Anal. 9(5), 497-572 (1992)
Bowen, R.: Entropy for group endomorphisms and homogeneous spaces. Trans. Am. Math. Soc. 153,
401-414 (1971)

Bellay, J., Scheel, A.: Coherent structures near the boundary between excitable and oscillatory media.
Dyn. Syst. Int. J. 25, 03 (2010)

Beyn, W.-J., Selle, S., Thiimmler, V.: Freezing multipulses and multifronts. SIAM J. Appl. Dyn. Syst.
7(2), 577-608 (2008)

Carr, J., Pego, R.L.: Metastable patterns in solutions of u; = &
42(5), 523-576 (1989)

2Uyx — f(u). Commun. Pure Appl. Math.

. Carter, P, Rademacher, J.D.M., Sandstede, B.: Pulse replication and accumulation of eigenvalues,

accepted at SIAM J Math. Ana. (2021)

Chen, X.-Y., Matano, H.: Convergence, asymptotic periodicity, and finite-point blow-up in one-
dimensional semilinear heat equations. J. Differ. Equ. 78(1), 160-190 (1989)

Chen, H., Garcia-Gonzalez, D., Jérusalem, A.: Computational model of the mechanoelectrophysiological
coupling in axons with application to neuromodulation. Phys. Rev. E 99(3), 032406 (2019)

Ducrot, A., Giletti, T., Matano, H.: Existence and convergence to a propagating terrace in one-dimensional
reaction-diffusion equations. Trans. Amer. Math. Soc. 366(10), 5541-5566 (2014)

Dohnal, T., Rademacher, J. D. M., Uecker, H., Wetzel, D.: pde2path 2.0: multi-parameter continuation
and periodic domains. In H. Ecker, A. Steindl, and S. Jakubek, editors, ENOC 2014 - Proceedings of 8th
European Nonlinear Dynamics Conference. Institute of Mechanics and Mechatronics, Vienna University
of Technology, (2014)

Durrett, R., Steif, J.E.: Some rigorous results for the Greenberg-Hastings model. J. Theoret. Probab. 4(4),
669-690 (1991)

Ei, S.-I.: The motion of weakly interacting pulses in reaction-diffusion systems. J. Dyn. Differ. Equ. 14,
85-137 (2002)

Fusco, G., Hale, J.K.: Slow-motion manifolds, dormant instability, and singular perturbations. J. Dyn.
Differ. Equ. 1(1), 75-94 (1989)

FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J .
1(6), 445 (1961)

FitzHugh, R.: Computation of impulse initiation and saltatory conduction in a myelinated nerve fiber.
Biophys. J . 2(1), 11-21 (1962)

Fife, P.C., McLeod, J.B.: The approach of solutions of nonlinear diffusion equations to travelling front
solutions. Arch. Ration. Mech. Anal. 65(4), 335-361 (1977)

Fiedler, B., Mallet-Paret, J.: A Poincaré-Bendixson theorem for scalar reaction diffusion equations. Arch.
Ration. Mech. Anal. 107(4), 325-345 (1989)

Freiwald, U., Weimar, J.: JCAsim-a Java System for Simulating Cellular Automata, pp 47-54, 01 (2000)
Goh, R., Scheel, A.: Triggered fronts in the complex Ginzburg Landau equation. J. Nonlinear Sci. 24,
117-144 (2014)

Greenberg, J.M., Hastings, S.P.: Spatial patterns for discrete models of diffusion in excitable media. SIAM
J. Appl. Math. 34(3), 515-523 (1978)

Greenberg, J.M., Hassard, B.D., Hastings, S.P.: Pattern formation and periodic structures in systems
modeled by reaction-diffusion equations. Bull. Amer. Math. Soc 84(6), 1296-1327 (1978)

Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to
conduction and excitation in nerve. J. Physiol. 117(4), 500 (1952)

Hayase, Y., Ohta, T.: Self-replicating pulses and Sierpinski gaskets in excitable media. Phys. Rev. E 62(5),
5998 (2000)

Hirsch, M.W., Pugh, C.C., Shub, M.: Invariant manifolds. Lecture Notes in Mathematics, vol. 583.
Springer, Berlin (1977)

Wetzel, D., Uecker, H., Rademacher, J.D.M.: pde2path: a matlab package for continuation and bifurcation
in 2d elliptic systems. Numer. Math. Theory Methods Appl. 7(1), 58-106 (2014)

Kessebohmer, M., Rademacher, J.D.M., Ulbrich, D.: Dynamics and topological entropy of 1D Greenberg-
Hastings cellular automata. Ergodic Theory Dyn. Syst. 41(5), 1397-1430 (2021)

@ Springer



Journal of Dynamics and Differential Equations (2023) 35:2199-2235 2235

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51

52.

53.
54.

Kuehn, C.: A remark on geometric desingularization of a non-hyperbolic point using hyperbolic space.
J. Phys: Conf. Ser. 727, 012008 (2016)

Lin, X.-B., Schecter, S.: Stability of concatenated traveling waves: alternate approaches. J. Differ. Equ.
259(7), 3144-3177 (2015)

LadyZenskaja, O. A., Solonnikov, V. A., Ural’ceva, N. N.: Linear and quasilinear equations of parabolic
type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23.
American Mathematical Society, Providence, R.I., (1968)

Matano, H.: Asymptotic behavior of solutions of semilinear heat equations on § I In W-M. Ni,
L. A. Peletier, and J. Serrin, editors, Nonlinear Diffusion Equations and Their Equilibrium States II,
pages 139-162, New York, NY, (1988). Springer US

Matano, H., Pol4cik, P.: Dynamics of nonnegative solutions of one-dimensional reaction-diffusion equa-
tions with localized initial data. Part II: Generic nonlinearities. Commun. Partial Differ. Equ. 45(6),
483-524 (2020)

Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc.
IRE 50(10), 2061-2070 (1962)

Nishiura, Y., Ueyama, D.: Self-replication, self-destruction, and spatio-temporal chaos in the Gray-Scott
model. Phys. Rev. Lett. 15(3), 281 (2000)

Polacik, P.: Propagating terraces and the dynamics of front-like solutions of reaction-diffusion equations
on R. Mem. Amer. Math. Soc., 264(1278):v+87, (2020)

Pauthier, A., Polac¢ik, P.: Large-time behavior of solutions of parabolic equations on the real line with
convergent initial data. Nonlinearity 31(9), 4423-4441 (2018)

Rinzel, J., Ermentrout, B.: Analysis of neural excitability and oscillations. Methods Neuronal Model. 01
(1998)

Risler, E.: Global behaviour of bistable solutions for gradient systems in one unbounded spatial dimension.
preprint, (2017)

Rossides, T., Lloyd, D.J.B., Zelik, S.: Computing interacting multi-fronts in one dimensional real Ginzburg
Landau equations. J. Sci. Comput. 63(3), 799-819 (2015)

Roquejoftre, J.-M.: Stability of travelling fronts in a model for flame propagation. II. Nonlinear stability.
Arch. Rational Mech. Anal. 117(2), 119-153 (1992)

Redheffer, R.M., Walter, W.: The total variation of solutions of parabolic differential equations and a
maximum principle in unbounded domains. Math. Ann. 209, 57-67 (1974)

Sattinger, D.H.: On the stability of waves of nonlinear parabolic systems. Adv. Math. 22(3), 312-355
(1976)

Scheel, A., Wright, J.D.: Colliding dissipative pulses—the shooting manifold. J. Differ. Equ. 245(1), 59-79
(2008)

Scheel, A., Wright, J.D.: Colliding dissipative pulses-the shooting manifold. J. Differ. Equ. 245(1), 59-79
(2008)

Scholtes, S., Westdickenberg, M.G.: Metastability of the Cahn-Hilliard equation in one space dimension.
J. Differ. Equ. 265(4), 1528-1575 (2018)

Volpert, A. L., Volpert, V. A., Volpert, V. A.: Traveling wave solutions of parabolic systems, volume 140
of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, (1994).
Translated from the Russian manuscript by James F. Heyda

Westdickenberg, M. G.: On the metastability of the 1-d Allen-Cahn equation. J. Dyn. Differ. Equ. (2020)
Wiggins, S.: Normally Hyperolic Invariant Manifolds in Dynamical Systems. Applied Mathematical
Sciences, Vol. 105. Springer, Berlin, 01 (1994)

Wright, J.D.: Separating dissipative pulses: the exit manifold. J. Dyn. Differ. Equ. 21(2), 315-328 (2009)
Zelik, S., Mielke, A.: Multi-pulse evolution and space-time chaos in dissipative systems. Mem. Amer.
Math. Soc. 198(925):97 (2009)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer



	Weak and Strong Interaction of Excitation Kinks in Scalar Parabolic Equations
	Abstract
	1 Introduction
	2 Kinks and Anti-kinks and their Positions
	2.1 Well-Posedness
	2.2 Geometric and Analytic Positions

	3 Bounded Monotone Initial Kink Data
	3.1 Qualitative Aspects: Comparison Principle
	3.2 Quantitative Aspects: Projection Scheme
	3.2.1 The Unperturbed Distance System
	3.2.2 Polar Blow-Up 
	3.2.3 Unperturbed Polar System, Part I: Radial and Angular Dynamics
	3.2.4 Consequences for the Perturbed Polar System
	3.2.5 Unperturbed Polar System, Part II: Local Stability


	4 Bounded Initial Kink-Antikink Data and their Annihilation
	4.1 Annihilation Process

	5 Unbounded Kink or Kink-Antikink Data
	5.1 Periodic Boundary Conditions
	5.2 Complexity Considerations

	6 Discussion
	A Law of motion - ODE for the kink distances
	B Proof of Theorem 6 (local stability of E)
	C Implementation of the simulations
	References




