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Abstract

We prove a semi-invertible Oseledets theorem for cocycles acting on measurable fields of
Banach spaces, i.e. we only assume invertibility of the base, not of the operator. As an appli-
cation, we prove an invariant manifold theorem for nonlinear cocycles acting on measurable
fields of Banach spaces.
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Introduction

The multiplicative ergodic theorem (MET) is a powerful tool with various applications in
different fields of mathematics, including analysis, probability theory, and geometry, and
a cornerstone in smooth ergodic theory. It was first proved by Oseledets [18] for matrix
cocycles. Since then, the theorem attracted many researchers to provide new proofs and
formulations with increasing generality [2,6,11,15,17,19-23].

In [12], the authors gave a proof for an MET for cocycles acting on measurable fields of
Banach spaces. Let us quickly recall the setting here: If (€2, F, P) denotes a probability space,
we call a family of Banach spaces { E,, },cq a measurable field if there exists a linear subspace
A of all sections I1,cqE,, and a countable subset Ag C A such that {g(w) : g € Ap}is
dense in E,, for every w € Q and w — | g(w)| g, is measurable for every g € A. Note that
this definition implies that every Banach space E,, is separable. On the other hand, every
separable Banach space defines a field of Banach spaces by simply setting E,, = E. This
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structure is similar to a measurable version of a Banach bundle with base 2 and total space
[I,eqE, in which every space E,, is a fiber. However, the fundamental difference is that
we do not put any measurable (or topological) structure on the bundle I1,cqE,, itself! In
fact, the existence of the set A is a substitute for the measurable structure and will help to
prove measurability for functionals defined on I1,ecq E,, as we will see many times in this
work. If (2, F, P, 0) is a measure preserving dynamical systems, a cocycle acting on the
field { E,}weq consists of a family of maps ¢,,: E, — Ege,. Setting ¢} := @gn-1,,0- - 0@,
we furthermore claim that @ — |l¢},(g(®))|| £y, is measurable for every g € A and every
neN.

There are numerous examples in which it is natural to study cocycles on random spaces. In
[12], our motivation was to study dynamical properties of singular stochastic delay differential
equations in which the spaces E,, are (essentially) spaces of controlled Brownian paths
known in rough paths theory [8]. In the finite dimensional case, linearizing a C'-cocycle
on a manifold yields a linear cocycle acting on the tangent bundle [1, Chapter 4.2]. In the
context of stochastic partial differential equations (SPDE), cocycles on random metric spaces
were studied, for instance, when uniqueness of the equation is unknown and one has to work
with a measurable selection instead, cf. [9] in the case of the 3D stochastic Navier—Stokes
equation. Other examples in the situation of SPDE can be found in [3,4]. In the deterministic
case, a similar structure appears when studying the flow on time-dependent domains [14].
More recently, scales of time-dependent Banach spaces where introduced to study dynamical
properties of non-autonomous PDEs in [5,7].

We will now restate the MET [12, Theorem 4.17] in a slightly simplified version.

Theorem 0.1 Let (2, F, P, 0) be an ergodic measurable metric dynamical system and ¢
be a compact linear cocycle acting on a measurable field of Banach spaces {E,}yecq. For
€ RU{—o0}and w € Q, define

. 1
F,(w) = {x € E, : limsup — log [[¢) (x)|| < ,u}.
n—oo N

Assume that
log™ lgwll € L'(R).

Then there is a measurable forward invariant set QcQ of full measure and a decreasing

sequence {|4;}i>1, Wi € [—00, 00) with the properties thaNt limy,— oo Uy = —00 and either
Wi > [it]1 OF Wi = Wiy] = —00 such that for every o € <,
. U |
x € Fy,(w\Fy,,, (o) ifandonlyif lim —log lll Ol = wi- 0.1
n—-oon
Moreover, there are numbers my, mo, ... such that codim Fy, (@) =my +...+mj_ for
every w € Q.

Let us mention here that, motivated by our example of a stochastic delay equation, we
proved this theorem for compact cocycles only, but it should be straightforward to generalize
it to the quasi-compact case as Thieullen did in [22]. Consequently, we believe that all our
results in this work will hold for quasi-compact cocycles, too.

The numbers {1, } are the Lyapunov exponents, the subspaces F, (w) are sometimes called
slow-growing subspaces and the resulting filtration

Ey=Fu(0) D Fy(w) D---
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is called Oseledets filtration. Is is easily seen that the slow-growing spaces are equivariant,
meaning that ¢, (F,; (w)) C Fj, (6w). In the proof of this theorem, no invertibility of 6 or
@ is assumed, in which case a filtration of slow-growing subspaces is the best one can hope
for. However, things change when we assume that the base 6 is invertible. In this case, it is
possible to deduce a splitting of the spaces E,, consisting of fast-growing subspaces which are
invariant under . Such a splitting is called Oseledets splitting, and the corresponding theorem
is called semi-invertible MET. Let us emphasize that we only need to assume invertibility
of the base 6 and no invertibility of the cocyle ¢. In the context of SPDE or stochastic
delay equations, these assumptions are quite natural: 6 usually denotes the shift of a random
trajectory (which can be shifted forward and backward in time) and the cocycle denotes the
solution map, which is not injective if the equation can be solved forward in time only.

Our first main result is a semi-invertible MET on a measurable field of Banach spaces.
We state a simplified version here, the full statement can be found in Theorem 1.21 below.

Theorem 0.2 [n addition to the assumptions made in Theorem 0.1, assume that 6 is invertible
with measurable inverse o := 0~ and that Assumption 1.1 holds. Then there is a 0-invariant
set Q of full measure such that for every i > 1 with u; > piy1 and w € , there is an m;-
dimensional subspace HL’;) with the following properties:

(i) (Invariance) (pi‘)(H(f)) = Hékwfor every k > 0.
(ii) (Splitting) H(f) @ Fu,, (w) = Fy, (o). In particular,

(iii) (‘Fast-growing’ subspace) For each h,, € HL’;)\{O},
o1
lim —log ¢}, (he)ll = 1)
n—oon
and
lim_— log | ()~ (ho) | = — 1)
n—-oon oo @ I
Moreover; the spaces are uniquely determined by properties (i), (ii) and (iii).

Clearly, the Oseledets splitting provides much more information about the cocycle than
the filtration.

Let us discuss some important preceeding results. In the finite dimensional case, an MET
for cocycles acting on measurable bundles can be found in the monograph [1, 4.2.6 Theorem]
by L. Arnold. In [17], Mafié proved an MET with Oseledets splitting on a Banach bundle,
assuming a topological structure on €2 and continuity of the map w — ¢,,. He also assumed
injectivity of ¢. Besides these results, we are not aware of any METs for cocycles acting
on a bundle-type structure. Lian and Lu [15] proved an MET for cocycles acting on a fixed
Banach space, assuming only a measurable structure on €2, but injectivity of the cocycle.
This assumption was later removed by Doan in [6] without giving an Oseledets splitting,
however. In [10], Gonzélez-Tokman and Quas used this result as a “black-box” and proved
that an Oseledets splitting holds in this case, too.

Let us mention that our result is not only the first which provides a splitting on a bundle
structure of Banach spaces without using a topological structure on €2, it also weakens the
measurability assumption on ¢ significantly in case we are dealing with a single Banach
space E only. In fact, the standard measurability assumption, for instance in [11], is strong
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measurability of ¢, meaning that for fixed x € E, the map
QLow> gux) € E 0.2)

should be measurable. In contrast, our assumption means that the maps

Q3w e () = g, DlE € R
should be measurable for every n, k € Ny and x, X € S where S is a countable and dense
subset of E. This assumption is clearly implied by (0.2).

The proof of Theorem 0.2 pushes forward the volume growth-approach advocated by Blu-
menthal [2] and Gonzalez-Tokman, Quas [11] which provides a clear growth interpretation
of the Lyapunov exponents. In a way, our result complements these two works in case of a
single Banach space E. In particular, we are not imposing any further assumptions on E like
reflexivity or separability of the dual as in [11].

A typical application for an MET is the construction of stable and unstable manifolds,
cf. [17,20,21]. Here, the existence of the Oseledets splitting is crucial. Our second main
contribution is an invariant manifold theorem for nonlinear cocycles acting on fields of
Banach spaces. We state an informal version here, the precise statements are formulated in
Theorems 2.10 and 2.17.

Theorem 0.3 Let ¢ be a nonlinear, differentiable cocycle acting on a measurable field of
Banach spaces {E,}peq. Assume that Y, is a random fixed point of ¢, in particular ¢, (Y,) =
Yow. Then, under the same measurability and integrability assumptions as in Theorem 0.2,
the linearized cocycle Dy, ¢, has a Lyapunov spectrum {{i, }n>1. Under further assumptions
on @ and Y, there is a O-invariant set Q of full measure, closed subspaces Sg, and Uy, of E,,
and immersed submanifolds Sj,c (@) and Uy (@) of E,, such that for every w € Q,

TY(w)Slac((U) =Sy and TY(w) Ulpe(w) = U,
and the properties that for every Z,, € Sjpc(w),
. 1
lim sup — IOg ”(/)Z)(Zw) - YO”(u” =< Mjy < 0
n—oo N
and for every Z,, € Ujoc(w) one has ¢, (Zony) = Zy and
. 1
limsup —log || Zony — Yorel < —pi, < 0.
n—oo N

Herewe have set ju j, = max{j; : puj < 0}and ug, = min{ug : g > O}. Inthe hyperbolic
case, i.e. if all Lyapunov exponents are non-zero, the submanifolds S;, () and U}, (w) are
transversal, i.e.

Ew = TYru U[l())c ((,()) @ TYw S;i)(,‘ (C{)) .

The structure of the paper is as follows. In Sect. 1, we prove a semi-invertible MET for
cocycles acting on measurable fields of Banach spaces. This result is applied in Sect. 2 to
deduce the existence of local stable and unstable manifolds for nonlinear cocycles.

Notation

— For Banach spaces (X, || - [|x) and (Y, || - |ly), L(X, Y) denotes the space of bounded
linear functions from X to Y equipped with usual operator norm. We will often not
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explicitly write a subindex for Banach space norms and use the symbol || - || instead.
Differentiability of a function f: X — Y will always mean Fréchet-differentiability. A
C™ function denotes an m-times Fréchet-differentiable function. If A, B C X, we denote
by d(A, B) := inf,ca pep lla — D|| the distance between two sets A and B. We also set
d(x,B) :=d(B,x):=d({x},B)forx € X, B C X.

— Let X, Y be Banach spaces. For xq, ..., xx € X, set
k
Vol (xr, x2, - xk) 1= I || | [d e, (xjdi<ji<i). 0.3)
i=2

For a given bounded linear function 7 : X — Y and k > 1, we define

Di(T) := sup Vol (T (x1), T (x2), ..., T(xp)).
Ixill=15i=1,...k
— Let E be a vector space. If we can write E as a direct sum E = F @ H of vector spaces,
we have an algebraic splitting. We also say that F is a complement of H and vice versa.
The projection operator [Tg pg(e) = f withe = f +h, f € F, h € H, is called the
projection operator onto F parallel to H.If E is anormed space and ITg| y is bounded
linear, i.e.

£l -
feF.hed, f+hzo | f + Al

ITryall = :
we call E = F @ H a topological splitting. For normed spaces, a splitting will always
mean a topological splitting.

— Let (2, F) be a measurable space. We call a family of Banach spaces {E,,},cq a mea-
surable field of Banach spaces if there is a set of sections

Ac ] Ee

weR

with the following properties:

(i) A is alinear subspace of [[,.q Ew-
(i) There is a countable subset Ag C A such that for every w € 2, the set {g(w) : g €
Ap} is dense in E,,.
(iii) For every g € A, the map o — ||g(®)||E, is measurable.

— Let (2, F) be ameasurable space. If there exists a measurable map6: Q — Q,w — fw,
with a measurable inverse 61, we call (2, F, 0) a measurable dynamical system. We
will use the notation 8" for n-times applying 0 to an element w € Q. We also set
0Y :=1Idg and 67" := (0") L. If Pisa probability measure on (€2, F) that is invariant
under 0, i.e. ]P(Q_] A) =P(A) =P(BA) forevery A € F, we call the tuple (Q, F,P, 9)
ameasure-preserving dynamical system. The system is called ergodic if every f-invariant
set has probability O or 1.

— Let (22, 7, P, 0) be a measure-preserving dynamical system and ({E£,}necq, A) a mea-
surable field of Banach spaces. A continuous cocycle on {E,},eq consists of a family
of continuous maps

0w Eyy — Egg- 0.4)
If ¢ is a continuous cocycle, we define ¢} : E, — Egn, as

Py 3= Por-1© "+ © Y-
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We also set gag := Idg,,. We say that ¢ acts on {E,},cq if the maps
o= o0, o, g(@)Epm,, ne€N

are measurable for every g € A. In this case, we will speak of a continuous random
dynamical system on a field of Banach spaces. If the map (0.4) is bounded linear/compact,
we call ¢ a bounded linear/compact cocycle.

1 Semi-invertible MET on Fields of Banach Spaces

In this section, (2, F, P, #) will denote an ergodic measure-preserving dynamical system
and we set o := 0. Let ({Ey)peq, A, Ag) be a measurable field of Banach space and let
Yo' Ey — Eg, be acompact linear cocycle acting on it. In the sequel, we will furthermore
assume that the following assumption is satisfied:

Assumption 1.1 Foreach g,g € A andn,k > 0,

© = [Vl V5 (E(@) — O " D)]IE,,.,,

is measurable.

We will always assume that
log" ¥l € L'(9).

Under this condition, the Multiplicative Ergodic Theorem [12, Theorem 4.17] applies and
yields the existence of Lyapunov exponents {¢1 > ps > ...} C [—00, 00) on a f-invariant
set of full measure Q2 C 2. More precisely, there are numbers Ay € [—00, 00) such that

Ax = lim l1og,er(w;’,), k>1

n—oon

for every w € Q. Setting Ax = A — Ag—1, the sequence (14x) is the subsequence of (Ag)
defined by removing all multiple elements. For any € [—o00, 00), we define the closed
subspace

1
Fu(w) = {S €E,| limSUPEIOg e < M}-

Note that ¥ is invariant on these spaces in the sense that

YO o)t Fu(@) = Fu (0" o).
We also saw in [12, Theorem 4.17] t~hat there are numbers m; € N such that m; =
dim (Fui (@) Fuiy (a))) for every w € Q.
If not otherwise stated,  C Q will always denote a f-invariant set of full measure. Note

that we can always assume w.l.0.g. that a given set of full measure Q¢ C € is f-invariant,
otherwise we can consider
(6" (0

keZ

instead.
Next, we collect some basic Lemmas. Recall the definition of Vol and Dy.
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Lemma 1.2 Let X, Y be Banach spaces and T : X — Y a linear operator. For k € N, there
exist positive constants ci, Cy depending only on k such that

ckDi(T) < Di(T™) < Cx D(T) (L.1)
where by T* : Y* — X* we mean the dual map of T.

Proof [11, Lemma 3]. O

Lemma 1.3 For a Banach space X and k > 1, the map

Vol : X — R
k

@ x2, ) e el ] [ (i< (1.2)
i=2

is continuous.
Proof [15, Lemma 4.2]. O
Lemma 1.4 Forevery g € A and j > 1, the map
> d(3(@), Fy, (@)
is measurable.
Proof As in the proof to [12, Lemma 4.3]. O

For a Banach space X and a closed subspace U C X, the quotient space X /U is again a
Banach space with norm

X = inf ||x —u|.
Ilx]llx/u ueUll ul|

For an element x € E,,, we denote by [x], its equivalence class in the quotient space
E,/F, (). From the invariance property of v, the map

Fy; (o) Fy,; (0"w)
Fjp (@) Fujp (0"o) ’

W - (W2 (D) = (W20 T

is well-defined for every j > 1 and n € N. Note also that [{,],;,, is bijective for

o € Q. Indeed, injectivity is straightforward and surjectivity follows from the fact that
Fu;(@)/Fy;, (o) and Fy; (0"w)/F,,, (0" ) are finite-dimensional with the same dimen-
sion m; .

Lemma 1.5 Form,n € N, the maps

J1(@) := DYy, |y @) and — fo(@) := Dp([Ygy)y,)

are measurable.

Proof It is not hard to see that

fi(w) = lim liminf [ sup Vol (Y2 ED, ..., wg(s:}))] (1.3)
(&)

[—>00 k—o0 1.k
1<1<=m C By (12)
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where
1
BLF(uo) = & € Fuy (@) 1 1€ = 1, 1WA @E)1 < exp (k(ua + )t

cf. the proof of [ 12, Lemma4.3]. Let {g, }1<;<m C A¢and C(g;) := {w : gi(w) € BLF(u2)}.
As a consequence of Lemma 1.4, these sets are measurable and we have

sup Vol (W0, - Vi (&) =

1k
(& h<t<m CBy" (12)

sup Vol <w£( §1(®) )s e wg(M)> 1_[ xc(g) (@)

{60 cren o g1 @] lgm@1’) A1

which implies measurability of fi. For f>, note first that

S Vol (W2 EN s - - - [VEEM] ;)
(w) = lim liminf |: su ]
f2 w [—00 k—00 {EZ)}lgrsmgFm(w) ngtﬁm ||[gcto]nz||

where we set % := 0. Again as before

Vol ([ o) la -+ W (65 1a) _

sup

(& 1<r<m CFuy (@) [Ti<im ELT s I
Vol [y (g1 (w))]m, s W (g (@) )
{gz}lsszlgn)cho [Ti<i<m d(8:(@), Fuy (@)
It remains to show that for g € A, d( L’;(g(a))), Fyu, (O"w)) is measurable, which can be
achieved using Assumption 1.1 with a proof similar to Lemma 1.4. O

Lemma 1.6 Foreveryi > 0, there is a constant M; > 0 such that
1 1
Yl Il < Millg,ll

forevery w € Q.

F; (@)
L

Hy @ F (@) = Fy (@) and Ty, 7, @l < mi+2=:M; (1.4)

Proof Since dim| ] = m;, we can choose H,, C F};; (w) such that

cf. [2, Lemma 2.3]. Let &, € Fy;(w)\Fy, (w) with corresponding decomposition &, =

ho + fo € Hy ® Fy,, (®). From (1.4), we know that #j’”” < M; and consequently
olpiyy

10 )i | _
(AT .

The claim follows. O

I (o) Vi | <M 1 (o)
ol 7ol

L

< M|yl

Lemma 1.7 Assume that { f,(®)}n>1 is a subadditive sequence with respect fo 6 and set
gn(w) = f,(0c"w). Assume fl"'(a)) € LY(Q). Then there is a O-invariant set Q@ € F with
full measure such that for every o € Q,

1 1
lim — fy(w) = lim —g,(w) € [—00, 00)
n—oon n—-oon

where the limit does not depend on w.
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Proof We can easily check that {g, (w)},>1 is a subadditive sequence with respect to o. Since
fn(w) and g, (w) have same law, the result follows from Kingman’s Subadditive Ergodic
Theorem. ]

As a consequence, we obtain the following:
Lemma 1.8 There is a 6-invariant set of full measure Q € F such that
.1 .1 1
Jim —log Di(v) = lim -~ log Di(Vgn,) = lim —log Di((Wgn,)") = Ak (15)
and
.1 n L1 n
Aim_ - log D (Y | Fy @) ) = Jim - log D (Y3 | Fy o) )

. 1
= nlglgo ; log Dk((w:ﬂw)* | = Nkvm; — Am, (1.6)

(F/iz (an))* ]

Proof We already noted that lim,_, o 1 log D¢ () = A. The equality

o1
Jim = log De(V 1y ) ) = Aksmy = A, (17)

was a partial result in the proof of Theorem [12, Theorem4.17]. The remaining inequalities
follow by a combination of all Lemmas 1.2—-1.7. O

From now on, we will assume that €2 is the set provided in Lemma 1.8.

Lemma 1.9 Fixw € Q and let (66n1w)n be a sequence such thatésnyy € Fyy, (0" w)\Fy, (0" w)
and ||[Esn o], | = 1 for everyn € N. Then

!
Jim -~ og 1195, (6o ial = 1. (1.8)

Proof By applying Lemmas 1.5, 1.6 and 1.7, Kingman’s Subadditive Ergodic Theorem shows
that

1 1
lim ~log Di([v5],,) = lim —~log De([¥5n,),,)

n—-oon 2 n—-oon

exist for every k > 1. Let H, be a complement subspace for Fy,,(®) in F,, (w). Using a
slight generalization of [12, Lemma 4.4], we have that

1
i log [Ty i, 1F,, @) | = 0-
For &, € F,, (w)\F}, (w), since
e (T H, | Fuy (@) )

= ”H (H || Foy, (07 ”
T2 (e I W (H)| Fiy (070)
it follows that
. 1
Jim - log [, (Ga)lus Il = 1 (19)

Let

n

o1
k := max {m : nl;rrgo o log Dm([ww]m) =mu}.
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We claim k = m. Indeed, otherwise from [12, Proposition4.15], there exists a subspace

Ell (w)
Fo C 7, @

with codimension k such that for every &, € F,

1
lim Sup log ”[VI(Z(S(U)]/IQ | < 1.

n—oo

Since dim[ & ‘Ew;] = my, we can find a non-zero element in F,, which contradicts (1.9).

Hence we have shown that

1
lim flogDml([w ] =mip.

n—>o00 n

Therefore, for every n € N, we can find {S('Ji,,w}lfjsm, C F,, (0" w) such that ||[§:i£]u2 |I=1
and

1
Jim - Vol (V2 Ean)lias - - [V Et D) ] = miper. (1.10)

Using the definition of Vol, it follows that for every 2 < ¢ < mj,
.1 i
Jim - togd([Vgn, 6oz (WgnoEono)luadi<ji—t) = 1. (L1D)

We have &;n,, = Zli/’iml (xj&‘jnw mod F), (0" w). In the proof of [12, Lemma 4.7], we
already saw that the the Vol-function is symmetric up to a constant. By our assumption on
&5n4, we can therefore assume that o, > mil Finally from (1.11)

1
lim — log ||[1//(r,lnw(§(r”w)]uz Il

= lim ,[d [V ) s AW (En) Vi) 1= < —1) = Rt
O

Definition 1.10 Let X be a Banach space. We define G (X) to be the Grassmanian of closed
subspaces of X equipped with the Hausdorff distance

dy (A, B) := max{sup d(a, Sg), sup d(b, Sa)}

aeSa bESB
where Sy ={a € A : |a| = 1}. Set
Gi(X) ={A € G(X) : dim[A] =k} and G¥(X)={A € G(X) : dim[X/A] = k}.

It can be shown that (G (X), dg) is a complete metric space and that G (X) and G*(X) are
closed subsets [13, Chapter IV]. The following lemma will be useful.

Lemma 1.11 For A, B € G(X) set
8(A, B) := sup d(a, B).

aeSy

Then the following holds:

(i) du(A, B) <2max{8(A, B), (B, A)}.
(ii) If A, B € Gr(X) withd(A, B) < %forsomek e N, we have

kS(A, B)
S(B,A) < ——— 1
1 — k8(A, B)
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Proof [2, Lemma 2.6]. O

Proposition 1.12 Assume pu; > —oo. Fix w € Q. For everyn € Z, let H!, C F,, (0" w)
be a complementary subspace for F,, (w) satisfying (1.4). Set I:Iu’j =Y, (H!,). Then the
sequence {I:I(f',},,z1 is Cauchy in (Gml (Fuy (w)), dH).

Proof From (1.4), we can deduce that for every n € N and &,n, € Syn

B
e

1
o Eomwlunll < 1. (1.12)
Note that wé{.nw|[-]”n is injective for any k > 1, therefore dim(f]cﬁ) = dim(H},,) = mj.
Ful(w)
Fuy (@)

Since uy < uy, we know that I:Ia’f N Fy, (w) = {0} and since dim|[ ] = my, we obtain

that
gﬁ ® F,U«z(w) = Fm(w)

for any n € N. Let {Sé,,w}lfjfm, C Spul(gnw) be a base for H, . Then for £ .11, €

SF;L] (0" w) n H”+l there exist {ﬂj}lgjgml C R such that

ontlg?

+1
n . w:n-#lw(‘i:(r’”rla))

n ]
> ﬂ~70"‘0@"."w) € Fy, ().

O ) 5 W €L
It follows that
1 J
Yony = Hzirllwiomw) - > jif"nwj € Fy,(0"w),
o Eorr) o W 6
thus
i 1
(D Py P R L P
o W €L e " G
[
N Err)
and so

A (SRR B
d(w—‘” H") < NZEN = 1Yy, (V)

I EL )l

ontly

1
“Wgnw'FM (o"w) ” ||1//Gn+|w||

1L Eneig)l

oty

IA

(M +1) (1.13)

Note that lim,_, o % log IIW;anI = 0 from Birkhoff’s Ergodic Theorem. Using Lemma 1.7
and (1.7) for k = 1, we have

. 1
lim sup — log ||wg’lw|F#2 (o"w) I < ua.
n—oo N

From Lemma 1.9 the estimate 1.12 and Lemma 1.11, (1.13) implies that for € > 0 small and
large n,

du(HE HL') < Mexp (n(ua — 1 + €)
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for a constant M > 0. The claim is proved. O

Next, we collect some facts about the limit of the sequence above.

- d ~
Lemma 1.13 Assume H), s H,. Then the following holds:

(i) I-:Iw is invariant, i.e. 1//(];(1:1,1)) = I:Iekwfor any k > 0.
(ii) Hy O Fyy (@) = {0}
(iti) Hg, only depends on w. In particular, it does not depend on the choice of the sequence
{H£ }nzl-

Proof By construction, H, is invariant. We proceed with (ii). Consider the dual map

W)y, (Fun (@) = (Fuy ("))

It is straightforward to see that (wg,, w);} enjoys the cocycle property. From (1.5) and
[12, Proposition 4.15], we can find a closed subspace Gl’iz (w) C (Fm(w))* such that

dim[(Fy,, (@))*/G}, (@)] = mi andfor&) € Gy, (@), limsup,,_, o 3 log [ (¥2,,), D] <
2. Set

(Fuz@),,, = {63 € (Fu @) &15, 0 =0}.

By Hahn—Banach separation theorem,
. i .
dim [ (Fuy (@), | = dim [ Fy @)/ Fps @)] = m1.

Leté) (Fuz (a)))i‘lﬂG;z(a)) and assume that&} # 0. Thenforsomeé,, ¢ Fy,, (w)\Fy, (w),
(€5, &) = 1. Using surjectivity of [/, 1u,, for every n € N, we can find &5, € HY,
such that

Vone(Eonw) = &» mod Fy, (o).

Consequently, ((Vgn,,)};, (§5), o) = 1. From Lemma 1.9 ,

. 1 n Sa”a} ”[Ew]u.Q ”
lim 1 (=2 )] | = lim ~ log |2l
nerolo n 08 H [wa w( ”[So”w]uz Il )]Mz ” n—oon ” ”[Sa"w]uz I

Hence for € > 0 and large n,

| = mi. (1.14)

om0l | < exp(=n(u1 —€))

which is a contradiction since ||(¥7,,, Zl EXIN <exp (n (u2+ e)). Thus we have shown that
1
(Fuy@)" = (Fuo (@), & G}, (o). (1.15)

Now let &, € H, N F,,(w) and assume that [|§,]| = 1. From 1.15, we can find £} €
G}, (®) such that (§;, §,) = 1. By definition of H,,, there exist £”, € Syn, such that

o w
Yl )

T T — &, as n — 00, and consequently

S(I;”(u

* wg”w(gg”w)
“ gy Egng)

N En )l

)y —> 1

) = {(Wgn) (€2,
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as n — oo. With Lemma 1.9 and a similar argument as above, this is again a contradiction
and we have shown (ii). It remains to prove (iii). For &, € H, C (Fy, (@)™, &, € G}, (w)
and a sequence &, chosen as above,
(’rl"w(gc;l"w)
15 Egng)

as n — oo. Therefore, H, C (Gzz(a)));l = {S(Z* € (Fm(w))** : g;;*|GTL2(w) = 0} and

( Eg) >0

since dim [(G%, (a)))il] = m, we obtain H, = (Gx, (w))tI which proves (iii). u]

Combining Proposition 1.12 and Lemma 1.13, we see that if ©; > —oo, there is a 6-
invariant set Q C  of full measure such that for every w € €, there is an m-dimensional
subspace Ha]) with the properties

- ‘/’f)(Hal)) = He]kw for every kK > 0 and
- H ® F,(w) = F, (w).

Thanks to the following lemma, we can invoke an induction argument to deduce the
existence of a sequence of invariant spaces H,, i > 1.

Lemma 1.14 The family of Banach spaces {F, ()}, & is a measurable field of Banach
spaces with

={g:=Tp, g og g€A) and Ao={g:=Tp, o8 g€ Ao}

In addition, V| Fupy(@) Fu, (w) — Fu,(0w) is a linear compact cocycle satisfying Assump-

tion 1.1 with A replaced by A. Moreover; the maps
fi@) = 1T @l and fo@) = 1T, il
are measurable.

Proof The only non-trivial part in proving that { F,, (»)} g is a measurable field of Banach
spaces is to show that

o = Mg, @), (g @) (1.16)
is measurable for every g € A. Let

{gi i eNy=2A¢ and {(gkys- - 8kn,) ke N} =AM

Fix n € Nand w € Q. We define {U(];,,w}kzl to be the family of subspaces of E,n, given
by U(];,,m = (g, (an)>l§ism1,gk,er- Using the same technique as in Lemma 1.5, one can
show that the map

1Ty, @]l Usny ® Fua(0"0) = Fy, (0" 0)

00 otherwise

o+ Gro"w) =

is measurable. Set ¥, (@) := inf{k : Gx (6" w) < M1} with M| as in Lemma 1.6. This map is

o . ~ d
clearly measurable. By Proposition 1.12, H := v, (U, (]f,;’(f)w)) . H! and consequently
O niiFy @)~ THYI Py @) 357 = 00 (1.17)

Let g € A. Then we have a decomposition of the form
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M, @8@ = ) @V, (8w (©"w)

1<t<m
where (1,..., 4y, 1 & — N are measurable. We assume m; = 1 first. To ease notation,
set ¢ := 1. Since g(w) — a1 @)V, (8i(w) (0" W) € F,(w), we have [[[g(w)],] =

lat ()Y, (8e(w) (0" @))]]| and therefore

d(g(w), Fy, (w))
1»[’(r"w(gt(w) (0"w)), Fu, (w)) )

ey ()| = a(

Set

do(@) == d(g(w), F, (@) and di(@) = d (Yo (8iw) (0" ®)), Fp (@)).

From Lemma 1.4, we know that d is measurable. Furthermore, a slight adaptation of the
proof yields the measurability of @ > d(Yone(gk(0"®)), Fyu, (®)) for any fixed k € N.
Since ¢ is measurable, this implies the measurability of d;, too. We have

do(w) 0
d1 (o) wa"w(gt(w) (c"w))

Hﬁﬁ\lﬂtg(w)g(w) = G(w)

where G (w) takes values in {—1, 0, 1}. Set ho(w) = g(w) — Z‘;Eg 2y (8u(w) (0" ®)) and

(@) = g(@) + PBY", ,(8w) (0" )) and define

. 1 . 1
Jo(@) := lim — log [vi (ho@)].  Ji(@) = Tim_ —log w2 (h1 (@) ]
It follows that Jy and J; are measurable and that
HﬁﬁllFuz(w)g(w) = = Xg@eFu, @) [g(@) — X3 (Jo(@)) ho(@) = Xy (J1(@)) 1 (@)] .
(1.18)

Then (1.18) and (1.17) prove the measurability of (1.16) for every gEA inthecasem; = 1.
Furthermore, measurability of f; and f> and Assumption 1.1 for A can also be deduced. It
remains to consider the case m; > 1 for which we invoke the same technique: Let

do() = d(g(®), Fiup (@) ® (Win(81,0) (0" @)))221<my )

di (@) = d(V i) (81(0) (0" @), Fuy (@) B (Y3, (81, () (0" @)))2<1<m )

Fczrho(w) = g(@) — PP, (81 (w) (0" @) and i (@) = g(@) + PBY L, (81 (w) (0" @)
€

dio(@) = d(hi (©), Fii, (©) & W, (80) (0" ))3<rm; ), i € {0, 1}

doi (@) = d1(@) = d (Y, (80 (@ ©)), iy (@) @ (Yt (81 (@) (@ )31 2my )
Fori € {0, 1} define
doo(®) | ,
dot(w) "7

do(w)
di1(w)

ho,i = ho(w) + (=1

16y (8ia(w) (0" )

hii = hi(w) + (=D Ul (81r () (0" ).
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We repeat the same procedure with our four new functions. Iterating this, we end up with
2™ functions {I;(@)}1<;<om for which we define J; (@) = lim;,, 00 %log H Yo (1 (w)) ||
Since

M1, @ 8@ = (= Xg@eFn@) [ 8@ = Y xu(h@)h©) |,

0<r<2™1

our claim follows for arbitrary m. ]

Prop05|tlon1 15 Leti € N and assume u; > oo. Then there is a O-invariant set of full
measure Q2 such that for every w € Q, there is an m;-dimensional space H’ with the
properties

(1) yXHL) = Hékwforeveryk > 0and
(2) Hyy ® Fy,, () = Fy, ().

Proof Fori = 1, the statement follows from Proposition 1.12 and Lemma 1.13. Fori = 2, we
consider the restricted cocycle llfff, | Fyuy (@) From Lemma 1.14, we know that this cocycle acts
on the measurable field of Banach spaces {F},, (w)}weq and we can thus apply Proposition
1.12 and Lemma 1.13 to this cocycle again. It remains to make sure that the top Lyapunov
exponent of the restricted cocycle coincides with 5. This, however, was deduced in Lemma
1.8. We can now repeat the argument until we reach i. O

From now on, H’ will always denote the spaces deduced in Proposition 1.15.
Remark 1.16 Using identities of the form
Fay @@ty = Mg, @™ © e, onmg© 0 ey o)
we can use the same strategy as in Lemma 1.14 to see that foreach 1 </ < j and k > 0,

s flw) = ”HFM (@) |@1<i<j H, | and f3(w)

fi(w) = ||H®l§i<jH(£)®FMj
— k )
= ”Ww'@[gkilﬁ)”

are measurable.

Lemma 1.17 For a measurable and non-negative function f : Q — R
1 1
lim — f(0"w) =0a.s. ifandonlyif lim —f(c"w) =0 a.s.
n—oon n—-oon

Proof The main idea is due to Jack Feldman, cf. [16, Lemma 7.2]. Assume that
lim,,— oo %f(@”a)) = 0 on a set of full measure °. Let € > 0 and set

ei
Q={weQ’ :Vi>n M§€}~
i

Fom our assumptions, for some ng € N,

9
P(2,,) > 10
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From Birkhoff’s ergodic theorem, there is a set of full measure Q! such that for every w € Q!,
we can find mg = m,, such that for m > my,

1 , 9
— 3 X, 0lw) > . (1.19)
m & 0 10

0<j=<m

W.lo.g., we may assume that QY = Q! Now for k > max{3ng, mg}, set m = L%kj + 1.
Then from (1.19)

1 4 _ 9
;[ Z X2, (07 @) + Z stno(dfw)]>5.

. _4m 4m _ -
0<j<% S<j<m

Consequently, there exists %” < j <msuchthato/w e Q- Seti := j —k > ng. Then
by the definition of 2,,,

fciw)  flofw)
= <€
i j—k ~
Since j — k < %k + 1 and € is arbitrary, our claim is shown. The other direction can be
proved similarly. O

As a consequence, we obtain the following:

Lemma 1.18 Foreach1 <l < jand w € Q,

Jim OB Iy 1 ool = 1O I gt i ornll =0 (120)

dw

Proof Follows from a straightforward generalization of [12, Lemma 4.4] and Lemma 1.17.

O
The following lemma characterizes the spaces HC‘,') as ‘fast-growing’ subspaces.
Proposition 1.19 For w € Q, everyi > N and &, € H!\{0},
] 1
lim —log [|¥, )l = lim —log ¥y lpyi | = wi (1.21)
n—-oo n n—oon (0]
and
fim — log [(12,) ™€)l = lim —log (92|~ | = s (122)
n—oon ot @ n—oon o"wlH, v ’

Proof The equalities (1.21) follow by applying the Multiplicative Ergodic Theorem [12,
Theorem 4.17] to the map Y| yi = H, — Hyn,,. It remains to prove (1.22). By definition,

for every &, € H(f),

T I\ (i o) P B [/ el GO
€0 T | ) E | 100 Elr |
= ”HH;"H)HFMJH (0"w) I

From Lemma 1.9,

” [wgnw(éo"w)]mﬂ ”

1 I Eore)l
R R N [ o) e

n—oon éa"a)EH,inw ||[€(r”w]/ii+| I n=>oon ||[§a"w]m+| Il

i
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where &,1,, € H.,, is chosen such that

I gnoGora) il _ - 11, Eono) i |

“[EO’”LU]M,‘JF] ” éa"mEH,l;nw ”[go"w]uiﬂ “

Consequently, from (1.20),
. 1 _
lim sup — 1og [|(Yftug, | )~ | < —pi
n—oo N

Finally, from inequality (16,1 < ¥, |5 | (¥ ,) " (€w)Il, Lemma 1.7 and (1.21), the
equalities (1.22) can be deduced. o ]

Lemma1.20 Letw € Qandi < k. For everyi < j <k, let {Sé)},elj be a basis ofHa'/;. Set

I :=VUj<j<l; and assume &}, € HJ. Then

1 /
Jlim = log d(W(E5). (Wi venm) = K (1.23)
and
1 /
i~ 10gd((Wn,) ™ €0 ((Win) " EDNren ) =~ (1.24)

Proof We will prove (1.24) only, the proof for (1.23) is completely analogous. First, we claim
that the statement is true for j = i and k = i 4 1. Indeed, in this case we have the inequalities

1 - d(W,)  ED AW )T ED) renn)
IIM%IH;%II - d(&L, (ED ren)

and we can conclude with Proposition 1.19. For arbitrary & and j = i, we can use the
inequalities

(I AN (7 I G AN

T AW THED AW ) T ED e )

Lemma 1.18 and our previous result above. The definition of Vol allows to deduce that

—1
< W) i |

= My

ow

1Fugy @l

1
Jim_—log Vol (W) ED) g oo (W) T ED), ep) = > —ujlll
i<j<k

(1.25)

Since Vol is symmetric up to a constant, the claim (1.24) follows for arbitrary j. O

The following theorem is the announced semi-invertible Oseledets theorem on fields of
Banach spaces. It summarizes the main result of this section.

Theorem 1.21 There is a O-invariant set of full measure Q such that foreveryi > 1 with u; >
WHit+1 and € Q, there is an m;-dimensional subspace H! with the following properties:

(i) (Invariance) wf)(Hi)) = Hékwfor every k > 0.
(ii) (Splitting) Hcf, @ Fy,., (0) = Fy, (). In particular,

Ey=Hy®- & H,® Fy,,, ().
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(iii) (‘Fast-growing’ subspace I) For each h,, € H(f)\{O},
!

lim —log |, (he) | = 14i-

n—oon
(iv) (‘Fast-growing’ subspace 1l) For each h,, € H(f)\{O},

: 1 n —1
Jim - log | (Ygn,) ™ (o)l = —p

v) If{“g‘ H<t<m is a basis 0f@1<l<JH , then

: nesl n
lim_ ;longl (Vo) YaEN) = Y mipi and

1<i<j
.1 1l -1
Jim_ —log Vol ((¥50,) ™! €0, o (Wgn,) M ED) = Y —mii. (126)
1<i<j
Moreover, the properties (i)—(iv) uniquely determine the spaces HL.
Proof Properties (i) and (ii) are proven in Proposition 1.15. (iii) and (iv) are shown in Proposi-

tion 1.19 and (v) can be deduced from Lemma 1.20, using the definition of Vol and symmetry
modulo a constant of this function. It remains to prove the uniqueness statement. Fix i > 1

and assume f1; > ju;.41. We define G, (o) and (G (Gx, » (w)) as in Lemma 1.13 and claim
that

Hi = (G%.., (a))) (1.27)

Let h, € H’ hY € G;‘; " (w) and set hgng = (wg’nw)’l(hw). Property (iv) implies that

there is an € > 0 sufficiently small such that
(has B) = (Ulng, (honw), Bly) = (hana, (Uhn,) (h3)) < exp (= n(ui — piy1 —€)) = 0

as n — oo which reveals H[;, - ( Lirt (a))) . Finally, since these spaces have the same
dimension, (1.27) follows. O

Remark 1.22 Property (iv) seems to be new in the context of Banach spaces. As seen in the
proof, it is crucial for the uniqueness statement

2 Invariant Manifolds
Let {Ey}weq be a measurable field of Banach spaces and ¢/} a nonlinear cocycle on acting
onit, i.e.

” N E e d E@nw

"+’”( ) = @ny, (0 ().

Definition 2.1 We say that ¢/ admits a stationary solution if there exists amap ¥ : @ —
[1,cq Ew such that

(1) Yy € Eo,
(i) ¢ (Ye) = Yone and
(iii) @ — ||Y,] is measurable.
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Stationary solutions should be thought of random analogues to fixed points in (determinis-
tic) dynamical systems. If ¢! is Fréchet differentiable, one can easily check that the derivative
around a stationary solution also enjoys the cocycle property, i.e for ¥ (.) = Dy, ¢/,(.), one
has

Y = Yo, (W0 ().

In the following, we will assume that ¢ is Fréchet differentiable, that there exists a stationary
solution Y and that the linearized cocycle ¥ around Y is compact and satisfies Assumption
1.1. Furthermore, we will assume that

log™ [Vl € L1 ().

Therefore, we can apply the MET to ¢ . In the following, we will use the same notation as in
the previous section.

2.1 Stable Manifolds

Definition 2.2 Let Y be a stationary solution, let {--- < u; < p;j—1 < --- < u1} €
[—o0, 00) be the corresponding Lyapunov spectrum and 2 the #-invariant set on which the
MET holds. Set i, = max{u; : u; < 0} and uj, = —oo if all finite u; are nonnegative.
We define the stable subspace

S = F#jo (w).
By the unstable subspace we mean
Us 1= ®1=i<jo H.
Note that dim[E,,/S,,] = dim[U,] =: k < oo for every w € Q.
Lemma23 Forwe Qande € 0, —pjy), set

F(w) = supexp[—p(uj, + OV s, -

p=0
Then
1
lim —log" [F(6"w)] = 0. 2.1)
n—-oo n
Proof Follows from (1.7). O

Lemma2.4 Letw € Q, Uy = (ElVi<t<k and n, p > 0. Then

V24681 o I " &I

N8 0) ™ Lty Usrad < _ wll 2.2)
oot T tor] I;k e @D d(Wn TP E). (W E) )
and
) 1) €D
[1R7298 s VT —Tolel  Pol
Hlorpelanl = 1<,Z<k ARl
1
TR ICAY o

d(Wo )T ED AW )T ED )
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P
Proof Choose u € Upr, and assume thatu = 3, u' ”:Z‘,U,g‘:”;” . Then
t P gt
Wl WEn o
lall = d (o L), (Wi (EL))ir21)
noo_ 1ve P EDI v P &L

From ¥y u =, u WEEDT Tor e and (2.4),

|u'| - I L) o e €L

Waroull = ™ G d (e G, (o " EDrz)

and (2.2) follows. The estimate (2.3) is proven similarly. ]
Definition 2.5 For w € Q set X, := ]_[,-20 Eyj,- For v > 0 we define

= {F €Xy: T = su;O)[HH({)FH exp(vj)] < oo}

Jj=
where TTJ, : [li=0 Eoiw = Egi,, denotes the projection map.
One can check that X7 is a Banach space.
Lemma2.6 Letw € Qand0 < v < —uj,. Define
P, : E, — Eg,
S0 > 0o, (Yo + 60) = 00, (Yo) = Vg o).
Let p: Q@ — R be a random variable with the property that
1
lim inf — log p (6" w) > 0
n—oo n

almost surely. Assume that for |, |, |l < p(®),

1P (E0) = PoEo)ll < 160 — Sull f (@5l + 501 2.5)

almost surely where f : Q — R is ameasurable function such thatlim,,_, o %logJr fO"w)
= 0 almost surely and h(x) = x" g(x) for some r > 0 where g : R — R is an increasing
C! function. Set

p(w) = 11;{) exp(nv)p (0" w). (2.6)

Then the map
IS, xX)NBO,pw) —> X,
M7 [ Ly (v, T)]
i )
Ve (Vo) + ZOgjgn—ll[ng/wj © H591+ijU01+jw]P@-fw(ni)[r])
e k
= = o Wiy 17 0Ty, 5,0, 1 Poie(TTIT]) forn =1,
S Y
Vo — ijo [[%{)Jr 17" HUQijIIS@ij]Pefw(ncjo[r]) forn =0.

is well-defined on a 0-invariant set of full measure Q.
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Proof We collect some estimates first. Let € € (0, — j,). From (1.20), we can find a random
variable R(w) > 1 such that for j > 0,

Ty, s, | < R@)exple)) . M, ju,, | < R@)exp(ef).  (27)
Also from (2.1), forn, p > 0,
1W4n | Sgn Il < R(@) exp (pijy + € + p)). (2.8)
In addition, from (1.23) and (2.2) for n, p > 0,
N0W50] ™~ LU, Ugp,] < R(@) exp (€ + p)) exp(=nptjo—1). 2.9)

From our assumptions,
| Poso (MAITD)| < [T [ @7 @)g (1T ITTD].
So for j > 0 and a random variable R (w) > 1,

| Pyio(MZITT) | < R(@) | T2 g ITILITT) exp(e ). (2.10)
Now from (2.7), (2.8), (2.9) and (2.10), we obtain

T [1(ve. D] < R(w)[eXp((M o T O v+

> R@)R@)exp(en+2e(1 + j) + (n — 1 — j)wjo) [T g(ITT [T+

0<j<n-—1

Y R@R@)exp(3e(l+j) — (j —n+ 1)#;0_1)||nz;<r)||‘+’g<||né,[r]||>].

jzn
Since g is increasing,
105 [ 1o ]| < R<w>[exp ((ejo + ) luwll+

R@R@)ITIGY g(IT Iy)exp (en+2¢ + (= Duj) Y. exp(j(2e = jo — (L+r)v))+

0<j=n—1

R@R@)ITI g1 5g) exp (36 + (1 = Diajo1) D exp (j(3e = jo—1 — (1 +r>v))]

j=n

Since pj,—1 > 0and 0 < v < —u,, we can choose € > 0 smaller if necessary to see that

sup [H [ (e, ]| eXp(Um] < oo,
n>0
As aresult, 1, is well-defined . o

Lemma 2.7 With the same setting as in Lemma 2.6, for I' € £7 N B(0, p(w)),

Ipve, T1=T <= ¥j>0:1[T] = ¢l (Y, + &) — ¢l (V) (2.11)
where
S =vo — ) [T o Ty, is,1s, | Poio (ML) 2.12)
Jj=0
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Proof The strategy of the proof is similar to [17, Lemma VL5]. Let I,[v,, '] = I'. Then
£y = ng[r] and the claim is shown for j = 0. We proceed by induction. Assume that
MIT] = ¢ (Yo, + &) — ¢ (Y,). By definition,

O (Yo +80) — 00T (Vo) = 0oy (01 (Yo + £0)) — @hny (Yore) =
Poneo (0l (Yoo + £0) — Yoro)
+ Yoo (@0 (Yo + ) — Yoni) = Py (T IT]) + Yy (17 [ Lo (00, T)]).
Note that for j > n,
Vine o Wi P17 = ) 171 Ugtisgy — Upting,.
By definition

Yo (ML, D) = ¥ W)+ D [V, 0 Tsiys 105, 1 Pare (TIAITT) =

0<j<n—1

Z [[‘/’g;afl]il ° HU91+jw||591+jw]Pefw(ni)[r])'

jzn

Consequently, [T+ [T'] = ¢ F1(Y,, + &,) — ¢*!(Y,,) which finishes the induction step.
Conversely, for &, € E, and I' € X} ﬂ B(0, p(w)), assume that for every j > 0,

MLIT] = ¢ (Ye + £0) — 9 (Y,). Set

Vy =&y + Z [[1//5{;+1]_1 o HUQH,/MHSQH,/M]Pij(Hi)[F])'
j=0

Similar to Lemma 2.6, we can see that v,, is well-defined. Morever,

M [1o(o. D] = ¥AED) + Y Wit Py (TIJIT)

0<j<n—1
= ¢} (Yo + £0) — ¢(Yo) = T [T]
which proves the claim. O
Lemma 2.8 Under the same assumptions as in Lemma 2.7, set
h () == sup [exp(nu)|lylils,|I] and

hy (@) = SUI(;[GXP(”U) Z exp(— JU(1+V))f(9/0))||W91+1 18,71, LS 5 110,01,
nz 0<j<n—1

+exp(nv) Y exp(—ju(1 + 1)) f@ )| W )™ MMy 15,00, 1]

j=n
Then h{ and h are measurable and finite on a 6-invariant set of full measure Q. In addition,
lim. % log™ h{ (0" w) = lim. % log™ hY (0" w) =0
forevery w € Q. Furthermore, the estimates
1o (o T < 1Y (@)l + 25 @)IT ' (T and
e (v, T) = L (v DI < B3 @)R(IT]| + [T IT = T

hold for every w € Qr,Te 22N B0, p(w)) and v, € S,.
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Proof The statements about 4} and i3 follow from our assumption on f, (1.7), Lemma 1.8
and Proposition 1.19. The claimed estimates follow by definition of 1,,. O

Recall that 4 (x) = x" g(x). In particular, 4 is invertible and 4 and h~ ! are strictly increas-
ing.
Lemma 2.9 Assume that for v, € S,

1 1
<—— min{=h""!
ol < 2w @) min {5 ST

), B(@)}.

Then the equation
Iy(vy, T) =T

admits a uniques solution T' = I"(v,,) and the bound

: 1 —1 ~ . v
IT(ve) |l < min {Eh (Zhg(w))’ p()} =: HY (w) (2.13)
holds true.

Proof We can use the estimates provided in Lemma 2.8 to conclude that 7 (v, -) is a con-
traction on the closed ball with radius min {34~ (m), plw)}. u]

Now we can formulate the main theorem about the existence of local stable manifolds.

Theorem 2.10 Let (2, F, P, 0) be an ergodic measure-preserving dynamical systems and
@ a Fréchet-differentiable cocycle acting on a measurable field of Banach spaces {E,}peq-
Assume that ¢ admits a stationary solution Y and that the linearized cocycle r around Y is
compact, satisfies Assumption 1.1 and the integrability condition

log™ 1Yl € L' (w).

Moreover, assume that (2.5) holds for ¢ and . Let i j, < 0 and S, be defined as in Definition
22. For0 < v < —pj,, » € Qand R* () := m min {4~ (W)’ p(w)} with p
defined as in (2.6), let

SP (@) = {Yo + ST ()], [vull < RV (@)} (2.14)

Then there is a -invariant set of full measure Q on which the following properties are
satisfied for every w € :

(i) There are random variables py (w), p; (w), positive and finite on Q, for which
1
liminf —log p/ (0Pw) >0, i=1,2 (2.15)
p—>© p

and such that
{Zw cE, : yslli?) exp(nu) ¢l (Zw) — Yorll < Pf(w)} C Sjpe(@)
€ {Z, € Eo : sup exp(nv)¢}(Zo) — Yoroll < p3 (@)}
(ii) Sy (o) of Ey, and 7

Ty, Sp. (@) = So.
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(iii) Forn > N(w),
oh(She(@)) € S} (0" w).
(iv) For0 < v S vy < —jg,
Sjoe(@) € 8§ ().
Also forn > N (),
@i (Sioc (@) E 816" (@)

and consequently for Z,, € S}, .(w),

1
lim sup — log 9y (Zw) = Yonull < tjo- (2.16)
n—00
(v)
1 Zy) — Z - -
lim sup — log |:sup{ 196(Z0) = ¢u( w)” Zo # Zw, Zo, Zo € S;:,L.(w)” < jp-
n—oo N 1Zy — Zw”

Proof We start with (i). For the first inclusion, note that we can find a random variable p} (@)
satisfying

1
lim inf —log p{ (67 w) > 0 2.17)
p—>00 p

and such that whenever ||[I"|| < p} (),

v r+1 l —1 ~ . v
T+ Az @I gl < ) mln{zh (Zhg(w))’ plw)} = H} (w).
For example, we can define
3 — 1 v v
P} (@) :=min {h~'( W) @2 B (@)}

with H{’ defined as in (2.13). Assume that Z,, € E,, has the property that

sup exp(nv) |9l (Zy) — Yonoll < pf (@).

n>0
Setting

U = Zo — Yo+ Y _ (W17 0 Ty, 15,045, 1 Pain (TTITD),
Jj=0

it follows that [|3,[ < RY(w). From Lemma 2.7, we conclude that I,[,,. f] = I'. By
uniqueness of the fixed point map, we have I' = I'(9,,), therefore Z,, = Y, + n° w((¥y) €

Sy (w).Next,let Z,, € Sy (w),i.e.Z, =Y, + mn’ (T (vy)) for some [lvy, | < RY(w). From
Lemmas 2.7 and 2.9,

loc

IT (o)l = SUPOGXP(HU)IIQDZ(Zw) =Yool = R%(0).
n=

We can therefore choose p5 (w) = R”(w) and the second inclusion is shown.
The second item immediately follows from our definition for S}’ ().
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For item (iii), by (2.15), we can find N (w) such that for n > N(w),

exp(—nv)p; (@) < py (0" w).

Now the claim follows from item (i).
For item (iv), note first that RV (w) < R"'(w). By definition of I'} (v,,), it immediately
follows that

S

loc

() C S} ().

Now take Z,, € S

1oc(@). From Lemma 1.18 and (i), we can find N (w) such thatforn > N(w),

1ML, Uy, (200 (Z) — Yono) | < RV (0" w).

We may also assume that exp(—nvi)p;" (@) < p" (6" w) for n > N(w). For

Vorw = Tsyu, |Upn,, (90 (Zw) — Yore)
let

Zgng := N, (T (vgn))) + Ygnp € S;2.(0"w) C S

loc loc

0" w).

We claim that Zgn,, = ¢! (Z,). Since Z,, € S, (»),

sup exp(j ) |@pn, (91 (Zw)) — Ygign, |l < exp(—nv1)p;" (@) < pi" (6" w).
j=0

(0" w). Remember Zgn,, € S\

0" w) N S;?

loc

So from item (i), ¢ (Z,,) € S, !

loc (Q”w) and
nSH"wHUgnw(Zan — Ypny) = HSG”WHUO"(U (@Z)(Zw) — Yoro).
So by uniqueness of the fixed point, we indeed have

(/)Z)(Za)) = Zgny € N

loc

0" w).

To prove (2.16), let v < vy < —pug and take Z,, € S; (w). Then we know that for large
enough N, ¢ (Z,) € S (6" w), therefore

loc

supexp(Gu) 9TV (Zy) — Ygiin,ll < 00
j=0

and it follows that
. 1
lim sup — log [|¢ (Zy) — Yorell < —va.
n—oo N

We can choose v arbitrarily close to — i, therefore the claim follows and item (iv) is proved.
For item (v), first by definition,

IT (Vo) — T @) | = ey (Ver, T' (V) = 1y (Vep, T’ (00))
< Mo, F'(ve)) — 1o (Vw, T W)l + 1o Ve, I'(ve)) — 1o (Ve, '([0))]]

- 1 -
< hi () |ve — Toll + Ellr(vw) —T'@u)l
for every vy, U, € Sy, With [|v,]l, V] < RY(w). Consequently,

IT' (V) — T (@) | < 207 (@) v — Voll. (2.18)
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Also by definition, cf. (2.12),
ITTG,(T (v)) — T, (T @)
> llvo = Vo ll — 23 (@) [T (ve) — T (@) | AUIT o) | + 1T @) 1)-
So from (2.18)
T (v0)) — T (T @)l = Ve — Bull[1 — 2k (@)h5 (@)A(IT W)l + [T () D)]-

(2.19)
First assume that
- | 1
max{|[|T"(ve), I'(Wu) I} < Eh (W}
Then from (2.18) and (2.19),
IPw) =TE o 2.20)

ITT9,(T (Vo)) — TQC @)~
Thus if Z,, = Y, + N1% [T (v,)] and Z,, = Y,, + %[ (v,,)], it follows that

162 (Zw) — ¢ (Zo) I
1Ze — Zoll

< 4exp(—nv)hj(w)

for every n > 1. In the general case, we can use item (i) and that hl (m) satisfies
(2.15) to see that for some N = N (w),
sup exp(V)|@)n, @ (Z) = Yoign,ll < exp(—Nv)pS (@)
- 1
4hY (ON w)h (ON w)

< lh—% )
<5 .

Consequently, from (2.20),

o PGV (Z0) — 0™ ()

4 < 4n¥ (6N w)
j=0 l9) (Zw) — & (Zo) |l
and hence for everyn > N,
N7z y_ oh Z
190(Z0) = 00 (Zo) < dexp((—n — N)v)h} (0N w) Hy (w) (2.21)

1Zo — Zo|l
where

N (Zw) — oN(Zo) I
1Zy — Zo|l

HYy(0) = sup{ v Zo # Zayy Zoyy Zoy € S;;C(w)}.

We claim that H} () is finite. Indeed, by assumption (2.5),
led (Zw) — N Z)Il < 1Wgn-1 I l9h ™ (Zo) — 0l 7 (Zu)I
+ fONo) ll) 7' (Zw) — ol T (ZW) I
x (1eN"1Zw) = Yon-ioll + 9l = (Zw) — Yon-1,1)

and we can proceed by induction to conclude. Finally, from (2.21) and item (iv), our claim
is proved. O

@ Springer



Journal of Dynamics and Differential Equations (2023) 35:103-133 129

Remark 2.11 Assume that for @ € € the function ¢, is C"™. Then, since
d
1,(0,0) = aTJw(O, 0) =0,

we can deduce from the Implicit function theorem that S} .(w) is locally C m=l,

2.2 Unstable Manifolds

We invoke same strategy for proving the existence of unstable manifolds. Since the arguments
are very similar, we will only sketch them briefly. In this section, we will assume that the
largest Lyapunov exponent is strictly positive, i.e. that 1 > 0.

Definition 212 Set ko := min{k : jux > 0}, S, := Fyy,, (@) and Uy, = S1<i<i, H], for
w € Q.For &, := 1—1120 E,j, and v > 0, we define the Banach space

YYo= {r €%, ¢ I = sup [IT5 T exp(kv)] < oo}
k>0

where lzlﬁ, [1i=0 Eviey = Eqk is the projection map. Similar to last section, we also set
7 . -1
hY (w) = sug [exp(nu)l|(¥gn,l5 )~ II] and

n=

ﬁg(a)) = ,S:il()) [exp(nu) Z exp ( —vn—k(1+ r))f(a”_kw)|I(w§n+a£|05"_l_kw)_l I

0<k<n—1

x T

oh—1—kg Hsan—lfkw

+exp(nv) Y _exp(—vlk + D1+ ) f o)lvinls T, g, ]

k>n

Lemma2.13 Letw € 2, 0 < v < uy, and assume that p: Q — R satisfies
1
lim inf — log p (6" w) > 0 (2.22)
n—oo n

almost surely. Define P as in Lemma 2.6 and assume that (2.5) holds for a random variable
f: Q — RT which satisfies lim,,_, o, f(0"®) = 0 almost surely. Set

p(w) = ir;%exp(nv)p(a”a)). (2.23)

Then the map
[, : Uy x SYN B0, jlw) - =Y,
7% [ I (e, D))
[V, )" (o)

k+14—
- Zngﬁn—l [[wa’tu] ! ° HU

qn—l—kaS‘onilikw]Po.n—kw(ﬁz)_k[r])

k— k41
+Zk3” [wo"ar)l ° ngakaf/(,kw]Pok“w(Hw-i_ [F]) forn >1,
o+ Tizo Wr, 015,410, 1ot 10 (57T forn=0.

is well-defined on a 0-invariant set of full measure Q.
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Proof We can use Lemma 1.17 to obtain a version of Lemma 2.3 where we replace 6 by o.
The rest of the proof is similar to Lemma 2.6. O

Lemma2.14 For0 < v < y,, w € Qand T € Y N B(0, f(w)),

Ip(y, T) =T = VO<k<n: O =gk (T + Yor) — Yyues,,.
(2.24)

Proof Similar to Lemma 2.7. O

Lemma2.15 For 0 < v < g, ﬁ’l’ and ﬁg are measurable and finite on a -invariant set of
full measure Q. Moreover,

Jim é log* h{(cPw) = Jim % logt hY(cPw) =0 (2.25)
and
o (o, DY < AY (@) lluw |l + 25 @)1 g (IT])
o (e, T) = I (e, D) < 25 (@)R(IT][+ [T T =T
hold for every w € QrI,Te i;’, N B(0, p(w)) and u,, € U,
Proof Asin Lemma 2.8. O

Lemma 2.16 Assume that for u,, € Uw,

1 1
Uyl < ——— min{-h~"!
luoll < ) {2 (2

), pw)}.

S
Ne

(w)
Then the equation

I,(y, T) =T
admits a uniques solution I' = T"(u,) and the bound

1
208 ()

1
IT ()|l < min{ih*( ), ()}

holds true.

Proof We can show that 7 (4, +) 1s a contraction using Lemma 2.15. O
Finally we can formulate our main results about the existence of local unstable manifolds.

Theorem 2.17 Let (2, F, P, 0) be an ergodic measure-preserving dynamical systems, o :=

0~" and ¢ a Fréchet-differentiable cocycle acting on a measurable field of Banach spaces

{Ep}weq- Assume that ¢ admits a stationary solution Y and that the linearized cocycle ¥
around Y is compact, satisfies Assumption 1.1 and the integrability condition

log™ 1Yl € L' ().

Moreover, assume that (2.5) holds for ¢ and  and a random variable p: 2 — R satisfying
(2.22). Assume that 1 > 0 and let g, > 0 and U, be defined as in Definition 2.12. For
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0 <v < gy @ € Qand RY (@) 1= L min { -1

W ), ,5((0)} with p defined as in
(2.23), let

2h”( )

UP (@) = {Y + O[T (e)], lluwl < R (@)} (2.26)

Then there is a -invariant set of full measure Q on which the following properties are
satisfied for every w € :

(i) There are random variables py (w), p5 (w), positive and finite on Q, for which
| - .
liminf —log 5/ (c’w) >0, i=1,2
p—0 p
and such that

{Zw € Ep 1 Zonwln=1 5.t @ (Zonw) = Zgn-my, forall0 < m < n and

sup exp(nv)|| Zgng — Yonell < ﬁ}’(a))} cUp. (@< {Zw € Ey : HZonplp=1 sit.

n>0

Oy (Zonw) = Zgn-mg, forall 0 < m < n and sup exp(nv)||Zgoney — Yonell < py (w)}.
n>0

(ii) Up () is an immersed submanifold of E,, and
Ty, UP (w) = U,
(iii) Forn > N(w),
Upe(@) S @y (Upp (0" @)).
(iv) For 0 < v < vy < Hgg,
loc (a)) cy loc (w)
Also forn > N(w),
Uppre(@) € @n, (Upr (0" (@)

and consequently for Z,, € U (w),

. 1
lim sup - log | Zonw — Yonoll < — -

n—o00
(v)
1 Zonag — Zgn . .
lim sup — log [sup {—” 7w 9 w”, Zo # 2y, Zo, Zoy € U;;C(a))” < — k-
n—00 ”Zw - Zw”
Proof One uses the same arguments as in the proof of Theorem 2.10. O

Remark 2.18 (i) As in the stable case, if ¢, is C"* for every w € fz, one can deduce that
UP.(o) is locally ™1,

(ii) In the hyperbolic case, i.e. if all Lyapunov exponents are non-zero, if the assumptions
of Theorem 2.10 and 2.17 are satisfied, we have S, = S and U, = U In particular,
the submanifolds S} (w) and U} .(w) are transversal, i.e.

E, = Tyw U,’:w(a)) b TywSﬁm(a)).
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