Skip to main content
Log in

Representation Formulas for Contact Type Hamilton-Jacobi Equations

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We discuss various kinds of representation formulas for the viscosity solutions of the contact type Hamilton-Jacobi equations by using the Herglotz’ variational principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Let (Xd) be a metric space. A function \(\phi :X\rightarrow {\mathbb {R}}\) is called \((\kappa _1,\kappa _2)\)-Lipschitz in the large if there exist \(\kappa _1,\kappa _2\geqslant 0\) such that \(|\phi (y)-\phi (x)|\leqslant \kappa _1+\kappa _2d(x,y)\), for all \(x,y\in X\)

References

  1. Bardi, M., Capuzzo-Dolcetta, I.: Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA. With appendices by Maurizio Falcone and Pierpaolo Soravia (1997)

  2. Barles, G.: Solutions de viscosité des équations de Hamilton-Jacobi. Mathématiques& Applications, vol. 17. Springer-Verlag, Paris (1994)

  3. Buttazzo, G.: Semicontinuity, relaxation and integral representation in the calculus of variations, volume 207 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, (1989)

  4. Buttazzo, G., Giaquinta, M., Hildebrandt, S.: One-dimensional variational problems, volume 15 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York. An introduction. (1998)

  5. Cannarsa, P., Cheng, W.: Generalized characteristics and Lax-Oleinik operators: global theory. Calc. Var. Partial Differential Equations, 56(5):Art. 125, 31, (2017)

  6. Cannarsa, P., Cheng, W., Fathi, A.: On the topology of the set of singularities of a solution to the Hamilton-Jacobi equation. C. R. Math. Acad. Sci. Paris 355(2), 176–180 (2017)

    Article  MathSciNet  Google Scholar 

  7. Cannarsa, P., Cheng, W., Fathi, A.: Singularities of solutions of time dependent Hamilton-Jacobi equations. Applications to Riemannian geometry. preprint, arXiv:1912.04863, (2019)

  8. Cannarsa, P., Cheng, W., Jin, L., Wang, K., Yan, J.: Herglotz’ variational principle and Lax-Oleinik evolution. J. Math. Pures Appl. 9(141), 99–136 (2020)

    Article  MathSciNet  Google Scholar 

  9. Cannarsa, P., Cheng, W., Mazzola, M., Wang, K.: Global generalized characteristics for the Dirichlet problem for Hamilton-Jacobi equations at a supercritical energy level. SIAM J. Math. Anal. 51(5), 4213–4244 (2019)

    Article  MathSciNet  Google Scholar 

  10. Cannarsa, P., Cheng, W., Wang, K., Yan, J.: Herglotz’ generalized variational principle and contact type Hamilton-Jacobi equations. In Trends in control theory and partial differential equations, volume 32 of Springer INdAM Ser., pages 39–67. Springer, Cham, (2019)

  11. Cannarsa, P., Sinestrari, C.: Semiconcave functions, Hamilton-Jacobi equations, and optimal control. Progress in Nonlinear Differential Equations and their Applications, vol. 58. Birkhäuser Boston Inc, Boston, MA (2004)

  12. Castelpietra, M., Rifford, L.: Regularity properties of the distance functions to conjugate and cut loci for viscosity solutions of Hamilton-Jacobi equations and applications in Riemannian geometry. ESAIM Control Optim. Calc. Var. 16(3), 695–718 (2010)

    Article  MathSciNet  Google Scholar 

  13. Chen, C., Cheng, W., Zhang, Q.: Lasry-Lions approximations for discounted Hamilton-Jacobi equations. J. Differential Equations 265(2), 719–732 (2018)

    Article  MathSciNet  Google Scholar 

  14. Chen, Q., Cheng, W., Ishii, H., Zhao, K.: Vanishing contact structure problem and convergence of the viscosity solutions. Comm. Partial Differential Equations 44(9), 801–836 (2019)

    Article  MathSciNet  Google Scholar 

  15. Coddington, E.A., Levinson, N.: Theory of ordinary differential equations. McGraw-Hill Book Company Inc, New York-Toronto-London (1955)

    MATH  Google Scholar 

  16. Davini, A., Fathi, A., Iturriaga, R., Zavidovique, M.: Convergence of the solutions of the discounted Hamilton-Jacobi equation: convergence of the discounted solutions. Invent. Math. 206(1), 29–55 (2016)

    Article  MathSciNet  Google Scholar 

  17. Fathi, A., Siconolfi, A.: Existence of \(C^1\) critical subsolutions of the Hamilton-Jacobi equation. Invent. Math. 155(2), 363–388 (2004)

    Article  MathSciNet  Google Scholar 

  18. Fathi, A., Siconolfi, A.: PDE aspects of Aubry-Mather theory for quasiconvex Hamiltonians. Calc. Var. Partial Differential Equations 22(2), 185–228 (2005)

    Article  MathSciNet  Google Scholar 

  19. Ishii, H.: On representations of solutions of Hamilton-Jacobi equations with convex Hamiltonians. In Recent topics in nonlinear PDE, II (Sendai, 1984), volume 128 of North-Holland Math. Stud., pages 15–52. North-Holland, Amsterdam, (1985)

  20. Ishii, H.: Representation of solutions of Hamilton-Jacobi equations. Nonlinear Anal. 12(2), 121–146 (1988)

    Article  MathSciNet  Google Scholar 

  21. Ishii, H., Mitake, H.: Representation formulas for solutions of Hamilton-Jacobi equations with convex Hamiltonians. Indiana Univ. Math. J. 56(5), 2159–2183 (2007)

    Article  MathSciNet  Google Scholar 

  22. Lions, P.-L.: Generalized solutions of Hamilton-Jacobi equations, volume 69 of Research Notes in Mathematics. Pitman (Advanced Publishing Program), Boston, Mass.-London, (1982)

  23. Mantegazza, C., Mennucci, A.C.: Hamilton-Jacobi equations and distance functions on Riemannian manifolds. Appl. Math. Optim. 47(1), 1–25 (2003)

    Article  MathSciNet  Google Scholar 

  24. Mitake, H.: Asymptotic solutions of Hamilton-Jacobi equations with state constraints. Appl. Math. Optim. 58(3), 393–410 (2008)

    Article  MathSciNet  Google Scholar 

  25. Rampazzo, F.: Faithful representations for convex Hamilton-Jacobi equations. SIAM J. Control Optim. 44(3), 867–884 (2005)

    Article  MathSciNet  Google Scholar 

  26. Wang, K., Wang, L., Yan, J.: Implicit variational principle for contact Hamiltonian systems. Nonlinearity 30(2), 492–515 (2017)

    Article  MathSciNet  Google Scholar 

  27. Wang, K., Wang, L., Yan, J.: Variational principle for contact Hamiltonian systems and its applications. J. Math. Pures Appl. 9(123), 167–200 (2019)

    Article  MathSciNet  Google Scholar 

  28. Zhao, K., Cheng, W.: On the vanishing contact structure for viscosity solutions of contact type Hamilton-Jacobi equations I: Cauchy problem. Discrete Contin. Dyn. Syst. 39(8), 4345–4358 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Wei Cheng is partly supported by National Natural Science Foundation of China (Grant No. 11871267, 11631006 and 11790272). Shengqing Hu is partly supported by China Postdoctoral Science Foundation (No. 003056). The authors thank for Qinbo Chen for helpful discussion. The authors would like to thank the anonymous referees for their careful reading and useful comments on the original version of this paper, which have helped us to improve the presentation significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, J., Cheng, W., Hu, S. et al. Representation Formulas for Contact Type Hamilton-Jacobi Equations. J Dyn Diff Equat 34, 2315–2327 (2022). https://doi.org/10.1007/s10884-021-09960-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-021-09960-w

Keywords

Navigation