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Abstract
We prove a semi-invertible Oseledets theorem for cocycles acting on measurable fields of
Banach spaces, i.e. we only assume invertibility of the base, not of the operator. As an appli-
cation, we prove an invariant manifold theorem for nonlinear cocycles acting on measurable
fields of Banach spaces.

Keywords Semi-invertible multiplicative ergodic theorem · Oseledets splitting · Fields of
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Introduction

The multiplicative ergodic theorem (MET) is a powerful tool with various applications in
different fields of mathematics, including analysis, probability theory, and geometry, and
a cornerstone in smooth ergodic theory. It was first proved by Oseledets [18] for matrix
cocycles. Since then, the theorem attracted many researchers to provide new proofs and
formulations with increasing generality [2,6,11,15,17,19–23].

In [12], the authors gave a proof for an MET for cocycles acting on measurable fields of
Banach spaces. Let us quickly recall the setting here: If (�,F,P) denotes a probability space,
we call a family of Banach spaces {Eω}ω∈� ameasurable field if there exists a linear subspace
� of all sections �ω∈�Eω and a countable subset �0 ⊂ � such that {g(ω) : g ∈ �0} is
dense in Eω for every ω ∈ � and ω �→ ‖g(ω)‖Eω is measurable for every g ∈ �. Note that
this definition implies that every Banach space Eω is separable. On the other hand, every
separable Banach space defines a field of Banach spaces by simply setting Eω = E . This
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structure is similar to a measurable version of a Banach bundle with base � and total space
�ω∈�Eω in which every space Eω is a fiber. However, the fundamental difference is that
we do not put any measurable (or topological) structure on the bundle �ω∈�Eω itself! In
fact, the existence of the set � is a substitute for the measurable structure and will help to
prove measurability for functionals defined on �ω∈�Eω as we will see many times in this
work. If (�,F,P, θ) is a measure preserving dynamical systems, a cocycle acting on the
field {Eω}ω∈� consists of a family of maps ϕω : Eω → Eθω. Setting ϕn

ω := ϕθn−1ω ◦ · · · ◦ϕω,
we furthermore claim that ω �→ ‖ϕn

ω(g(ω))‖Eθnω
is measurable for every g ∈ � and every

n ∈ N.
There are numerous examples in which it is natural to study cocycles on random spaces. In

[12], ourmotivationwas to study dynamical properties of singular stochastic delay differential
equations in which the spaces Eω are (essentially) spaces of controlled Brownian paths
known in rough paths theory [8]. In the finite dimensional case, linearizing a C1-cocycle
on a manifold yields a linear cocycle acting on the tangent bundle [1, Chapter 4.2]. In the
context of stochastic partial differential equations (SPDE), cocycles on randommetric spaces
were studied, for instance, when uniqueness of the equation is unknown and one has to work
with a measurable selection instead, cf. [9] in the case of the 3D stochastic Navier–Stokes
equation. Other examples in the situation of SPDE can be found in [3,4]. In the deterministic
case, a similar structure appears when studying the flow on time-dependent domains [14].
More recently, scales of time-dependent Banach spaces where introduced to study dynamical
properties of non-autonomous PDEs in [5,7].

We will now restate the MET [12, Theorem 4.17] in a slightly simplified version.

Theorem 0.1 Let (�,F,P, θ) be an ergodic measurable metric dynamical system and ϕ

be a compact linear cocycle acting on a measurable field of Banach spaces {Eω}ω∈�. For
μ ∈ R ∪ {−∞} and ω ∈ �, define

Fμ(ω) := {
x ∈ Eω : lim sup

n→∞
1

n
log ‖ϕn

ω(x)‖ ≤ μ
}
.

Assume that

log+ ‖ϕω‖ ∈ L1(�).

Then there is a measurable forward invariant set �̃ ⊂ � of full measure and a decreasing
sequence {μi }i≥1, μi ∈ [−∞,∞) with the properties that limn→∞ μn = −∞ and either
μi > μi+1 or μi = μi+1 = −∞ such that for every ω ∈ �̃,

x ∈ Fμi (ω)\Fμi+1(ω) if and only if lim
n→∞

1

n
log ‖ϕn

ω(x)‖ = μi . (0.1)

Moreover, there are numbers m1,m2, . . . such that codim Fμ j (ω) = m1 + . . . + m j−1 for

every ω ∈ �̃.

Let us mention here that, motivated by our example of a stochastic delay equation, we
proved this theorem for compact cocycles only, but it should be straightforward to generalize
it to the quasi-compact case as Thieullen did in [22]. Consequently, we believe that all our
results in this work will hold for quasi-compact cocycles, too.

The numbers {μi } are the Lyapunov exponents, the subspaces Fμ(ω) are sometimes called
slow-growing subspaces and the resulting filtration

Eω = Fμ1(ω) ⊃ Fμ2(ω) ⊃ · · ·
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is called Oseledets filtration. Is is easily seen that the slow-growing spaces are equivariant,
meaning that ϕω(Fμi (ω)) ⊂ Fμi (θω). In the proof of this theorem, no invertibility of θ or
ϕ is assumed, in which case a filtration of slow-growing subspaces is the best one can hope
for. However, things change when we assume that the base θ is invertible. In this case, it is
possible to deduce a splitting of the spaces Eω consisting of fast-growing subspaceswhich are
invariant underϕ. Such a splitting is calledOseledets splitting, and the corresponding theorem
is called semi-invertible MET. Let us emphasize that we only need to assume invertibility
of the base θ and no invertibility of the cocyle ϕ. In the context of SPDE or stochastic
delay equations, these assumptions are quite natural: θ usually denotes the shift of a random
trajectory (which can be shifted forward and backward in time) and the cocycle denotes the
solution map, which is not injective if the equation can be solved forward in time only.

Our first main result is a semi-invertible MET on a measurable field of Banach spaces.
We state a simplified version here, the full statement can be found in Theorem 1.21 below.

Theorem 0.2 In addition to the assumptions made in Theorem 0.1, assume that θ is invertible
with measurable inverse σ := θ−1 and that Assumption 1.1 holds. Then there is a θ -invariant
set �̃ of full measure such that for every i ≥ 1 with μi > μi+1 and ω ∈ �̃, there is an mi -
dimensional subspace Hi

ω with the following properties:

(i) (Invariance) ϕk
ω(Hi

ω) = Hi
θkω

for every k ≥ 0.

(ii) (Splitting) Hi
ω ⊕ Fμi+1(ω) = Fμi (ω). In particular,

Eω = H1
ω ⊕ · · · ⊕ Hi

ω ⊕ Fμi+1(ω).

(iii) (‘Fast-growing’ subspace) For each hω ∈ Hi
ω\{0},

lim
n→∞

1

n
log ‖ϕn

ω(hω)‖ = μ j

and

lim
n→∞

1

n
log ‖(ϕn

σ nω)−1(hω)‖ = −μ j .

Moreover, the spaces are uniquely determined by properties (i), (ii) and (iii).

Clearly, the Oseledets splitting provides much more information about the cocycle than
the filtration.

Let us discuss some important preceeding results. In the finite dimensional case, an MET
for cocycles acting onmeasurable bundles can be found in the monograph [1, 4.2.6 Theorem]
by L. Arnold. In [17], Mañé proved an MET with Oseledets splitting on a Banach bundle,
assuming a topological structure on � and continuity of the map ω �→ ϕω. He also assumed
injectivity of ϕ. Besides these results, we are not aware of any METs for cocycles acting
on a bundle-type structure. Lian and Lu [15] proved an MET for cocycles acting on a fixed
Banach space, assuming only a measurable structure on �, but injectivity of the cocycle.
This assumption was later removed by Doan in [6] without giving an Oseledets splitting,
however. In [10], González-Tokman and Quas used this result as a “black-box” and proved
that an Oseledets splitting holds in this case, too.

Let us mention that our result is not only the first which provides a splitting on a bundle
structure of Banach spaces without using a topological structure on �, it also weakens the
measurability assumption on ϕ significantly in case we are dealing with a single Banach
space E only. In fact, the standard measurability assumption, for instance in [11], is strong
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measurability of ϕ, meaning that for fixed x ∈ E , the map

� � ω �→ ϕω(x) ∈ E (0.2)

should be measurable. In contrast, our assumption means that the maps

� � ω �→ ‖ϕk+n
ω (x)− ϕk

θnω(x̃)‖E ∈ R

should be measurable for every n, k ∈ N0 and x, x̃ ∈ S where S is a countable and dense
subset of E . This assumption is clearly implied by (0.2).

The proof of Theorem 0.2 pushes forward the volume growth-approach advocated by Blu-
menthal [2] and González-Tokman, Quas [11] which provides a clear growth interpretation
of the Lyapunov exponents. In a way, our result complements these two works in case of a
single Banach space E . In particular, we are not imposing any further assumptions on E like
reflexivity or separability of the dual as in [11].

A typical application for an MET is the construction of stable and unstable manifolds,
cf. [17,20,21]. Here, the existence of the Oseledets splitting is crucial. Our second main
contribution is an invariant manifold theorem for nonlinear cocycles acting on fields of
Banach spaces. We state an informal version here, the precise statements are formulated in
Theorems 2.10 and 2.17.

Theorem 0.3 Let ϕ be a nonlinear, differentiable cocycle acting on a measurable field of
Banach spaces {Eω}ω∈�. Assume that Yω is a randomfixed point ofϕ, in particularϕω(Yω) =
Yθω. Then, under the same measurability and integrability assumptions as in Theorem 0.2,
the linearized cocycle DYωϕω has a Lyapunov spectrum {μn}n≥1. Under further assumptions
on ϕ and Y , there is a θ -invariant set �̃ of full measure, closed subspaces Sω and Uω of Eω

and immersed submanifolds Sloc(ω) and Uloc(ω) of Eω such that for every ω ∈ �̃,

TY (ω)Sloc(ω) = Sω and TY (ω)Uloc(ω) = Uω

and the properties that for every Zω ∈ Sloc(ω),

lim sup
n→∞

1

n
log ‖ϕn

ω(Zω)− Yθnω‖ ≤ μ j0 < 0

and for every Zω ∈ Uloc(ω) one has ϕn
σ nω(Zσ nω) = Zω and

lim sup
n→∞

1

n
log ‖Zσ nω − Yσ nω‖ ≤ −μk0 < 0.

Herewe have setμ j0 = max{μ j : μ j < 0} andμk0 = min{μk : μk > 0}. In the hyperbolic
case, i.e. if all Lyapunov exponents are non-zero, the submanifolds Sυ

loc(ω) and Uυ
loc(ω) are

transversal, i.e.

Eω = TYωU
υ
loc(ω)⊕ TYω S

υ
loc(ω).

The structure of the paper is as follows. In Sect. 1, we prove a semi-invertible MET for
cocycles acting on measurable fields of Banach spaces. This result is applied in Sect. 2 to
deduce the existence of local stable and unstable manifolds for nonlinear cocycles.

Notation

– For Banach spaces (X , ‖ · ‖X ) and (Y , ‖ · ‖Y ), L(X , Y ) denotes the space of bounded
linear functions from X to Y equipped with usual operator norm. We will often not
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explicitly write a subindex for Banach space norms and use the symbol ‖ · ‖ instead.
Differentiability of a function f : X → Y will always mean Fréchet-differentiability. A
Cm function denotes anm-times Fréchet-differentiable function. If A, B ⊆ X , we denote
by d(A, B) := infa∈A,b∈B ‖a − b‖ the distance between two sets A and B. We also set
d(x, B) := d(B, x) := d({x}, B) for x ∈ X , B ⊆ X .

– Let X , Y be Banach spaces. For x1, . . . , xk ∈ X , set

Vol(x1, x2, . . . , xk) := ‖x1‖
k∏

i=2
d(xi , 〈x j 〉1≤ j<i ). (0.3)

For a given bounded linear function T : X → Y and k ≥ 1, we define

Dk(T ) := sup
‖xi‖=1;i=1,...,k

Vol
(
T (x1), T (x2), . . . , T (xk)

)
.

– Let E be a vector space. If we can write E as a direct sum E = F ⊕ H of vector spaces,
we have an algebraic splitting. We also say that F is a complement of H and vice versa.
The projection operator �F‖H (e) = f with e = f + h, f ∈ F , h ∈ H , is called the
projection operator onto F parallel to H . If E is a normed space and �F‖H is bounded
linear, i.e.

‖�F‖H‖ = sup
f ∈F,h∈H , f+h �=0

‖ f ‖
‖ f + h‖ <∞,

we call E = F ⊕ H a topological splitting. For normed spaces, a splitting will always
mean a topological splitting.

– Let (�,F) be a measurable space. We call a family of Banach spaces {Eω}ω∈� a mea-
surable field of Banach spaces if there is a set of sections

� ⊂
∏

ω∈�
Eω

with the following properties:

(i) � is a linear subspace of
∏

ω∈� Eω.
(ii) There is a countable subset �0 ⊂ � such that for every ω ∈ �, the set {g(ω) : g ∈

�0} is dense in Eω.
(iii) For every g ∈ �, the map ω �→ ‖g(ω)‖Eω is measurable.

– Let (�,F) be ameasurable space. If there exists ameasurablemap θ : �→ �,ω �→ θω,
with a measurable inverse θ−1, we call (�,F, θ) a measurable dynamical system. We
will use the notation θnω for n-times applying θ to an element ω ∈ �. We also set
θ0 := Id� and θ−n := (θn)−1. If P is a probability measure on (�,F) that is invariant
under θ , i.e. P(θ−1A) = P(A) = P(θ A) for every A ∈ F , we call the tuple

(
�,F,P, θ

)

ameasure-preserving dynamical system. The system is called ergodic if every θ -invariant
set has probability 0 or 1.

– Let (�,F,P, θ) be a measure-preserving dynamical system and ({Eω}ω∈�,�) a mea-
surable field of Banach spaces. A continuous cocycle on {Eω}ω∈� consists of a family
of continuous maps

ϕω : Eω → Eθω. (0.4)

If ϕ is a continuous cocycle, we define ϕn
ω : Eω → Eθnω as

ϕn
ω := ϕθn−1ω ◦ · · · ◦ ϕω.
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We also set ϕ0
ω := IdEω . We say that ϕ acts on {Eω}ω∈� if the maps

ω �→ ‖ϕ(n, ω, g(ω))‖Eθnω
, n ∈ N

are measurable for every g ∈ �. In this case, we will speak of a continuous random
dynamical system on a field of Banach spaces. If themap (0.4) is bounded linear/compact,
we call ϕ a bounded linear/compact cocycle.

1 Semi-invertible MET on Fields of Banach Spaces

In this section, (�,F,P, θ) will denote an ergodic measure-preserving dynamical system
and we set σ := θ−1. Let ({Eω)ω∈�,�,�0) be a measurable field of Banach space and let
ψω : Eω → Eθω be a compact linear cocycle acting on it. In the sequel, we will furthermore
assume that the following assumption is satisfied:

Assumption 1.1 For each g, g̃ ∈ � and n, k ≥ 0,

ω→ ‖ψk
θnω[ψn

ω(g(ω))− g̃(θnω)]‖E
θn+kω

is measurable.

We will always assume that

log+ ‖ψω‖ ∈ L1(�).

Under this condition, the Multiplicative Ergodic Theorem [12, Theorem 4.17] applies and
yields the existence of Lyapunov exponents {μ1 > μ2 > . . .} ⊂ [−∞,∞) on a θ -invariant
set of full measure �̃ ⊂ �. More precisely, there are numbers �k ∈ [−∞,∞) such that

�k = lim
n→∞

1

n
log Dk

(
ψn

ω

)
, k ≥ 1

for every ω ∈ �̃. Setting λk = �k − �k−1, the sequence (μk) is the subsequence of (λk)

defined by removing all multiple elements. For any μ ∈ [−∞,∞), we define the closed
subspace

Fμ(ω) =
{
ξ ∈ Eω | lim sup

n→∞
1

n
log ‖ψn

ω(ξ)‖ ≤ μ

}
.

Note that ψ is invariant on these spaces in the sense that

ψn
ω|Fμ(ω) : Fμ(ω)→ Fμ(θnω).

We also saw in [12, Theorem 4.17] that there are numbers mi ∈ N such that mi =
dim

(
Fμi (ω)/Fμi+1(ω)

)
for every ω ∈ �̃.

If not otherwise stated, �̃ ⊂ � will always denote a θ -invariant set of full measure. Note
that we can always assume w.l.o.g. that a given set of full measure �0 ⊂ � is θ -invariant,
otherwise we can consider

⋂

k∈Z
θk(�0)

instead.
Next, we collect some basic Lemmas. Recall the definition of Vol and Dk .
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Lemma 1.2 Let X , Y be Banach spaces and T : X → Y a linear operator. For k ∈ N, there
exist positive constants ck,Ck depending only on k such that

ck Dk(T ) ≤ Dk(T
∗) ≤ CkDk(T ) (1.1)

where by T ∗ : Y ∗ → X∗ we mean the dual map of T .

Proof [11, Lemma 3]. ��
Lemma 1.3 For a Banach space X and k ≥ 1, the map

Vol : Xk −→ R

(x1, x2, . . . , xk) �→ ‖x1‖
k∏

i=2
d(xi , 〈x j 〉1≤ j<i ) (1.2)

is continuous.

Proof [15, Lemma 4.2]. ��
Lemma 1.4 For every g ∈ � and j ≥ 1, the map

ω �→ d
(
g(ω), Fμ j (ω))

)

is measurable.

Proof As in the proof to [12, Lemma 4.3]. ��
For a Banach space X and a closed subspace U ⊂ X , the quotient space X/U is again a

Banach space with norm

‖[x]‖X/U = inf
u∈U ‖x − u‖.

For an element x ∈ Eω, we denote by [x]μ its equivalence class in the quotient space
Eω/Fμ(ω). From the invariance property of ψ , the map

[ψn
ω]μ j+1 :

Fμ j (ω)

Fμ j+1(ω)
−→ Fμ j (θ

nω)

Fμ j+1(θ
nω)

, [ψn
ω]μ j+1([x]) := [ψn

ω(x)]μ j+1

is well-defined for every j ≥ 1 and n ∈ N. Note also that [ψn
ω]μ j+1 is bijective for

ω ∈ �̃. Indeed, injectivity is straightforward and surjectivity follows from the fact that
Fμ j (ω)/Fμ j+1(ω) and Fμ j (θ

nω)/Fμ j+1(θ
nω) are finite-dimensional with the same dimen-

sion mi .

Lemma 1.5 For m, n ∈ N, the maps

f1(ω) := Dm(ψn
ω |Fμ2 (ω)) and f2(ω) := Dm([ψn

ω]μ2)

are measurable.

Proof It is not hard to see that

f1(ω) = lim
l→∞ lim inf

k→∞

[
sup

{ξ tω}1≤t≤m⊂Bl,k
ω (μ2)

Vol
(
ψn

ω(ξ1ω), . . . , ψn
ω(ξmω )

)]
(1.3)
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where

Bl,k
ω (μ2) =

{
ξ ∈ Fμ1(ω) : ‖ξ‖ = 1, ‖ψk

ω(ξ)‖ < exp
(
k(μ2 + 1

l
)
) }

,

cf. the proof of [12, Lemma 4.3]. Let {gt }1≤t≤m ⊂ �0 andC(gt ) := {ω : gt (ω) ∈ Bl,k
ω (μ2)}.

As a consequence of Lemma 1.4, these sets are measurable and we have

sup
{ξ tω}1≤t≤m⊂Bl,k

ω (μ2)

Vol
(
ψn

ω(ξ1ω), . . . , ψn
ω(ξmω )

) =

sup
{gt }1≤t≤m⊂�0

Vol

(
ψn

ω

( g1(ω)

‖g1(ω)‖
)
, . . . , ψn

ω

( gm(ω)

‖gm(ω)‖
)) ∏

1≤t≤m
χC(gt )(ω)

which implies measurability of f1. For f2, note first that

f2(ω) = lim
l→∞ lim inf

k→∞

[
sup

{ξ tω}1≤t≤m⊂Fμ1 (ω)

Vol
([ψn

ω(ξ1ω)]μ2 , . . . , [ψn
ω(ξmω )]μ2

)

∏
1≤t≤m ‖[ξ tω]μ2‖

]

where we set 0
0 := 0. Again as before

sup
{ξ tω}1≤t≤m⊂Fμ1 (ω)

Vol
([ψn

ω(ξ1ω)]μ2 , . . . , [ψn
ω(ξmω )]μ2

)

∏
1≤t≤m ‖[ξ tω]μ2‖

=

sup
{gt }1≤t≤m⊂�0

Vol
([ψn

ω(g1(ω))
]
μ2

, . . . , [ψn
ω(gk(ω))]μ2

)

∏
1≤t≤m d

(
gt (ω), Fμ2(ω)

) .

It remains to show that for g ∈ �, d
(
ψn

ω

(
g(ω)

)
, Fμ2(θ

nω)
)
is measurable, which can be

achieved using Assumption 1.1 with a proof similar to Lemma 1.4. ��
Lemma 1.6 For every i ≥ 0, there is a constant Mi > 0 such that

‖[ψ1
ω]μi+1‖ < Mi‖ψ1

ω‖
for every ω ∈ �̃.

Proof Since dim[ Fμi (ω)

Fμi+1 (ω)
] = mi , we can choose Hω ⊂ Fμi (ω) such that

Hω ⊕ Fμi+1(ω) = Fμi (ω) and ‖�Hω||Fμi+1 (ω)‖ ≤ √mi + 2 =: Mi , (1.4)

cf. [2, Lemma 2.3]. Let ξω ∈ Fμi (ω)\Fμi+1(ω) with corresponding decomposition ξω =
hω + fω ∈ Hω ⊕ Fμi+1(ω). From (1.4), we know that ‖hω‖‖[ξω]μi+1‖ ≤ Mi and consequently

‖[ψ1
ω(ξω)]μi+1‖
‖[ξω]μi+1‖

≤ Mi
‖[ψ1

ω(hω)]μi+1‖
‖hω‖ ≤ Mi

‖ψ1
ω(hω)‖
‖hω‖ ≤ Mi‖ψ1

ω‖.

The claim follows. ��
Lemma 1.7 Assume that { fn(ω)}n≥1 is a subadditive sequence with respect to θ and set
gn(ω) := fn(σ nω). Assume f +1 (ω) ∈ L1(�). Then there is a θ -invariant set �̃ ∈ F with
full measure such that for every ω ∈ �̃,

lim
n→∞

1

n
fn(ω) = lim

n→∞
1

n
gn(ω) ∈ [−∞,∞)

where the limit does not depend on ω.
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Proof We can easily check that {gn(ω)}n≥1 is a subadditive sequence with respect to σ . Since
fn(ω) and gn(ω) have same law, the result follows from Kingman’s Subadditive Ergodic
Theorem. ��

As a consequence, we obtain the following:

Lemma 1.8 There is a θ -invariant set of full measure �̃ ∈ F such that

lim
n→∞

1

n
log Dk

(
ψn

ω

) = lim
n→∞

1

n
log Dk

(
ψn

σ nω

) = lim
n→∞

1

n
log Dk

(
(ψn

σ nω)∗
) = �k (1.5)

and

lim
n→∞

1

n
log Dk

(
ψn

ω |Fμ2 (ω)

) = lim
n→∞

1

n
log Dk

(
ψn

σ nω |Fμ2 (σ nω)

)

= lim
n→∞

1

n
log Dk

(
(ψn

σ nω)∗ |(
Fμ2 (σ nω)

)∗
] = �k+m1 −�m1 (1.6)

Proof We already noted that limn→∞ 1
n log Dk

(
ψn

ω

) = �k . The equality

lim
n→∞

1

n
log Dk

(
ψn

ω |Fμ2 (ω)

) = �k+m1 −�m1 (1.7)

was a partial result in the proof of Theorem [12, Theorem4.17]. The remaining inequalities
follow by a combination of all Lemmas 1.2–1.7. ��

From now on, we will assume that �̃ is the set provided in Lemma 1.8.

Lemma 1.9 Fixω ∈ �̃ and let (ξσ nω)n be a sequence such that ξσ nω ∈ Fμ1(σ
nω)\Fμ2(σ

nω)

and ‖[ξσ nω]μ2‖ = 1 for every n ∈ N. Then

lim
n→∞

1

n
log ‖[ψn

σ nω(ξσ nω)]μ2‖ = μ1. (1.8)

Proof By applyingLemmas 1.5, 1.6 and 1.7,Kingman’s Subadditive Ergodic Theorem shows
that

lim
n→∞

1

n
log Dk

([
ψn

ω

]
μ2

) = lim
n→∞

1

n
log Dk

([
ψn

σ nω

]
μ2

)

exist for every k ≥ 1. Let Hω be a complement subspace for Fμ2(ω) in Fμ1(ω). Using a
slight generalization of [12, Lemma 4.4], we have that

lim
n→∞

1

n
log ‖�ψn

ω(Hω)||Fμ2 (θnω)‖ = 0.

For ξω ∈ Fμ1(ω)\Fμ2(ω), since

‖ψn
ω(�Hω||Fμ2 (ω)(ξω))‖
‖[ψn

ω(ξω)]μ2‖
≤ ‖�ψn

ω(Hω)||Fμ2 (θnω)‖

it follows that

lim
n→∞

1

n
log ‖[ψn

ω(ξω)]μ2‖ = μ1. (1.9)

Let

k := max
{
m : lim

n→∞
1

n
log Dm

([
ψn

ω

]
μ2

) = mμ1
}
.

123



112 Journal of Dynamics and Differential Equations (2023) 35:103–133

We claim k = m1. Indeed, otherwise from [12, Proposition4.15], there exists a subspace

Fω ⊂ Fμ1 (ω)

Fμ2 (ω)
with codimension k such that for every ξω ∈ Fω

lim sup
n→∞

1

n
log ‖[ψn

ω(ξω)]μ2‖ < μ1.

Since dim[ Fμ1 (ω)

Fμ2 (ω)
] = m1, we can find a non-zero element in Fω which contradicts (1.9).

Hence we have shown that

lim
n→∞

1

n
log Dm1

([
ψn

ω

]
μ2

) = m1μ1.

Therefore, for every n ∈ N, we can find {ξ j
σ nω}1≤ j≤m1 ⊂ Fμ1(σ

nω) such that ‖[ξ j
ω]μ2‖ = 1

and

lim
n→∞

1

n
Vol

([ψn
σ nω(ξ1σ nω)]μ2 , . . . , [ψn

σ nω(ξ
m1
σ nω)]μ2

)] = m1μ1. (1.10)

Using the definition of Vol, it follows that for every 2 ≤ t ≤ m1,

lim
n→∞

1

n
log d

([ψn
σ nω(ξ tω)]μ2 , 〈[ψn

σ nω(ξ
j
σ nω)]μ2〉1≤ j≤t−1

) = μ1. (1.11)

We have ξσ nω = ∑
1≤ j≤m1

α j ξ
j
σ nω mod Fμ2(σ

nω). In the proof of [12, Lemma 4.7], we
already saw that the the Vol-function is symmetric up to a constant. By our assumption on
ξσ nω, we can therefore assume that αm1 ≥ 1

m1
. Finally from (1.11)

lim
n→∞

1

n
log ‖[ψn

σ nω(ξσ nω)]μ2‖

= lim
n→∞

1

n

[
d
([ψ(ξ

mi
σ nω)]μ2 , 〈[ψn

σ nω(ξ
j
σ nω)]μ2〉1≤ j≤m1−1

) = μ1.

��
Definition 1.10 Let X be a Banach space. We define G(X) to be the Grassmanian of closed
subspaces of X equipped with the Hausdorff distance

dH (A, B) := max{ sup
a∈SA

d(a, SB), sup
b∈SB

d(b, SA)}

where SA = {a ∈ A : ‖a‖ = 1}. Set
Gk(X) = {A ∈ G(X) : dim[A] = k} and Gk(X) = {A ∈ G(X) : dim[X/A] = k}.

It can be shown that (G(X), dH ) is a complete metric space and that Gk(X) and Gk(X) are
closed subsets [13, Chapter IV]. The following lemma will be useful.

Lemma 1.11 For A, B ∈ G(X) set

δ(A, B) := sup
a∈SA

d(a, B).

Then the following holds:

(i) dH (A, B) ≤ 2max{δ(A, B), δ(B, A)}.
(ii) If A, B ∈ Gk(X) with d(A, B) < 1

k for some k ∈ N, we have

δ(B, A) ≤ kδ(A, B)

1− kδ(A, B)
.
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Proof [2, Lemma 2.6]. ��
Proposition 1.12 Assume μ1 > −∞. Fix ω ∈ �̃. For every n ∈ Z, let Hn

σ nω ⊂ Fμ1(σ
nω)

be a complementary subspace for Fμ2(ω) satisfying (1.4). Set H̃n
ω := ψn

σ nω(Hn
σ nω). Then the

sequence {H̃n
ω}n≥1 is Cauchy in

(
Gm1(Fμ1(ω)), dH

)
.

Proof From (1.4), we can deduce that for every n ∈ N and ξσ nω ∈ SHn
σnω

,

1

M1
< ‖[ξσ nω]μ2‖ ≤ 1. (1.12)

Note that ψk
σ nω|Hn

σnω
is injective for any k ≥ 1, therefore dim(H̃n

ω) = dim(Hn
σ nω) = m1.

Since μ2 < μ1, we know that H̃n
ω ∩ Fμ2(ω) = {0} and since dim[ Fμ1 (ω)

Fμ2 (ω)
] = m1, we obtain

that

H̃n
ω ⊕ Fμ2(ω) = Fμ1(ω)

for any n ∈ N. Let {ξ j
σ nω}1≤ j≤m1 ⊂ SFμ1 (σ nω) be a base for Hn

σ nω. Then for ξσ n+1ω ∈
SFμ1 (σ n+1ω) ∩ Hn+1

σ n+1ω, there exist {β j }1≤ j≤m1 ⊂ R such that

Zn
ω :=

ψn+1
σ n+1ω(ξσ n+1ω)

‖ψn+1
σ n+1ω(ξσ n+1ω)‖ −

∑

1≤ j≤m1

β j
ψn

σ nω(ξ
j
σ nω)

‖ψn
σ nω(ξ

j
σ nω)‖

∈ Fμ2(ω).

It follows that

Yn
σ nω :=

ψ1
σ n+1ω(ξσ n+1ω)

‖ψn+1
σ n+1ω(ξσ n+1ω)‖ −

∑

1≤ j≤m1

β j
ξ
j
σ nω

‖ψn
σ nω(ξ

j
σ nω)‖

∈ Fμ2(σ
nω),

thus

∥∥
∑

1≤ j≤m1

β j
ξ
j
σ nω

‖ψn
σ nω(ξ

j
σ nω)‖

∥∥ ≤ ‖�Hn
σnω
||Fμ2 (σ nω)‖

‖ψ1
σ n+1ω‖

‖ψn+1
σ n+1ω(ξσ n+1ω)‖

≤ M1
‖ψ1

σ n+1‖
‖ψn+1

σ n+1ω(ξσ n+1ω)‖
and so

d

(
ψn+1

σ n+1ω(ξσ n+1ω)

‖ψn+1
σ n+1ω(ξσ n+1ω)‖ , H̃

n
ω

)
≤ ‖Zn

ω‖ = ‖ψn
σ nω(Yn

σ nω)‖

≤ (M1 + 1)
‖ψn

σ nω|Fμ2 (σ nω)‖‖ψ1
σ n+1ω‖

‖ψn+1
σ n+1ω(ξσ n+1ω)‖ . (1.13)

Note that limn→∞ 1
n log ‖ψ1

σ nω‖ = 0 from Birkhoff’s Ergodic Theorem. Using Lemma 1.7
and (1.7) for k = 1, we have

lim sup
n→∞

1

n
log ‖ψn

σ nω|Fμ2 (σ nω)‖ ≤ μ2.

From Lemma 1.9 the estimate 1.12 and Lemma 1.11, (1.13) implies that for ε > 0 small and
large n,

dH
(
H̃n

ω, H̃n+1
ω

)
< M exp

(
n(μ2 − μ1 + ε)

)
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for a constant M > 0. The claim is proved. ��
Next, we collect some facts about the limit of the sequence above.

Lemma 1.13 Assume H̃n
ω

dH−→ H̃ω. Then the following holds:

(i) H̃ω is invariant, i.e. ψk
ω(H̃ω) = H̃θkω for any k ≥ 0.

(ii) H̃ω ∩ Fμ2(ω) = {0}.
(iii) H̃ω only depends on ω. In particular, it does not depend on the choice of the sequence
{H̃n

ω}n≥1.
Proof By construction, H̃ω is invariant. We proceed with (ii). Consider the dual map

(
ψn

σ nω

)∗
μ1
: (Fμ1(ω)

)∗ → (
Fμ1(σ

nω)
)∗

.

It is straightforward to see that
(
ψn

σ nω

)∗
μ1

enjoys the cocycle property. From (1.5) and

[12, Proposition 4.15], we can find a closed subspace G∗μ2
(ω) ⊂ (

Fμ1(ω)
)∗ such that

dim[(Fμ1(ω))∗/G∗μ2
(ω)] = m1 and for ξ∗ω ∈ G∗μ2

(ω), lim supn→∞ 1
n log

∥∥(
ψn

σ nω

)∗
μ1

(ξ∗ω)
∥∥ ≤

μ2. Set
(
Fμ2(ω)

)⊥
μ1
= {

ξ∗ω ∈
(
Fμ1(ω)

)∗ : ξ∗ω|Fμ2 (ω) = 0
}
.

By Hahn–Banach separation theorem,

dim
[(
Fμ2(ω)

)⊥
μ1

]
= dim

[
Fμ1(ω)/Fμ2(ω)

] = m1.

Let ξ∗ω ∈
(
Fμ2(ω)

)⊥
μ1
∩G∗μ2

(ω) and assume that ξ∗ω �= 0.Then for some ξω /∈ Fμ1(ω)\Fμ2(ω),
〈ξ∗ω, ξω〉 = 1. Using surjectivity of [ψn

σ nω]μ2 , for every n ∈ N, we can find ξσ nω ∈ Hn
σ nω

such that

ψn
σ nω(ξσ nω) = ξω mod Fμ2(ω).

Consequently, 〈(ψn
σ nω)∗μ1

(ξ∗ω), ξσ nω〉 = 1. From Lemma 1.9 ,

lim
n→∞

1

n
log

∥∥[
ψn

σ nω(
ξσ nω

‖[ξσ nω]μ2‖
)
]
μ2

∥∥ = lim
n→∞

1

n
log

∥∥ ‖[ξω]μ2‖
‖[ξσ nω]μ2‖

∥∥ = μ1. (1.14)

Hence for ε > 0 and large n,

‖[ξσ nω]μ2‖ < exp(−n(
μ1 − ε)

)

which is a contradiction since ‖(ψn
σ nω)∗μ1

(ξ∗ω)‖ ≤ exp
(
n(μ2+ ε)

)
. Thus we have shown that

(
Fμ1(ω)

)∗ = (
Fμ2(ω)

)⊥
μ1
⊕ G∗μ2

(ω). (1.15)

Now let ξω ∈ H̃ω ∩ Fμ2(ω) and assume that ‖ξω‖ = 1. From 1.15, we can find ξ∗ω ∈
G∗μ2

(ω) such that 〈ξ∗ω, ξω〉 = 1. By definition of H̃ω, there exist ξnσ nω ∈ SHn
σnω

such that
ψn

σnω
(ξn

σnω
)

‖ψn
σnω

(ξn
σnω

)‖ → ξω as n→∞, and consequently

〈ξ∗ω,
ψn

σ nω(ξnσ nω)

‖ψn
σ nω(ξnσ nω)‖〉 = 〈(ψ

n
σ nω)∗(ξ∗ω),

ξnσ nω

‖ψn
σ nω(ξnσ nω)‖〉 → 1
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as n →∞. With Lemma 1.9 and a similar argument as above, this is again a contradiction
and we have shown (ii). It remains to prove (iii). For ξω ∈ H̃ω ⊂ (Fμ1(ω))∗∗, ξ∗ω ∈ G∗μ2

(ω)

and a sequence ξnσ nω chosen as above,

〈 ψn
σ nω(ξnσ nω)

‖ψn
σ nω(ξnσ nω)‖ , ξ

∗
ω〉 → 0

as n → ∞. Therefore, H̃ω ⊂
(
G∗μ2

(ω)
)⊥
μ1
= {

ξ∗∗ω ∈
(
Fμ1(ω)

)∗∗ : ξ∗∗ω |G∗μ2 (ω) = 0
}
and

since dim
[(
G∗μ2

(ω)
)⊥
μ1

] = m1, we obtain H̃ω =
(
G∗μ2

(ω)
)⊥
μ1

which proves (iii). ��
Combining Proposition 1.12 and Lemma 1.13, we see that if μ1 > −∞, there is a θ -

invariant set �̃ ⊂ � of full measure such that for every ω ∈ �̃, there is an m1-dimensional
subspace H1

ω with the properties

– ψk
ω(H1

ω) = H1
θkω

for every k ≥ 0 and

– H1
ω ⊕ Fμ2(ω) = Fμ1(ω).

Thanks to the following lemma, we can invoke an induction argument to deduce the
existence of a sequence of invariant spaces Hi

ω, i ≥ 1.

Lemma 1.14 The family of Banach spaces {Fμ2(ω)}ω∈�̃ is a measurable field of Banach
spaces with

�̃ = {g̃ := �Fμ2 ||H1 ◦ g, g ∈ �} and �̃0 = {g̃ := �Fμ2 ||H1 ◦ g, g ∈ �0}.
In addition, ψω|Fμ2 (ω) : Fμ2(ω)→ Fμ2(θω) is a linear compact cocycle satisfying Assump-

tion 1.1 with � replaced by �̃. Moreover, the maps

f1(ω) := ‖�H1
ω||Fμ2 (ω)‖ and f2(ω) := ‖�Fμ2 (ω)||H1

ω
‖

are measurable.

Proof The only non-trivial part in proving that {Fμ2(ω)}ω∈�̃ is a measurable field of Banach
spaces is to show that

ω �→ ‖�Fμ2 (ω)||H1
ω
(g(ω))‖ (1.16)

is measurable for every g ∈ �. Let

{gi : i ∈ N} = �0 and {(gk1 , . . . , gkm1
) : k ∈ N} = �

m1
0 .

Fix n ∈ N and ω ∈ �̃. We define {Uk
σ nω}k≥1 to be the family of subspaces of Eσ nω given

by Uk
σ nω = 〈gki (σ nω)〉1≤i≤m1,gki ∈�0 . Using the same technique as in Lemma 1.5, one can

show that the map

ω �→ Gk(σ
nω) =

{‖�Uk
σnω
||Fμ2 (σ nω)‖ Uk

σ nω ⊕ Fμ2(σ
nω) = Fμ1(σ

nω)

∞ otherwise

is measurable. Setψn(ω) := inf{k : Gk(σ
nω) < M1}with M1 as in Lemma 1.6. This map is

clearly measurable. By Proposition 1.12, H̃n
ω := ψn

σ nω

(
Uψn(ω)

σ nω

) dH−→ H1
ω and consequently

�H̃n
ω ||Fμ2 (ω)

→ �H1
ω ||Fμ2 (ω) as n→∞. (1.17)

Let g ∈ �. Then we have a decomposition of the form
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�H̃n
ω ||Fμ2 (ω)

g(ω) =
∑

1≤t≤m1

αt (ω)ψn
σ nω(gιt (ω)(σ

nω))

where ι1, . . . , ιm1 : � → N are measurable. We assume m1 = 1 first. To ease notation,
set ι := ι1. Since g(ω) − α1(ω)ψn

σ nω(gι(ω)(σ
nω)) ∈ Fμ2(ω), we have ‖[g(ω)]μ2‖ =

|α1(ω)|‖[ψn
σ nω(gι(ω)(σ

nω))]‖ and therefore

|α1(ω)| = d
(
g(ω), Fμ2(ω)

)

d
(
ψσ nω(gι(ω)(σ nω)), Fμ2(ω)

) .

Set

d0(ω) := d
(
g(ω), Fμ2(ω)

)
and d1(ω) := d

(
ψσ nω(gι(ω)(σ

nω)), Fμ2(ω)
)
.

From Lemma 1.4, we know that d0 is measurable. Furthermore, a slight adaptation of the
proof yields the measurability of ω �→ d

(
ψσ nω(gk(σ nω)), Fμ2(ω)

)
for any fixed k ∈ N.

Since ι is measurable, this implies the measurability of d1, too. We have

�H̃n
ω ||Fμ2 (ω)

g(ω) = G(ω)
d0(ω)

d1(ω)
ψn

σ nω(gι(ω)(σ
nω))

where G(ω) takes values in {−1, 0, 1}. Set h0(ω) := g(ω) − d0(ω)
d1(ω)

ψn
σ nω(gι(ω)(σ

nω)) and

h1(ω) := g(ω)+ d0(ω)
d1(ω)

ψn
σ nω(gι(ω)(σ

nω)) and define

J0(ω) := lim
m→∞

1

m
log

∥∥ψm
ω

(
h0(ω)

)∥∥, J1(ω) := lim
m→∞

1

m
log

∥∥ψm
ω

(
h1(ω)

)∥∥.

It follows that J0 and J1 are measurable and that

�H̃n
ω ||Fμ2 (ω)

g(ω) = (1− χ{g(ω)∈Fμ2 (ω)})
[
g(ω)− χμ2

(
J0(ω)

)
h0(ω)− χμ2

(
J1(ω)

)
h1(ω)

]
.

(1.18)

Then (1.18) and (1.17) prove the measurability of (1.16) for every g ∈ � in the casem1 = 1.
Furthermore, measurability of f1 and f2 and Assumption 1.1 for �̃ can also be deduced. It
remains to consider the case m1 > 1 for which we invoke the same technique: Let

d0(ω) = d
(
g(ω), Fμ2(ω)⊕ 〈ψn

σ nω(gιt (ω)(σ
nω))〉2≤t≤m1

)
,

d1(ω) = d
(
ψn

σ nω(gι1(ω)(σ
nω)), Fμ2(ω)⊕ 〈ψn

σ nω(gιt (ω)(σ
nω))〉2≤t≤m1

)
.

For h0(ω) = g(ω)− d0(ω)
d1(ω)

ψn
σ nω(gι1(ω)(σ

nω)) and h1(ω) = g(ω)+ d0(ω)
d1(ω)

ψn
σ nω(gι1(ω)(σ

nω))

let

di0(ω) := d
(
hi (ω), Fμ2(ω)⊕ 〈ψn

σ nω(gιt (ω)(σ
nω))〉3≤t≤m1

)
, i ∈ {0, 1}

d01(ω) = d11(ω) = d
(
ψn

σ nω(gι2(ω)(σ
nω)), Fμ2(ω)⊕ 〈ψn

σ nω(gιt (ω)(σ
nω))〉3≤t≤m1

)
.

For i ∈ {0, 1} define

h0,i = h0(ω)+ (−1)i+1 d00(ω)

d01(ω)
ψn

σ nω(gι2(ω)(σ
nω))

h1,i = h1(ω)+ (−1)i+1 d10(ω)

d11(ω)
ψn

σ nω(gι2(ω)(σ
nω)).
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We repeat the same procedure with our four new functions. Iterating this, we end up with
2m1 functions {It (ω)}1≤t≤2m1 for which we define Jt (ω) := limm→∞ 1

m log
∥∥ψm

ω (It (ω))
∥∥.

Since

�H̃n
ω ||Fμ2 (ω)

g(ω) = (1− χ{g(ω)∈Fμ2 (ω)})

⎡

⎣g(ω)−
∑

0≤t≤2m1

χμ2

(
Jt (ω)

)
It (ω)

⎤

⎦ ,

our claim follows for arbitrary m1. ��

Proposition 1.15 Let i ∈ N and assume μi > ∞. Then there is a θ -invariant set of full
measure �̃ such that for every ω ∈ �̃, there is an mi -dimensional space Hi

ω with the
properties

(1) ψk
ω(Hi

ω) = Hi
θkω

for every k ≥ 0 and

(2) Hi
ω ⊕ Fμi+1(ω) = Fμi (ω).

Proof For i = 1, the statement follows fromProposition 1.12 and Lemma 1.13. For i = 2, we
consider the restricted cocycle ψk

ω|Fμ2 (ω). From Lemma 1.14, we know that this cocycle acts
on the measurable field of Banach spaces {Fμ2(ω)}ω∈� and we can thus apply Proposition
1.12 and Lemma 1.13 to this cocycle again. It remains to make sure that the top Lyapunov
exponent of the restricted cocycle coincides with μ2. This, however, was deduced in Lemma
1.8. We can now repeat the argument until we reach i . ��

From now on, Hi
ω will always denote the spaces deduced in Proposition 1.15.

Remark 1.16 Using identities of the form

�Fμ j (ω)||⊕l≤i< j H i
ω
= �

Fμ j (ω)||H j−1
ω
◦�

Fμ j−1 (ω)||H j−2
ω
◦ · · · ◦�Fμl+1 (ω)||Hl

ω
,

we can use the same strategy as in Lemma 1.14 to see that for each 1 ≤ l ≤ j and k ≥ 0,

f1(ω) := ∥∥�⊕l≤i< j H i
ω⊕Fμ j (ω)

∥∥, f2(ω) := ∥∥�Fμ j (ω)||⊕l≤i< j H i
ω

∥∥ and f3(ω)

:= ‖ψk
ω|⊕l≤i< j H i

ω
‖

are measurable.

Lemma 1.17 For a measurable and non-negative function f : �→ R

lim
n→∞

1

n
f (θnω) = 0 a.s. if and only if lim

n→∞
1

n
f (σ nω) = 0 a.s.

Proof The main idea is due to Jack Feldman, cf. [16, Lemma 7.2]. Assume that
limn→∞ 1

n f (θnω) = 0 on a set of full measure �0. Let ε > 0 and set

�n := {ω ∈ �0 : ∀i ≥ n
f (θ iω)

i
≤ ε}.

Fom our assumptions, for some n0 ∈ N,

P(�n0) >
9

10
.
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FromBirkhoff’s ergodic theorem, there is a set of full measure�1 such that for everyω ∈ �1,
we can find m0 = mω such that for m ≥ m0,

1

m

∑

0≤ j≤m
χ�n0

(σ jω) >
9

10
. (1.19)

W.l.o.g., we may assume that �0 = �1. Now for k ≥ max{3n0,m0}, set m = � 53k� + 1.
Then from (1.19)

1

m

[ ∑

0≤ j≤ 4m
5

χ�n0
(σ jω)+

∑

4m
5 < j≤m

χ�n0
(σ jω)

]
>

9

10
.

Consequently, there exists 4m
5 < j ≤ m such that σ jω ∈ �n0 . Set i := j − k > n0. Then

by the definition of �n0 ,

f (θ iσ jω)

i
= f (σ kω)

j − k
≤ ε.

Since j − k ≤ 2
3k + 1 and ε is arbitrary, our claim is shown. The other direction can be

proved similarly. ��
As a consequence, we obtain the following:

Lemma 1.18 For each 1 ≤ l ≤ j and ω ∈ �̃,

lim
n→∞

1

n
log ‖�⊕l≤i< j H i

θnω
||Fμ j (θ

nω)‖ = lim
n→∞

1

n
log ‖�⊕l≤i< j H i

σnω
||Fμ j (σ

nω)‖ = 0. (1.20)

Proof Follows from a straightforward generalization of [12, Lemma 4.4] and Lemma 1.17.
��

The following lemma characterizes the spaces Hi
ω as ‘fast-growing’ subspaces.

Proposition 1.19 For ω ∈ �̃, every i ≥ N and ξω ∈ Hi
ω\{0},

lim
n→∞

1

n
log ‖ψn

ω(ξω)‖ = lim
n→∞

1

n
log ‖ψn

ω|Hi
ω
‖ = μi (1.21)

and

lim
n→∞

1

n
log ‖(ψn

σ nω)−1(ξω)‖ = lim
n→∞

1

n
log ‖(ψn

σ nω|Hi
ω
)−1‖ = −μi . (1.22)

Proof The equalities (1.21) follow by applying the Multiplicative Ergodic Theorem [12,
Theorem 4.17] to the map ψn

ω|Hi
ω
: Hi

ω → Hi
θnω. It remains to prove (1.22). By definition,

for every ξω ∈ Hi
ω,

‖(ψn
σ nω)−1(ξω)‖
‖[ξω]μi+1‖

×
∥∥[

ψn
σ nω

(
(ψn

σ nω)−1(ξω)
)]

μi+1
∥∥

‖[(ψn
σ nω)−1(ξω)]μi+1‖

= ‖(ψn
σ nω)−1(ξω)‖

‖[(ψn
σ nω)−1(ξω)]μi+1‖

≤ ‖�Hi
σnω
||Fμi+1 (σ nω)‖.

From Lemma 1.9,

lim
n→∞

1

n
inf

ξ̄σnω∈Hi
σnω

‖[ψn
σ nω(ξ̄σ nω)]μi+1‖
‖[ξ̄σ nω]μi+1‖

= lim
n→∞

1

n

‖[ψn
σ nω(ξ̂σ nω)]μi+1‖
‖[ξ̂σ nω]μi+1‖

= μi
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where ξ̂σ nω ∈ Hi
σ nω is chosen such that

‖[ψn
σ nω(ξ̂σ nω)]μi+1‖
‖[ξ̂σ nω]μi+1‖

= min
ξ̄σnω∈Hi

σnω

‖[ψn
σ nω(ξ̄σ nω)]μi+1‖
‖[ξ̄σ nω]μi+1‖

.

Consequently, from (1.20),

lim sup
n→∞

1

n
log ‖(ψn

σ nω|Hi
ω
)−1‖ ≤ −μi

Finally, from inequality ‖ξω‖ ≤ ‖ψn
σ nω|Hi

σnω
‖‖(ψn

σ nω)−1(ξω)‖, Lemma 1.7 and (1.21), the

equalities (1.22) can be deduced. ��

Lemma 1.20 Let ω ∈ �̃ and i < k. For every i ≤ j < k, let {ξ tω}t∈I j be a basis of H j
ω . Set

I := ∪i≤ j<k I j and assume ξ tω ∈ H j
ω . Then

lim
n→∞

1

n
log d(ψn

ω(ξ tω), 〈ψn
ω(ξ t

′
ω )〉t ′∈I\{t}) = μ j (1.23)

and

lim
n→∞

1

n
log d((ψn

σ nω)−1(ξ tω), 〈(ψn
σ nω)−1(ξ t ′ω )〉t ′∈I\{t}) = −μ j . (1.24)

Proof Wewill prove (1.24) only, the proof for (1.23) is completely analogous. First, we claim
that the statement is true for j = i and k = i+1. Indeed, in this case we have the inequalities

1

‖ψn
σ nω|Hi

σnω
‖ ≤

d
(
(ψn

σ nω)−1(ξ tω), 〈(ψn
σ nω)−1(ξ t ′ω )〉t ′∈I\{t}

)

d
(
ξ tω, 〈ξ t ′ω 〉t ′∈I\{t}

) ≤ ‖(ψn
σ nω)−1|Hi

ω
‖

and we can conclude with Proposition 1.19. For arbitrary k and j = i , we can use the
inequalities

1 ≤ d
(
(ψn

σ nω)−1(ξ tω), 〈(ψn
σ nω)−1(ξ t ′ω )〉t ′∈Ii\{t}

)

d
(
(ψn

σ nω)−1(ξ tω), 〈(ψn
σ nω)−1(ξ t ′ω )〉t ′∈I\{t}

) ≤ ‖�Hi
σnω
||Fμi+1 (σ nω)‖,

Lemma 1.18 and our previous result above. The definition of Vol allows to deduce that

lim
n→∞

1

n
logVol

((
(ψn

σ nω)−1(ξ tω)
)
t∈Ik−1 , . . . ,

(
(ψn

σ nω)−1(ξ tω)
)
t∈Ii

) =
∑

i≤ j<k

−μ j |I j |.

(1.25)

Since Vol is symmetric up to a constant, the claim (1.24) follows for arbitrary j . ��
The following theorem is the announced semi-invertible Oseledets theorem on fields of

Banach spaces. It summarizes the main result of this section.

Theorem 1.21 There is a θ -invariant set of full measure �̃ such that for every i ≥ 1withμi >

μi+1 and ω ∈ �̃, there is an mi -dimensional subspace Hi
ω with the following properties:

(i) (Invariance) ψk
ω(Hi

ω) = Hi
θkω

for every k ≥ 0.

(ii) (Splitting) Hi
ω ⊕ Fμi+1(ω) = Fμi (ω). In particular,

Eω = H1
ω ⊕ · · · ⊕ Hi

ω ⊕ Fμi+1(ω).
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(iii) (‘Fast-growing’ subspace I) For each hω ∈ Hi
ω\{0},

lim
n→∞

1

n
log ‖ψn

ω(hω)‖ = μi .

(iv) (‘Fast-growing’ subspace II) For each hω ∈ Hi
ω\{0},

lim
n→∞

1

n
log ‖(ψn

σ nω)−1(hω)‖ = −μi .

(v) If {ξ tω}1≤t≤m is a basis of ⊕1≤i≤ j H i
ω, then

lim
n→∞

1

n
logVol

(
ψn

ω(ξ1ω), . . . , ψn
ω(ξmω )

) =
∑

1≤i≤ j

miμi and

lim
n→∞

1

n
logVol

(
(ψn

σ nω)−1(ξ1ω), . . . , (ψn
σ nω)−1(ξmω )

) =
∑

1≤i≤ j

−miμi . (1.26)

Moreover, the properties (i)–(iv) uniquely determine the spaces Hi
ω.

Proof Properties (i) and (ii) are proven in Proposition 1.15. (iii) and (iv) are shown in Proposi-
tion 1.19 and (v) can be deduced from Lemma 1.20, using the definition of Vol and symmetry
modulo a constant of this function. It remains to prove the uniqueness statement. Fix i ≥ 1
and assume μi > μi+1. We define G∗μi+1(ω) and

(
G∗μi+1(ω)

)⊥
μi

as in Lemma 1.13 and claim
that

Hi
ω =

(
G∗μi+1(ω)

)⊥
μi

. (1.27)

Let hω ∈ Hi
ω, h

∗
ω ∈ G∗μi+1(ω) and set hσ nω := (ψn

σ nω)−1(hω). Property (iv) implies that
there is an ε > 0 sufficiently small such that

〈hω, h∗ω〉 = 〈ψn
σ nω(hσ nω), h∗ω〉 = 〈hσ nω, (ψn

σ nω)∗(h∗ω)〉 ≤ exp
(− n(μi − μi+1 − ε)

)→ 0

as n → ∞ which reveals Hi
ω ⊂

(
G∗μi+1(ω)

)⊥
μi
. Finally, since these spaces have the same

dimension, (1.27) follows. ��
Remark 1.22 Property (iv) seems to be new in the context of Banach spaces. As seen in the
proof, it is crucial for the uniqueness statement

2 Invariant Manifolds

Let {Eω}ω∈� be a measurable field of Banach spaces and ϕn
ω a nonlinear cocycle on acting

on it, i.e.

ϕn
ω : Eω → Eθnω

ϕn+m
ω (.) = ϕn

θmω

(
ϕm

ω (.)
)
.

Definition 2.1 We say that ϕn
ω admits a stationary solution if there exists a map Y : � −→∏

ω∈� Eω such that

(i) Yω ∈ Eω,
(ii) ϕn

ω(Yω) = Yθnω and
(iii) ω→ ‖Yω‖ is measurable.
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Stationary solutions should be thought of random analogues to fixed points in (determinis-
tic) dynamical systems. If ϕn

ω is Fréchet differentiable, one can easily check that the derivative
around a stationary solution also enjoys the cocycle property, i.e for ψn

ω(.) = DYωϕn
ω(.), one

has

ψn+m
ω (.) = ψn

θmω

(
ψm

ω (.)
)
.

In the following, we will assume that ϕ is Fréchet differentiable, that there exists a stationary
solution Y and that the linearized cocycle ψ around Y is compact and satisfies Assumption
1.1. Furthermore, we will assume that

log+ ‖ψω‖ ∈ L1(�).

Therefore, we can apply the MET to ψ . In the following, we will use the same notation as in
the previous section.

2.1 Stable Manifolds

Definition 2.2 Let Y be a stationary solution, let {· · · < μ j < μ j−1 < · · · < μ1} ∈
[−∞,∞) be the corresponding Lyapunov spectrum and �̃ the θ -invariant set on which the
MET holds. Set μ j0 = max{μ j : μ j < 0} and μ j0 = −∞ if all finite μ j are nonnegative.
We define the stable subspace

Sω := Fμ j0
(ω).

By the unstable subspace we mean

Uω := ⊕1≤i< j0H
i
ω.

Note that dim[Eω/Sω] = dim[Uω] =: k <∞ for every ω ∈ �̃.

Lemma 2.3 For ω ∈ �̃ and ε ∈ (0,−μ j0), set

F(ω) := sup
p≥0

exp[−p(μ j0 + ε)]‖ψ p
ω |Sω‖.

Then

lim
n→∞

1

n
log+

[
F(θnω)] = 0. (2.1)

Proof Follows from (1.7). ��
Lemma 2.4 Let ω ∈ �̃, Uω = 〈ξ tω〉1≤t≤k and n, p ≥ 0. Then

‖[ψn
θ pω]−1‖L[Uθn+pω,Uθ pω] ≤

∑

1≤t≤k

‖ψ p
ω (ξ tω)‖

‖ψn+p
ω (ξ tω)‖ ×

‖ψn+p
ω (ξ tω)‖

d
(
ψ

n+p
ω (ξ tω), 〈ψn+p

ω (ξ t
′

ω )〉t ′ �=t
) (2.2)

and

‖[ψ p
σ nω]−1‖L[Uσn−pω,Uσnω] ≤

∑

1≤t≤k

‖(ψn
σ nω)−1(ξ tω)‖

‖(ψn−p
σ n−pω

)−1(ξ tω)‖

× ‖(ψn−p
σ n−pω

)−1(ξ tω)‖
d
(
(ψ

n−p
σ n−pω

)−1(ξ tω), 〈(ψn−p
σ n−p(ω)

)−1(ξ t ′ω )〉t ′ �=t
) . (2.3)
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Proof Choose u ∈ Uθ pω and assume that u =∑
1≤t≤k ut

ψ
p
ω (ξ tω)

‖ψ p
ω (ξ tω)‖ . Then

|ut |
‖u‖ ≤

‖ψ p
ω (ξ tω)‖

d
(
ψ

p
ω (ξ tω), 〈ψ p

ω (ξ t
′

ω )〉t ′ �=t
) . (2.4)

From ψn
θ pωu =

∑
1≤t≤k ut

‖ψn+p
ω (ξ tω)‖
‖ψ p

ω (ξ tω)‖
ψ

n+p
ω (ξ tω)

‖ψn+p
ω (ξ tω)‖ and (2.4),

|ut |
‖ψn

θ pωu‖
≤ ‖ψ p

ω (ξ tω)‖
‖ψn+p

ω (ξ tω)‖ ×
‖ψn+p

ω (ξ tω)‖
d
(
ψ

n+p
ω (ξ tω), 〈ψn+p

ω (ξ t
′

ω )〉t ′ �=t
)

and (2.2) follows. The estimate (2.3) is proven similarly. ��
Definition 2.5 For ω ∈ � set �ω :=∏

j≥0 Eθ jω. For υ > 0 we define

�υ
ω :=

{
� ∈ �ω : ‖�‖ = sup

j≥0
[‖� j

ω�‖ exp(υ j)
]

<∞
}

where �
j
ω :∏i≥0 Eθ iω → Eθ jω denotes the projection map.

One can check that �υ
ω is a Banach space.

Lemma 2.6 Let ω ∈ � and 0 < υ < −μ j0 . Define

Pω : Eω → Eθω

ξω �→ ϕ1
ω(Yω + ξω)− ϕ1

ω(Yω)− ψ1
ω(ξω).

Let ρ : �→ R
+ be a random variable with the property that

lim inf
n→∞

1

n
log ρ(θnω) ≥ 0

almost surely. Assume that for ‖ξω‖, ‖ξ̃ω‖ < ρ(ω),

‖Pω(ξω)− Pω(ξ̃ω)‖ ≤ ‖ξω − ξ̃ω‖ f (ω)h(‖ξω‖ + ‖ξ̃ω‖) (2.5)

almost surelywhere f : �→ R
+ is ameasurable function such that limn→∞ 1

n log
+ f (θnω)

= 0 almost surely and h(x) = xr g(x) for some r > 0 where g : R→ R
+ is an increasing

C1 function. Set

ρ̃(ω) := inf
n≥0 exp(nυ)ρ(θnω). (2.6)

Then the map

Iω : Sω ×�υ
ω ∩ B(0, ρ̃(ω))→ �υ

ω,

�n
ω

[
Iω(vω, �)

]

=

⎧
⎪⎨

⎪⎩

ψn
ω(vω)+∑

0≤ j≤n−1
[
ψ

n−1− j
θ1+ jω

◦�S
θ1+ jω‖Uθ1+ jω

]
Pθ jω

(
�

j
ω[�]

)

−∑
j≥n

[[ψ j−n+1
θnω ]−1 ◦�U

θ1+ jω‖Sθ1+ jω

]
Pθ jω

(
�

j
ω[�]

)
for n ≥ 1,

vω −∑
j≥0

[[ψ j+1
ω ]−1 ◦�U

θ1+ jω‖Sθ1+ jω

]
Pθ jω

(
�

j
ω[�]

)
for n = 0.

is well-defined on a θ -invariant set of full measure �̃.
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Proof We collect some estimates first. Let ε ∈ (0,−μ j0). From (1.20), we can find a random
variable R(ω) > 1 such that for j ≥ 0,

‖�U
θ jω‖Sθ jω

‖ ≤ R(ω) exp(ε j) , ‖�S
θ jω‖Uθ jω

‖ ≤ R(ω) exp(ε j). (2.7)

Also from (2.1), for n, p ≥ 0,

‖ψ p
θnω|Sθnω

‖ ≤ R(ω) exp
(
pμ j0 + ε(n + p)

)
. (2.8)

In addition, from (1.23) and (2.2) for n, p ≥ 0,

‖[ψn
θ pω]−1‖L[Uθn+pω,Uθ pω] ≤ R(ω) exp

(
ε(n + p)

)
exp(−nμ j0−1). (2.9)

From our assumptions,
∥∥Pθ jω

(
� j

ω[�]
)∥∥ ≤ ∥∥� j

ω[�]
∥∥1+r [ f (θ jω)g(‖� j

ω[�]‖)
]
.

So for j ≥ 0 and a random variable R̃(ω) > 1,
∥∥Pθ jω

(
� j

ω[�]
)∥∥ ≤ R̃(ω)

∥∥� j
ω[�]

∥∥1+r g(‖� j
ω[�]‖) exp(ε j). (2.10)

Now from (2.7), (2.8), (2.9) and (2.10), we obtain

∥∥�n
ω

[
Iω(vω, �)

]∥∥ ≤ R(ω)

[
exp((μ j0 + ε)n)‖vω‖+

∑

0≤ j≤n−1
R(ω)R̃(ω) exp

(
εn + 2ε(1+ j)+ (n − 1− j)μ j0

)‖� j
ω(�)‖1+r g(‖� j

ω[�]‖)+

∑

j≥n
R(ω)R̃(ω) exp

(
3ε(1+ j)− ( j − n + 1)μ j0−1

)‖� j
ω(�)‖1+r g(‖� j

ω[�]‖)
]
.

Since g is increasing,
∥∥�n

ω

[
Iω(vω, �)

]∥∥ ≤ R(ω)

[
exp

(
(μ j0 + ε)n

)
.‖vω‖+

R(ω)R̃(ω)‖�‖1+r
�υ

ω
g(‖�‖�υ

ω
) exp

(
εn + 2ε + (n − 1)μ j0

) ∑

0≤ j≤n−1
exp

(
j
(
2ε − μ j0 − (1+ r)υ

))+

R(ω)R̃(ω)‖�‖1+r
�υ

ω
g(‖�‖�υ

ω
) exp

(
3ε + (n − 1)μ j0−1

) ∑

j≥n
exp

(
j
(
3ε − μ j0−1 − (1+ r)υ

))]
.

Since μ j0−1 ≥ 0 and 0 < υ < −μ j0 , we can choose ε > 0 smaller if necessary to see that

sup
n≥0

[∥∥�n
ω

[
Iω(vω, �)

]∥∥ exp(υn)

]
<∞.

As a result, Iω is well-defined . ��
Lemma 2.7 With the same setting as in Lemma 2.6, for � ∈ �υ

ω ∩ B(0, ρ̃(ω)),

Iω[vω, �] = � ⇐⇒ ∀ j ≥ 0 : � j
ω[�] = ϕ j

ω(Yω + ξω)− ϕ j
ω(Yω) (2.11)

where

ξω = vω −
∑

j≥0

[[ψ j+1
ω ]−1 ◦�U

θ1+ jω‖Sθ1+ jω

]
Pθ jω

(
� j

ω[�]
)
. (2.12)
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Proof The strategy of the proof is similar to [17, Lemma VI.5]. Let Iω[vω, �] = �. Then
ξω = �0

ω[�] and the claim is shown for j = 0. We proceed by induction. Assume that
�n

ω[�] = ϕn
ω(Yω + ξω)− ϕn

ω(Yω). By definition,

ϕn+1
ω (Yω + ξω)− ϕn+1

ω (Yω) = ϕ1
θnω

(
ϕn

ω(Yω + ξω)
)− ϕ1

θnω(Yθnω) =
Pθnω

(
ϕn

ω(Yω + ξω)− Yθnω

)

+ ψ1
θnω

(
ϕn

ω(Yω + ξω)− Yθnω

) = Pθnω(�n
ω[�])+ ψ1

θnω

(
�n

ω

[
Iω(vω, �)

])
.

Note that for j ≥ n,

ψ1
θnω ◦ [ψ j−n+1

θnω ]−1 = [ψ j−n
θn+1ω]−1 : Uθ1+ jω → Uθ1+nω.

By definition

ψ1
θnω

(
�n

ω[Iω(vω, �)]) = ψn+1
ω (vω)+

∑

0≤ j≤n−1

[
ψ

n− j
θ1+ jω

◦�S
θ1+ jω‖Uθ1+ jω

]
Pθ jω

(
� j

ω[�]
)−

∑

j≥n

[[ψ j−n
θnω ]−1 ◦�U

θ1+ jω‖Sθ1+ jω

]
Pθ jω

(
� j

ω[�]
)
.

Consequently, �n+1
ω [�] = ϕn+1

ω (Yω + ξω)− ϕn+1
ω (Yω) which finishes the induction step.

Conversely, for ξω ∈ Eω and � ∈ �ν
ω ∩ B(0, ρ̃(ω)), assume that for every j ≥ 0,

�
j
ω[�] = ϕ

j
ω(Yω + ξω)− ϕ

j
ω(Yω). Set

vω := ξω +
∑

j≥0

[[ψ j+1
ω ]−1 ◦�U

θ1+ jω‖Sθ1+ jω

]
Pθ jω

(
� j

ω[�]
)
.

Similar to Lemma 2.6, we can see that vω is well-defined. Morever,

�n
ω

[
Iω(vω, �)

] = ψn
ω(ξω)+

∑

0≤ j≤n−1
ψ

n−1− j
θ1+ jω

Pθ jω

(
� j

ω[�]
)

= ϕ j
ω(Yω + ξω)− ϕ j

ω(Yω) = � j
ω[�]

which proves the claim. ��
Lemma 2.8 Under the same assumptions as in Lemma 2.7, set

hυ
1 (ω) := sup

n≥0
[
exp(nυ)‖ψn

ω|Sω‖
]

and

hυ
2 (ω) := sup

n≥0
[
exp(nυ)

∑

0≤ j≤n−1
exp(− jυ(1+ r)) f (θ jω)‖ψn− j

θ j+1ω|Sθ j+1ω
‖‖�S

θ j+1ω
||U

θ j+1ω
‖

+ exp(nυ)
∑

j≥n
exp(− jυ(1+ r)) f (θ jω)‖(ψ j−n+1

θnω |U
θ j+1 )

−1‖‖�U
θ j+1ω

||S
θ j+1ω
‖].

Then hυ
1 and hυ

2 are measurable and finite on a θ -invariant set of full measure �̃. In addition,

lim
n→∞

1

n
log+ hυ

1 (θnω) = lim
n→∞

1

n
log+ hυ

2 (θnω) = 0

for every ω ∈ �̃. Furthermore, the estimates

‖Iω(vω, �)‖ ≤ hυ
1 (ω)‖vω‖ + hυ

2 (ω)‖�‖1+r g(‖�‖) and

‖Iω(vω, �)− Iω(vω, �̃)‖ ≤ hυ
2 (ω)h(‖�‖ + ‖�̃‖) ‖� − �̃‖

hold for every ω ∈ �̃, �, �̃ ∈ �υ
ω ∩ B(0, ρ̃(ω)) and vω ∈ Sω.
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Proof The statements about hυ
1 and hυ

2 follow from our assumption on f , (1.7), Lemma 1.8
and Proposition 1.19. The claimed estimates follow by definition of Iω. ��

Recall that h(x) = xr g(x). In particular, h is invertible and h and h−1 are strictly increas-
ing.

Lemma 2.9 Assume that for vω ∈ Sω,

‖vω‖ ≤ 1

2hυ
1 (ω)

min
{1
2
h−1( 1

2hυ
2 (ω)

), ρ̃(ω)
}
.

Then the equation

Iω(vω, �) = �

admits a uniques solution � = �(vω) and the bound

‖�(vω)‖ ≤ min
{1
2
h−1( 1

2hυ
2 (ω)

), ρ̃(ω)
} =: Hυ

1 (ω) (2.13)

holds true.

Proof We can use the estimates provided in Lemma 2.8 to conclude that I (vω, ·) is a con-
traction on the closed ball with radius min

{ 1
2h
−1( 1

2hυ
2 (ω)

), ρ̃(ω)
}
. ��

Now we can formulate the main theorem about the existence of local stable manifolds.

Theorem 2.10 Let (�,F,P, θ) be an ergodic measure-preserving dynamical systems and
ϕ a Fréchet-differentiable cocycle acting on a measurable field of Banach spaces {Eω}ω∈�.
Assume that ϕ admits a stationary solution Y and that the linearized cocycle ψ around Y is
compact, satisfies Assumption 1.1 and the integrability condition

log+ ‖ψω‖ ∈ L1(ω).

Moreover, assume that (2.5) holds for ϕ andψ . Letμ j0 < 0 and Sω be defined as inDefinition
2.2. For 0 < υ < −μ j0 , ω ∈ � and Rυ(ω) := 1

2hυ
1 (ω)

min
{ 1
2h
−1( 1

2hυ
2 (ω)

), ρ̃(ω)
}
with ρ̃

defined as in (2.6), let

Sυ
loc(ω) := {

Yω +�0
ω[�(vω)], ‖vω‖ < Rυ(ω)

}
. (2.14)

Then there is a θ -invariant set of full measure �̃ on which the following properties are
satisfied for every ω ∈ �̃:

(i) There are random variables ρυ
1 (ω), ρυ

2 (ω), positive and finite on �̃, for which

lim inf
p→∞

1

p
log ρυ

i (θ pω) ≥ 0, i = 1, 2 (2.15)

and such that
{
Zω ∈ Eω : sup

n≥0
exp(nυ)‖ϕn

ω(Zω)− Yθnω‖ < ρυ
1 (ω)

} ⊆ Sυ
loc(ω)

⊆ {
Zω ∈ Eω : sup

n≥0
exp(nυ)‖ϕn

ω(Zω)− Yθnω‖ < ρυ
2 (ω)

}
.

(ii) Sυ
loc(ω) of Eω and

TYω S
υ
loc(ω) = Sω.
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(iii) For n ≥ N (ω),

ϕn
ω(Sυ

loc(ω)) ⊆ Sυ
loc(θ

nω).

(iv) For 0 < υ1 ≤ υ2 < −μ j0 ,

Sυ2
loc(ω) ⊆ Sυ1

loc(ω).

Also for n ≥ N (ω),

ϕn
ω(Sυ1

loc(ω)) ⊆ Sυ2
loc(θ

n(ω))

and consequently for Zω ∈ Sυ
loc(ω),

lim sup
n→∞

1

n
log ‖ϕn

ω(Zω)− Yθnω‖ ≤ μ j0 . (2.16)

(v)

lim sup
n→∞

1

n
log

[
sup

{‖ϕn
ω(Zω)− ϕn

ω(Z̃ω)‖
‖Zω − Z̃ω‖

, Zω �= Z̃ω, Zω, Z̃ω ∈ Sυ
loc(ω)

}]
≤ μ j0 .

Proof We start with (i). For the first inclusion, note that we can find a random variable ρυ
1 (ω)

satisfying

lim inf
p→∞

1

p
log ρυ

1 (θ pω) ≥ 0 (2.17)

and such that whenever ‖�‖ ≤ ρυ
1 (ω),

‖�‖ + hυ
2 (ω)‖�‖r+1g(‖�‖) ≤ 1

2hυ
1 (ω)

min
{1
2
h−1( 1

2hυ
2 (ω)

), ρ̃(ω)
} =: Hυ

2 (ω).

For example, we can define

ρυ
1 (ω) := min

{
h−1( 1

hυ
2 (ω)

), Hυ
2 (ω)/2, Hυ

1 (ω)
}

with Hυ
1 defined as in (2.13). Assume that Zω ∈ Eω has the property that

sup
n≥0

exp(nυ)‖ϕn
ω(Zω)− Yθnω‖ < ρυ

1 (ω).

Setting

ṽω := Zω − Yω +
∑

j≥0

[[ψ j+1
ω ]−1 ◦�U

θ1+ jω‖Sθ1+ jω

]
Pθ jω

(
� j

ω[�̃]
)
,

it follows that ‖ṽω‖ < Rυ(ω). From Lemma 2.7, we conclude that Iω[ṽω, �̃] = �̃. By
uniqueness of the fixed point map, we have �̃ = �(ṽω), therefore Zω = Yω +�0

ω(�(ṽω)) ∈
Sυ
loc(ω). Next, let Zω ∈ Sυ

loc(ω), i.e. Zω = Yω+�0
ω(�(vω)) for some ‖vω‖ < Rυ(ω). From

Lemmas 2.7 and 2.9,

‖�(vω)‖ = sup
n≥0

exp(nυ)‖ϕn
ω(Zω)− Yθnω‖ ≤ Rυ(ω).

We can therefore choose ρυ
2 (ω) = Rυ(ω) and the second inclusion is shown.

The second item immediately follows from our definition for Sυ
loc(ω).
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For item (iii), by (2.15), we can find N (ω) such that for n ≥ N (ω),

exp(−nυ)ρυ
2 (ω) ≤ ρυ

1 (θnω).

Now the claim follows from item (i).
For item (iv), note first that Rυ2(ω) ≤ Rυ1(ω). By definition of �υ

ω(vω), it immediately
follows that

Sυ2
loc(ω) ⊆ Sυ1

loc(ω).

Now take Zω ∈ Sυ1
loc(ω). FromLemma1.18 and (i), we can find N (ω) such that for n ≥ N (ω),

‖�Sθnω‖Uθnω

(
ϕn

ω(Zω)− Yθnω

)‖ < Rυ2(θnω).

We may also assume that exp(−nυ1)ρ
υ1
2 (ω) ≤ ρ

υ1
1 (θnω) for n ≥ N (ω). For

vθnω := �Sθnω‖Uθnω

(
ϕn

ω(Zω)− Yθnω

)

let

Zθnω := �0
θnω(�(vθnω))+ Yθnω ∈ Sυ2

loc(θ
nω) ⊂ Sυ1

loc(θ
nω).

We claim that Zθnω = ϕn
ω(Zω). Since Zω ∈ Sυ1

loc(ω),

sup
j≥0

exp( jυ1)‖ϕ j
θnω(ϕn

ω(Zω))− Yθ j θnω‖ ≤ exp(−nυ1)ρ
υ1
2 (ω) ≤ ρ

υ1
1 (θnω).

So from item (i), ϕn
ω(Zω) ∈ Sυ1

loc(θ
nω). Remember Zθnω ∈ Sυ1

loc(θ
nω) ∩ Sυ2

loc(θ
nω) and

�Sθnω||U θnω (Zθnω − Yθnω) = �Sθnω||U θnω (ϕn
ω(Zω)− Yθnω).

So by uniqueness of the fixed point, we indeed have

ϕn
ω(Zω) = Zθnω ∈ Sυ2

loc(θ
nω).

To prove (2.16), let υ ≤ υ2 < −μ0 and take Zω ∈ Sυ
loc(ω). Then we know that for large

enough N , ϕN
ω (Zω) ∈ Sυ2

loc(θ
Nω), therefore

sup
j≥0

exp( jυ2)‖ϕ j+N
ω (Zω)− Yθ j+Nω‖ <∞

and it follows that

lim sup
n→∞

1

n
log ‖ϕn

ω(Zω)− Yθnω‖ ≤ −υ2.

We can choose υ2 arbitrarily close to−μ0, therefore the claim follows and item (iv) is proved.
For item (v), first by definition,

‖�(vω)− �(ṽω)‖ = ‖Iω(vω, �(vω))− Iω(ṽω, �(ṽω))‖
≤ ‖Iω(vω, �(vω))− Iω(ṽω, �(vω))‖ + ‖Iω(ṽω, �(vω))− Iω(ṽω, �(ṽω))‖
≤ hυ

1 (ω)‖vω − ṽω‖ + 1

2
‖�(vω)− �(ṽω)‖

for every vω, ṽω ∈ Sω with ‖vω‖, ‖ṽω‖ ≤ Rυ(ω). Consequently,

‖�(vω)− �(ṽω)‖ ≤ 2hυ
1 (ω)‖vω − ṽω‖. (2.18)
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Also by definition, cf. (2.12),

‖�0
ω(�(vω))−�0

ω(�(ṽω))‖
≥ ‖vω − ṽω‖ − hυ

2 (ω) ‖�(vω)− �ω(ṽω)‖ h(‖�(vω)‖ + ‖�ω(ṽω)‖).
So from (2.18)

‖�0
ω(�(vω))−�0

ω(�(ṽω))‖ ≥ ‖vω − ṽω‖
[
1− 2hυ

1 (ω)hυ
2 (ω)h(‖�(vω)‖ + ‖�ω(ṽω)‖)].

(2.19)

First assume that

max{‖�(vω), �(ṽω)‖} ≤ 1

2
h−1( 1

4hυ
1 (ω)hυ

2 (ω)
).

Then from (2.18) and (2.19),

‖�(vω)− �(ṽω)‖
‖�0

ω(�(vω))−�0
ω(�(ṽω))‖ ≤ 4hυ

1 (ω). (2.20)

Thus if Zω = Yω +�0
ω[�(vω)] and Z̃ω = Yω +�0

ω[�(vω)], it follows that
‖ϕn

ω(Zω)− ϕn
ω(Z̃ω)‖

‖Zω − Z̃ω‖
≤ 4 exp(−nυ)hυ

1 (ω)

for every n ≥ 1. In the general case, we can use item (i) and that h−1( 1
4hυ

1 (ω)hυ
2 (ω)

) satisfies

(2.15) to see that for some N = N (ω),

sup
j≥0

exp( jυ)‖ϕ j
θNω

(ϕN
ω (Zω))− Yθ j θNω‖ ≤ exp(−Nυ)ρυ

2 (ω)

≤ 1

2
h−1( 1

4hυ
1 (θNω)hυ

2 (θNω)
).

Consequently, from (2.20),

sup
j≥0

exp( jυ)‖ϕ j+N
ω (Zω)− ϕ

j+N
ω (Z̃ω)‖

‖ϕN
ω (Zω)− ϕN

ω (Z̃ω)‖ ≤ 4hυ
1 (θNω)

and hence for every n ≥ N ,

‖ϕn
ω(Zω)− ϕn

ω(Z̃ω)‖
‖Zω − Z̃ω‖

≤ 4 exp((−n − N )υ)hυ
1 (θNω)Hυ

N (ω) (2.21)

where

Hυ
N (ω) = sup

{‖ϕN
ω (Zω)− ϕN

ω (Z̃ω)‖
‖Zω − Z̃ω‖

, Zω �= Z̃ω, Zω, Z̃ω ∈ Sυ
loc(ω)

}
.

We claim that Hυ
N (ω) is finite. Indeed, by assumption (2.5),

‖ϕN
ω (Zω)− ϕN

ω (Z̃ω)‖ ≤ ‖ψ1
θN−1ω‖ ‖ϕN−1

ω (Zω)− ϕN−1
ω (Z̃ω)‖

+ f (θNω) ‖ϕN−1
ω (Zω)− ϕN−1

ω (Z̃ω)‖h
× (‖ϕN−1

ω (Zω)− YθN−1ω‖ + ‖ϕN−1
ω (Z̃ω)− YθN−1ω‖

)

and we can proceed by induction to conclude. Finally, from (2.21) and item (iv), our claim
is proved. ��
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Remark 2.11 Assume that for ω ∈ �̃ the function ϕω is Cm . Then, since

Iω(0, 0) = ∂

∂�
Iω(0, 0) = 0,

we can deduce from the Implicit function theorem that Sυ
loc(ω) is locally Cm−1.

2.2 Unstable Manifolds

We invoke same strategy for proving the existence of unstablemanifolds. Since the arguments
are very similar, we will only sketch them briefly. In this section, we will assume that the
largest Lyapunov exponent is strictly positive, i.e. that μ1 > 0.

Definition 2.12 Set k0 := min{k : μk > 0}, S̃ω := Fμk0+1(ω) and Ũω = ⊕1≤i≤k0Hi
ω for

ω ∈ �̃. For �̃ω :=∏
j≥0 Eσ jω and υ > 0, we define the Banach space

�̃υ
ω :=

{
� ∈ �̃ω : ‖�‖ = sup

k≥0
[‖�̃k

ω�‖ exp(kυ)
]

<∞
}

where �̃k
ω :

∏
i≥0 Eσ iω → Eσ kω is the projection map. Similar to last section, we also set

h̃υ
1 (ω) := sup

n≥0
[
exp(nυ)‖(ψn

σ nω|Ũω
)−1‖] and

h̃υ
2 (ω) := sup

n≥0
[
exp(nυ)

∑

0≤k≤n−1
exp

(− υ(n − k)(1+ r)
)
f (σ n−kω)‖(ψk+1

σ nω |Ũ
σn−1−kω

)−1‖

× ‖�Ũ
σn−1−kω

‖S̃
σn−1−kω

‖
+ exp(nυ)

∑

k≥n
exp(−υ(k + 1)(1+ r)) f (σ k+1ω)‖ψk−n

σ kω
|S̃

σkω
‖‖�S̃

σkω
||Ũ

σkω
‖].

Lemma 2.13 Let ω ∈ �, 0 < υ < μk0 and assume that ρ : �→ R
+ satisfies

lim inf
n→∞

1

n
log ρ(σ nω) ≥ 0 (2.22)

almost surely. Define P as in Lemma 2.6 and assume that (2.5) holds for a random variable
f : �→ R

+ which satisfies limn→∞ f (σ nω) = 0 almost surely. Set

ρ̃(ω) := inf
n≥0 exp(nυ)ρ(σ nω). (2.23)

Then the map

Ĩω : Ũω × �̃υ
ω ∩ B(0, ρ̃(ω))→ �̃υ

ω,

�̃n
ω

[
Ĩω(uω, �)

]

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[ψn
σ nω]−1(uω)

−∑
0≤k≤n−1

[[ψk+1
σ nω ]−1 ◦�Ũ

σn−1−kω
‖S̃

σn−1−kω

]
Pσ n−kω

(
�̃n−k

ω [�])

+∑
k≥n

[
ψk−n

σ kω
◦�S̃

σkω
‖Ũ

σkω

]
Pσ k+1ω

(
�̃k+1

ω [�]) for n ≥ 1,

uω +∑
k≥0

[
ψk

σ kω
◦�S̃

σkω
‖Ũ

σkω

]
Pσ k+1ω

(
�̃k+1

ω [�]) for n = 0.

is well-defined on a θ -invariant set of full measure �̃.
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Proof We can use Lemma 1.17 to obtain a version of Lemma 2.3 where we replace θ by σ .
The rest of the proof is similar to Lemma 2.6. ��
Lemma 2.14 For 0 < υ < μk0 , ω ∈ �̃ and � ∈ �υ

ω ∩ B(0, ρ̃(ω)),

Ĩω(uω, �) = � ⇐⇒ ∀ 0 ≤ k ≤ n : �̃n−k
ω � = ϕk

σ nω(�̃n
ω� + Yσ nω)− Yσ n−kω.

(2.24)

Proof Similar to Lemma 2.7. ��
Lemma 2.15 For 0 < υ < μk0 , h̃

υ
1 and h̃υ

2 are measurable and finite on a θ -invariant set of
full measure �̃. Moreover,

lim
p→∞

1

p
log+ h̃υ

1 (σ pω) = lim
p→∞

1

p
log+ h̃υ

2 (σ pω) = 0 (2.25)

and

‖ Ĩω(uω, �)‖ ≤ h̃υ
1 (ω)‖uω‖ + h̃υ

2 (ω)‖�‖r+1g(‖�‖)
‖ Ĩω(uω, �)− Ĩω(uω, �̃)‖ ≤ h̃υ

2 (ω)h(‖�‖ + ‖�̃‖) ‖� − �̃‖
hold for every ω ∈ �̃, �, �̃ ∈ �̃υ

ω ∩ B(0, ρ̃(ω)) and uω ∈ Ũω.

Proof As in Lemma 2.8. ��
Lemma 2.16 Assume that for uω ∈ Ũω,

‖uω‖ ≤ 1

2h̃υ
1 (ω)

min
{1
2
h−1( 1

2h̃υ
2 (ω)

), ρ̃(ω)
}
.

Then the equation

Ĩω(uω, �) = �

admits a uniques solution � = �(uω) and the bound

‖�(uω)‖ ≤ min
{1
2
h−1( 1

2h̃υ
2 (ω)

), ρ̃(ω)
}

holds true.

Proof We can show that Ĩ (uω, ·) is a contraction using Lemma 2.15. ��
Finally we can formulate our main results about the existence of local unstable manifolds.

Theorem 2.17 Let (�,F,P, θ) be an ergodic measure-preserving dynamical systems, σ :=
θ−1 and ϕ a Fréchet-differentiable cocycle acting on a measurable field of Banach spaces
{Eω}ω∈�. Assume that ϕ admits a stationary solution Y and that the linearized cocycle ψ

around Y is compact, satisfies Assumption 1.1 and the integrability condition

log+ ‖ψω‖ ∈ L1(ω).

Moreover, assume that (2.5) holds for ϕ andψ and a random variable ρ : �→ R
+ satisfying

(2.22). Assume that μ1 > 0 and let μk0 > 0 and Ũω be defined as in Definition 2.12. For
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0 < υ < μk0 , ω ∈ � and Rυ(ω) := 1
2h̃υ

1 (ω)
min

{ 1
2h
−1( 1

2h̃υ
2 (ω)

), ρ̃(ω)
}
with ρ̃ defined as in

(2.23), let

Uυ
loc(ω) := {

Yω + �̃0
ω[�(uω)], ‖uω‖ < R̃υ(ω)

}
. (2.26)

Then there is a θ -invariant set of full measure �̃ on which the following properties are
satisfied for every ω ∈ �̃:

(i) There are random variables ρ̃υ
1 (ω), ρ̃υ

2 (ω), positive and finite on �̃, for which

lim inf
p→∞

1

p
log ρ̃υ

i (σ pω) ≥ 0, i = 1, 2

and such that
{
Zω ∈ Eω : ∃{Zσ nω}n≥1 s.t. ϕm

σ nω(Zσ nω) = Zσ n−mω for all 0 ≤ m ≤ n and

sup
n≥0

exp(nυ)‖Zσ nω − Yσ nω‖ < ρ̃υ
1 (ω)

}
⊆ Uυ

loc(ω) ⊆
{
Zω ∈ Eω : ∃{Zσ nω}n≥1 s.t.

ϕm
σ nω(Zσ nω) = Zσ n−mω for all 0 ≤ m ≤ n and sup

n≥0
exp(nυ)‖Zσ nω − Yσ nω‖ < ρ̃υ

2 (ω)

}
.

(ii) Uυ
loc(ω) is an immersed submanifold of Eω and

TYωU
υ
loc(ω) = Ũω.

(iii) For n ≥ N (ω),

Uυ
loc(ω) ⊆ ϕn

σ nω(Uυ
loc(σ

nω)).

(iv) For 0 < υ1 ≤ υ2 < μk0 ,

Uυ2
loc(ω) ⊆ Uυ1

loc(ω).

Also for n ≥ N (ω),

Uυ1
loc(ω) ⊆ ϕn

σ nω(Uυ2
loc(σ

n(ω))

and consequently for Zω ∈ Uυ
loc(ω),

lim sup
n→∞

1

n
log ‖Zσ nω − Yσ nω‖ ≤ −μk0 .

(v)

lim sup
n→∞

1

n
log

[
sup

{‖Zσ nω − Z̃σ nω‖
‖Zω − Z̃ω‖

, Zω �= Z̃ω, Zω, Z̃ω ∈ Uυ
loc(ω)

}]
≤ −μk0 .

Proof One uses the same arguments as in the proof of Theorem 2.10. ��
Remark 2.18 (i) As in the stable case, if ϕω is Cm for every ω ∈ �̃, one can deduce that

Uυ
loc(ω) is locally Cm−1.

(ii) In the hyperbolic case, i.e. if all Lyapunov exponents are non-zero, if the assumptions
of Theorem 2.10 and 2.17 are satisfied, we have Sω = S̃ω and Uω = Ũω. In particular,
the submanifolds Sυ

loc(ω) and Uυ
loc(ω) are transversal, i.e.

Eω = TYωU
υ
loc(ω)⊕ TYω S

υ
loc(ω).
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