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Abstract
Nonlinear Young integrals have been first introduced in Catellier and Gubinelli (Stoch Pro-
cess Appl 126(8):2323–2366, 2016) and provide a natural generalisation of classical Young
ones, but also a versatile tool in the pathwise study of regularisation by noise phenomena.
We present here a self-contained account of the theory, focusing on wellposedness results
for abstract nonlinear Young differential equations, together with some new extensions; con-
vergence of numerical schemes and nonlinear Young PDEs are also treated. Most results
are presented for general (possibly infinite dimensional) Banach spaces and without using
compactness assumptions, unless explicitly stated.

Keywords Nonlinear Young integral · Young differential equations · Numerical schemes ·
Flow property · Transport equations · Parabolic Young equations
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1 Introduction

The main goal of this article is to solve and study differential equations of the form

xt = x0 +
∫ t

0
A(ds, xs) (1.1)

where x is an α-Hölder continuous path taking values in a Banach space V and A : [0, T ] ×
V → V is a vector fieldwith suitable space-timeHölder regularity. If A is sufficiently smooth
in time, then A(ds, xs) can be interpreted as ∂t A(s, xs)ds, so that (1.1) can be regarded as
an ODE in integral form; here however we are interested in the case ∂t A does not exist, so
that (1.1) does not admit a classical interpretation.
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In the case A(t, z) = f (z)yt , where y is an U -valued α-Hölder continuous path and f
maps V into the space of linear maps from U to V , Eq. (1.1) can be rewritten as

xt = x0 +
∫ t

0
f (xs)dys (1.2)

which can be regarded as a rough differential equation driven by a signal y.
In the regime α ∈ (1/2, 1], for sufficiently regular f , Eq. (1.2) can be rigorously inter-

preted by means of Young integrals, introduced in [44]; wellposedness of Young differential
equations (YDEs) was first studied in [34]. After that, several alternative approaches to (1.2)
have been developed, either by means of fractional calculus [45] or numerical schemes [14];
see also the review [33] for a self-contained exposition of the main results for YDEs and
the paper [13] for some recent developments. YDEs have found several applications in the
study of SDEs driven by fractional Brownian motion (fBm) of parameter H > 1/2, see for
instance [37].

Although Eq. (1.1) may be seen as a natural generalization of (1.2), its development is
much more recent. Nonlinear Young integrals of the form∫ t

0
A(ds, xs)

were first defined in [9] in applications to additively perturbed ODEs and subsequently
rediscovered in [30],where theywere employed to give a pathwise interpretation to Feynman-
Kac formulas and SPDEs with random coefficients.

In this paper we will consider exclusively the time regularity regime α > 1/2, also known
as the Young (or or level-1 rough path) regime. However it is now well known, since the
pioneering work of Lyons [35], that it is possible to give meaning to Eq. (1.2) even in the
case α ≤ 1/2 by means of the theory of rough paths, see the monographs [18,19] for a
detailed account on the topic. An analogue extesion of (1.1) to the case of nonlinear rough
paths has been recently achieved in [12,38]; so far however it hasn’t found the same variety
of applications, discussed below, as the nonlinear Young case. Let us finally mention that all
of the above can also be seen as subcases of the theory of rough flows developed in [2,4].

Nonlinear YDEs of the form (1.1) mostly present direct analogue results to their classical
counterpart (1.2), but their importance and the main motivation for this work lies in their
versatility. Indeed, many differential systems which a priori do not present such structure,
may be recast as nonlinear YDEs; this allows to give them meaning in situations where
classical theory breaks down.

This methodology seems seems particularly effective in applications to regularization by
noise phenomena; to clarify what we mean, let us illustrate the following example, taken
from [10,11]. In these works the authors study abstract modulated PDEs of the form

dϕt = Aϕẇt +N (ϕt )dt (1.3)

where w : [0, T ] → R is a continuous (possibly very rough) path, A is the generator of a
group {et A}t∈R and N is a nonlinear functional, possibly ill-posed in low regularity spaces.
Formally, setting ψt := e−wt Aϕt , ψ would solve

ψt = ψ0 +
∫ t

0
e−ws AN (ews Aψs)ds,

which can be regarded as an instance of (1.1) for the choice

A(t, z) =
∫ t

0
e−ws AN (ews Az)ds. (1.4)
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Under suitable assumption, even if w is not smooth (actually exactly because it is rough,
as measured by its ρ-irregularity), it is possibile to rigorously define the field A, even if
the integral appearing on the r.h.s. of (1.4) is not meaningful in the Lebesgue sense. As a
consequence, the transformation of the state space given by ϕ �→ ψ allows to interpret the
original PDE (1.3) as a suitable nonlinear YDE; the general abstract theory presented here
can then be applied, immediately yielding wellposedness results.

A similar reasoning holds for additively perturbed ODEs of the form

xt = x0 +
∫ t

0
b(xs)ds + wt

which were first considered in [9], in which case the transformation amounts to x �→ θ :=
x −w. This case has recently received a lot of attention and developed into a general theory
of pathwise regularisation by noise for ODEs and SDEs, see [20–22,26,28] and on a related
note [27].

Motivated by the above discussion, we collect here several results for abstract nonlinear
YDEs which have appeared in the above references, together with some new extensions; they
provide general criteria for existence, uniqueness and stability of solutions to (1.1), as well
as convergence of numerical schemes and differentiability of the flow. This work is deeply
inspired by the review [33], of which it can be partially regarded as an extension; all the
theory is developed in (possibly infinte dimensional) Banach spaces and relies systematically
on the use of the sewing lemma, a by now standard feature of the rough path framework.
We hope however that the also reader already acquainted with RDEs can find the paper of
interest due to later Sects. 5–7, containing less standard results and applications to Young
PDEs.

Structure of the paper. In Sect. 2, the nonlinear Young integral is constructed and its main
properties are established. Section 3 is devoted to criteria for existence, uniqueness, stability
and convergence of numerical schemes for nonlinear YDEs, Sects. 3.4 and 3.5 focusing on
several variants of the main case. Section 4 deals continuity of the solutions with respect to
the data of the problem, giving conditions for the existence of a flow and differentiability of
the Itô map. The results from Sect. 3.3 are revisited in Sect. 5, where more refined criteria
for uniqueness of solutions are given; we label them as “conditional uniqueness” results, as
they require additional assumptions which are often met in probabilistic applications, but
are difficult to check by purely analytic arguments. Sections 6 and 7 deal respectively with
Young transport and parabolic type of PDEs. We chose to collect in the “Appendix” some
useful tools and further topics.

Notation. Here is a list of the most relevant and frequently used notations and conventions:

• We write a � b if a ≤ Cb for a suitable constant, a �x b to stress the dependence
C = C(x).

• We will always work on a finite time interval [0, T ]; the Banach spaces V , W appearing
might be infinite dimensional but will be always assumed separable for simplicity.

• Given a Banach space (E, ‖ · ‖E ), we set C0
t E = C([0, T ]; E) endowed with supremum

norm

‖ f ‖∞ = sup
t∈[0,T ]

‖ ft‖E ∀ f ∈ C0
t E

where ft := f (t) and we adopt the incremental notation fs,t := ft − fs . Similarly,
for any α ∈ (0, 1) we set Cα

t E = Cα([0, T ]; E) be the space of α-Hölder continuous
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functions with norm

� f �α := sup
0 ≤ s < t ≤ T

‖ fs,t‖E
|t − s|α , ‖ f ‖α := ‖ f ‖∞ + � f �α.

• The above notation will be applied to several choice of E such as Cα
t V , Cα

t R
d but also

Cα
t C

β,λ
V ,W or Cα

t C
β
V ,W ,loc, for which we refer to Definitions 2.3 and 2.5.

• We denote by L(V ;W ) the set of all linear bounded operators from V to W , L(V ) =
L(V ; V ).

• Wheneverwewill refer to differentiability thismust be understood in the sense of Frechét,
unless specified otherwise; given a map F : V → W we regard its Frechét differential
DkF of order k as a map from V to Lk(V ;W ), the set of bounded k-linear forms from
V k to W . We will use indifferently DF(x, y) = DF(x)(y) for the differential at point
x evaluated along the direction y.

• Given a linear unbounded operator A, Dom(A) denotes its domain, rg(A) its range.
• As a rule of thumb, whenever J (
) appears, it denotes the sewing of 
 : �2 → E ;

we refer to Sect. 2.1 for more details on the sewing map. Similarly, in proofs based
on a Banach fixed point argument, I will denote the map whose constractivity must be
established.

• As a rule of thumb, we will use Ci , i ∈ N for the constants appearing in the main
statements and κi for those only appearing inside the proofs; the numbering restarts at
each statement and is only meant to distinguish the dependence of the constants from
relevant parameters.

2 The Nonlinear Young Integral

This section is devoted to the construction of nonlinear Young integrals and nonlinear Young
calculus more in general, as a preliminary step to the study of nonlinear Young differential
equations which will be developed in the next section. We follow the modern rough path
approach to abstract integration, based on the sewing lemma as developed in [24] and [17],
which is recalled first.

2.1 Preliminaries

This subsections contains an exposition of the sewing lemma and the definition of the joint
space-time Hölder continous drifts A we will work with; the reader already acquainted with
this concepts may skip it.

Given a finite interval [0, T ], consider the n-simplex�n := {(t1, . . . , tn) : 0 ≤ t1 ≤ . . . ≤
tn ≤ T }. Let V be a Banach space, for any 
 : �2 → V we define δ
 : �3 → V by

δ
s,u,t := 
s,t − 
s,u − 
u,t .

We say that 
 ∈ Cα,β
2 ([0, T ]; V ) = Cα,β

2 V if 
t,t = 0 for all t ∈ [0, T ] and ‖
‖α,β < ∞,
where

‖
‖α := sup
s<t

‖
s,t‖V
|t − s|α , ‖δ 
‖β := sup

s<u<t

∥∥δ 
s,u,t
∥∥
V

|t − s|β , ‖
‖α,β := ‖
‖α + ‖δ 
‖β .

For a map f : [0, T ] → V , we still denote by fs,t the increment ft − fs .
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Lemma 2.1 (Sewing lemma) Let α, β be such that 0 < α < 1 < β. For any 
 ∈ Cα,β
2 V

there exists a unique map J (
) ∈ Cα
t V such that J (
)0 = 0 and

‖J (
)s,t − 
s,t‖V ≤ C1 ‖δ
‖β |t − s|β (2.1)

where the constant C1 can be taken as C1 = (1 − 2β−1)−1. Thus the sewing map J :
Cα,β
2 V → Cα

t V is linear and bounded and there exists C2 = C2(α, β, T ) such that

‖J (
)‖α ≤ C2‖
‖α,β . (2.2)

For a given 
, J (
) is characterized as the unique limit of Riemann-Stjeltes sums: for any
t > 0

J (
)t = lim|�|→0

∑
i


ti ,ti+1 .

The notation above means that for any sequence of partitions �n = {0 = t0 < t1 < . . . <

tkn = t} with mesh |�n | = supi=1,...,kn |ti − ti−1| → 0 as n →∞, it holds

J (
)t = lim
n→∞

kn−1∑
i=0


ti ,ti+1 .

For a proof, see Lemma 4.2 from [18].

Remark 2.2 Let us stress two important aspects of the above result. The first one is that all
the estimates do not depend on the Banach space V considered; the second one is that, even
when the map J (
) is already known to exist, property (2.1) still gives non trivial estimates
on its behaviour. In particular, if f ∈ Cα

t V is a function such that ‖
s,t − fs,t‖V ≤ κ|t − s|α
for an unknown constant κ , then by the sewing lemma we can deduce that f = J (
) and
that κ can be taken as C1 ‖δ
‖β .

Next we need to introduce suitable classes of Hölder continuous maps on Banach spaces.

Definition 2.3 Let V ,W Banach spaces, f ∈ C(V ;W ), β ∈ (0, 1). We say that f is locally
β-Hölder continuous and write f ∈ Cβ

V ,W ,loc if for any R > 0 the following quantities are
finite:

� f �β,R := sup
x 	= y ∈ V

‖x‖V , ‖y‖V ≤ R

‖ f (x) − f (y)‖W
‖x − y‖β

V

, ‖ f ‖β,R := � f �β,R + sup
x ∈ V

‖x‖V ≤ R

‖ f (x)‖V .

For λ ∈ (0, 1], we define the space Cβ,λ
V ,W as the collection of all f ∈ C(V ;W ) such that

� f �β,λ := sup
R≥1

R−λ� f �β,R, ‖ f ‖β,λ := � f �β,λ + ‖ f (0)‖V < ∞.

Finally, the classical Hölder space Cβ
V ,W is defined as the collection of all f ∈ C(V ;W )

such that

� f �β := sup
x 	= y ∈ V

‖ f (x) − f (y)‖W
‖x − y‖β

V

, ‖ f ‖β = � f �β + sup
x∈V

‖ f (x)‖V < ∞.

Remark 2.4 We ask the reader to keep inmind that although linked, � f �β,R and � f �β,λ denote
two different quantities. Throughout the paper R will always denote the radius of an open ball
in V and consequently all related seminorms are localised on such ball; instead the parameter
λ measures the polynomial growth of �·�β,R as a function of R.
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Cβ
V ,W ,loc is a Fréchet space with the topology induced by the seminorms {‖ f ‖β,R}R≥0,

while Cβ,λ
V ,W and Cβ

V ,W are Banach spaces. Observe that if f ∈ Cβ,λ
V ,W , we have an upper

bound on its growth at infinity, since for any x ∈ V with ‖x‖V ≥ 1 it holds

‖ f (x)‖V ≤ ‖ f (x) − f (0)‖V + ‖ f (0)‖V ≤ ‖x‖β
V � f �β,‖x‖V + ‖ f (0)‖V ≤ ‖ f ‖β,λ(1+ ‖x‖β+λ

V ).

In particular, if β + λ ≤ 1, then f has at most linear growth.

We can now introduce fields A : [0, T ] × V → W satisfying a joint space-time Hölder
continuity. We adopt the incremental notation As,t (x) := A(t, x) − A(s, x), as well as
At (x) = A(t, x); fromnowon,whenever A appears, it is implicitly assumed that A(0, x) = 0
for all x ∈ V .

Definition 2.5 Given A as above, α, β ∈ (0, 1), we say that A ∈ Cα
t C

β
V ,W ,loc if for any R ≥ 0

it holds

�A�α,β := sup
0≤s<t≤T

�As,t �β,R

|t − s|α , ‖A‖α,β := sup
0≤s<t≤T

‖As,t‖β,R

|t − s|α < ∞.

We say that A ∈ Cα
t C

β,λ
V ,W if

�A�α,β,λ := sup
0≤s<t≤T

�As,t �β,λ

|t − s|α , ‖A‖α,β,λ := sup
0≤s<t≤T

‖As,t‖β,λ

|t − s|α ;

analogue definitions hold for Cα
t C

β
V ,W , �·�α,β , ‖ · ‖α,β .

The definition can be extended to the cases α = 0 or β = 0 by interpreting the norm in
the supremum sense: for instance A ∈ C0

t C
β
V ,W if

‖A‖0,β = sup
t∈[0,T ]

‖At‖β < ∞.

Given a smooth F : V → W , we regard its Frechét differential DkF of order k as a map
from V to Lk(V ;W ), the set of bounded k-linear forms from V k to W .

Definition 2.6 We say that A ∈ Cα
t C

n+β
V ,W if A ∈ Cα

t C
β
V ,W and it is k-times Frechét differ-

entiable in x , with Dk A ∈ Cα
t C

β

V ,Lk (V ;W )
for all k ≤ n. Cα

t C
n+β
V ,W is a Banach space with

norm

‖A‖α,n+β =
n∑

k=0

‖Dk A‖α,β .

Analogue definitions hold for Cα
t C

n+β
V ,W ,loc and C

α
t C

n+β,λ
V ,W .

2.2 Construction and First Properties

Weare now ready to construct nonlinearYoung integrals, following the line of proof from [28,
30]; other constructions are possible, see “Appendix A.2”.
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Theorem 2.7 Let α, β, γ ∈ (0, 1) such that α + βγ > 1, A ∈ Cα
t C

β
V ,W ,loc and x ∈ Cγ

t V .
Then for any [s, t] ⊂ [0, T ] and for any sequence of partitions of [s, t] with infinitesimal
mesh, the following limit exists and is independent of the chosen sequence of partitions:

∫ t

s
A(du, xu) := lim

|�| → 0

∑
i

Ati ,tt+1(xti ).

The limit is usually referred as a nonlinear Young integral. Furthermore:

1. For all (s, r , t) ∈ �3 it holds
∫ r
s A(du, xu) +

∫ t
r A(du, xu) =

∫ t
s A(du, xu).

2. If ∂t A exists continuous, then
∫ t
s A(du, xu) =

∫ t
s ∂t A(u, xu)du.

3. There exists a constant C1 = C1(α, β, γ ) such that
∥∥∥∥
∫ t

s
A(du, xu) − As,t (xs)

∥∥∥∥
W
≤ C1|t − s|α+βγ �A�α,β,‖x‖∞�x�βγ . (2.3)

4. Themap (A, x) �→ ∫ ·
0 A(du, xu) is continuous as a function fromCα

t C
β
V ,W ,loc×Cγ

t V →
Cα
t W . More precisely, it is a linear map in A and there exists C2 = C2(α, β, γ, T ) such

that ∥∥∥∥
∫ ·

0
A1(du, xu) −

∫ ·

0
A2(du, xu)

∥∥∥∥
α

≤ C2‖A1 − A2‖α,β,‖x‖∞(1+ �x�γ ); (2.4)

it is locally δ-Hölder continuous in x for any δ ∈ (0, 1) such that δ < (α + βγ − 1)/γ
and there exists C3 = C3(α, β, γ, δ, T ) such that, for any R ≥ ‖x‖∞ ∨ ‖y‖∞, it holds∥∥∥∥

∫ ·

0
A(du, xu) −

∫ ·

0
A(du, yu)

∥∥∥∥
α

≤ C3‖A‖α,β,R(1+ ‖x‖γ + ‖y‖γ )�x − y�δγ .(2.5)

Proof In order to show convergence of the Riemann sums, it is enough to apply the sewing
lemma to the choice 
s,t := As,t (xs) = A(t, xs)− A(s, xs). Indeed we have

‖
‖α = sup
s<t

‖As,t (xs)‖W
|t − s|α ≤ sup

s<t

‖As,t‖0,‖x‖∞
|t − s|α ≤ ‖A‖α,0,‖x‖∞

and

‖δ
s,u,t‖W = ‖Au,t (xs) − Au,t (xu)‖W ≤ �Au,t �β,‖x‖∞‖xu,s‖β
V

≤ |t − u|α|u − s|βγ �A�α,β,‖x‖∞�x�βγ

which implies ‖δ
‖α+βγ ≤ �A�α,β,‖x‖∞�x�
β
γ . In particular 
 ∈ Cα,α+βγ

2 W with α +
βγ > 1, therefore by the sewing lemma we can set

∫ t

0
A(ds, xs) := J (
)t = lim

|�| → 0

∑
i


ti ,tt+1 .

Property 1. then follows from J (
)s,t = J (
)s,r + J (
)r ,t and Property 3. from the
above estimates on ‖δ
‖α+βγ . Similarly estimate (2.4) is obtained by the previous estimates
applied to A = A1− A2. Property 2. follows from the fact that if ∂t A exists continuous, then
necessarily

lim
|�| → 0

∑
i

Ati ,tt+1(xti ) =
∫ t

0
∂t A(u, xu)du.
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It remains to show estimate (2.5). To this end, for fixed x, y ∈ Cγ
t V and R as above, we need

to provide estimates for ‖δ
̃‖1+ε for 
̃s,t := As,t (xs)− As,t (ys) and suitable ε > 0. It holds

|δ
̃s,u,t | ≤ |Au,t (xu) − Au,t (xs)| + |Au,t (yu)− Au,t (ys)| ≤ ‖A‖α,β,R(�x�β
γ + �y�β

γ )|t − s|α+βγ ,

|δ
̃s,u,t | ≤ |Au,t (xu) − Au,t (yu)| + |Au,t (xs)− Au,t (ys)| � ‖A‖α,β,R‖x − y‖β
0 |t − s|α

which interpolated together give

‖δ
‖(1−θ)(α+βγ )+θα � ‖A‖α,β,R(1+ �x�γ + �y�γ )‖x − y‖βθ
0

for any θ ∈ (0, 1) such that (1− θ)(α + βγ ) + θα = 1+ ε > 1, namely such that

βθ <
α + βγ − 1

γ
.

The sewing lemma then implies that∥∥∥∥
∫ t

s
A(dr , xr ) −

∫ t

s
A(dr , yr )

∥∥∥∥
W

�θ

∥∥∥∥
∫ t

s
A(dr , xr ) −

∫ t

s
A(dr , yr ) − 
̃s,t

∥∥∥∥
W
+ ‖
̃s,t‖W

� ‖δ
̃‖1+ε|t − s|1+ε + ‖A‖α,β,R |t − s|α‖x − y‖β
0

�θ,T |t − s|α‖A‖α,β,R(1+ ‖x‖γ + ‖y‖γ )‖x − y‖βθ
0 .

Dividing by |t − s|α and taking the supremum we obtain (2.5). �
Remark 2.8 Several other variants of the nonlinear Young integral can be constructed. For
instance, for A and x as above, we can also define∫ ·

0
A(s, dxs) ∈ Cβγ

t W

as the sewing of 
s,t := As(xt ) − As(xs). Another possibility are integrals of the form
∫ ·

0
ys A(ds, xs)

for y ∈ Cδ
t R such that α + δ > 1 and A, x as above. This can be either interpreted as

a more classical Young integral of the form
∫ ·
0 ytd

(∫ t
0 A(ds, xs)

)
= J (
) for 
s,t =

ys
∫ t
s A(dr , xr ), or as the sewing of 
̃s,t = ys As,t (xs);it is immediate to check equivalence

of the two definitions. This case can be further extended to consider a bilinear map G :
W ×U → Z , where U and Z are other Banach spaces, so that∫ ·

0
G(ys, A(ds, xs)) ∈ Cα

t Z

is well defined for y ∈ Cδ
t U , A and x as above, as the sewing of 
s,t = G(ys, As,t (xs)) ∈

Cα,α+δ
2 Z , since

‖
s,t‖ ≤ |t − s|α‖G‖‖y‖∞‖A‖α,β,

‖δ
s,u,t‖ � |t − s|α+δ‖G‖‖y‖δ‖A‖α,β(1+ �x�γ ).

Nonlinear Young integrals are a generalisation of classical ones, as the next example
shows.
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Example 2.9 Let f ∈ Cβ(Rd ;Rd×m) and y ∈ Cα
t R

m , then A(t, x) := f (x)yt is an element

of Cα
t C

β

Rd , since

|As,t (x) − As,t (y)| = |[ f (x) − f (y)]ys,t | ≤ | f (x) − f (y)||ys,t | ≤ � f �β�y�α |t − s|α |x − y|β .

In particular, for any x ∈ Cγ
t R

d with α + βγ > 1, we can consider
∫ ·
0 A(ds, xs); this

corresponds to the classical Young integral
∫ ·
0 f (xs)dys , since both are defined as sewings

of

As,t (xs) = f (xs)yt − f (xs)ys = f (xs)ys,t .

The previous example generalizes an infinite sum of Young integrals, i.e. considering
sequences f n ∈ Cβ(Rd ;Rd), yn ∈ Cα

t ([0, T ];R) such that (possibly locally)
∑
n

‖ f n‖β‖yn‖α < ∞.

In this casewecandefine A(t, x) := ∑
n f n(x)ynt ,which satisfies‖A‖α,β ≤ ∑

n ‖ f n‖β‖yn‖α

and for any x ∈ Cδ
t R

d it holds
∫ ·

0
A(ds, xs) =

∑
n

∫ ·

0
f n(xs)dy

n
s .

Remark 2.10 In the classical setting (let us take d = 1 for simplicity), if f : [0, T ]×R → R

satisfies

| f (t, z1) − f (s, z2)| ≤ C(|t − s|βγ + |z1 − z2|β), (2.6)

x ∈ Cγ
t and y ∈ Cα

t with α + βγ > 1, then one can define the Young integral∫ ·
0 f (s, xs)dys . However,

∫ ·
0 f (s, xs)dys does not coincide with

∫
A(ds, xs) for the choice

A(t, x) := f (t, x)yt .
This is partially because the domain of definition of the two integrals is different, since

condition (2.6) (which is locally equivalent to f ∈ Cβγ
t C0

x ∩C0
t C

β
x ) is not enough to ensure

that A ∈ Cα
t C

β
x ; however, if we additionally assume f ∈ Cα

t C
β
x , then so does A, and the

relation between the two integrals is given by
∫ t

0
A(ds, xs) =

∫ t

0
f (s, xs)dys +

∫ t

0
ys f (ds, xs). (2.7)

To derive (2.7), define 
A
s,t = As,t (xs); then


A
s,t = f (t, xs)yt − f (s, xs)ys = f (s, xs)ys,t + ys fs,t (xs) + Rs,t =: 
y

s,t + 

f
s,t + Rs,t

where |Rs,t | = | fs,t (xt )− fs,t (xs)| � |t− s|α+βγ . This implies J (
A) = J (
y)+J (
 f ),
namely (2.7).

2.3 Nonlinear Young Calculus

Theorem 2.7 establishes continuity of the map (A, x) �→ ∫ ·
0 A(ds, xs); if A is sufficiently

regular, then we can even establish its differentiability.
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Proposition 2.11 Let α, β, γ ∈ (0, 1) such that α + βγ > 1, A ∈ Cα
t C

1+β
V ,W ,loc. Then the

nonlinear Young integral, seen as a map F : Cγ
t V → Cα

t W , F(x) = ∫ ·
0 A(ds, xs), is Frechét

differentiable with

DF(x) : y �→
∫ ·

0
DA(ds, xs)ys . (2.8)

Proof For notational simplicity we will assume A ∈ Cα
t C

1+β
V ,W . It is enough to show that, for

any x, y ∈ Cγ
t V , the Gateaux derivative of F at x in the direction y is given by the expression

above, i.e.

lim
ε→0

F(x + εy) − F(x)

ε
=

∫ ·

0
DA(ds, xs)ys (2.9)

where the limit is in the Cα
t W -topology. Indeed, once this is shown, it follows easily from

reasoning as in Theorem 2.7 that the map (x, y) �→ ∫
DA(ds, xs)ys is jointly uniformly

continuous in bounded balls and linear in the second variable; Frechét differentiability then
follows from existence and continuity of the Gateaux differential.

In order to show (2.9), setting for any ε > 0


ε
s,t :=

As,t (xs + εys) − As,t (xs)

ε
− DAs,t (xs)ys,

it suffices to show thatJ (
ε) → 0 inCα
t W . In particular byLemmaA.2 from the “Appendix”,

we only need to check that ‖
ε‖α → 0 as ε → 0while ‖δ
ε‖α+βγ stays uniformly bounded.
It holds

‖
ε
s,t‖W =

∥∥∥∥
∫ 1

0
[DAs,t (xs + λεys) − DAs,t (xs)]ysdλ

∥∥∥∥
W

≤ εβ‖DAs,t‖β‖ys‖β+1
V ≤ εβ |t − s|α‖A‖α,1+β‖y‖β+1

δ

which implies that ‖
ε‖α � εβ → 0; similar calculations show that

‖
ε
s,u,t‖W =

∥∥∥∥
∫ 1

0
[DAu,t (xs + λεys) − DAu,t (xs)]ysdλ−

∫ 1

0
[DAu,t (xu + λεyu)− DAu,t (xu)]yudλ

∥∥∥∥
W

= ‖ −
∫ 1

0
[DAu,t (xs + λεys)− DAu,t (xs)]ys,udλ

+
∫ 1

0
[DAu,t (xs + λεys) − DAu,t (xs)− DAu,t (xu + λεyu) + DAu,t (xu)]yudλ‖W

� |t − s|α+γ ‖DA‖α,β‖y‖1+β
γ + |t − s|α+βγ ‖DA‖α,β‖y‖γ (�x�β

γ + �y�β
γ )

which implies that ‖δ
‖α+βγ � 1 uniformly in ε > 0. The conclusion the follows. �
Proposition 2.11 allows to give an alternative proof of Lemma 6 from [20].

Corollary 2.12 Let α, β, γ ∈ (0, 1) such that α + βγ > 1, A ∈ Cα
t C

1+β
V ,W ,loc, x

1, x2 ∈ Cγ
t V .

Then ∫ ·

0
A(ds, x1s ) −

∫ ·

0
A(ds, x2s ) =

∫ ·

0
vds(x

1
s − x2s ) (2.10)

with v given by

vt :=
∫ t

0

∫ 1

0
DA(ds, x2s + λ(x1s − x2s ))dλ; (2.11)
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the above formula meaningfully defines an element of Cα
t L(V ,W ) which satisfies

�v�α ≤ C‖DA‖α,β,R(1+ �x1�γ + �x2�γ ) (2.12)

where R ≥ ‖x‖∞ ∨ ‖y‖∞ and C = C(α, β, γ, T ).

Proof It follows from the hypothesis on A that the map

y ∈ V �→
∫ 1

0

[∫ t

0
DA(ds, x2s + λ(x1s − x2s ))y

]
dλ ∈ W (2.13)

is well defined, the outer integral being in the Bochner sense, and it is linear in y; moreover
estimate (2.3) combinedwith the trivial inequality 1+�x2+λ(x1s−x2s )�

β
γ � 1+�x1�γ+�x2�γ ,

valid for any λ, β ∈ [0, 1], yields∥∥∥∥
∫ 1

0

[∫ t

0
DA(ds, x2 + λ(x1s − x2s ))y

]
dλ

∥∥∥∥
W

� ‖DA‖α,β,R(1+ �x1�γ + �x2�γ )‖y‖V .

In particular, if we define vt as the linear map appearing (2.13), it is easy to check that
similar estimates yield v ∈ Cα

t L(V ,W ). The fact that this definition coincide with the one
from (2.11), i.e. that we can exchange integration in dλ and in “ds”, follows from the Fubini
theorem for the sewing map, see Lemma A.1 in the “Appendix”. Inequality (2.12) then
follows from estimates analogue to the ones obtained above. Identity (2.10) is an application
of the more abstract classical identity

F(x1) − F(x2) =
[∫ 1

0
DF(x2 + λ(x1 − x2))dλ

]
(x1 − x2)

applied to F(x) = ∫ ·
0 A(ds, xs), for which the exact expression for DF is given by Proposi-

tion 2.11. �
The following Itô-type formula is taken from [30], Theorem 3.4.

Proposition 2.13 Let F ∈ Cα
t C

β
V ,W ,loc and x ∈ Cγ

t V with α + βγ > 1, then it holds

F(t, xt ) − F(0, x0) =
∫ t

0
F(ds, xs)+

∫ t

0
F(s, dxs); (2.14)

if in addition F ∈ C0
t C

1+β ′
V ,W ,loc with β ′ ∈ (0, 1) s.t. γ (1+ β ′) > 1, then

F(t, xt ) − F(0, x0) =
∫ t

0
F(ds, xs) +

∫ t

0
DF(s, xs)(dxs). (2.15)

In particular, if x = ∫ ·
0 A(ds, ys) for some A ∈ Cγ

t C
δ
V , y ∈ Cη

t V with γ+ηδ > 1, then (2.15)
becomes

F(t, xt ) − F(0, x0) =
∫ t

0
F(ds, xs) +

∫ t

0
DF(s, xs)(A(ds, ys)). (2.16)

Proof Let 0 = t0 < t1 < · · · < tn = t , then it holds

F(t, xt ) − F(0, x0) =
∑
i

[F(ti+1, xti+1 ) − F(ti , xti )]

=
∑
i

Fti ,ti+1 (xti ) +
∑
i

[Fti (xti+1 ) − Fti (xti )] +
∑
i

Rti ,ti+1 =: I n1 + I n2 + I n3
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where Rti ,ti+1 = Fti ,ti+1(xti+1)−Fti ,ti+1(xti ) satisfies‖Rti ,ti+1‖ ≤ ‖F‖α,β,‖x‖∞�x�
β
γ |ti+1−

ti |α+βγ , while I n1 and I n2 are Riemann-Stjeltes sums associated to 
1
s,t = Fs,t (xs) and


2
s,t = Fs(xt ) − Fs(xs). Taking a sequence of partitions �n with |�n | → 0, by the above

estimate we have I n3 → 0 and by the sewing lemma we obtain

F(t, xt ) − F(0, x0) = J (
1)t + J (
2)t ,

which is exactly (2.14). If F ∈ C0
t C

1+β ′
V ,W ,loc, then setting 
3

s,t := DF(s, xs)(xs,t ), it holds

‖
2
s,t − 
3

s,t‖V = ‖F(s, xt ) − F(s, xs)− DF(s, xs)(xs,t )‖V
=

∥∥∥∥
∫ 1

0
[DF(s, xs + λxs,t ) − DF(s, xs)](xs,t )dλ

∥∥∥∥
V

� ‖DF(s, ·)‖β ′,‖x‖∞‖xs,t‖1+β ′ � ‖F‖0,1+β ′,‖x‖∞�x�β
′

γ |t − s|γ (1+β ′)

which under the assumption γ (1+ β ′) > 1 implies by the sewing lemma that J (
2) =
J (
3) and thus (2.15). The proof of (2.16) is analogue, only this time consider 
4

s,t :=
DF(s, xs)(As,t (ys)), then it’s easy to check that ‖
3

s,t −
4
s,t‖V � |t− s|γ+ηδ which implies

that J (
3) = J (
4). �
Remark 2.14 The above formulas admit further variants. For instance for any F ∈ Cα

t C
β
V ,W ,

x ∈ Cγ
t V and g ∈ Cδ

t R with α + βγ > 1, α + δ > 1 and βγ + δ > 1 it holds
∫ t

0
gsd[F(s, xs)] =

∫ t

0
gs F(ds, xs) +

∫ t

0
gs F(s, dxs)

and we have the product rule formula

gt F(t, xt ) − g0F(0, x0) =
∫ t

0
F(s, xs)dgs +

∫ t

0
gs F(ds, xs) +

∫ t

0
gs F(s, dxs).

Also observe that, whenever ∂t F exists continuous, it holds∫ t

0
gs F(ds, xs) =

∫ t

0
gs∂t F(s, xs)ds ∀ g ∈ Cδ

t R.

3 Existence, Uniqueness, Numerical Schemes

This section is devoted to the study of nonlinear Young differential equations (YDE for short),
defined below; it provides sufficient conditions for existence and uniqueness of solutions, as
well as convergence of numerical schemes.

Definition 3.1 Let A ∈ Cα
t C

β
V ,loc, x0 ∈ V . We say that x is a solution to the YDE associated

to (xs, A) on an interval [s, t] ⊂ [0, T ] if x ∈ Cγ ([s, t]; V ) for some γ such that α+βγ > 1
and it satisfies

xr = xs +
∫ r

s
A(du, xu) ∀ r ∈ [s, t]. (3.1)

Before proceeding further, let us point out that by Example 2.9 any Young differential
equation

xt = x0 +
∫

f (xs)dys
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can be reinterpreted as a nonlinear YDE associated to A := f ⊗ y. Nonlinear YDEs there-
fore are a natural extension of the standard ones; most results regarding their existence and
uniqueness which will be presented are perfect analogues (in terms of regularity require-
ments) to the well known classical ones (which can be found for instance in [33] or Section 8
of [18]).

Throughout this section, for x : [0, T ] → V and I ⊂ [0, T ], we set

�x�γ ;I := sup
s, t ∈ I
s 	= t

‖xs,t‖V
|t − s|γ

as well as �x�γ ;s,t in the case I = [s, t]; similarly for ‖x‖∞;I and ‖x‖γ ;I . For any � > 0
we also define

�x�γ,�,V = �x�γ,� := sup
s, t ∈ [0, T ]

|s − t | ∈ (0, �]

‖xs,t‖V
|t − s|γ .

3.1 Existence

We provide here sufficient conditions for the existence of either local or global solutions to
the YDE, under suitable compactness assumptions on A. The proof is based on an Euler
scheme for the YDE, in the style of those from [14,33]; its rate of convergence will be
studied later on. Other proofs, based on a priori estimates and compactness techniques or an
application of Leray–Schauder–Tychonoff fixed point theorem, are possible, see [9,30].

Theorem 3.2 Let A ∈ Cα
t C

β
V ,W where W is compactly embedded in V and α(1 + β) > 1.

Then for any s > 0 and xs ∈ V there exists a solution to the YDE

xt = xs +
∫ t

s
A(ds, xs) ∀ t ∈ [s, T ]. (3.2)

Proof The proof is based on the application of an Euler scheme. Up to rescaling and shifting,
we can assume for simplicity T = 1 and s = 0.

Fix N ∈ N, set tnk = k/n for k ∈ {0, . . . , n} and define recursively (xnk )nk=1 by xn0 = x0
and

xnk+1 = xnk + Atnk ,tnk+1
(xnk ).

We can embed (xnk )nk=1 into C
0
t V by setting

xnt := x0 +
∑

0≤k≤�nt�
Atnk ,t∧tn+1

k
(xnk );

note that by construction xn − x0 is a path in Cα
t W . Using the identity

As,t (x
n
s ) =

∫ t

s
A(dr , xnr ) +

∫ t

s
[A(dr , xns ) − A(dr , xnr )]

we deduce that xn satisfies a YDE of the form

xnt = x0 +
∫ t

0
A(ds, xns ) + ψn

t (3.3)
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where

ψn
t =

∑
0≤k≤n

ψ
n,k
t =

∑
0≤k≤n

∫ (t∧tnk+1)∨tnk
tnk

[A(dr , xntnk
) − A(dr , xnr )].

By the properties of Young integrals, ψn satisfies

‖ψn
tnk ,tnk+1

‖W =
∥∥∥∥∥
∫ tnk+1

tnk

[A(dr , xntnk
) − A(dr , xnr )]

∥∥∥∥∥
W

� n−α(1+β)‖A‖α,β�xn�βα,1/n,V .(3.4)

We first want to obtain a bound for �ψn�γ,�,W ; we can assume wlog � > 1/n, since we
want to take n →∞. Estimates depend on whether s and t lie on the same interval [tnk , tnk+1]
or not; assume first this is the case, then

‖ψn
s,t‖W =

∥∥∥∥
∫ t

s
[A(dr , xntnk

) − A(dr , xnr )]
∥∥∥∥
W

� ‖As,t (x
n
tnk

) − As,t (x
n
s )‖W + |t − s|α(1+β)‖A‖α,β�xn�βα,�,V

� n−αβ |t − s|α‖A‖α,β�xn�βα,�,V .

Next, given s < t such that |t − s| < � which are not in the same interval, there are
around n|t − s| intervals separating them, i.e. there exist l < m such that m − l ∼ n|t − s|
and s ≤ tnl < · · · < tnm ≤ t . Therefore in this case we have

‖ψn
s,t‖W ≤ ‖ψn

s,tnl
‖W +

m−1∑
k=l

‖ψn
tnk ,tnk+1

‖W + ‖ψn
tnm ,t‖W

� ‖A‖α,β�xn�βα,�,V [|t − s|αn−αβ + (m − l)n−α(1+β)]
� ‖A‖α,β�xn�βα,�,V [|t − s|αn−αβ + |t − s|n1−α(1+β)]
� ‖A‖α,β�xn�βα,�,V |t − s|αn1−α(1+β)

where in the second line we used both (3.4) and the previous bound forψn
s,tnl

andψn
tnm ,t , while

in the last one the fact that −αβ ≤ 1− α(1+ β). Overall we conclude that

�ψn�α,�,W ≤ κ1n
1−α(1+β)‖A‖α,β�xn�βα,�,V (3.5)

for a suitable constant κ1 = κ1(α, β) independent of � and n.
Our next goal is a uniform bound for �xn�α,�,W . Since xn solves (3.3), it holds

‖xns,t‖W � ‖As,t (x
n
s )‖W + |t − s|α(1+β)‖A‖α,β�xn�βα,�,W + ‖ψn

s,t‖W
� |t − s|α‖A‖α,β + |t − s|α�αβ‖A‖α,β�xn�βα,�,W + |t − s|α�ψn�α,�,W

� |t − s|α‖A‖α,β + |t − s|α‖A‖α,β�xn�βα,�,W (�αβ + n1−α(1+β))

and so dividing by |t − s| and taking the supremum over all |t − s| < �, choosing � such
that �αβ‖A‖α,β ≤ 1/4, then for all n big enough such that n1−α(1+β)‖A‖α,β ≤ 1/4 it holds

�xn�α,�,W � ‖A‖α,β + 1

2
�xn�βα,�,W � ‖A‖α,β + 1

2
+ 1

2
�xn�α,�,W

by the trivial bound aβ ≤ 1+ a, which holds for all β ∈ [0, 1] and a ≥ 0. This implies the
uniform bound �xn�α,�,W � 1+ ‖A‖α,β for all n big enough.
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The subspace {y ∈ Cα([0, 1];W ) : y0 = 0} is aBanach space endowedwith the seminorm
�y�α,�,W , which in this case is equivalent to the norm ‖y‖α,W ; {xn − x0}n∈N is a uniformly
bounded sequence in this space. By Ascoli–Arzelà, sinceW compactly embeds in V , we can
extract a subsequence (not relabelled for simplicity) such that xn − x0 → x − x0 in C

α−ε
t V

for any ε > 0, for some x ∈ Cα
t V such that x(0) = x0. Observe that ψn satisfy (3.5) and

�xn�βα,�,V are uniformly bounded, therefore ψn → 0 in Cα
t W as n →∞; choosing ε small

enough s.t. α + β(α − ε) > 1, by continuity of the non-linear Young integral it holds∫ ·

0
A(ds, xns ) →

∫ ·

0
A(ds, xs) in Cα

t W

and therefore passing to the limit in (3.3) we obtain the conclusion. �
Remark 3.3 If V is finite dimensional, the compactness condition is trivially satisfied by
taking V = W . The proof also works for non uniform partitions �n of [0, T ], under the
condition that their mesh |�n | → 0 and that there exists c > 0 such that |tni+1− tni | ≥ c|�n |
for all n ∈ N, i ∈ {0, . . . , Nn}.
Remark 3.4 The proof provides several estimates, some of which are true even without
the compactness assumption. For instance, by �xn�α,� � 1 + ‖A‖α,β and Exercise 4.24
from [18], choosing � s.t. �αβ‖A‖α,β ∼ 1, we deduce that there exists C1 = C1(α, β, T )

such that

�xn�α ≤ C1

(
1+ ‖A‖1+

1−α
αβ

α,β

)
∀ n ∈ N.

Estimate (3.5) is true for any choice of � > 0, in particular for � = T , which gives a
global bound; combining it with the above one, we deduce that

�ψn�α ≤ C2n
1−α(1+β)

(
1+ ‖A‖

1+αβ
α

α,β

)
∀ n ∈ N

for some C2 = C2(α, β, T ). Also observe that from the assumptions on α and β it always
holds

1+ 1− α

αβ
≤ 2,

1+ αβ

α
≤ 3.

Under the compactness assumption, since xn → x in C0
t V , the solution x obtained also

satisfies

�x�α ≤ lim inf
n→∞ �xn�α ≤ C1

(
1+ ‖A‖1+

1−α
αβ

α,β

)
≤ 2C1(1+ ‖A‖2α,β). (3.6)

Finally observe that by going through the same proof of (3.5), for any T > 0 and α, β, γ

such that α + βγ > 1, there exists C3 = C3(α, β, γ, T ) such that

�ψn�α,�,V ≤ C3n
1−α−βγ ‖A‖α,β�xn�βγ,�,V ∀ n ∈ N. (3.7)

This estimate is rather usefulwhen A enjoys different space-time regularity at different scales,
see the discussion at Sect. 3.4.

Corollary 3.5 Let A ∈ Cα
t C

β
V ,W ,loc where W is compactly embedded in V and α(1+β) > 1.

Then for any s ∈ [0, T ) and any xs ∈ V , there exists τ ∗ ∈ (s, T ] and a solution to the
YDE (3.2) defined on [s, T ∗), with the property that either T ∗ = T or

lim
t↑T ∗ ‖xt‖V = +∞.
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Proof As before it is enough to treat the case s = 0, T = 1. Fix R > 0 and consider AR ∈
Cα
t C

β
V ,W such that AR(t, x) = A(t, x) for any (t, x) with ‖x‖V ≤ 2R and AR(t, x) ≡ 0 for

‖x‖V ≥ 3R; let CR := C(1+ ‖A‖2α,β,3R), where C is the constant appearing in (3.6).
For any x0 ∈ V with ‖x0‖ ≤ R, by Theorem 3.2 there exists a solution x· to the YDE

associated to (x0, AR) on the interval [0, 1]; setting τ1 := inf{t ∈ [0, 1] : ‖xt‖V ≥ 2R},
by (3.6) it holds �x�α;[0,τ1] ≤ CR , and so

2R = ‖xτ1‖V ≤ ‖x0‖V + τα
1 �x�α;[0,τ1] ≤ R + τα

1 CR

which implies

τ1 ≥
(
CR

R

)−α

. (3.8)

In particular, since A = AR on [0, T ] × B2R , we conclude that x· is also a solution to the
YDE associated to (x0, A) on the interval [0, τ1].

We can now iterate this procedure, i.e. set x1 := xτ1 and construct another solution to (3.2),
defined on an interval [τ1, τ2], and so on; by “gluing” these solutions together, we obtain an
increasing sequence {τn} ⊂ [0, 1] and a solution x· defined on [0, T ∗), where T ∗ = limn τn .

Now suppose that T ∗ < T and lim inf t→T ∗ ‖xt‖V < ∞, then we can find a sequence
tn → T ∗ such that ‖xtn‖V ≤ M for some M > 0; but then starting from any of this
xtn we can construct another solution yn defined on [tn, tn + ε], where ε is uniform in n
since ‖xtn‖ ≤ M and ε can be estimated by (3.8) with R replaced by M . By replacing the
solution x· on [tn, T ∗) with yn , choosing n big enough, we can construct a solution defined
on [0, T ∗ + ε/2). Reiterating this procedure we obtain the conclusion. �

3.2 A Priori Estimates

Aclassical way to pass from local to global solutions is to establish suitable a priori estimates,
which are also of fundamental importance for compactness arguments. Throughout this
section, we assume that a solution x to the YDE is already given and focus exclusively on
obtainig bounds on it; for simplicity we work on [0, T ], but all the statements immediately
generalise to [s, T ].

Proposition 3.6 Let α > 1/2, β ∈ (0, 1) such that α(1 + β) > 1, A ∈ Cα
t C

β
V , x0 ∈ V and

x ∈ Cα
t V be a solution to the associated YDE. Then there exists C = C(α,β, T ) such that

�x�α ≤ C(1+ ‖A‖2α,β), ‖x‖α ≤ C(1+ ‖x0‖V + ‖A‖2α,β). (3.9)

Proof Let � ∈ (0, T ] be a parameter to be chosen later. For any s < t such that |s− t | ≤ �,
using the fact that x is a solution, it holds

‖xs,t‖V =
∥∥∥∥
∫ t

s
A(du, xu)

∥∥∥∥
V

≤ ‖As,t (xs)‖V + κ1|t − s|α(1+β)�A�α,β�x�
β
α,�

≤ |t − s|α‖A‖α,β(1+ κ1�
αβ�x�

β
α,�)

≤ |t − s|α‖A‖α,β(1+ κ1�
αβ + κ1�

αβ�x�α,�)

123



Journal of Dynamics and Differential Equations (2023) 35:985–1046 1001

were we used the trivial inequality aβ ≤ 1+a. Dividing both sides by |t − s|α and taking
the supremum over |s − t | ≤ �, we get

�x�α,� ≤ ‖A‖α,β(1+ κ1�
αβ) + κ1�

αβ‖A‖α,β�x�α,�.

Choosing � small enough such that κ1�αβ‖A‖α,β ≤ 1/2, we obtain

�x�α,� ≤ 2‖A‖α,β(1+ κ1�
αβ) � 1+ ‖A‖α,β .

If we can take � = T , we get an estimate for �x�α , which gives the conclusion. If this is not
the case, we can choose � such that in addition κ1�

αβ‖A‖α,β ≥ 1/4 and then as before, by
Exercise 4.24 from [18] it holds �x�α �T �α−1�x�α,�, so that

�x�α � (1+ ‖A‖α,β)�α−1

� (1+ ‖A‖α,β)‖A‖(1−α)/(αβ)
α,β

� 1+ ‖A‖2α,β

where we used the fact that α(1+β) > 1 implies (1−α)/(αβ) < 1. The conclusion follows
by the standard inequality ‖x‖α �T ‖x0‖V + �x�α . �

The assumption of a global bound on A of the form A ∈ Cα
t C

β
V is sometimes too strong

for practical applications. It can be relaxed to suitable growth conditions, as the next result
shows; it is taken from [30], Theorem 3.1 (see also Theorem 2.9 from [9]).

Proposition 3.7 Let A ∈ Cα
t C

β,λ
V with α(1+β) > 1, β+λ ≤ 1. Then there exists a constant

C = C(α, β, T ) such that any solution x on [0, T ] to the YDE associated to (x0, A) satisfies

‖x‖α ≤ C exp

(
‖A‖1+

1−α
αβ

α,β,λ

)
(1+ ‖x0‖V ). (3.10)

Proof Fix an interval [s, t] ⊂ [0, T ], set R = ‖x‖∞;s,t . Since x is a solution, for any
[u, r ] ⊂ [s, t] it holds

‖xu,r‖V � ‖Au,r (xu)‖V + |r − u|α(1+β)�A�α,β,R�x�
β

α;s,t
� ‖Au,r (xu) − Au,r (xs)‖V + |r − u|α‖A‖α,β,λ(1+ ‖xs‖V )

+|r − u|α|t − s|αβ‖A‖α,β,λ(1+ ‖x‖λ
∞;s,t )�x�

β

α;s,t
� |r − u|α‖A‖α,β,λ[1+ ‖xs‖V + |t − s|αβ(1+ ‖x‖λ

∞;s,t )�x�
β

α;s,t ]
which implies, dividing by |r − u|α and taking the supremum, that

�x�α;s,t � ‖A‖α,β,λ(1+ ‖xs‖V ) + |t − s|αβ‖A‖α,β,λ(1+ ‖x‖λ
∞;s,t )�x�

β

α;s,t .

By an application of Young’s inequality, for any a, b ≥ 0 it holds aλbβ ≤ aβ+λ + bβ+λ;
moreover β + λ ≤ 1 so that aβ+λ ≤ 1+ a for any θ ∈ [0, 1], therefore we obtain

�x�α;s,t � ‖A‖α,β,λ(1+ ‖xs‖V ) + |t − s|αβ‖A‖α,β,λ(1+ ‖x‖∞;s,t + �x�α;s,t )
� ‖A‖α,β,λ(1+ ‖xs‖V ) + ‖A‖α,β,λ|t − s|αβ�x�α;s,t

where in the second passage we used the estimate ‖x‖∞;s,t �T ‖xs‖V + �x�α;s,t . Overall
we deduce the existence of a constant κ1 = κ1(α, β, T ) such that

�x�α;s,t ≤ κ1

2
‖A‖α,β,λ(1+ ‖xs‖V ) + κ1

2
‖A‖α,β,λ|t − s|αβ�x�α;s,t .
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Choosing [s, t] such that |t − s| = � satisfies κ1‖A‖α,β,λ�
αβ ≤ 1, we obtain

�x�α;s,t ≤ κ1‖A‖α,β,λ(1+ ‖xs‖V ). (3.11)

If T satisfies κ1‖A‖α,β,λT αβ ≤ 1, thenwe can take� = T , which gives a global estimate and
thus the conclusion. If this is not the case, thenwe can choose� < T s.t. κ1‖A‖α,β,λ�

αβ = 1
and (3.11) implies that

�x�α,� ≤ κ1‖A‖α,β,λ(1+ ‖x‖∞) (3.12)

and thus

�x�α � �α−1�x�α,� � ‖A‖
1−α
αβ

α,β,λ‖A‖α,β,λ(1+ ‖x‖∞).

Therefore

�x�α ≤ κ2‖A‖1+
1−α
αβ

α,β,λ (1+ ‖x‖∞)

where again κ2 = κ2(α, β, T ). In particular, in order to obtain the final estimate, we only
need to focus on ‖x‖∞. Let us consider, for � as above, the intervals In := [(n − 1)�, n�]
and set Jn := 1+ ‖x‖∞;In , with the convention J0 = 1+ ‖x0‖V . Then estimates analogue
to (3.11) yield

Jn ≤ 1+ ‖x(n−1)�‖V + �α�x�α;In
≤ (1+ κ1�

α‖A‖α,β,λ)(1+ ‖x(n−1)�‖V )

≤ (1+ κ1�
α‖A‖α,β,λ)Jn−1

which iteratively implies

Jn ≤ [1+ κ1�
α‖A‖α,β,λ]n J0 ≤ exp(κ1n�α‖A‖α,β,λ)(1+ ‖x0‖V ),

where we used the basic inequality 1 + x ≤ ex . Since [0, T ] is covered by N ∼ T�−1

intervals and we chose �−1 ∼ ‖A‖1/αβ , up to relabelling κ1 into a new constant κ3 we
obtain

1+ ‖x‖∞ = sup
n≤N

Jn ≤ exp

(
κ3‖A‖1+

1−α
αβ

α,β,λ

)
(1+ ‖x0‖V ).

Finally, combining this with the estimate for �x�α above we obtain

�x�α ≤ κ2‖A‖1+
1−α
αβ

α,β,λ exp

(
κ3‖A‖1+

1−α
αβ

α,β,λ

)
(1+ ‖x0‖V )

≤ κ4 exp

(
κ4‖A‖1+

1−α
αβ

α,β,λ

)
(1+ ‖x0‖V )

where we used the inequality xeλx ≤ λ−1e2λx . The conclusion follows. �

Remark 3.8 Since α(1+ β) > 1, it holds 1+ ‖A‖1+(1−α)/(αβ)
α,β,λ � 1+ ‖A‖2α,β,λ and so

‖x‖α ≤ C exp(C‖A‖2α,β,λ)(1+ ‖x0‖V ) (3.13)

up to possibly changing constant C = C(α, β, T ).
The dependence of C on T can be established by a rescaling argument: if x is a solution

on [0, T ] to the YDE associated to (x0, A), then xt = x̃t/T where x̃ is a solution on [0, 1] to
the YDE associated to (x0, Ã), Ã(t, z) = A(T t, z). Therefore one can apply the estimates
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to x̃ , Ã and T = 1 and then write explicitly how ‖x‖α , ‖A‖α,β,λ depend on ‖x̃‖α , ‖ Ã‖α,β,λ.
The same reasoning applies to several other estimates appearing later on, for which the
dependence of C on T is not made explicit.

In classical ODEs, a key role in establishing a priori estimates (as well as uniqueness) is
played by Gronwall’s lemma; the following result can be regarded as a suitable replacement
in the Young setting. One of the main cases of applicability is for A ∈ Cα

t L(V ; V ).

Theorem 3.9 Let α > 1/2, A ∈ Cα
t LipV such that A(t, 0) = 0 for all t ∈ [0, T ] and

h ∈ Cα
t V . Then there exists a constant C = C(α) such that any solution x to the YDE

xt = x0 +
∫ t

0
A(ds, xs) + ht (3.14)

satisfies the a priori bounds

�x�α ≤ C(�A�α,1‖x‖∞ + �h�α); (3.15)

‖x‖∞ ≤ C exp(CT �A�
1/α
α,1 )(‖x0 + h0‖V + T α�h�α); (3.16)

‖x‖α ≤ C exp(CT (1+ �A�2α,1))[‖x0 + h0‖V + (1+ T α)�h�α]. (3.17)

Proof We can assume without loss of generality that T = 1, as the general case follows
by rescaling. It is also clear that, up to changing constant C , inequality (3.17) follows from
combining together (3.15) and (3.16) and using the fact that �A�

1/α
α,1 � 1 + �A�2α,1 since

α > 1/2. Up to renaming x0, we can also assume h0 = 0. The proof is similar to that of
Proposition 3.7, but we provide it for the sake of completeness.

Let � > 0 to be chosen later, s < t such that |t − s| ≤ �, then by (3.14) it holds

‖xs,t‖V ≤
∥∥∥∥
∫ t

s
A(du, xu)

∥∥∥∥
V
+ ‖hs,t‖V

≤ ‖As,t (xs)‖V + κ1|t − s|2α�A�α,1�x�α,� + |t − s|α�h�α

≤ |t − s|α(�A�α,1‖x‖∞ + �h�α + κ1�
α�A�α,1�x�α,�)

and so dividing both sides by |t− s|α , taking the supremum over s, t and choosing� such
that κ1�α�A�α,1 ≤ 1/2 we obtain

�x�α,� ≤ 2(�A�α,1‖x‖∞ + �h�α). (3.18)

As usual, if κ1�A�α,1 ≤ 1/2, then the conclusion follows from (3.18) with the choice � = 1
and the trivial estimate ‖x‖∞ ≤ ‖x0‖V + �x�α . Suppose instead the opposite, choose � < 1
such that κ1�

α�A�α,1 = 1/2; define In = [(n − 1)�, n�], Jn = ‖x‖∞;In , then estimates
similar to the ones done above show that

Jn+1 ≤ ‖xn�‖V + �α �x�α;In
≤ ‖xn�‖V (1+ 2�α�A�α,1) + 2�h�α

� Jn + �h�α

which implies recursively that for a suitable constant κ2 it holds Jn � eκ2n(‖x0‖V +�h�α).
Since n ∼ �−1 ∼ �A�

1/α
α,1 we deduce that

‖x‖∞ = sup
n

Jn � exp(κ3�A�
1/α
α,1 )(‖x0‖V + �h�α)
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which gives (3.16); combined with �−α ∼ �A�α,1, estimate (3.18) and the basic inequality

�x�α � �−α‖x‖∞ + �x�α,�

it also yields estimate (3.15). �
Another way to establish that solutions don’t blow-up in finite time is to the show that the

YDE admits (coercive) invariants. The next lemma gives simple conditions to establish their
existence.

Lemma 3.10 Let A ∈ Cα
t C

β
V with α(1 + β) > 1, x ∈ Cα

t V be a solution to the YDE
associated to (x0, A) and assume F ∈ C2(V ;R) is such that

DF(z)(As,t (z)) = 0 ∀ z ∈ V , 0 ≤ s ≤ t ≤ T .

Then F is constant along x, i.e. F(xt ) = F(x0) for all t ∈ [0, T ].
Proof It follows immediately from the Itô-type formula (2.16), since it holds

F(xt ) − F(x0) =
∫ t

0
DF(xs)(A(ds, xs)) = J (
)

for the choice 
s,t = DF(xs)(As,t (xs)) ≡ 0 by hypothesis. �
Remark 3.11 If V is an Hilbert space with ‖z‖2V = 〈z, z〉V , then ‖ · ‖V is constant along
solutions of the YDE under the condition 〈z, As,t (z)〉V = 0 for all z ∈ V and s ≤ t . In this
case, blow up cannot occurr, thus under the hypothesis of Corollary 3.5, global existence of
solutions holds. Similarly, if in addition A ∈ Cα

t C
1+β
V ,loc, then by Corollary 3.13 below, global

existence and uniqueness holds.

3.3 Uniqueness

We now turn to sufficient conditions for uniqueness of solutions; some of the results below
also establish existence under different sets of assumptions than those from Sect. 3.1.

Theorem 3.12 Let A ∈ Cα
t C

1+β
V , α(1+ β) > 1. Then for any x0 ∈ V there exists a unique

global solution to the YDE associated to (x0, A).

Proof The proof is based on an application of Banach fixed point theorem. Let M , τ be
positive parameters to be fixed later and set

E := {
x ∈ Cα([0, τ ]; V ) : x(0) = x0, �x�α ≤ M

}
,

which is complete metric space with the metric d(x, y) = �x − y�α; define the map I by

x �→ I(x)· = x0 +
∫ ·

0
A(ds, xs).

We want to show that I is a contraction from E to itself, for suitable choice of M and τ .
It holds

‖I(x)s,t‖V ≤ ‖As,t (xs)‖V + κ1�A�α,1�x�α|t − s|2α
≤ ‖As,t (xs) − As,t (x0)‖V + ‖As,t (x0)‖V + κ1�A�α,1�x�α|t − s|2α
≤ ‖A‖α,1�x�αs

α|t − s|α + ‖A‖α,1|t − s|α + κ1�A�α,1�x�α|t − s|2α
≤ τα(1+ κ1)‖A‖α,1�x�α|t − s|α + ‖A‖α,1|t − s|α.
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Choosing τ and M such that

τα(1+ κ1)‖A‖α,1 ≤ 1

2
, M ≥ 2‖A‖α,1,

for any x ∈ V it holds

‖I(x)‖α ≤ τα‖A‖α,1(1+ κ1)�x�α + ‖A‖α,1 ≤ M/2+ M/2 ≤ M

which shows that I maps E into itself.
By the hypothesis and Corollary 2.12, for any x, y ∈ V it holds

‖I(x)s,t − I(y)s,t‖V =
∥∥∥∥
∫ t

s
vdu(xu − yu)

∥∥∥∥
V

≤ ‖vs,t (xs − ys)‖V + κ1�v�α�x − y�α|t − s|2α
≤ �v�α�x − y�α(sα + κ1|t − s|α)|t − s|α
≤ κ2‖A‖α,1+β(1+ �x�α + �y�α)�x − y�ατα|t − s|α,

which implies

�I(x) − I(y)�α ≤ κ2‖A‖α,1+β(1+ 2M)τα�x − y�α < �x − y�α

as soon as we choose τ such that κ2‖A‖α,1+β(1+ 2M)τα < 1. Therefore in this case I is a
contraction from E to itself; for any x0 ∈ V there exists a unique solution x ∈ Cα([0, τ ]; V )

starting from x0. The same procedure allows to show existence and uniqueness of solutions
x ∈ Cα([s, s + τ ] ∩ [0, T ]; V ) for any s ∈ [0, T ] and any xs ∈ V , where τ does not depend
on (s, xs); by iteration, global existence and uniqueness follows. �
Corollary 3.13 Let A ∈ Cα

t C
1+β
V ,loc, α(1+ β) > 1. Then for any x0 ∈ V there exists a unique

maximal solution x to the YDE associated to (x0, A), defined on [0, T ∗) ⊂ [0, T ], such that
either T ∗ = T or

lim
t→T ∗ ‖xt‖V = +∞.

In particular if A ∈ Cα
t C

β,λ
V ∩Cα

t C
1+β
V ,loc with α(1+β) > 1, β+λ ≤ 1, then global existence

and uniqueness holds.

Proof We only sketch the proof, as it follows from classical ODE arguments and is similar
to that of Corollary 3.5.

By localization, given any s ∈ [0, T ) and any xs ∈ V , there exists τ = τ(s, xs) such
that there exists a unique solution to the YDE associated to (xs, A) on the interval [s, s+ τ ].
Therefore given two solutions xi defined on intervals [s, Ti ]with x1s = x2s , theymust coincide
on [s, T1 ∧ T2]; in particular, any extension procedure of a given solution to a larger interval
is consistent, which allows to define the maximal solution as the maximal extension of any
solution starting from x0 at t = 0.

The blow-up alternative can be established reasoning by contradiction as in Corollary 3.5.
If A ∈ Cα

t C
β,λ
V , then by the a priori estimate (3.10) blow-up cannot occur and so global

well-posedness follows. �
Once existence of solutions is established, their uniqueness can be alternatively shows

by means of a Comparison Principle, which is the analogue of a Gronwall type estimate
for classical ODEs. Such results are of independent interest as they also allow to compare
solutions to different YDEs; they were first introduced in [9] and later revisited in [20].
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Theorem 3.14 Let R, M > 0 fixed. For i = 1, 2, let xi0 ∈ V such that ‖xi0‖V ≤ R, Ai ∈
Cα
t C

β,λ
V with α(1+β) > 1, β +λ ≤ 1 and ‖Ai‖α,β,λ ≤ M, as well as A1 ∈ Cα

t C
1+β,λ
V with

‖A1‖α,1+β,λ ≤ M; let xi be two given solutions associated respectively to (xi0, A
i ). Then it

holds

�x1 − x2�α ≤ C(‖x10 − x20‖V + ‖A1 − A2‖α,β,λ)

for a constant C = C(α, β, T , R, M) increasing in the last two variables.

Proof Let xi be the two given solutions and set et := x1t − x2t , then e satisfies

et = e0 +
∫ t

0
A1(ds, x1s ) −

∫ t

0
A2(ds, x2s )

= e0 +
∫ t

0
A1(ds, x1s ) −

∫ t

0
A1(ds, x2s ) +

∫ t

0
(A1 − A2)(ds, x2s )

= e0 +
∫ t

0
vds(es) + ψt

for the choice

vt :=
∫ t

0

∫ 1

0
DA1(ds, x2s + λ(x1s − x2s ))dλ, ψt :=

∫ t

0
(A1 − A2)(ds, x2s )

where we applied Corollary 2.12. By the same result, combined with estimate (3.13), it holds

�v�α,1 ≤ κ1‖DA1‖α,β,λ(1+ ‖x1‖α + ‖x2‖α)

≤ κ2 exp(κ2(‖A1‖2α,1+β,λ + ‖A2‖2α,β,λ))(1+ R)

≤ κ2 exp(2κ2M
2)(1+ R);

similarly, by Point 4. of Theorem 2.7,

�ψ�α ≤ κ3‖A1 − A2‖α,β,λ(1+ ‖x2‖λ∞)(1+ �x2�α)

≤ κ4‖A1 − A2‖α,β,λ exp(κ4(1+ M2))(1+ R).

Applying Theorem 3.9 to e, we have

�x1 − x2�α ≤ κ5e
κ5�v�2α,1(‖x10 − x20‖V + �ψ�α)

which combined with the previous estimates implies the conclusion. �

Remark 3.15 If A ∈ Cα
t C

1+β
V and we consider solutions xi associated to (xi0, A), going

through the same proof but applying instead estimate (3.9), we obtain

�v�α,1 � ‖DA‖α,β(1+ ‖x1‖α + ‖x2‖α) � 1+ ‖A‖3α,1+β

which combined with (3.17) implies the existence of a constant C = C(α, β, T ) such
that

�x1 − x2�α ≤ C exp(C‖A‖6α,1+β) ‖x10 − x20‖V . (3.19)

As a consequence, the solution map F[A] : x0 �→ x associated to A, seen as a map from V
to Cα

t V , is globally Lipschitz. Similar estimates show that, if {An}n is a sequence such that

An → A in Cα
t C

1+β
V , then F[An] → F[A] uniformly on bounded sets.
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As a corollary, we obtain convergence of the Euler scheme introduced in Sect. 3.1, with
rate 2α − 1. For simplicity we state the result in the case A ∈ Cα

t C
1+β
V , but the same results

follow for A ∈ Cα
t C

1+β,λ
V by the usual localization procedure.

Corollary 3.16 Given A ∈ Cα
t C

1+β
V with α(1 + β) > 1 and x0 ∈ V , denote by xn the

element of Cα
t V constructed by the n-step Euler approximation from Theorem 3.2, and by x

the unique solution associated to (x0, A). Then there exists a constant C = C(α, β, T ) such
that

‖x − xn‖α ≤ C exp(C‖A‖6α,1+β)n1−2α as n →∞.

Proof Recall that by Theorem 3.2, xn satisfies the YDE

xnt = x0 +
∫ t

0
A(ds, xns ) + ψn

t ,

where by Remark 3.4, for the choice β = 1, it holds

�ψn� � (1+ ‖A‖1+1/α
α,1 )n1−2α.

Define en := x − xn , then by Corollary 2.12 it satisfies

ent =
∫ t

0
A(ds, xns ) − A(ds, xs)+ ψn

t =
∫ t

0
vnds(e

n
s ) + ψn

t

where again by Remark 3.4 it holds

�vn�α,1 � ‖A‖α,1+β(1+ �x�α + �xn�α) � 1+ ‖A‖3α,1+β.

Applying Theorem 3.9, we deduce the existence of κ1 = κ1(α, β, T ) such that

‖en‖α ≤ κ1 exp(κ1‖A‖6α,1+β)�ψn�α,

which combined with the estimate for �ψn�α yields the conclusion. �

3.4 The Case of Continuous@tA

In this section we study how the well-posedness theory changes when, in addition to the
regularity condition A ∈ Cα

t C
β
t , we impose ∂t A : [0, T ] × V → V to exist continuous and

uniformly bounded (we assume boundedness for simplicity, but it could be replaced by a
growth condition).

The key point is that, by Point 2. from Theorem 2.7, any solution to the YDE is also a
solution to the classical ODE associated to ∂t A; as such, it is Lipschitz continuous with con-
stant ‖∂t A‖∞. We can exploit this additional time regularity, combined with nonlinear Young
theory, to obtain well-posedness under weaker conditions than those from Theorem 3.12.

While the existence of ∂t A is not a very meaningful requirement for classical YDEs, i.e.
for A(t, x) = f (x)yt , as it would imply that y ∈ C1

t , there are other situations in which it
becomes a natural assumption. One example is for perturbed ODEs ẋ = b(x)+ ẇ, in which
the associated A is the averaged field

A(t, x) =
∫ t

0
b(s, x + ws)ds

for which ∂t A exists continuous as soon as b is continuous field; still classical wellposedness
is not is not guaranteed under the sole continuity of b.
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Theorem 3.17 Let A be such that A ∈ Cα
t C

1+β
V and ∂t A ∈ Cb([0, T ]×V ; V )withα+β > 1.

Then for any x0 ∈ V there exists a unique global solution to the YDE associated to (x0, A).

Proof Similarly toTheorem3.12, the proof is byBanachfixed point theorem. For suitable val-
ues of M, τ > 0 to be fixed later, consider the space E := {x ∈ Lip([0, τ ]; V ) : x(0) = x0,
�x�Lip ≤ M}; it is a complete metric space with the metric d(x, y) = �x − y�γ
(the condition �x�Lip ≤ M is essential for this to be true). Define the map I by

I(x)t = x0 +
∫ t

0
∂t A(s, xs)ds = x0 +

∫ t

0
A(ds, xs)

and observe that under the condition ‖∂t A‖∞ ≤ M it maps E into itself. By the hypothesis
and Corollary 2.12, for any x, y ∈ E it holds

‖I(x)s,t − I(y)s,t‖V =
∥∥∥∥
∫ t

s
vdu(xu − yu)

∥∥∥∥
V

≤ ‖vs,t (xs − ys)‖V + κ1�v�α�x − y�Lip|t − s|2α
≤ �v�α�x − y�α(sα + κ1|t − s|α)|t − s|α
≤ κ2τ

α‖A‖α,1+β(1+ �x�Lip + �y�Lip)�x − y�α|t − s|α

which implies

�I(x) − I(y)�α ≤ κ2τ
α‖A‖α,1+β(1+ 2M)�x − y�α < �x − y�α

as soon as we choose τ small enough such that κ2τ
α‖A‖α,1+β(1 + 2M) < 1. Therefore

I is a contraction on E and for any x0 ∈ V there exists a unique associated solution
x ∈ Cγ ([0, τ ]; V ). Global existence and uniqueness then follows from the usual iterative
argument. �

We can also establish an analogue of Theorem 3.14 in this setting.

Theorem 3.18 Let M > 0 fixed. For i = 1, 2, let Ai ∈ Cα
t C

β
V such that ∂t Ai ∈ C0([0, T ] ×

V ; V ), α+β > 1 and ‖Ai‖α,β+‖∂t A‖∞ ≤ M, as well as A1 ∈ Cα
t C

1+β
V with ‖A1‖α,1+β ≤

M, and xi0 ∈ V ; let xi be two given solutions associated respectively to (xi0, A
i ). Then it

holds

�x1 − x2�α ≤ C(‖x10 − x20‖V + ‖A1 − A2‖α,β)

for a constant C = C(α, β, T , M) increasing in the last variable. A more explicit formula
for C is given by (3.20).

Proof The proof is analogous to that of Theorem 3.14, so we will mostly sketch it; it is based
on an application of Corollary 2.12 and Theorem 3.9.

Given two solutions as above, their difference e = x1 − x2 satisfies the affine YDE

et = e0 +
∫ t

0
vdses + ψt

with

vt =
∫ t

0

∫ 1

0
DA1(ds, x2s + λes)dλ, ψt =

∫ t

0
(A1 − A2)(ds, x2s ).
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We have the estimates

‖v‖α,1 �α,β,T ‖A1‖α,1+β(1+ �x1�Lip + �x2�Lip) � ‖A1‖α,1+β(1+ ‖∂t A1‖∞ + ‖∂t A2‖∞)

‖ψt‖α �α,β,T ‖A1 − A2‖α,β(1+ �x2�Lip) � ‖A1 − A2‖α,β(1+ ‖∂t A2‖∞)

which, combined with Theorem 3.9, yield

‖e‖α ≤ κ1e
κ1(1+‖A1‖2α,1+β )(1+‖∂t A1‖2∞+‖∂t A2‖2∞)

(‖e0‖V + ‖A1 − A2‖α,β(1+ ‖∂t A2‖∞))

≤ κ2e
κ2(1+‖A1‖2α,1+β )(1+‖∂t A1‖2∞+‖∂t A2‖2∞)

(‖e0‖V + ‖A1 − A2‖α,β)

for some κ2 = κ2(α, β, T ). In particular, C can be taken of the form

C(α, β, T , M) = κ3(α, β, T ) exp(κ3(α, β, T )(1+ M4)). (3.20)

�

Corollary 3.19 Given A as in Theorem 3.17, denote by xn the element of Cα
t V constructed

by the n-step Euler approximation from Theorem 3.2 and by x the solution associated to
(x0, A). Then there exists a constant C = C(α, β, T , ‖A‖α,1+β, ‖∂t A‖∞) such that

‖x − xn‖α ≤ Cn−α as n →∞.

A more explicit formula for C is given by (3.21).

Proof By Theorem 3.2, xn satisfies the YDE

xn = x0 +
∫ t

0
A(ds, xns ) + ψn

t = x0 +
∫ t

0
An(ds, xns )

where An(t, z) := A(t, z)+ψn
t and that by estimate (3.7), for the choice� = T , β = γ = 1,

we have

�ψn�α �α,T ‖A‖α,1�x
n�Lipn

−α � ‖A‖α,1‖∂t A‖∞n−α.

Defining en := x − xn , by the basic estimates ‖A − An‖α,β �T �ψn�α and ‖∂t An‖∞ �
‖∂t A‖∞, going through the same proof as in Theorem 3.18 we deduce that

‖en‖α ≤ κ1e
κ1(1+‖A‖2α,1)(1+‖∂t A‖2∞)‖A − An‖α,β

and so finally that, for a suitable constant κ2 = κ2(α, T ), it holds

‖en‖α ≤ κ2 exp(κ2(1+ ‖A‖2α,1)(1+ ‖∂t A‖2∞))n−α. (3.21)

�

3.5 Further Variants

Several other kinds of differential equations involving a nonlinear Young integral term can
be studied. In this section we focus on two cases: nonlinear YDEs involving a classical drift
term and fractional YDEs.
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3.5.1 Mixed Equations

Let us consider now an equation of the form

xt = x0 +
∫ t

0
F(s, xs)ds +

∫ t

0
A(ds, xs). (3.22)

where F : [0, T ] × V → V is continuous function; the first integral is meaningful as a
classical one.

Proposition 3.20 Let A ∈ Cα
t C

1+β
V with α(1+β) > 1, F be bounded and globally Lipschitz,

namely

‖F(t, y)‖V ≤ CF , ‖F(t, y) − F(t, z)‖V ≤ CF‖y − z‖V for all t ∈ [0, T ], y, z ∈ V

for some constant CF > 0. Then global well-posedness holds for (3.22).

Proof For simplicity we will use the notation ‖A‖ = ‖A‖α,1+β ; the proof is analogue to that
of Theorem 3.12. Let M , τ be positive parameters to be fixed later and define as usual

E = {
x ∈ Cα([0, τ ]; V ) : x(0) = x0, �x�α ≤ M

}
.

A path x solves (3.22) if and only if it belongs to E and is a fixed point for the map

x �→ I(x)· = x0 +
∫ ·

0
F(s, xs) +

∫ ·

0
A(ds, xs).

We have the estimates

‖I(x)s,t‖V ≤
∫ t

s
‖F(r , xr )‖V dr + ‖As,t (xs)‖V + κ1|t − s|2α‖A‖�x�α

≤ |t − s|CF + ‖As,t (xs) − As,t (x0)‖V + ‖As,t (x0)‖V + κ1|t − s|2α‖A‖�x�α

≤ |t − s|α[CFτ 1−α + ‖A‖ταM + ‖A‖ + κ1‖A‖ταM],
which imply

�I(x)�α ≤ CFτ 1−α + ‖A‖ + [τ + ‖A‖(1+ κ1)τ
α]M .

In order for I to map E into itself, it suffices to choose τ and M such that

τ ≤ 1, τ + ‖A‖(1+ κ1)τ
α ≤ 1/2, M ≥ 2(CF + ‖A‖).

Next we check contractivity of I; given x, y ∈ E , it holds

‖I(x)s,t − I(y)s,t‖V ≤
∫ t

s
‖F(r , xr ) − F(r , yr )‖V dr +

∥∥∥∥
∫ t

s
vdr (xr − yr )

∥∥∥∥
V

≤ CF |t − s|τα�x − y�α + ‖vs,t (xs − ys)‖V + κ2|t − s|2α�v�α�x − y�α

≤ κ3τ
α[CF + ‖A‖(1+ �x�α + �y�α)]�x − y�α |t − s|α

which implies

�I(x) − I(y)�α ≤ κ3τ
α[CF + ‖A‖(1+ 2M)]

thus choosing τ small enough we deduce contractivity. Therefore existence and uniqueness
of solutions holds on the interval [0, τ ]; as the choice of τ does not depend on x0, we can
iterate the reasoning to cover the whole interval [0, T ]. �
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Theorem 3.21 Let A ∈ Cα
t C

1+β
V ,loc with α(1+β) > 1 and F be a continuous locally Lipschitz

function, in the sense that for any R > 0 there exist a constant CR such that

‖F(t, y) − F(t, z)‖V ≤ CR‖y − z‖V for all t ∈ [0, T ] and y, z ∈ V such that ‖y‖V , ‖z‖V ≤ R.

Then for any x0 ∈ V there exists a unique maximal solution x to (3.22), defined on [0, T ∗) ⊂
[0, T ] such that either T = T ∗ or

lim
t→T ∗ ‖xt‖V = +∞.

If in addition A ∈ Cα
t C

β,λ
V with β + λ ≤ 1 and F has at most linear growth, i.e. there exists

CF > 0 s.t.

‖F(t, z)‖V ≤ CF (1+ ‖z‖V ) ∀ (t, z) ∈ [0, T ] × V ,

then global wellposedness holds. Moreover in this case there exists C = C(α, β, T ) such
that, setting θ = 1+ 1−α

αβ
, any solution to (3.22) satisfies the a priori estimate

‖x‖α ≤ C exp(C(Cθ
F + ‖A‖θ

α,β,λ))(1+ ‖x0‖V ). (3.23)

Proof The first part of the statement, regarding local wellposedness and the blow-up alter-
native, follows from the usual localisation arguments, so we omit its proof.

The proof of a priori estimate (3.23) is analogue to that of Proposition 3.7, so we will
mostly sketch it; as before ‖A‖ = ‖A‖α,β,λ for simplicity. Let x be a solution to (3.22)
defined on [0, T ∗), then for any [r , u] ⊂ [s, t] ⊂ [0, T ∗) it holds∥∥∥∥

∫ r

u
F(a, xa)da

∥∥∥∥
V
≤ CF |r − u| + CF

∫ r

u
‖xa‖da

≤ |r − u|CF (1+ ‖xs‖V ) + |r − u||t − s|αCF �x�α;s,t
� |r − u|αCF [1+ ‖xs‖V + |t − s|�x�α;s,t ].

Together with the estimates from the proof of Proposition 3.7 and the fact that |t − s| �
|t − s|αβ , this implies the existence of κ1 = κ1(α, β, T ) such that any solution x to (3.22)
satisfies

�x�α;s,t ≤ κ1

2
(CF + ‖A‖)(1+ ‖xs‖V ) + κ1

2
(CF + ‖A‖)|t − s|αβ�x�α;s,t .

The rest of the proof is identical, up to replacing ‖A‖ with CF + ‖A‖ in all the passages.
Specifically, if T is such that κ1(CF + ‖A‖)T αβ < 2, then we obtain a global estimate by
choosing s = 0, t = T , which shows that T ∗ = T and gives the conclusion in this case.
Otherwise, taking � < T such that κ1(CF + ‖A‖)�αβ = 1 and defining Jn as before, we
obtain the recurrent estimate

Jn ≤ [1+ κ1�
α(CF + ‖A‖)]Jn−1

and going through the same reasoning the conclusion follows. �

3.5.2 Fractional Young Equations

We restrict in this subsection to the finite dimensional case V = R
d for some d ∈ N; as usual

we work on a finite time interval [0, T ]. We are interested in studying a fractional type of
equation of the form

Dδ
0+xt = A(dt, xt ) ∀ t ∈ [0, T ] (3.24)
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for a suitable parameter δ ∈ (0, 1). Here Dδ
0+ denotes a Riemann–Liouville type of fractional

derivative on [0, T ]; for more details on fractional derivatives and fractional calculus we refer
the reader to [40]. In the case δ = 1, formally Dδxs = dxs and we recover the class of YDEs
studied so far.

In order to study (3.24), it is more convenient to write it in integral form, using the fact
that Dδ

0+ is the inverse operator of the fractional integral I δ
0+ given by

(I δ
0+ f )t = 1


(δ)

∫ δ

0
(t − s)δ−1 fsds

(being interpreted componentwise if f : [0, T ] → R
d ). From now on we will for simplicity

drop the constant 1/
(δ), which can be incorporated in the drift A. We need the following
lemma.

Lemma 3.22 For δ ∈ (0, 1), consider the functional � defined for smooth f by

�[ f ]t := (I δ
0+ ḟ )t =

∫ t

0
(t − s)δ−1 ḟsds.

For any α ∈ (0, 1) such that α + δ > 1 and any ε > 0, � extends uniquely to a continuous
linear map from Cα([0, T ];Rd) to Cα+δ−1−ε([0, T ];Rd); in particular, there exists C =
C(α, δ, ε, T ), which will be denoted by ‖�‖, such that

‖�[ f ]‖α+δ−1−ε ≤ ‖�‖� f �α for all f ∈ Cα([0, T ];Rd). (3.25)

Proof Up tomultiplicative constant,� = I α
0+D. Recall that fractional integrals and fractional

derivatives, on their domain of definition, satisfy the following properties, for α, β, α + β ∈
[0, 1]:
i. I α

0+ ◦ I β
0+ = Iα+β

0+ , I 00+ = Id, similarly for Dα
0+;

ii. I α
0+ ◦ Dα

0+ = Dα
0+ ◦ Iα

0+ = Id, D1
0+ = D.

Let f be a smooth function, then�[ f ] = I δ
0+Df = D1−δ

0+ f ; moreover for any γ < α, we can

write f as f = I γ
0+ f̃ with ‖ f̃ ‖∞ � ‖ f ‖α; choosing γ > 1−δ, we obtain�[ f ] = I γ+δ−1

0+ f̃

and so overall �[ f ] ∈ I γ+δ−1
0+ (L∞t ) ↪→ Cγ+δ−1−ε

t with

‖�[ f ]‖γ+δ−1−ε � ‖I γ+δ−1
0+ f̃ ‖

I γ+δ−1
0+ (L∞t )

� ‖ f̃ ‖∞ � ‖ f ‖α.

The conclusion for general f follows from an approximation procedure. Indeed, since all
inequalities are strict, we can replace α with α − ε and use the fact that functions in Cα

t can
be approximated by smooth functions in the Cα−ε

t -norm.
The fact that in (3.25) only the seminorm � f � appears is a consequence of the fact that by

definition �[1] = 0 and so we can always shift f in such a way that f0 = 0. �

Remark 3.23 Let us point out two properties of the operator �. The first one is that, if f ≡ g
on [0, τ ] with τ ≤ T , the same holds for �[ f ] ≡ �[g]; in particular, since we can always
extend f ∈ Cα([0, τ ];Rd ) to Cα([0, T ];Rd) by setting ft = fτ for all t ≥ τ , we can
consider � as an operator from Cα([0, τ ];Rd ) to Cα+δ−1−ε([0, τ ];Rd). As long as τ ≤ T ,
the operator norm of this restricted functional is still controlled by ‖�‖.
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The second one is that if h ≡ 0 on [0, τ ], then �[h]·+τ = �[h·+τ ]. Indeed for h smooth
it holds

�[h]t+τ =
∫ t+τ

0
(t + τ − s)δ−1ḣsds =

∫ t+τ

τ

(t + τ − s)δ−1ḣsds

=
∫ t

0
(t − s)δ−1ḣs+τds = �[h·+τ ]t .

The general case follows from an approximation procedure.

Thanks to Lemma 3.22 we can give a proper meaning to the fractional YDE.

Definition 3.24 We say that x is a solution to (3.24) if
∫ ·
0 A(ds, xs) is well defined as a

nonlinear Young integral in Cα
t for some α > 1− δ and x satisfies the identity

x· = x0 + �

[∫ ·

0
A(ds, xs)

]
.

Proposition 3.25 Let A ∈ Cα
t C

β
x with α, β ∈ (0, 1) satisfying

α + δ − 1 >
1− α

β
. (3.26)

Then for any x0 ∈ R
d and any γ < α+ δ− 1 there exists a solution x ∈ Cγ

t to (3.24), in the
sense of Definition 3.24.

Proof Due to condition (3.26), we can find γ ∈ (0, 1), ε > 0 sufficiently small satisfying

α + δ − 1 > γ > γ − ε >
1− α

β
.

The existence of a solution is then equivalent to the existence of a fixed point in Cγ
t for the

map

I (x) := x0 + �

[∫ ·

0
A(ds, xs)

]
.

The above conditions imply α + β(γ − ε) > 1, so by Theorem 2.7 the map x �→ A(ds, xs),
from Cγ−ε

t to Cα
t is continuous and satisfies

�∫ ·

0
A(ds, xs)

�

α

� ‖A‖α,β(1+ �x�
β
γ−ε)

which together with estimate (3.25) implies that I is continuous from Cγ−ε
t to Cγ

t with

‖I (x)‖γ ≤ ‖x0‖ + κ1‖�‖‖A‖α,β(1+ �x�
β
γ−ε)

for suitable κ1 = κ1(T , α + β(γ − ε)). It follows by Ascoli-Arzelà that I is compact from
Cγ−ε
t to itself; for any λ ∈ (0, 1), if x solves x = λI (x), then

‖x‖γ−ε ≤ ‖x‖γ = λ‖T (x)‖γ ≤ ‖x0‖ + κ1‖�‖‖A‖α,β(1+ ‖x‖β
γ−ε).

Since β < 1, any such solution x must satisfy (for instance)

‖x‖γ−ε ≤ max
{
2(‖x0‖ + κ1‖�‖‖A‖α,β), (2κ1‖�‖‖A‖α,β)

1
1−β

}

where the estimate is uniform in λ ∈ [0, 1]. We can thus apply Schaefer’s theorem to deduce
the existence of a fixed point for I in Cγ−ε

t , which also belongs to Cγ
t since I (x) does so. �
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Theorem 3.26 Let A ∈ Cα
t C

1+β
x with α, β, δ satisfying (3.26). Then for any x0 ∈ R

d there
exists a unique solution x ∈ Cγ

t to (3.24), for any γ satisfying

α + δ − 1 > γ >
1− α

β
.

Proof Existence is granted by Proposition 3.25, so we only need to check uniqueness. Let x
and y be two solutions, say with ‖x‖α, ‖y‖α ≤ M for suitable M > 0; we are first going to
show that they must coincide on an interval [0, τ ] with τ sufficiently small. It holds

�x − y�γ ;0,τ =
�

�

[∫ ·

0
A(ds, xs) −

∫ ·

0
A(ds, ys)

]�

γ ;0,τ

≤ ‖�‖
�∫ ·

0
A(ds, xs) −

∫ ·

0
A(ds, ys)

�

α;0,τ

= ‖�‖
�∫ ·

0
vds(xs − ys)

�

α;0,τ

where v is given by

vt =
∫ 1

0

∫ t

0
∇A(ds, ys + λ(xs − ys))dλ

and satisfies ‖v‖α;0,T ≤ κ1‖A‖α,1+β(1+ M). Since x0 = y0, for any [s, t] ⊂ [0, τ ] it holds
∥∥∥∥
∫ t

s
vdr (xr − yr )

∥∥∥∥ ≤ ‖vs,t (xs − ys)‖ + κ2|t − s|α+γ ‖v‖α�x − y�γ ;0,τ

≤ |t − s|ατγ (1+ κ2)‖v‖α�x − y�γ ;0,τ ;
combined with the previous estimates we obtain

�x − y�γ ;0,τ ≤ ‖�‖τγ (1+ κ2)‖v‖α�x − y�γ ;0,τ
≤ κ3‖�‖‖A‖α,1+β(1+ M)τ γ �x − y�γ ;0,τ .

Choosing τ small enough such that κ3‖�‖‖A‖α,1+β(1 + M)τ γ < 1, we conclude that
x ≡ y on [0, τ ].

As a consequence,
∫ ·
0 A(ds, xs) =

∫ ·
0 A(ds, ys) on [0, τ ] as well; define vt = xt+τ − yt+τ ,

then applying Remark 3.23 to v we obtain

vt = �

[∫ ·

0
A(ds, xs)− A(ds, ys)

]
t+τ

= �

[∫ ·+τ

τ

A(ds, xs) −
∫ ·+τ

τ

A(ds, ys)

]
t

= �

[∫ ·

0
Ã(ds, xs+τ ) −

∫ ·

0
Ã(ds, ys+τ )

]
t

where Ã(t, x) = A(t+τ, x) has the same regularity properties of A. We can therefore iterate
the previous argument, applied this time to Ã, x·+τ and y·+τ , to deduce that x and y also
coincide on [τ, 2τ ]; repeating this procedure we can cover the whole interval [0, T ]. �
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4 Flow

Having established sufficient conditions for the existence and uniqueness of solutions to the
YDE associated to (x0, A), it is natural to study their dependence on the data of the problem.
This section is devoted to the study of the flow, seen as the ensemble of all possible solutions,
and its Frechét differentiability w.r.t. both (x0, A).

In order to avoid technicalities we will only consider the case of A ∈ Cα
t C

1+β
V with global

bounds, but everything extends easily by localisation arguments to A ∈ Cα
t C

β,λ
V ∩Cα

t C
1+β
V ,loc;

similar results can also be established for the type of equations considered respectively in
Sects. 3.4 and 3.5.

4.1 Flow of Diffeomorphisms

We start by giving a proper definition of a flow for the YDE associated to A; recall here that
�n denotes the n-simplex on [0, T ].

Definition 4.1 Given A ∈ Cα
t C

β
V with α(1+β) > 1, we say that � : �2×V → V is a flow

of homeomorphisms for the YDE associated to A if the following hold:

i. �(t, t, x) = x for all t ∈ [0, T ] and x ∈ V ;
ii. �(s, ·, x) ∈ Cα([s, T ]; V ) for all s ∈ [0, T ] and x ∈ V ;
iii. for all (s, t, x) ∈ �2 × R

d it holds

�(s, t, x) = x +
∫ t

s
A(dr ,�(s, r , x));

iv. � satisfies the group property, namely

�(u, t,�(s, u, x)) = �(s, t, x) for all (s, u, t) ∈ �3 and x ∈ V ;
v. for any (s, t) ∈ �2, the map �(s, t, ·) is an homeomorphism of V , i.e. it is continuous

with continuous inverse.

From now on, whenever talking about a flow �, we will use the notation �s→t (x) =
�(s, t, x); we will denote by �s←t (·) the inverse of �s→t (·) as a map from V to itself.

Definition 4.2 Given A as above, γ ∈ (0, 1), we say that it admits a locally γ -Hölder contin-
uous flow�,� isCγ

loc for short, if for any (s, t) ∈ �2 it holds�s→t ,�s←t ∈ Cγ
loc(V ; V ); we

say that � is a flow of diffeomorphisms if �s→t ,�s←t ∈ C1
loc(V ; V ) for any (s, t) ∈ �2.

Similar definitions hold for a locally Lipschitz flow, or a Cn+γ
loc -flow with γ ∈ [0, 1) and

n ∈ N.
If V = R

d , we say that � is a Lagrangian flow if there exists a constant C such that

C−1λd(E) ≤ λd(�s←t (E)) ≤ Cλd(E) ∀ E ∈ B(Rd), ∀ (s, t) ∈ �2,

where λd denotes the Lebesgue measure on Rd and B(Rd) the collection of Borel sets.

It follows from Remark 3.15 that, if A ∈ Cα
t C

1+β
V with α(1 + β) > 1, then the solution

map (x0, t) �→ xt is Lipschitz in space, uniformly in time. However we cannot yet talk about
a flow, as we haven’t shown the invertibility of the solution map, nor the flow property; this
is accomplished by the following lemma.
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Lemma 4.3 Let A ∈ Cα
t C

β
V and x ∈ Cα

t V such that α(1+β) > 1, x be a solution of the YDE
associated to (x0, A). Then setting Ã(t, z) := A(T − t, z) and x̃t := xT−t , x̃ is a solution to
the time-reversed YDE

x̃t = x̃0 +
∫ t

0
Ã(ds, x̃s).

Similarly, setting x̃t = xt−s , Ã(t, x) = A(t − s, x) for t ∈ [s, T ], then x̃ is a solution to the
time-shifted YDE

x̃t = x̃0 +
∫ t

0
Ã(dr , x̃r ) ∀ t ∈ [s, T ].

The proof is elementary but a bit tedious, so we omit it; we refer the interested reader to
Lemma 2, Section 6.1 from [33] or Lemmas 11 and 12, Section 4.3.1 from [20].

As a consequence, we immediately deduce conditions for the existence of a Lipschitz
flow.

Corollary 4.4 Let A ∈ Cα
t C

1+β
V with α(1+β) > 1, then the associated YDE admits a locally

Lipschitz flow �. Moreover there exists C = C(α, β, T , ‖A‖α,1+β) such that

‖�s→·(x) −�s→·(y)‖α;s,T ≤ C‖x − y‖V , ��s→·(x)�α;s,T ≤ C ∀ s ∈ [0, T ], x, y ∈ V

(4.1)

together with a similar estimate for �·←t (·).
Proof The proof is a straightforward application of Remark 3.15 and Lemma 4.3. In both
cases of time reversal and translation we have ‖ Ã‖α,1+β ≤ ‖A‖α,1+β so that uniqueness
holds also for the reversed/translated YDE, with the same continuity estimates; this provides
respectively invertibility of the solution map and flow property. �

Actually, under the same hypothesis it is possible to prove that the YDE admits a flow of
diffeomorphisms, which satisfies a variational equation.

Theorem 4.5 Let A ∈ Cα
t C

1+β
V with α(1+ β) > 1, then the YDE associated to A admits a

flow of diffeomorphisms. For any x ∈ V , Dx�s→t (x) = J xs→t , where J xs→· ∈ Cα
t L(V ; V ) is

the unique solution to the variational equation

J xs→t = I +
∫ t

s
DA(dr ,�s→r (x)) ◦ J xs→r ∀ t ∈ [s, T ] (4.2)

where ◦ denotes the composition of linear operators.

We postpone the proof of this result to Sect. 4.2, as the variation equation will follow
from a more general result on the differentiability of the Itô map. Following [30], we give
an alternative proof in the case of finite dimensional V , in which more precise information
on � is known.

Theorem 4.6 Let A satisfy the hypothesis of Theorem 4.5, V = R
d for some d ∈ N; then

the associated YDE admits a flow of diffeomorphisms and the following hold:

i. For any x ∈ R
d and s ∈ [0, T ], Dx�s→·(x) corresponds to J xs→· ∈ Cα([s, T ];Rd×d)

satisfying

J xs→t = I +
∫ t

s
DA(dr ,�s→r (x))J

x
s→r . (4.3)
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ii. The Jacobian js→t (x) := det(Dx�s→t (x)) satisfies the identity

js→t (x) = exp

(∫ t

s
div A(dr ,�s→r (x))

)
(4.4)

and there exists a constant C = C(α, β, T , ‖A‖α,1+β) > 0 such that

C−1 ≤ js→t (x) ≤ C ∀ (s, t, x) ∈ �2 × R
d .

In particular, � is a Lagrangian flow of diffeomorphisms.

Proof For simplicity we will prove all the statements for s = 0, the general case being
similar. By Corollary 4.4, the existence of a locally Lipschitz flow � is known; to show
differentiability, it is enough to establish existence and continuity of the Gateaux derivatives.

Fix x, v ∈ R
d and consider for any ε > 0 the map ηε

t := ε−1(�0→·(x+εnv)−�0→·(x));
by estimate (4.1), the family {ηε}ε>0 is bounded in Cα

t R
d . Thus by Ascoli-Arzelà we can

extract a subsequence εn → 0 such that ηε → η in Cα−δ
t for some η ∈ Cα

t and any δ > 0.
Choose δ > 0 small enough such that (α − δ)(1 + β) > 1; using the fact that the map
F(y) = ∫ ·

0 A(ds, ys) is differentiable from Cα−δ
t to itself by Proposition 2.11, with DF

given by (2.8), by chain rule we deduce that

η· = lim
εn→0

�0→·(x + εnv) − �0→·(x)
εn

= v + lim
εn→0

F(�0→·(x + εnv)) − F(�0→·(x))
εn

= v + DF(�0→·(x))(η·);
namely, η satisfies the YDE

ηt = v +
∫ t

0
Dx A(dr ,�0→r (x))ηr (4.5)

whose meaning was defined in Remark 2.8. Equation (4.5) is an affine YDE, which admits
a unique solution by Corollary 3.13; moreover it’s easy to check that the unique solution
must have the form ηt = J x0→tv, where J x0→· ∈ Cα

t R
d×d is the unique solution to the affine

R
d×d -valued YDE

J x0→t = I +
∫ t

0
Dx A(dr ,�0→r (x))J

x
0→r ,

whose global existence and uniqueness follows from Corollary 3.13 and Theorem 3.9. As
the reasoning holds for any subsequence εn we can extract and any v ∈ R

d , we conclude that
�0→t (·) is Gateaux differentiable with D�0→t (x) = J x0→t which satisfies (4.3). A similar
argument shows that J x0→t depends continuously on x , from which Frechét differentiability
follows.

Part ii. can be established for instance by means of an approximation procedure; indeed
by Lemma A.4, given A ∈ Cα

t C
1+β
x , we can find An ∈ C1

t C
1+β
x such that An → A

in Cα−
t C1+β−

x and by Theorem 3.14, the solutions yn· = �n
0→·(x) associated to (x, An)

converge to �0→·(x) associated to (x, A). Moreover for An the YDE is meaningful as the
more classical ODE associated to ∂t An , so we can apply to it all the classical results from
ODE theory; the Jacobian associated to An is given by

det(Dx�
n
0→t (x)) = exp

(∫ t

0
div ∂t A

n(r ,�n
0→r (x))dr

)
= exp

(∫ t

0
div An(dr ,�n

0→r (x))

)
.
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Passing to the limit as n →∞, by the continuity of nonlinearYoung integrals,we obtain (4.4).
Moreover by Eq. (4.1) we have the estimate

sup
t∈[0,T ]

∣∣∣∣
∫ t

0
div A(dr ,�0→r (x))

∣∣∣∣ � ‖ div A‖α,β(1+ ��0→·(x)�α) � ‖A‖α,1+β,

which gives Lagrangianity. �
It’s possible to show that the flow inherits regularity from the drift, namely that to a

spatially more regular A corresponds a more regular �.

Theorem 4.7 Let n ∈ N, α, β ∈ (0, 1) be such that α(1+β) > 1 and assume A ∈ Cα
t C

n+β
V .

Then the flow � associated to A is locally Cn-regular.

We omit the proof, which follows similar lines to those of Theorems 4.5 and 4.6 and is
mostly technical; we refer the interested reader to [20,28] and the discussion at the end of
Section 3 from [33].

Remark 4.8 In line with Sect. 3.4, one can obtain sufficient conditions for the existence
of a regular flow under the additional assumption ∂t A ∈ C([0, T ] × V ; V ); in this case
if A ∈ Cα

t C
n+β
V , then it has a locally Cn-regular flow, see the discussion in Section 4.3

from [20]. Similar reasonings allow to establish existence of a flow also for the equations
treated in Sect. 3.5.

4.2 Differentiability of the Itô map

Denote by �A
s→·(x) the solution to the YDE associated to (x, A); the aim of this section is

to study the dependence of the flow �A as a function of A ∈ Cα
t C

1+β
V , namely to identify

DA�A
s→·(x).

For simplicity we will restrict to the case s = 0; we will actually fix A ∈ Cα
t C

1+β
V ,

consider �A+εB with B varying and set Xx
t := �A

0→t (x).

Theorem 4.9 Let α(1 + β) > 1, x0 ∈ V and consider the Itô map �·
0→·(x) : Cα

t C
1+β
V →

Cα
t V , A �→ �A

0→·(x). Then �·
0→·(x) is Frechét differentiable and for any B ∈ Cα

t C
1+β
V the

Gateaux derivative

DA�A
0→·(x)(B) = lim

ε→0

1

ε
(�A+εB

0→· (x) − �A
0→·(x)) ∈ Cα

t V

satisfies the affine YDE

Y x
t =

∫ t

0
DA(ds, Xx

s )(Y
x
s ) +

∫ t

0
B(ds, Xx

s ) ∀ t ∈ [0, T ] (4.6)

and is given explicitly by

DA�A
0→t (x)(B) = J x0→t

∫ t

0
(J x0→s)

−1B(ds, Xx
s ) ∀ t ∈ [0, T ] (4.7)

where J x0→· is the unique solution to (4.2) and (J x0→s)
−1 denotes its inverse as an element of

L(V ).

The proof requires the following preliminary lemma.
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Lemma 4.10 For any L ∈ Cα
t L(V ), there exists a unique solution M ∈ Cα

t L(V ) to the YDE

Mt = IdV +
∫ t

0
Lds ◦ Ms ∀ t ∈ [0, T ]; (4.8)

moreover Mt is invertible for any t ∈ [0, T ] and N· := (M·)−1 ∈ Cα
t L(V ) is the unique

solution to

Nt = IdV −
∫ t

0
Ns ◦ Lds ∀ t ∈ [0, T ]. (4.9)

Finally, for any y0 ∈ V and any ψ ∈ Cα
t V , the unique solution to the affine YDE

yt = y0 +
∫ t

0
Lds ys + ψt (4.10)

is given by

yt = Mt y0 + Mt

∫ t

0
Nsdψs . (4.11)

Proof Setting A(t, M) := Lt ◦ M , A ∈ Cα
t C

2
L(V ),loc and so existence and uniqueness of

a global solution to (4.8) follows from Corollary 3.13 and Theorem 3.9; similarly for (4.9)
with Ã(t, N ) = N ◦ Lt . Let M·, N· ∈ Cα

t L(V ) be solution respectively to (4.8), (4.9), we
claim that they are inverse of each other. Indeed by the product rule for Young integrals it
holds

d(Nt ◦ Mt ) = (dNt ) ◦ Mt + Nt ◦ (dMt ) = −Nt ◦ Ldt ◦ Mt + Nt ◦ Ldt ◦ Mt = 0

which implies Nt ◦ Mt = N0 ◦ M0 = IdV and thus Nt = (Mt )
−1. Let y· ∈ Cα

t V be the
unique solution to (4.10), whose global existence and uniqueness follows as above, and set
zt = Nt yt ; then again by Young product rule it holds dzt = Ntdψt and thus

Nt yt = zt = z0 +
∫ t

0
dzs = y0 +

∫ t

0
Nsdψs

which gives (4.11). �

Proof of Theorem 4.9 Given A, B ∈ Cα
t C

1+β
V , it is enough to show that

lim
ε→0

�A+εB
0→· (x) − �A

0→·(x)
ε

exists in Cα
t V

and that it is a solution to (4.6). Once this is shown, we can apply Lemma 4.10 for the choice
Lt =

∫ t
0 Dx A(ds, Xx

s ), y0 = 0 and ψt =
∫ t
0 B(ds, Xx

s ) to deduce that the limit is given by
formula (4.7), which is meaningful since J x0→· is defined as the solution to (4.8) for such
choice of L and is therefore invertible. The explicit formula (4.7) for the Gateaux derivatives
readily implies existence and continuity of the Gateux differential DA�A

0→·(x) and thus also
Frechét differentiability.

In order to prove the claim, let Y x ∈ Cα
t V be the solution to (4.6), which exists and is

unique by Lemma 4.10; then we need to show that

lim
ε→0

∥∥∥∥∥
�A+εB

0→· (x) − Xx·
ε

− Y x·

∥∥∥∥∥
α

= 0.
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Set Xε,x· := �A+εB
0→· (x); recall that by the Comparison Principle (Theorem 3.14), we have

‖Xε,x − Xx‖α � ε‖B‖α,β . (4.12)

Setting eε := ε−1[Xε,x − Xx ] − Y x , it holds

eε
t =

1

ε

[∫ t

0
(A + εB)(ds, Xε,x

s ) − A(ds, Xx
s )

]
−

∫ t

0
DA(ds, Xx

s )(Y
x
s ) −

∫ t

0
B(ds, Xx

s )

=
∫ t

0

[
A(ds, Xε,x

s ) − A(ds, Xx
s )

ε
− DA(ds, Xx

s )(Ys)

]
+

∫ t

0
[B(ds, Xε,x

s ) − B(ds, Xx
s )]

=
∫ t

0
DA(ds, Xx

s )(e
ε
s ) + ψε

t

where ψε is given by

ψε
t =

∫ t

0

A(ds, Xε,x
s ) − A(ds, Xx

s )− DA(ds, Xx
s )(Xε,x

s − Xx
s )

ε
+

∫ t

0
B(ds, Xε,x

s )− B(ds, Xx
s )

=: ψε,1
t + ψ

ε,2
t .

In order to conclude, it is enough to show that ‖ψε‖α → 0 as ε → 0, since then we can
apply the usual a priori estimates fromTheorem 3.9 to eε , which solves an affineYDE starting
at 0. We already know that Xε,x → Xx as ε → 0, which combined with the continuity of
nonlinear Young integrals implies that ψε,2

t → 0 as ε → 0. Observe that ψε,1 = J (
ε) for


ε
s,t = ε−1[As,t (X

ε,x
s ) − As,t (X

x
s ) − DAs,t (X

x
s )(X

ε,x
s − Xx

s )]
which by virtue of (4.12) satisfies

‖
ε
s,t‖V � ε−1‖As,t‖C1+β

V
‖Xε,x

s − Xx
s ‖1+β

V � εβ |t − s|α‖A‖α,1+β

which implies that ‖
ε‖α → 0 as ε → 0. On the other hand we have

‖δ
ε
s,u,t‖V = ε−1‖

∫ 1

0
[DAu,t (X

x
s + λ(Xε,x

s − Xx
s )) − DAu,t (X

x
s )](Xε,x

s − Xx
s )dλ

−
∫ 1

0
[DAu,t (X

x
u + λ(Xε,x

u − Xx
u )) − DAu,t (X

x
u )](Xε,x

u − Xx
u )dλ‖V

≤ ε−1
∥∥∥∥
∫ 1

0
[DAu,t (X

x
s + λ(Xε,x

s − Xx
s )) − DAu,t (X

x
s )](Xε,x

s,u − Xx
s,u)dλ

∥∥∥∥
V

+ ε−1
∥∥∥∥
∫ 1

0
[DAu,t (X

x
u + λ(Xε,x

u − Xx
u )) − DAu,t (X

x
s + λ(Xε,x

s − Xε
s ))](Xε,x

u − Xx
u )dλ

∥∥∥∥
V

+ ε−1
∥∥∥∥
∫ 1

0
[DAu,t (X

x
u )− DAu,t (X

x
s )](Xε,x

u − Xx
u )dλ

∥∥∥∥
V

� ε−1|t − s|α(1+β)‖A‖α,1+β�Xε,x − Xx �α(1+ �Xε,x − Xx �α + �Xx �α)

� |t − s|α(1+β)‖A‖α,1+β(1+ �Xx �α)

which implies that ‖δ
ε‖α(1+β) are uniformly bounded in ε. We can therefore apply
Lemma A.2 from the “Appendix” to conclude. �
Remark 4.11 Although A �→ �A is defined only on Cα

t C
1+β
V , observe that (A, B) �→

DA�A
0→·(x)(B) as given by formula (4.7) is well defined and continuous for any (A, B) ∈

Cα
t C

1+β
V × Cα

t C
β
V .
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We can use Theorem 4.9 to complete the proof of Theorem 4.5.

Proof of Theorem 4.5 The existence of a Lipschitz flow � is granted by Corollary 4.4, so it
suffices to show its differentiability and the variational equation; for simplicity we take s = 0.
Existence of a unique solution J x0→· ∈ Cα

t L(V ) to (4.2) follows from Lemma 4.10 applied to

Lt =
∫ t

0
DA(dr ,�0→r (x))

and by linearity it’s easy to check that for any h ∈ V , Y h
t := J x0→t (h) is the unique solution to

Y h
t = h +

∫ t

0
DA(dr ,�0→r (x))(Y

h
r ). (4.13)

Therefore in order to conclude it suffices to show that the directional derivatives

Dx�
A
0→·(x)(h) = lim

ε→0

�A
0→·(x + εh) − �A

0→·(x)
ε

exist in Cα
t V and are solutions to (4.13), as this implies that Dx�

A
0→·(x) = J x0→·. Now fix

x, h ∈ V and let yε = �A
0→·(x + εh), then zε := yε − εh solves

zεt = x +
∫ t

0
Aε(ds, zεs )

with Aε(t, v) = A(t, v + εh), i.e. zε· = �Aε

0→·(x). It’s easy to see that, if the first limit below
exists, then

lim
ε→0

zε − z0

ε
= lim

ε→0

yε − y0

ε
− h, lim

ε→0

Aε − A

ε
= B, B(t, x) = DA(t, x)(h).

By the Frechét differentiability of A �→ �A
0→·(x) and the chain rule, it holds

lim
ε→0

zε − z0

ε
= lim

ε→0

�Aε

0→·(x) − �A
0→·(x)

ε
= DA�A

0→·(x)(B)

which is characterized as the unique solution Zh to

Zh
t =

∫ t

0
DA(dr ,�A

0→r (x))(Z
h
r ) +

∫ t

0
DA(dr ,�A

0→r (x))(h).

This implies by linearity that Y h = Zh
t + h = limε ε−1(yε − y) = Dx�

A
0→·(x)(h) solves

exactly (4.13). The conclusion follows. �
Example 4.12 Here are some examples of applications of Theorem 4.9.

i. Consider the simple case of an additive perturbation, i.e. for fixed (x0, A) we want to
understand how the solution x of

xt = x0 +
∫ t

0
A(ds, xs) + ψt

depends on ψ , where ψ ∈ Cα
t V with ψ0 = 0. Identifying ψ with Bψ(t, z) = ψt for all

z ∈ V , it holds x· = �A+Bψ

0→· (x0) =: F(ψ), which implies that F is Frechét differentiable
in 0 with

DF(0)(ψ)· = J x0→·
∫ ·

0
(J x0→s)

−1dψs .
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ii. Consider the classical Young case, namely V = R
d , with

A(t, z) = A[ω](t, z) = σ(z)ωt =
m∑
i=1

σi (z)ω
i
t , (t, z) ∈ [0, T ] × R

d

for regular vector fields σi : R
d → R

d and ω ∈ Cα
t R

m , α > 1/2; assume σi
are fixed and we are interested in the dependence on the drivers ω, namely the map
�ω

0→·(x) := �
A[ω]
0→· (x). For fixed ω ∈ Cα

t R
m and x ∈ R

d , setting Xx
t := �

A[ω]
0→t (x),

J x0→t := Dx�
A[ω]
0→t (x), �

A[·]
0→·(x) is Frechét differentiable at ω with directional deriva-

tives

Dω�
A[·]
0→t (x)(ψ) = J x0→t

∫ t

0

m∑
i=1

(J x0→r )
−1σi (X

x
r )dψ i

r . (4.14)

The above formula uniquely extends by continuity to the case ψ ∈ W 1,1
t , in which case

we can write it in compact form as

Dω�
A[·]
0→t (x)(ψ) =

∫ T

0
K (t, r)ψ̇rdr , K (t, r) = 1r≤t J x0→t (J

x
0→r )

−1σ(Xx
r ).(4.15)

Formulas (4.14) and (4.15) are well known by Malliavin calculus, mostly in the case ω

is sampled as an fBm of parameter H > 1/2, see Section 11.3 from [18]; formula (4.7)
can be regarded as a generalisation of them.

5 Conditional Uniqueness

This sectionprovides several criteria for uniqueness of theYDE,under additional assumptions
on the properties of the associated solutions. Typically such properties can’t be established
directly, at least not under mild regularity assumptions on A; yet the criteria are rather useful
in application to SDEs, where the analytic theory can be combined with more probabilistic
techniques.

5.1 AVan Kampen Type Result for YDEs

The following result is inspired by the analogue results for ODEs in the style of van Kampen
and Shaposhnikov, see [41,42].

Theorem 5.1 Suppose A ∈ Cα
t C

β,λ
V with α(1+ β) > 1, β + λ ≤ 1 and that the associated

YDE admits a spatially locally γ -Hölder continuous flow. If

αγ (1+ β) > 1,

then for any x0 ∈ V there exists a unique solution to the YDE in the class x ∈ Cα
t V .

Proof Let x0 ∈ V and x be a given solution to the YDE starting at x0. By the a priori
estimate (3.10), we can always find R = R(x0) big enough such that

sup
s∈[0,T ]

{‖x‖α + ‖�(s, ·, xs)‖α;s,T } ≤ R;

therefore in the following computations, up to a localisation argument,we can assumewithout
loss of generality that A ∈ Cα

t C
β
V and that � is globally γ -Hölder.
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It suffices to show that ft := �(t, T , xt )−�(0, T , x0) satisfies ‖ fs,t‖V � |t − s|1+ε for
some ε > 0; if that’s the case, then f ≡ 0, �(t, T , xt ) = �(0, T , x0) for all t ∈ [0, T ] and
so inverting the flow xt = �(0, t, x0), which implies that �(0, ·, x0) is the unique solution
starting from x0.

By the flow property

‖ fs,t‖V = ‖�(t, T , xt ) − �(s, T , xs)‖V
= ‖�(t, T , xt ) − �(t, T ,�(s, t, xs))‖V
� ‖xt − �(s, t, xs)‖γ

V .

Since both x and �(s, ·, xs) are solutions to the YDE starting from xs , it holds

‖xt − �(s, t, xs)‖V =
∥∥∥∥
∫ t

s
A(dr , xr ) −

∫ t

s
A(dr ,�(s, r , xs))

∥∥∥∥
V

� ‖As,t (xs) − As,t (�(s, s, xs))‖V
+ |t − s|α(1+β)‖A‖α,β(1+ �x�α + ��(s, ·, xs)�α)

� |t − s|α(1+β)

and so overall we obtain ‖ fs,t‖V � |t − s|γα(1+β), which implies the conclusion. �
Remark 5.2 The assumption can be weakened in several ways. For instance, the existence
of a γ -Hölder regular semiflow is enough to establish that �(t, T , xt ) = �(0, T , x0), even
when � is not invertible. Uniqueness only requires �(t, T , ·) to be invertible for t ∈ D, D
dense subset of [0, T ]; indeed this implies xt = �(0, t, x0) on D and then by continuity the
equality can be extended to the whole [0, T ]. Similarly, it is enough to require

sup
t∈D

‖�(t, T , ·)‖γ,R < ∞ for all R ≥ 0

for D dense subset of [0, T ] as before.

5.2 Averaged Translations and Conditional Comparison Principle

The concept of averaged translation has been introduced in [9], Definition 2.13. We provide
here a different construction based on the sewing lemma (although with the same underlying
idea).

Definition 5.3 Let A ∈ Cα
t C

β
V , y ∈ Cγ

t V with α+ βγ > 1. The averaged translation τx A is
defined as

τy A(t, x) =
∫ t

0
A(ds, z + ys) ∀ t ∈ [0, T ], z ∈ V .

Lemma 5.4 Let A ∈ Cα
t C

n+β
V , y ∈ Cγ

t V with α + βγ > 1, η ∈ (0, 1) satisfying η < n+ β,

α + ηγ > 1. The operator τy is continuous from Cα
t C

n+β
V to Cα

t C
n+β−η
V and there exists

C = C(α, β, γ, η, T ) s.t.

‖τy A‖α,n+β−η ≤ C‖A‖α,n+β(1+ �y�γ ). (5.1)

Proof Observe that τy A corresponds to the sewing of 
 : �2 → Cn+β
V given by


s,t := As,t ( · + ys) .
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It holds ‖
s,t‖n+β ≤ |t−s|α‖A‖α,n+β ; moreover by Lemma A.3 in “Appendix A.1” it holds

‖δ
s,u,t‖n+β−η =
∥∥Au,t ( · + ys) − Au,t ( · + yu)

∥∥
n+β−η

� ‖ys − yu‖η
V ‖Au,t‖n+β

� |t − s|α+γ η�y�γ ‖A‖α,n+β.

Since α + γ η > 1, by the sewing lemma we deduce that J (
) = τy A ∈ Cα
t C

n+β−η
V ,

together with estimate (5.1). �
Young integrals themselves can indeed be regarded as averaged translations evaluated at

z = 0. Moreoveor iterating translations is a consistent procedure, as the following lemma
shows.

Lemma 5.5 Assume that α + βγ > 1 and A ∈ Cα
t C

β
V , x ∈ Cγ

t V and τx A ∈ Cα
t C

β
V . Then

for any y ∈ Cγ
t V it holds

∫ t

0
(τx A)(ds, ys) =

∫ t

0
A(ds, xs + ys) ∀ t ∈ [0, T ].

Proof The statement follows immediately from the observation that for any s ≤ t it holds

∥∥∥∥
∫ t

s
(τx A)(dr , yr ) −

∫ t

s
A(dr , xr + yr )

∥∥∥∥ � ‖(τx A)s,t (ys) − As,t (xs + ys)‖ + |t − s|α+βγ

�
∥∥(

As,t (· + xs)
)
(ys)− As,t (xs + ys)

∥∥ + |t − s|α+βγ

� |t − s|α+βγ

so that the two integrals must coincide. �
The main reason for introducing averaged translations is the following key result.

Theorem 5.6 (Conditional Comparison Principle)Let A1, A2 ∈ Cα
t C

β
V withα(1+β) > 1 for

some α, β ∈ (0, 1) and let xi ∈ Cα
t V be given solutions respectively to the YDE associated

to (xi0, A
i ). Suppose in addition that x1 is such that τx1 A

1 ∈ Cα
t LipV . Then there exists

C = C(α, β, T ) s.t.

‖x1 − x2‖α ≤ C exp(C‖τx1 A1‖1/αα,1 )(1+ ‖A2‖2α,β)(‖x10 − x20‖ + ‖A1 − A2‖α,β). (5.2)

In particular, uniqueness holds in the class Cα
t V to the YDE associated to (x10 , A

1).

Proof The final uniqueness claim immediately follows from inequality (5.2), since in that
case we can consider A1 = A2, x10 = x20 . Now let xi be two solutions as above, then their
difference v = x1 − x2 satisfies

vt = v0 +
∫ t

0
A1(ds, x1s ) −

∫ t

0
A2(ds, x2s )

= v0 +
∫ t

0
A1(ds, x1s ) −

∫ t

0
A1(ds, vs + x1s ) +

∫ t

0
(A2 − A1)(ds, x2s )

= v0 −
∫ t

0
τx1 A

1(ds, vs) +
∫ t

0
τx1 A

1(ds, 0) +
∫ t

0
(A2 − A1)(ds, x2s )

= v0 +
∫ t

0
B(ds, vs) + ψt
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where in the third line we applied Lemma 5.5 and we take

B(t, z) = −τx1 A
1(t, z) + τx1 A

1(t, 0), ψ· =
∫ ·

0
(A2 − A1)(ds, x2s ).

By the hypothesis, B ∈ Cγ
t LipV with B(t, 0) = 0 for all t ∈ [0, T ], while ψ ∈ Cα

t V .
Therefore fromTheorem3.9 applied to vwe deduce the existence of a constant κ1 = κ1(α, T )

such that

‖x1 − x2‖α ≤ κ1 exp(κ1�τx1 A
1�

1/α
1,α )(‖x10 − x20‖V + �ψ�α).

On the other hand, estimates (2.4) and (3.6) imply that

�ψ�α ≤ κ2‖A1 − A2‖α,β(1+ ‖A2‖2α,β)

for some κ2 = κ2(α, β, T ). Combining the above estimates the conclusion follows. �
Remarkably, the hypothesis τx A ∈ Cα

t LipV allows not only to show that this is the unique
solution starting at x0, but also that any other solution will not get too close to it. In the next
lemma, in order to differentiate ‖ · ‖V , we assume for simplicity V to be a Hilbert space, but
a uniformly smooth Banach space would suffice.

Lemma 5.7 Let V be a Hilbert space, A ∈ Cα
t C

β
V with α(1+ β) > 1, x, y ∈ Cα

t V solutions
respectively to the YDEs associated to (x0, A), (y0, A) and assume that τx A ∈ Cα

t LipV .
Then there exists C = C(α, T ) s.t.

sup
t∈[0,T ]

‖xt − yt‖V
‖x0 − y0‖V ≤ C exp(C‖τx A‖1/αα,1 ), sup

t∈[0,T ]
‖x0 − y0‖V
‖xt − yt‖V ≤ C exp(C‖τx A‖1/αα,1 ).

Proof The first inequality is an immediate consequence of Theorem 5.6, so we only need
to prove the second one. By the same computation as in Theorem 5.6, the map v = y − x
satisfies

dvt = A(dt, yt ) − A(dt, xt ) = τx A(dt, vt ) − τx A(dt, 0) = B(dt, vt )

where B(t, z) := τx A(t, z) − τx A(t, 0), which by hypothesis belongs to Cα
t LipV with

�B�α,1 = �τx A�α,1; moreover B(t, 0) = 0 for all t ∈ [0, T ].
Now for 0 < ε < ‖x0 − y0‖V , define T ε = inf{t ∈ [0, T ] : ‖xt − yt‖V ≤ ε}, with the

convention that inf ∅ = T ; then on [0, τε] the map zt := ‖yt − xt‖−1
V = ‖vt‖−1

V is in Cα
t R

and by Young chain rule

dzt = −‖vt‖−3
V 〈vt , Ã(dt, vt )〉V .

We are going to show that z satisfies a bound from above which does not depend on the
interval [0, T ε]; as a consequence, for all ε > 0 small enough it must hold T ε = T , which
yields the conclusion.

For any [u, r ] ⊂ [s, t] ⊂ [0, T ε] it holds
|zu,r | ≤ ‖vu‖−3

V |〈vu, Bu,r (vu)〉V | + κ1�z�α;s,t �B�α,1|u − r |2α
≤ ‖vu‖−1

V �B�α,1|u − r |α + κ1�z�α;s,t �B�α,1|t − s|α|u − r |α
≤ |zu |�τx A�α,1|u − r |α + κ1�z�α;s,t �τx A�α,1|t − s|α|u − r |α
≤ |u − r |α�τx A�α,1[|zs | + (1+ κ1)�z�α;s,t |t − s|α];
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dividing by |u − r |α and taking the supremum we obtain

�z�α;s,s+� ≤ �τx A�α,1|zs | + κ2�
α�τx A�α,1�z�α.

The rest of the proof follows exactly the same calculations as in the proof of Theorem 3.9:
taking � such that κ2�α�τx A�α,1 ≤ 1/2, κ2�α�τx A�α,1 ∼ 1, we deduce that

�z�α;s,s+� ≤ 2�τx A�α,1|zs |;
setting Jn = ‖z‖∞;In with In = [(n − 1)�, n�] ∩ [0, T ε], J0 = |z0|, it holds

Jn ≤ Jn−1 + �α�z�α;In ≤ (1+ 2�α�τx A�α,1)Jn−1,

which implies recursively

‖z‖∞;0,T ε = sup
n

Jn ≤ (1+ 2�α�τx A�α,1)
N |z0| ≤ exp(2N�α�τx A�α,1)|z0|.

Since T ε ≤ T , it takes at most N ∼ T /� intervals of size � to cover [0, T ε], and � ∼
�τx A�

1/α
α,1 , therefore overall we have found a constant C = C(α, T ) such that

sup
t∈[0,T ε]

1

‖xs − ys‖V = sup
t∈[0,T ε]

|zt | ≤ C exp(C�τx A�
1/α
α,1 )|z0| = C exp(C�τx A�

1/α
α,1 )

1

‖x0 − y0‖V .

As the estimate does not depend on ε, the conclusion follows. �

5.3 Conditional Rate of Convergence for the Euler Scheme

Remarkably, under the assumption of regularity of τx A, convergence of the Euler scheme to
the unique solution can be established, with the same rate 2α− 1 as in the more regular case
of A ∈ Cα

t C
1+β
V . The following results are direct analogues of Corollaries 3.16 and 3.19.

Corollary 5.8 Let A ∈ Cα
t LipV with α > 1/2, x0 ∈ V and suppose there exists a solution

x associated to (x0, A) such that τx A ∈ Cα
t LipV (which is therefore the unique solution);

denote by xn the element of Cα
t V constructed by the n-step Euler approximation from The-

orem 3.2. Then there exists C = C(α, T ) such that

‖x − xn‖α ≤ C exp(C‖τx A‖1/αα,1 )(1+ ‖A‖3α,1)n
1−2α as n →∞.

Proof As in the proof of Corollary 3.16, recall that xn satisfies the YDE

xn = x0 +
∫ t

0
A(ds, xns ) + ψn

t , �ψn�α �α,T (1+ ‖A‖3α,1)n
1−2α.

Therefore vn = xn − x satisfies

vnt =
∫ t

0
B(ds, vns ) + ψn

t , B(t, z) = τx A(t, z) − τx A(t, 0), �B�α,1 = �τx A�α,1.

Applying Theorem 3.9 we obtain that, for suitable κ = κ(α, T ) it holds

‖x − xn‖α ≤ κ exp(κ‖τx A‖1/αα,1 )�ψn�α

which combined with the above inequality for �ψn�α gives the conclusion. �
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Corollary 5.9 Let A be such that A ∈ Cα
t C

β
V and ∂t A ∈ C0([0, T ]×V ; V )withα(1+β) > 1,

x0 ∈ V and suppose there exists a solution x associated to (x0, A) such that τx A ∈ Cα
t LipV

(which is therefore the unique solution); denote by xn the element of Cα
t V constructed by the

n-step Euler approximation from Theorem 3.2. Then there exists C = C(α, T ) such that

‖x − xn‖α ≤ C exp(C‖τx A‖1/αα,1 )‖A‖α,1‖∂t A‖∞n−α as n →∞.

Proof Recall that xn satisfies the YDE

xn = x0 +
∫ t

0
A(ds, xns ) + ψn

t , �ψn�α �α,T ‖A‖α,1‖∂t A‖∞n−α.

The rest of the proof is mostly identical to that of Corollary 5.8. �

6 Young Transport Equations

This section is devoted to the study of Young transport equations of the form

udt + Adt · ∇ut + cdt ut = 0. (6.1)

which we will refer to as the YTE associated to (A, c).
We restrict here to the case V = R

d ; as in Sect. 4 for simplicity we will assume on A
global bounds like A ∈ Cα

t C
1+β
x , but slightly more tedious localisation arguments allow to

relax them to growth conditions and local regularity requirements.

Classical results on weak solutions to (6.1) in the case Adt = btdt , cdt = c̃tdt can be
found in [1,16]. Our approach here mostly follows the one given in [20], although slightly
less based on the method of characteristics and more on a duality approach; other works
concerning transport equations in the Young (or “level-1”) regime are given by [8,30] and
Chapter 9 from [36]. Let us also mention on a different note the works [3,5,15] which
treat with different techniques and in various regularity regimes rough trasnport equations of
“level-2” or higher (namely corresponding to a time regularity α ≤ 1/2).

Before explaining the meaning of (6.1), we need some preparations. Given any compact
K ⊂ R

d , we denote by Cβ
K = Cβ

K (Rd) the Banach space of f ∈ Cβ(Rd) with supp f ⊂ K ;

Cβ
c = Cβ

c (Rd) is the set of all compactly supported β-Hölder continuous functions. Cβ
c is

a direct limit of Banach spaces and thus it is locally convex; we denote its topological dual
by (Cβ

c )∗. Given γ, β ∈ (0, 1), we say that f ∈ Cα
t C

β
c if there exists a compact K such that

f ∈ Cα
t C

β
K ; similarly, a distribution u ∈ Cγ

t (Cβ
c )∗ if u ∈ Cγ

t (Cβ
K )∗ for all compact K ⊂ R

d .
We will use the bracket 〈·, ·〉 to denote both the classical L2-pairing and the one between
Cβ
c and its dual. Finally, Mloc denotes the space of Radon measures on R

d , MK the space
of finite signed measure supported on K ; observe that the above notation is consistent with
Mloc = (C0

c )
∗.

We are now ready to give a notion of solution to the YTE.

Definition 6.1 Letα, β ∈ (0, 1) such thatα(1+β) > 1.We say that u ∈ L∞t Mloc∩Cαβ
t (Cβ

c )∗

is a weak solution to the YTE associated to A ∈ Cα
t C

β
x , c ∈ Cα

t C
β
x with div A ∈ Cα

t C
β
x if

〈ut , ϕ〉 − 〈u0, ϕ〉 =
∫ t

0
〈Ads · ∇ϕ + (div Ads − cds)ϕ, us〉 ∀ϕ ∈ C∞

c . (6.2)
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Observe that under the above assumptions, for any ϕ ∈ C∞
c , A · ∇ϕ and (div A − c)ϕ

belong to Cα
t C

β
c ; since u ∈ Cαβ

t (Cβ
c )∗ with α(1+ β) > 1, the integral appearing in (6.2) is

meaningful as a functional Young integral.

Remark 6.2 For practical purposes, it is useful to consider the following equivalent charac-
terization of solutions: under the above regularity assumptions on u, A, c, u is a solution if
and only if for any compact K ⊂ R

d and ϕ ∈ C∞
K it holds

|〈us,t , ϕ〉 − 〈As,t · ∇ϕ + (div As,t − cs,t )ϕ, us〉| �K ‖ϕ‖C1+β
K

|t − s|α(1+β)�u�
Cαβ
t (Cβ

K )∗

× (‖A‖α,β + ‖ div A − c‖α,β).

(6.3)

Clearly in the l.h.s. above one can replace us with ut to get a similar estimate.

Remark 6.3 The presence of c in (6.1) allows to also consider nonlinear Young continuity
equations (YCE for short) of the form

vdt + ∇ · (Adtvt ) + cdtvt = 0;
weak solutions to the above equation must be understood as weak solutions to the YTE
associated to (A, c̃) with c̃ = c + ∇ · A.

Let us quickly recall some results from Sect. 4: given A ∈ Cα
t C

1+β
x , the YDE admits a

flow of diffeomorphisms �s→t (x) and there exists C = C(α, β, T , ‖A‖α,1+β) such that

‖�s→·(x) − �s→·(y)‖α;s,T ≤ C |x − y|
|�s→t (x) − x | ≤ C |t − s|α

��s→·(x)�α;s,T + |Dx�s→t (x)| ≤ C

for all x, y ∈ R
d , (s, t) ∈ �2, together with similar estimates for �·←t . Moreover

det D�s→t (x) = exp

(∫ t

s
div A(dr ,�s→r (x))

)

and similarly

det D�s←t (x) = (det D�s→t (�s←t (x)))
−1 = exp

(
−

∫ t

s
div A(dr ,�r←t (x))

)
.

Proposition 6.4 Let A ∈ Cα
t C

1+β
x , c ∈ Cα

t C
β
x . Then for any μ0 ∈ Mloc, a solution to the

YTE is given by the formula

〈ut , ϕ〉 =
∫

ϕ(�0→t (x)) exp

(∫ t

0
(div A − c)(ds,�0→s(x))

)
μ0(dx) ∀ϕ ∈ C∞

c .(6.4)

If μ0(dx) = u0(x)dx for u0 ∈ L p
loc, then ut corresponds to the measurable function

u(t, x) = u0(�0←t (x)) exp

(
−

∫ t

0
c(ds,�s←t (x))

)
(6.5)

which belongs to L∞t L p
loc and satisfies∫

K
|u(t, x)|pdx =

∫
�0←t (K )

|u0(x)|p exp
(∫ t

0
(div A − c)(ds,�0→s(x))

)
.

If in addition c ∈ Cα
t C

1+β
x , then for any u0 ∈ C1

loc it holds u ∈ Cα
t C

0
loc ∩ C0

t C
1
loc.
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Proof Since |�0→t (x) − x | � T α , it is always possible to find R ≥ 0 big enough such that
suppϕ(�0→t (·)) ⊂ suppϕ + BR for all t ∈ [0, T ]; by estimates (2.4) and (3.9), it holds

sup
(t,x)∈[0,T ]×Rd

∣∣∣∣
∫ t

0
(div A − c)(ds,�0→s(x))

∣∣∣∣ � ‖ div A − c‖α,β sup
x∈Rd

(1+ ��0→·(x)�α) < ∞.

It is therefore clear that ut defined as in (6.4) belongs to L∞t (C0
c )

∗. Similarly, combining the
estimates

|ϕ(�0→t (x))− ϕ(�0→s(x))| ≤ |t − s|αβ�ϕ�β��0→·(x)�βα � |t − s|αβ�ϕ�β∣∣∣∣
∫ t

s
(div A − c)(ds,�0→s(x))

∣∣∣∣ � |t − s|α‖ div A − c‖α,β(1+ ��0→·(x)�α) � |t − s|α,

it is easy to check that u ∈ Cαβ
t (Cβ

c )∗.
Let us show that it is a solution to the YTE in the sense of Definition 6.1. Given ϕ ∈ C∞

K
and x ∈ R

d , define

zt (x) := ϕ(�0→t (x)) exp

(∫ t

0
(div A − c)(ds,�0→s(x))

)
.

By Itô formula, z satisfies

zs,t (x) =
∫ t

s
ϕ(�0→r (x)) exp

(∫ r

0
(div A − c)(ds,�0→s(x))

)
(div A − c)(dr ,�0→r (x))

+
∫ t

s
exp

(∫ r

0
(div A − c)(ds,�0→s(x))

)
∇ϕ(�0→r (x)) · A(dr ,�0→r (x)).

By the properties of Young integrals and the above estimates, which are uniform in x , it holds

zs,t (x) ∼ exp

(∫ s

0
(div A − c)(dr ,�0→r (x))

)
×

×[ϕ(�0→s(x))(div A − c)s,t (�0→s(x))+ ∇ϕ(�0→s(x)) · As,t (�0→s(x))]
in the sense that the two quantities differ by O(|t−s|α(1+β)), uniformly in x ∈ R

d . Therefore

〈us,t , ϕ〉 =
∫
K+BR

zs,t (x)μ0(dx)

∼
∫
K+BR

[As,t · ∇ϕ + (div A − c)s,tϕ](�0→t (x)) exp

(∫ s

0
(div A − c)(dr ,�0→r (x))

)
μ0(dx)

∼ 〈us , As,t · ∇ϕ + (div A − c)s,tϕ〉

where the two quantities differ by O(‖ϕ‖
C1+β
K

|t − s|α(1+β)). By Remark 6.2 we deduce

that u is indeed a solution.
The statements for u0 ∈ L p

loc are an easy application of formula (4.4); it remains to prove

the claims for u0 ∈ C1
loc, under the additional assumption c ∈ Cα

t C
1+β
x . First of all observe

that, for any (s, t) ∈ �2, it holds

‖�·←t (x) − �·←s(x)‖α = ‖�·←s(�s←t (x))− �·←s(x)‖α � |�s←t (x) − x | � |t − s|α;
(6.6)
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as a consequence, the map (t, x) �→ u0(�0←t (x)) belongs to Cα
t C

0
loc. Consider now the

map

g(t, x) :=
∫ t

0
c(dr ,�r←t (x)).

It holds

∫ t

0
c(dr ,�r←t (x)) −

∫ s

0
c(dr ,�r←s(x)) =

∫ t

s
c(dr ,�r←t (x)) +

∫ s

0
[c(dr ,�r←t (x)) − c(dr ,�r←s(x))];

by Corollary 2.12 and estimate (6.6) we have

∥∥∥∥
∫ ·

0
[c(dr ,�r←t (x)) − c(dr ,�r←s(x))]

∥∥∥∥
α

� ‖c‖α,1+β(1+ ��·←t (x)�α + ��·←s(x)�α) ×
×‖�·←t (x) −�·←s(x)‖α

� |t − s|α.

As a consequence, g ∈ Cα
t C

0
loc and so does u. The verification that u ∈ C0

t C
1
loc is similar

and thus omitted. �
Remark 6.5 Analogous computations show that a solution to theYTEwith terminal condition
u(T , ·) = μT (·) is given by

〈ut , ϕ〉 =
∫

ϕ(�t←T (x)) exp

(∫ T

t
(c − div A)(ds,�s←T (x))

)
μT (dx) ∀ϕ ∈ C∞

c ;

in the case μT (dx) = uT (x)dx with uT ∈ L p
loc it corresponds to

ut (x) = uT (�t→T (x)) exp

(∫ T

t
c(ds,�t→s(x))

)
.

This solution satisfies the same space-time regularity as in Proposition 6.4. Moreover by the
properties of the flow, ifμ0 (resp.μT ) has compact support, then it’s possible to find K ⊂ R

d

compact such that supp ut ⊂ K uniformly in t ∈ [0, T ]. In particular if c ∈ Cα
t C

1+β
x and

u0 ∈ C1
c (resp. uT ∈ C1

c ), then the associated solution belongs to Cα
t C

0
c ∩ C0

t C
1
c .

The following result is at the heart of the duality approach and our main tool to establish
uniqueness.

Proposition 6.6 Let u ∈ Cα
t C

0
c ∩ C0

t C
1
c be a solution of the YTE

udt + Adt · ∇ut + cdt ut = 0 (6.7)

and let v ∈ L∞t (C0
c )

∗ ∩ Cαβ
t (Cβ

c )∗ be a solution to the YCE

vdt +∇ · (Adtvt ) − cdtvt = 0. (6.8)

Then it holds 〈vt , ut 〉 = 〈vs, us〉 for all (s, t) ∈ �2. A similar statement holds for u ∈
Cα
t C

0
loc ∩ C0

t C
1
loc and v as above and compactly supported uniformly in time.

The proof requires somepreparations. Let {ρε}ε>0 be a family of standard spatialmollifiers
(say ρ1 supported on B1 for simplicity) and define the Rε, for sufficiently regular g and h,
as the following bilinear operator:

Rε(g, h) = (g · ∇h)ε − g · ∇hε = ρε ∗ (g · ∇h)− g · ∇(ρε ∗ h); (6.9)
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the following commutator lemma is a slight variation on Lemma 16, Section 5.2 from [20],
which in turn is inspired by the general technique first introduced in [16].

Lemma 6.7 The operator Rε : C1+β
loc × C1

loc → Cβ
loc defined by (6.9) satisfies the following.

i. There exists a constant C independent of ε and R such that

‖Rε(g, h)‖β,R ≤ C‖g‖1+β,R+1‖h‖β,R+1.

ii. For any fixed g ∈ C1+β
loc , h ∈ Cβ

loc it holds Rε(g, h) → 0 in Cβ ′
loc as ε → 0, for any

β ′ < β.

Proof It holds

Rε(g, h)(x) =
∫
B1

h(x − εz)
g(x − εz) − g(x)

ε
· ∇ρ(z)dz − (h div g)ε(x)

=: R̃ε(g, h)(x) − (h div g)ε(x).

Thus claim i. follows from ‖(h div g)ε‖β,R ≤ ‖h‖1,R+1‖g‖1+β,R+1 and

|R̃ε(g, h)(x) − R̃ε(g, h)(y)| ≤
∣∣∣∣
∫
B1
[h(x − εz)− h(y − εz)] g(x − εz) − g(x)

ε
· ∇ρ(z)dz

∣∣∣∣
+

∣∣∣∣
∫
B1

h(x − εz)

[
g(x − εz) − g(x)

ε
− g(y − εz) − g(y)

ε

]
· ∇ρ(z)dz

∣∣∣∣
≤ |x − y|β‖h‖β,R+1‖g‖1,R+1‖∇ρ‖L1

+‖h‖0,R+1

∫
B1

∣∣∣∣
∫ 1

0
[∇g(x − εθ z)− ∇g(x) −∇g(y − εθ z)+ ∇g(y)]

∣∣∣∣×
×|z||∇ρ(z)|dz

� |x − y|β‖h‖β,R+1‖g‖1+β,R+1

where the estimate is uniform in x, y ∈ BR and in ε > 0. Claim ii. follows from the
above uniform estimate, the fact that Rε(g, h) → 0 C0

loc by Lemma 16 from [20] and an
interpolation argument. �
Proof of Proposition 6.6 Weonly treat the caseu ∈ Cα

t C
0
c∩C0

t C
1
c , v ∈ L∞t (C0

c )
∗∩Cαβ

t (Cβ
c )∗,

the other one being similar. Applying a mollifier ρε on both sides of (6.7), it holds

uε
dt + Adt · ∇uε

t + (cdt ut )
ε + Rε(Adt , ut ) = 0

where we used the definition of Rε; equivalently by Remark 6.2, the above expression can
be interpreted as

‖uε
s,t + As,t · ∇uε

s + (cs,t us)
ε + Rε(As,t , us)‖C0 �ε |t − s|α(1+β) uniformly in (s, t) ∈ �2

Since v is a weak solution to (6.8), it holds

〈uε
t , vt 〉 − 〈uε

s , vs〉 = 〈uε
s,t , vs〉 + 〈uε

t , vs,t 〉
∼ε −〈As,t · ∇uε

t + (cs,t ut )
ε + Rε(As,t , ut ), vs〉 + 〈As,t · ∇uε

t + cs,t u
ε
t , vs〉

∼ 〈cs,t uε
t − (cs,t ut )

ε − Rε(As,t , ut ), vs〉
where by a ∼ε b we mean that |a − b| �ε |t − s|α(1+β). As a consequence, defining

f ε
t := 〈uε

t , vt 〉, we deduce that f ε
t − f ε

0 = J (
ε
s,t ) for the choice


ε
s,t := 〈cs,t uε

t − (cs,t ut )
ε − Rε(As,t , ut ), vs〉.
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Our aim is to show that J (
ε
s,t ) → 0 as ε → 0; to this end, we start estimating ‖
ε‖α,α(1+β).

It holds

δ
ε
s,r ,t = 〈cs,r uε

r ,t , vs〉 − 〈cr ,t uε
t , vs,r 〉

+〈cr ,t us,r , vε
t 〉 − 〈cs,r us, vε

r ,t 〉
+〈Rε(Ar ,t , ut ), vs,r 〉 − 〈Rε(As,r , ur ,t ), vs〉.

Therefore, up to choosing a suitable compact K ⊂ R
d , we have the estimates

|
ε
s,t | ≤ (‖cs,t uε

t ‖C0
K
+ ‖(cs,t uε

t )‖C0
K
+ ‖Rε(As,t , ut )‖C0

K
)‖vs‖(C0

K )∗

� |t − s|α(‖c‖α,β + ‖A‖α,1)‖u‖C0
t C0

c
‖vs‖(C0

K )∗

as well as

|δ
ε
s,r ,t | ≤ ‖cs,r uε

r ,t‖C0
K
‖vs‖(C0

K )∗ + ‖cr ,t uε
t ‖Cβ

K
‖vs,r‖(Cβ

K )∗

+‖cr ,t us,r‖C0
K
‖vε

t ‖(C0
K )∗ + ‖cs,r us‖Cβ

K
‖vε

r ,t‖(Cβ
K )∗

+‖Rε‖‖Ar ,t‖1+β‖ut‖C1
K
‖vs,r‖(Cβ

K )∗ + ‖Rε‖‖As,r‖1+β‖ur ,t‖C0
K
‖vs‖(C0

K )∗

� |t − s|α(1+β)(‖c‖α,β + ‖Rε‖‖A‖α,1+β) ×
×(‖u‖C0

t C
1
K
‖v‖L∞t (C0

K )∗ + ‖u‖Cα
t C

0
K
‖v‖

Cαβ
t (Cβ

K )∗).

Overall we deduce that ‖
ε‖α and ‖δ
ε‖α(1+β) are bounded uniformly in ε > 0; moreover
by properties of convolutions and Lemma 6.7, it holds
ε

s,t → 0 as ε → 0 for any (s, t) ∈ �2

fixed. By Lemma 2.1 it holds

| f ε
s,t − 
ε

s,t | � |t − s|α(1+β)

uniformly in ε > 0 and so passing to the limit as ε → 0 we deduce that

|〈ut , vt 〉 − 〈us, vs〉| � |t − s|α(1+β) ∀ (s, t) ∈ �2

which implies the conclusion. �
We are now ready to establish uniqueness of solutions to the YTE and YCE under suitable

regularity conditions on (A, c).

Theorem 6.8 Let A ∈ Cα
t C

1+β
x , c ∈ Cα

t C
1+β
x withα(1+β) > 1. Then for anyu0 ∈ C1

loc there
exists a unique solution to the YTE (6.7)with initial condition u0 in the class Cα

t C
0
loc∩C0

t C
1
loc,

which is given by formula (6.5); similarly, for any μ0 ∈ Mloc there exists a unique solution
to the YCE (6.8) with initial condition μ0 in the class L∞t (C0

c )
∗ ∩Cαβ

t (Cβ
c )∗, which is given

by formula (6.4).

Proof Existence follows from Proposition 6.4, so we only need to establish uniqueness. By
linearity of YTE, it suffices to show that the only solution u to (6.7) in the class Cα

t C
0
loc ∩

C0
t C

1
loc with u0 ≡ 0 is given by u ≡ 0. Let u be such a solution and fix τ ∈ [0, T ]; since

(div A − c) ∈ Cα
t C

β
x , by Proposition 6.4 and Remark 6.5, for any compactly supported

μ ∈ M there exists a solution v ∈ L∞t MK ∩ Cαβ
t (Cβ

c )∗ to (6.8) with terminal condition
vτ = μ, up to taking a suitable compact set K . By Proposition 6.6 it follows that

〈uτ , μ〉 = 〈uτ , vτ 〉 = 〈u0, v0〉 = 0;
as the reasoning holds for any compactly supported μ ∈ M , uτ ≡ 0 and thus u ≡ 0.

Uniqueness of solutions to YCE (6.8) in the class L∞t (C0
c )

∗∩Cαβ
t (Cβ

c )∗ follows similatly.
�
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7 Parabolic Nonlinear Young PDEs

We present in this section a generalization to the nonlinear Young setting of some of the
results contained in [25]. Specifically, we are interested in studying a parabolic nonlinear
evolutionary problem of the form

dxt = −Axtdt + B(dt, xt ) (7.1)

where −A is the generator of an analytical semigroup.

In order not to create confusion, in this section the nonlinear Young term will be always
denoted by B. As we will use a one-parameter family of spaces {Vα}α∈R, the regularity of B
will be denoted by B ∈ Cγ

t C
β
W ,U , with W and U being taken from that family; whenever it

doesn’t create confusion, we will still denote the associated norm by ‖B‖γ,β .

Let us first recall the functional setting from [25], Section 2.1. It is based on the theory of
analytical semigroups and infinitesimal generators, see [39] for a general reference, but the
reader not acquainted with the topic may consider for simplicity A = I − �, V = L2(Rd)

and Vα = H2α(Rd) fractional Sobolev spaces.

Let (V , ‖·‖V ) be a separableBanach space, (A,Dom(A)) be an unbounded linear operator
on V , rg(A) be its range; suppose its resolvent set is contained in � = {z ∈ C : | arg(z)| >

π/2− δ} ∪U for some δ > 0 and some neighbourhood U of 0 and that there exist positive
constants C, η such that its resolvent Rα satisfies

‖Rα‖L(V ;V ) ≤ C(η + |α|)−1 ∀α ∈ �.

Under these assumptions, −A is the infinitesimal generator of an analytical semigroup
(S(t))t≥0 and there exist positive constants M, λ such that

‖S(t)‖L(V ;V ) ≤ Me−λt ∀ t ≥ 0.

Moreover, −A is one-to-one from Dom(A) to V and the fractional powers (Aα,Dom(Aα))

of A can be defined for any α ∈ R; if α < 0, then Dom(Aα) = V and Aα is a bounded
operator, while for α ≥ 0 (Aα,Dom(Aα)) is a closed operator with Dom(Aα) = rg(A−α)

and Aα = (A−α)−1.
For α ≥ 0, let Vα be the space Dom(Aα) with norm ‖x‖Vα = ‖Aαx‖V ; for α = 0 it

holds A0 = Id and V0 = V . For α < 0, let Vα be the completion of V w.r.t. the norm
‖x‖Vα = ‖Aαx‖V , which is thus a bigger space than V . The one-parameter family of spaces
{Vα}α∈R is such that Vδ embeds continuously in Vα whenever δ ≥ α and AαAδ = Aα+δ

on the common domain of definition; moreover A−δ maps Vα onto Vα+δ for all α ∈ R and
δ ≥ 0.

The operator S(t) can be extended to Vα for all α < 0 and t > 0 and maps Vα to Vδ for
all α ∈ R, δ ≥ 0, t > 0; finally, it satisfies the following properties:

‖AαS(t)‖L(V ;V ) ≤ Mαt
−αe−λt for all α ≥ 0, t > 0; (7.2)

‖S(t)x − x‖V ≤ Cαt
α‖Aαx‖V for all x ∈ Vα, α ∈ (0, 1]. (7.3)

Remark 7.1 It follows from the statements above and the semigroup property of S(t) that for
any α ∈ R, δ > 0, x ∈ Vα and any s ≤ t it holds

‖S(t)x − S(s)x‖Vα = ‖S(s)[S(t − s)x − x]‖Vα �α,δ |t − s|δ‖x‖Vα+δ
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which implies that ‖S(t)− S(s)‖L(Vα+δ;Vα) � |t − s|δ , equivalently S(·) ∈ Cδ
t L(Vα+δ; Vα).

It also follows that for any given x0 ∈ Vα+δ , the map t �→ S(t)x0 belongs to Cδ
t Vα with

�S(·)x0�δ,Vα �α,δ ‖x0‖Vα+δ . (7.4)

The following result shows that the mild solution formula for the linear equation

dxt = −Axtdt + dyt ,

which is formally given by

xt = S(t)x0 +
∫ t

0
S(t − s)dys,

can be extended by continuity to suitable non differentiable functions y ∈ C([0, T ]; V ).

Theorem 7.2 Let α ∈ R and consider the map � defined for any y ∈ C1
t V−α by

�(y)t =
∫ t

0
S(t − s)ẏsds.

Then for any γ > α,� extends uniquely to amap� ∈ L(Cγ
t V−α;Cκ

t Vδ) for all δ ∈ (0, γ−α)

and all κ ∈ (0, (γ − α − δ) ∧ 1). Moreover there exists a constant C = C(α, κ, δ, γ ) such
that

��(y)�κ,Vδ ≤ C�y�γ,V−α , sup
t∈[0,T ]

‖�(y)t‖Vδ ≤ CT γ−δ−α�y�γ,V−α . (7.5)

We omit the proof, for which we refer to Theorem 1 from [25]. Let us only provide an
heuristic derivation of the relation between the parameters α, κ, δ, γ based on a regularity
counting argument. It follows from Remark 7.1 that ‖S(t−s)‖L(V−α;Vδ) � |t−s|−δ−α; if it’s
possible to define the map �(y) taking values in Vδ , then we would expect its time regularity
to be analogue to that of

gt :=
∫ t

0
|t − s|−δ−αd fs, (7.6)

where now f , g are real valued functions, f ∈ Cγ
t ; indeed, considering a fixed y0 ∈ V−α , the

result should also apply to yt := ft y0. The integral in (7.6) is a type of fractional integral of
order 1− δ−α and by hypothesis d f ∈ Cγ−1

t , therefore g should have regularity γ − δ−α,
which is exactly the threshold parameter for κ (this is because Hölder spaces do not behave
well under fractional integration and onemust always give up an ε of regularity by embedding
them in nicer spaces).

Definition 7.3 Given A as above and B ∈ Cγ
t C

β
Vδ ,Vρ

, ρ ≤ δ, we say that x ∈ Cκ
t Vδ is a mild

solution to Eq. (7.1) with initial data x0 ∈ Vδ if γ + βκ > 1, so that
∫ ·
0 B(ds, xs) is well

defined as a nonlinear Young integral, and if x satisfies

xt = S(t)x0 +
∫ t

0
S(t − s)B(ds, xs) = S(t)x0 + �

(∫ ·

0
B(ds, xs)

)
t

∀ t ∈ [0, T ](7.7)

where � is the map defined by Theorem 7.2 and the equality holds in Vα for suitable α.

We are now ready to prove the main result of this section.
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Theorem 7.4 Assume A as above, B ∈ Cγ
t C

1+β
Vδ ,Vρ

with ρ > δ − 1 and suppose there exists
κ ∈ (0, 1) such that {

γ + βκ > 1
κ < γ + ρ − δ

. (7.8)

Then for any x0 ∈ Vδ+κ there exists a unique solution with initial data x0 to (7.1), in the
sense of Definition 7.3, in the class Cκ

t Vδ ∩ C0
t Vδ+κ .

Moreover, the solution depends in a Lipschitz way on (x0, B), in the following sense: for
any R > 0 exists a constant C = C(β, γ, δ, ρ, κ, T , R) such that for any (xi0, B

i ), i = 1, 2,
satisfying ‖xi0‖Vδ+κ ∨ ‖Bi‖γ,1+β ≤ R, denoting by xi the associated solutions, it holds

�x1 − x2�κ,Vρ ≤ C(‖x10 − x20‖Vδ+κ + ‖B1 − B2‖γ,1+β).

Remark 7.5 If B ∈ Cγ
t C

2
Vδ,Vρ

, then it is possible to find κ satisfying (7.8) if and only if

2γ + ρ − δ > 1.

Proof The basic idea is to apply a Banach fixed point argument to the map

x �→ I(x)t := S(t)x0 + �

(∫ ·

0
B(ds, xs)

)
t

(7.9)

defined on a suitable domain.
By Remark 7.1, if x0 ∈ Vδ+κ , then S(·)x0 ∈ Cκ

t Vδ; moreover B ∈ Cγ
t C

1
Vδ ,Vρ

, so under
the condition γ + κ > 1 the nonlinear Young integral in (7.9) is well defined for x ∈ Cκ

t Vδ ,
yt =

∫ t
0 B(ds, xs) ∈ Cγ

t Vρ and then �(y) ∈ Cκ
t Vδ under the condition κ < γ + ρ − δ.

So under our assumptions I maps Cκ
t Vδ into itself; our first aim is to find a closed bounded

subset which is invariant under I .
For suitable τ, M to be fixed later, consider the set

E := {x ∈ Cκ ([0, τ ]; Vδ) : x(0) = x0, �x�κ,Vδ ≤ M, sup
t∈[0,τ ]

‖xt‖Vδ+κ ≤ M};

E is a complete metric space endowed with the distance dE (x1, x2) = �x1− x2�κ,Vδ . It holds

�I(x)�κ,Vδ ≤ �S(·)x0�κ,Vδ +
�

�

(∫ ·

0
B(ds, xs)

)�

κ,Vδ

� ‖x0‖Vδ+ρ +
�∫ ·

0
B(ds, xs)

�

γ,Vρ

;

for the nonlinear Young integral we have the estimate
∥∥∥∥
∫ t

s
B(dr , xr )

∥∥∥∥
Vρ

� ‖Bs,t (xs)‖Vρ + |t − s|γ+κ�B�γ,1�x�κ,Vδ

� ‖Bs,t (xs) − Bs,t (x0)‖Vρ + |t − s|γ ‖B‖γ,0 + |t − s|γ τ κ�B�γ,1�x�κ

� |t − s|γ ‖B‖γ,1(1+ τκ�x�κ,Vδ )

and so
�∫ ·

0
B(dr , xr )

�

γ,Vρ

� ‖B‖γ,1(1+ τκ�x�κ,Vδ ).

Overall, we can find a constant κ1 such that

�I(x)�κ,Vδ ≤ κ1‖x0‖Vδ+κ + κ1‖B‖γ,1(1+ τκ�x�κ,Vδ ).
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Similar computations, together with estimate (7.5), show the existence of κ2 such that

sup
t∈[0,τ ]

‖I (x)t‖Vδ+κ ≤ κ2‖x0‖Vδ+κ + κ2‖B‖γ,1τ
γ−δ+ρ(1+ τκ�x�κ,Vδ ).

Therefore takng τ ≤ 1, κ3 = κ1 ∨ κ2, in order for I to map E into itself it suffices

κ3‖x0‖Vδ+κ + κ3‖B‖γ,1(1+ τκM) ≤ M,

which is always possible, for instance by requiring

2κ3‖B‖γ,1τ
κ ≤ 1, 2κ3‖x0‖Vδ+κ + 2κ3‖B‖γ,1 ≤ M .

Observe that τ can be chosen independently of ‖x0‖Vδ+κ ; moreover for the same choice of
τ , analogous computations show that any solution x to (7.1) defined on [0, τ̃ ] with τ̃ ≤ τ

satisfies the a priori estimate

�x�κ,Vδ;0,τ̃ + sup
t∈[0,τ̃ ]

‖xt‖Vδ+κ ≤ κ4(‖x0‖Vδ+κ + ‖B‖γ,1) (7.10)

for another constant κ4, independent of x0.
We now want to find τ̃ ∈ [0, τ ] such that I is a contraction on Ẽ , Ẽ being defined as E

in terms of τ̃ , M . Given x1, x2 ∈ Ẽ , it holds

dE (I(x1), I(x2)) =
�

�

(∫ ·

0
B(ds, x1s ) −

∫ ·

0
B(ds, x2s )

)�

κ,Vδ

�
�(∫ ·

0
B(ds, x1s ) −

∫ ·

0
B(ds, x2s )

)�

κ,Vρ

and under the assumptions we can apply Corollary 2.12, so we have

∥∥∥∥
∫ t

s
B(dr , x1r )−

∫ t

s
B(dr , x2r )

∥∥∥∥
Vρ

=
∥∥∥∥
∫ t

s
vdr (x

1
r − x2r )

∥∥∥∥
Vρ

� |t − s|γ �v�γ,L‖x1s − x2s ‖Vρ + |t − s|γ+κ�v�γ,L�x1 − x2�κ,Vρ

� |t − s|γ ‖B‖γ,1+β(1+ M)τ̃ κ�x1 − x2�κ,Vρ .

This implies
�∫ ·

0
B(dr , x1r ) − B(dr , x2r )

�

γ,Vρ

� ‖B‖γ,1+β(1+ M)τ̃ κ�x1 − x2�κ,Vρ

and so overall, for a suitable constant κ5,

dE (I(x1), I(x2)) ≤ κ5‖B‖γ,1+β(1+ M)τ̃ κdE (x1, x2).

Choosing τ̃ small enough such that κ5‖B‖γ,1+β(1+ M)τ̃ κ < 1, we deduce that there exists
a unique solution to (7.1) defined on [0, τ̃ ]. Since we have the uniform estimate (7.10), we
can iterate the contraction argument to construct a unique solution on [0, τ ]; but since the
choice of τ does not depend on x0 and xτ ∈ Vδ+κ , we can iterate further to cover the whole
interval [0, T ] with subintervals of size τ .

To check the Lipschitz dependence on (x0, B), one can reason using the Comparison
Principle as usual, but let us give an alternative proof; we only check Lipschitz dependence
on B, as the proof for x0 is similar.
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Given Bi , i = 1, 2 as above, denote by IBi the map associated to Bi defined as in (7.9);
we can choose τ̃ and M such that they are both strict contractions of constant κ6 < 1 on E
defined as before. Observe that for any z ∈ E it holds

dE (IB1(z), IB2(z)) =
�

�

(∫ ·

0
B1(ds, zs) −

∫ ·

0
B2(ds, zs)

)�

κ,Vδ

�
�∫ ·

0
B1(ds, zs) −

∫ ·

0
B2(ds, zs)

�

γ,Vρ

� (1+ M)‖B1 − B2‖γ,β .

Denote by xi the unique solutions on E associated to Bi , then by the above computation
we get

�x1 − x2�κ,Vδ = dE (IB1(x1), IB2(x2))

≤ dE (IB1(x1), IB1(x2))+ dE (IB1(x2), IB2(x2))

≤ κ6�x
1 − x2�κ,Vδ + κ7(1+ M)‖B1 − B2‖γ,β

which implies that

�x1 − x2�κ,Vδ ≤
κ7

1− κ6
(1+ M)‖B1 − B2‖γ,β

which shows Lipschitz dependence on Bi on the interval [0, τ̃ ]. As before, a combination of
a priori estimates and iterative arguments allows to extend the estimate to a global one. �

By the usual localization and blow-up alternative arguments, we obtain the following
result.

Corollary 7.6 Assume A as above, B ∈ Cγ
t C

1+β
Vδ ,Vρ ,loc with ρ > δ−1 and suppose there exists

κ ∈ (0, 1) satisfying (7.8). Then for any x0 ∈ Vδ+κ there exists a unique maximal solution x
starting from x0, defined on an interval [0, T ∗) ⊂ [0, T ], such that either T ∗ = T or

lim
t↑T ∗ ‖xt‖Vδ+κ = +∞.

Remark 7.7 For simplicity we have only treated here uniqueness results, but if the embedding
Vδ ↪→ Vα for δ > α is compact, as is often the case, one can use compactness arguments
to deduce existence of solutions under weaker regularity conditions on B, in analogy with
Theorem 3.2. Once can also consider equations of the form

dxt = −Axtdt + F(xt )dt + B(dt, xt ),

in which case uniqueness can be achieved under the same conditions on B as above and a
Lipschitz condition on F , see also Remark 1 from [25].

Acknowledgements Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


1038 Journal of Dynamics and Differential Equations (2023) 35:985–1046

A Appendix

A.1 Some Useful Lemmas

We collect in this appendix some basic tools; we start with a Fubini-type result for the sewing
map. In the following, the separable Banach space V is endowed with its Borel σ -algebra,
the space Cα,β

2 V with the σ -algebra induced by the norm ‖ · ‖α,β ; recall that by the sewing

lemma, J : Cα,β
2 V → Cα

t V is linear and continuous.

Lemma A.1 (Fubini for sewing map) Let V as above, (S,A, μ) a measure space and con-
sider a measurable map 
 : S → Cα,β

2 V , θ �→ 
(θ), such that
∫
S
‖
(θ)‖α,βμ(dθ) < ∞.

Then the map J ◦ 
 : S → Cα
t V is measurable and it holds

J
(∫

S

(θ)μ(dθ)

)
=

∫
S
J (
(θ))μ(dθ). (A.1)

Proof Since J is continuous, in particular it is measurable, and so is J ◦ 
 being a com-
position of measurable functions; it also follows that for any fixed (s, t) ∈ �2, the map
θ �→ J (
(θ))s,t is measurable from S to V . We can therefore define both integrals appear-
ing in (A.1) as Bochner integrals, by considering them for any fixed pair (s, t) ∈ �2. For
instance it holds∥∥∥∥

∫
S

(θ)s,tμ(dθ)

∥∥∥∥
V
≤

∫
S
‖
(θ)s,t‖Vμ(dθ) ≤ |t − s|α

∫
S
‖
(θ)‖α,βμ(dθ) < ∞

which also shows that the map (s, t) �→ ∫
S 
(θ)s,tμ(dθ) belongs to Cα,β

2 V with
∥∥∥∥
∫
S

(θ)μ(dθ)

∥∥∥∥
α,β

≤
∫
S
‖
(θ)‖α,βμ(dθ).

In order to show that (A.1) holds, by the sewing lemma it suffices to prove that∥∥∥∥∥
(∫

S

(θ)μ(dθ)

)
s,t

−
∫
S
J (
(θ))s,tμ(dθ)

∥∥∥∥∥
V

� |t − s|β ∀ (s, t) ∈ �2;

from the properties of J (
(θ)), we have the estimate∥∥∥∥∥
(∫

S

(θ)μ(dθ)

)
s,t

−
∫
S
J (
(θ))s,tμ(dθ)

∥∥∥∥∥
V

≤
∫
S
‖
(θ)s,t − J (
(θ))s,t‖Vμ(dθ)

� |t − s|β
∫
S
‖
(θ)‖α,βμ(dθ)

and the conclusion follows. �
Lemma A.2 Let {
n}n ⊂ Cα,β

2 V be a sequence such that supn ‖δ
n‖β ≤ R and
limn ‖
n‖α → 0. Then J
n → 0 in Cα

t V and for all n big enough it holds

�J
n�α �T ,β (1+ R)‖
n‖(β−1)/(β−α)
α . (A.2)
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Proof Fix an interval [s, t] ⊂ [0, T ]. By hypothesis, it holds

‖(J
n)s,t‖V ≤ ‖
n‖α|t − s|α + κβ‖δ
n‖β |t − s|β;
splitting the interval in m subintervals of size |t − s|/m, applying the estimate to each of
them and summing over we also have

‖(J
n)s,t‖V ≤ ‖
n‖αm
1−α|t − s|α + κβ‖δ
n‖βm

1−β |t − s|β . (A.3)

By hypothesis it holds

lim
n→∞

‖δ
n‖β

‖
n‖α

= +∞,

therefore for all n big enough we can choose m ∈ N such that m1−α ∼ (‖δ
n‖β/‖
n‖α)θ

for some θ ∈ (0, 1). Then in estimate (A.3), diving by |t − s|α and taking the supremum, we
obtain

�J
n�α �T ,β ‖
n‖1−θ
α ‖δ
n‖θ

β + ‖
n‖θ(β−1)/(1−α)
α ‖δ
n‖1−θ(β−1)/(1−α)

β

�T ,β (1+ R)[‖
n‖1−θ
α + ‖
n‖θ(β−1)/(1−α)

α ].
The conclusion follows choosing θ = (1− α)/(β − α). �

The following basic result was used in Sect. 5.2.

Lemma A.3 Let f ∈ Cn+β
V , z1, z2 ∈ V . Then for any η ∈ (0, 1) with η < n + β it holds

‖ f ( · + z1)− f ( · + z2)‖n+β−η � ‖z1 − z2‖η
V ‖ f ‖n+β .

Proof It is enough to prove the claim in the cases n = 0 and n = 1, the others being similar.
Assume first n = 0, then we have the elementary estimates

‖ f (x + z1)− f (y + z1) − f (x + z2) + f (y + z2)‖V ≤ 2‖ f ‖β‖x − y‖β
V ,

‖ f (x + z1)− f (y + z1) − f (x + z2) + f (y + z2)‖V ≤ 2‖ f ‖β‖z1 − z2‖β

Cβ
V

which interpolated together give the conclusion.
Now consider n = 1 and η ∈ (β, 1+ β), then

‖ f (x + z1)− f (y + z1)− f (x + z2)+ f (y + z2)‖V

=
∥∥∥∥∥
∫ 1

0
[Df (z1 + y + θ(x − y), x − y)− Df (z2 + y + θ(x − y), x − y)]dθ

∥∥∥∥∥
V

� ‖x − y‖V ‖z1 − z2‖β‖ f ‖1+β ;

inverting the roles of z1 and x (respectively z2 and y) we also obtain

‖ f (x + z1) − f (y + z1) − f (x + z2) + f (y + z2)‖V � ‖z1 − z2‖V ‖x − y‖β‖ f ‖1+β .

Interpolating the two inequalities again yields the conclusion. �
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A.2 Alternative Constructions of Young Integrals

We collect in this appendix several other constructions of the nonlinear Young integral,
although mostly equivalent to the one from Sect. 2.

In Sect. 2 we constructed the nonlinear Young integral following the modern approach
based on an application of the sewing lemma, but this is not how it was first introduced
in [9]. The approach therein was instead based on combining property 4. of Theorem 2.7with
estimate (2.3); namely, the classical integral

∫ ·
0 ∂t A(s, xs)ds can be controlled by ‖A‖α,β and

‖x‖γ , and thus its definition can be extended by an approximation procedure, as the following
lemma shows.

Lemma A.4 Any A ∈ Cα
t C

β
V ,W can be approximated in Cα−

t Cβ−
V ,W by a sequence An such

that ∂t An exists and is continuous.

Proof Extend A to t ∈ (−∞,∞) by

A(t, x) = A(0, x)1t<0 + A(t, x)1t∈[0,T ] + A(T , x)1t>T

and consider ρ ∈ C∞
c (R) s.t. ρ ≥ 0, ρ(0) = 1 and

∫
ρ(t)dt = 1. Setting ρε(t) = ε−1ρ(t/ε)

and

Aε(t, x) =
∫
R

ρε(t − s)A(s, x)ds,

it’s immediate to check that sup(t,x) ‖A − Aε‖ → 0 as ε → 0 by the uniform continuity

of A (which is granted from the fact that A ∈ Cα
t C

β
V ,W ). We also have the uniform bound

�Aε�α,β ≤ �A�α,β , since

‖Aε
s,t (x) − Aε

s,t (y)‖W =
∥∥∥∥
∫
R

ρε(u)[A(t − u, x) − A(s − u, x) − A(t − u, y) + A(s − u, y)]du
∥∥∥∥
W

≤ �A�α,β |t − s|α‖x − y‖β
V ,

as well as similar uniform bounds for ‖As,t‖β , etc. Interpolating these estimates together,

convergence of Aε to A in Cα−δ
t Cβ−δ

V ,W as ε → 0, for any δ > 0, immediately follows. �

Observe that in the above giving up a δ of regularity is not an issue in terms of defining∫ ·
0 A(ds, xs), since we can always find δ > 0 small enough such that it still holds α − δ +

(β − δ)γ > 1.

Another more functional way to define nonlinear Young integrals is the following one:
for any β > 0, consider the map J : V → L(Cβ

V ,W ;W ) given by x �→ δx ; such a map is
trivially β-Hölder regular, since

‖J x − J y‖L(Cβ
V ,W ;W )

= sup
g∈Cβ

V ,W

‖〈J x − J y, g〉‖W
‖g‖β

= sup
g∈Cβ

V ,W

‖g(x)− g(y)‖W
‖g‖β

≤ ‖x − y‖β
V .

where we denoted by 〈·, ·〉 the pairing between L(Cβ
V ,W ;W ) and Cβ

V ,W . Therefore for any

x ∈ Cγ
t V , the map t �→ J xt = δxt is now an element of Cγβ

t L(Cβ
V ,W ;W ). If on the other
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hand A ∈ Cα
t C

β
V ,W and α + γβ > 1, then we can define the (linear) Young integral

∫ t

0
〈δxs , Ads〉 = lim|�|→0

∑
i

〈δxti , Ati ,ti+1〉 = lim|�|→0

∑
i

Ati ,ti+1(xti )

which immediately shows that it coincides with the definition from Sect. 2.
While this construction might seem unnecessarily abstract, it shows that nonlinear Young

integrals can be regarded as linear ones, after the nonlinear transformation x �→ δx has been
applied. It also allows to give intuitive derivations of several integral relations: for instance
by Young product rule it must hold

〈δxt , At 〉 − 〈δx0 , A0〉 =
∫ t

0
〈δxs , Ads〉 +

∫ t

0
〈dδxs , As〉

which is the abstract analogue of the Itô-like formula from Proposition 2.13.
We finally mention a third construction of nonlinear Young integrals, given in [29] by

means of fractional calculus, in the spirit of the results by Zähle [45] for the classical Young
integral. Fractional calculus is a powerful tool in the study of detailed properties of solutions
to classical YDEs, see [31,32] and the references therein.

The statement therein is restricted to the case V = R
d , although we believe the same

proof extends to more general Banach spaces.

Theorem A.5 Let A ∈ Cα
t C

β
loc, x ∈ Cγ

t with α + βγ > 1 and δ ∈ (1 − α, βγ ). Then the
following identity holds:

∫ T

0
A(ds, xs) =− 1


(δ)
(1− δ)

{∫ T

0

AT−(t, xt )

(T − t)1−δ
dt

+ δ

∫ T

0

∫ t

0

AT−(t, xt ) − AT−(t, xr )

(T − t)1−δ(t − r)1+δ
drdt

+ (1− δ)

∫ T

0

∫ T

s

A(t, xt ) − A(s, xt )

(t − s)2−δsδ
dtds

− δ(1− δ)

∫ T

0

∫ s

0

∫ T

s

As,t (xt ) − As,t (xr )

(t − s)2−δ(t − r)1+δ
dtdrds

where AT−(t, z) := A(t, z) − A(T , z).

See Theorem 1 from [29] for a proof.

A.3 The Set of Solutions to Nonlinear YDEs

We restrict here to the case V = R
d . Inspired by a series of results by Stampacchia, Vidossich,

Browder, Gupta and others (see [43] and the references therein), we want to study the
topological structure of the set

C(x0, A) =
{
x ∈ Cα

t such that xt = x0 +
∫ t

0
A(ds, xs) for all t ∈ [0, T ]

}

where A ∈ Cα
t C

β,λ
x with α(1+β) > 1 and β+λ ≤ 1; namely,C(x0, A) is the set of solutions

to the Cauchy problem associated to (x0, A). Recall that by Corollary 3.5 and Proposition 3.7,
existence of global solutions is granted, but uniqueness is not unless A ∈ Cα

t C
1+β
loc ; therefore
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C(x0, A)may not consist of a singleton. The following result is an extension of Proposition 43
from [22], where the structure of the set C(x0; A) was already addressed.

Theorem A.6 Let A ∈ Cα
t C

β,λ
x with α, β, λ as above, x0 ∈ R

n; then the set C(x0, A) is
nonempty, compact and simply connected. Moreover, for any fixed y ∈ R

d , the map

R
d × Cα

t C
β,λ
x " (x0, A) �→ d(y,C(x0, A)) ∈ R

is lower semincontinuous.

Here we recall that for y ∈ Cα
t , K ⊂ Cα

t , the distance of an element from a set is defined
by

d(y, K ) = inf
z∈K ‖y − z‖α.

Amain tool in the proof of Theorem A.6 is the use of the Browder–Gupta theorem from [6];
we recite here a slight modification due to Gorniewicz.

Theorem A.7 (Theorem 69.1, Chapter VI from [23]) Let X be a metric space, (E, ‖ · ‖) a
Banach space and f : X → E a proper map, i.e. f is continuous and for every compact
K ⊂ E the set f −1(K ) is compact. Assume further that for each ε > 0 a proper map
fε : X → E is given and the following two conditions are satisfied:

i. ‖ fε(x) − f (x)‖ ≤ ε for all x ∈ X;
ii. for any ε > 0 and u ∈ E such that ‖u‖ ≤ ε, the equation fε(x) = u has exactly one

solution.

Then the set S = f −1(0) is Rδ in the sense of Aronszajn.

Recall that an Rδ set is the intersection of a decreasing sequence of compact absolute
retracts, thus always simply connected.

In order to prove Theorem A.6 we need the a preliminary lemma.

Lemma A.8 For A as above and for any y ∈ Cα
t , there exists at least one solution x ∈ Cα

t to

xt = yt +
∫ t

0
A(ds, xs) ∀ t ∈ [0, T ]; (A.4)

moreover, there exists C = C(α, β, T ) such that any solution satisfies the a priori estimate

‖x‖α ≤ C exp(C‖A‖2α,β,λ + ‖y‖2α)(1+ |y0|). (A.5)

If in addition A ∈ Cα
t C

1+β
loc , then the solution is unique.

Proof Set Ã(t, x) = A(t, x) + yt , then x is a solution to (A.4) if and only if it solves

xt = y0 +
∫ t

0
Ã(ds, xs)

where Ã ∈ Cα
t C

β,λ
x with ‖ Ã‖α,β,λ ≤ ‖A‖α,β,λ + ‖y‖α . Existence and the estimate (A.5)

then follow from Corollary 3.5 and Proposition 3.7; A ∈ Cα
t C

1+β
loc implies Ã ∈ Cα

t C
1+β
loc and

so uniqueness follows from Corollary 3.13. �
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Proof of Theorem A.6 We divide the proof in several steps.
Step1:C(x0, A)nonempty, compact.Nonemptiness follows immediately fromLemmaA.8

applied to y ≡ x0; let xn be a sequence of elements of C(x0, A), then by (A.5) they are uni-
formly bounded inCα

t and so by Ascoli–Arzelà we can extract a (not relabelled) subsequence
xn → x in Cα−ε

t for all ε > 0, for some x ∈ Cα
t . Choosing ε > 0 sufficiently small such

that α+β(α− ε) > 1, by Theorem 2.7 the map z· �→
∫ ·
0 A(ds, zs) is continuous from Cα−ε

t
to Cα

t , therefore

xn· = x0 +
∫ ·

0
A(ds, xns ) → x0 +

∫ ·

0
A(ds, xs) = x· in Cα

t ,

which shows compactness.
Step 2: C(x0, A) connected. Given A ∈ Cα

t C
β,λ
x , consider a sequence Aε ∈ Cα

t C
1+β,λ
x

such that

‖Aε‖α,β,λ ≤ 2‖A‖α,β,λ, Aε → A in Cα
t C

β
loc as ε → 0;

this is always possible, for instance by taking Aε = ρε∗A, {ρε}ε>0 being a family of standard
spatial mollifiers. For x0 ∈ R

d fixed, take R > 0 big enough such that

C exp(C‖Aε‖2α,β,λ + ‖x0 + y‖2α)(1+ |y0 + x0|) ≤ R ∀ ε ∈ (0, 1), y ∈ Cα
t s.t. ‖y‖α ≤ 1,

where C is the constant appearing in (A.5); this is always possible due to the uniform bound
on ‖Aε‖α,β,λ. Define the metric space E to be

E = {
z ∈ Cα

t : ‖z‖α ≤ R
}
, dE (z1, z2) = ‖z1 − z2‖α;

and define maps f , fε : E → Cα
t by

f (x) = x· − x0 −
∫ ·

0
A(ds, xs), fε(x) = x· − x0 −

∫ ·

0
Aε(ds, xs).

By Theorem 2.7, they are continuous maps from E to Cα
t ; by reasoning exactly as in Step 1

it is easy to check thar they are proper. Observe that an element x ∈ E satisfies f (x) = y if
and only if it satisfies

x ∈ Cα
t , xt = x0 + yt +

∫ t

0
A(ds, xs) ∀ t ∈ [0, T ], ‖x‖α ≤ R,

similarly for fε; moreover the bound ‖x‖α ≤ R is trivially satisfied for all y such that
‖y‖α ≤ 1, by our choice of R and Lemma A.8. It follows that, for any such y, fε(x) = y
has exactly one solution x ∈ E . In order to apply Theorem A.7 and get the conclusion, it
remains to show that fε → f uniformly in E ; but by Theorem 2.7 it holds

‖ f (z) − fε(z)‖α =
∥∥∥∥
∫ ·

0
A(ds, xs) −

∫ ·

0
Aε(ds, xs)

∥∥∥∥
α

� ‖A − Aε‖α,β,R(1+ ‖z‖α)

� ‖A − Aε‖α,β,R(1+ R) → 0 as ε → 0

and the can conclude that f −1(0) = C(x0, A) is simply connected in E , thus also in Cα
t .

Step 3: lower semicontinuity. Consider now a sequence (xn0 , An) → (x0, A) in R
d ×

Cα
t C

β,λ
x , we need to show that for any fixed y ∈ Cα

t it holds

d(y,C(x0, A)) ≤ lim inf
n→∞ d(y,C(xn0 , An)).
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Since by Step 1 the set C(xn0 , An) is compact, it is always possible to find xn ∈ C(xn0 , An)

such that

‖y − xn0‖ = (y,C(xn0 , An));
we can assume wlog that lim d(y,C(xn0 , An)) exists, since otherwise we can extract a subse-

quence realizing the liminf. Since (xn0 , An) is convergent, it is also bounded inRd×Cα
t C

β,λ
x ,

which implies by estimate (A.5) that the sequence {xn}n is bounded in Cα
t . It is not difficult

to see, invoking Ascoli–Arzelà and going through the same reasoning as in Step 1, that we
can extract a (not relabelled) subsequence such that xn → x in Cα

t where x ∈ C(x0, A). As
a consequence

d(y,C(x0, A)) ≤ ‖y − x‖α = lim
n→∞‖y − xn‖α = lim inf

n→∞ d(y,C(xn0 , An))

which gives the conclusion. �

TheoremA.6 has relevant consequence when consideringC(x0, A) as a multivalued map;
we refer the reader to [7] for an overview on the topic.

Recall that, given a complete metric space (E, d), the space

K (E) = {K ⊂ E : K is compact}
is itself a complete metric space with the Hausdorff metric

dH (K1, K2) = max{ sup
a∈K1

d(a, K2), sup
b∈K2

d(b, K1)}

and that moreover

dH (K1, K2) = sup
a∈E

|d(a, K1) − d(a, K2)| = max
a∈K1∪K2

|d(a, K1)− d(a, K2)|.

If we endow the space (K (E), dH ) with its Borel σ -algebra, then it’s possible to show that
a map F : (�, A) → (K (E), dH ) is measurable if and only if, for all a ∈ E , the map

� " ω �→ d(a, F(ω)) ∈ R

is measurable.

Corollary A.9 The map from R
d × Cα

t C
β,λ
x to K (Cα

t ) given by (x0, A) �→ C(x0, A) is a
measurable multifunction.

Proof It follows immediately fromTheoremA.6 and the fact that lower semicontinuousmaps
are measurable. �

Remark A.10 For simplicity we have only treated the case V = R
d , but it’s clear that Theo-

rem A.6 admits several extensions; for instance it can be readapted to the case of equations
of the form (3.22) with A ∈ Cα

t C
β,λ
x and F continuous of linear growth. In alternative, one

can consider a general Banach space V and A ∈ Cα
t C

β,λ
V ,W with W compactly embedded in

V ; this is enough to grant global existence by Corollary 3.5 and the usual a priori estimates.

123



Journal of Dynamics and Differential Equations (2023) 35:985–1046 1045

References

1. Ambrosio, L.: Transport equation and Cauchy problem for BV vector fields. Inventiones Mathematicae
158(2), 227–260 (2004)

2. Bailleul, I.: Flows driven by rough paths. Revista Matemática Iberoamericana 31(3), 901–934 (2015)
3. Bailleul, I., Gubinelli, M.: Unbounded rough drivers. Ann. Fac. Sci. Toulouse Math. 26(4), 795–830

(2017)
4. Bailleul, I., Riedel, S.: Rough flows. J. Math. Soc. Jpn. 71(3), 915–978 (2019)
5. Bellingeri, C., Djurdjevac, A, Friz, P.K., Tapia, N.: Transport and continuity equations with (very) rough

noise. Preprint arXiv:2002.10432 (2020)
6. Browder, F.E., Gupta, C.P.: Topological degree and nonlinear mappings of analytic type in Banach spaces.

J. Math. Anal. Appl. 26(2), 390–402 (1969)
7. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions, vol. 580. Springer, Berlin

(2006)
8. Catellier, R.: Rough linear transport equation with an irregular drift. Stoch. Partial Differ. Equ. Anal.

Comput. 4(3), 477–534 (2016)
9. Catellier, R., Gubinelli, M.: Averaging along irregular curves and regularisation of ODEs. Stoch. Process.

Appl. 126(8), 2323–2366 (2016)
10. Chouk, K., Gubinelli, M.: Nonlinear PDEs with modulated dispersion II: Korteweg–de Vries equation.

Preprint arXiv:1406.7675 (2014)
11. Chouk, K., Gubinelli, M.: Nonlinear PDEs with modulated dispersion I: nonlinear Schrödinger equations.

Commun. Partial Differ. Equ. 40(11), 2047–2081 (2015)
12. Coghi, M., Nilssen, T.: Rough nonlocal diffusions. Preprint arXiv:1905.07270 (2019)
13. Cong, N.D., Duc, L.H., Hong, P.T.: Nonautonomous Young differential equations revisited. J. Dyn. Differ.

Equ. 30(4), 1921–1943 (2018)
14. Davie, A.M.: Differential equations driven by rough paths: an approach via discrete approximation. Appl.

Math. Res. Express 2008 (2008)
15. Diehl, J., Friz, P.K., Stannat, W.: Stochastic partial differential equations: a rough paths view on weak

solutions via Feynman-Kac. Annales de la Faculté des sciences de Toulouse: Mathématiques 26, 911–947
(2017)

16. DiPerna, R.J., Lions, P.L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent.
Math. 98(3), 511–547 (1989)

17. Feyel, D., de La Pradelle, A.: Curvilinear integrals along enriched paths. Electron. J. Probab. 11, 860–892
(2006)

18. Friz, P.K., Hairer, M.: A course on rough paths. Universitext. Springer, Cham, 2014. With an introduction
to regularity structures

19. Friz, P.K., Victoir, N.B.: Multidimensional stochastic processes as rough paths. volume 120 of Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2010. Theory and
applications

20. Galeati, L., Gubinelli, M.: Noiseless regularization by noise. Preprint arXiv:2003.14264 (2020)
21. Galeati, L., Gubinelli, M.: Prevalence of ρ-irregularity and related properties. Preprint arXiv:2004.00872

(2020)
22. Galeati, L., Harang, F.A.: Regularization of multiplicative SDEs through additive noise. Preprint

arXiv:2008.02335 (2020)
23. Górniewicz, L.: Topological Fixed Point Theory ofMultivaluedMappings, vol. 4. Springer, Berlin (2006)
24. Gubinelli, M.: Controlling rough paths. J. Funct. Anal. 216(1), 86–140 (2004)
25. Gubinelli, M., Lejay, A., Tindel, S.: Young integrals and SPDEs. Potent. Anal. 25(4), 307–326 (2006)
26. Harang, F.A., Ling, C.: Regularity of Local times associated to Volterra-L\’evy processes and path-wise

regularization of stochastic differential equations. Preprint arXiv:2007.01093 (2020)
27. Harang, F.A., Mayorcas, A.: Pathwise Regularisation of Singular Interacting Particle Systems and their

Mean Field Limits. Preprint arXiv:2010.15517 (2020)
28. Harang, F.A., Perkowski, N.: C-infinity regularization of ODEs perturbed by noise. Preprint

arXiv:2003.05816 (2020)
29. Hu, Y., Lê, K.: Nonlinear Young integrals via fractional calculus. In: Stochastics of Environmental and

Financial Economics, pp. 81–99. Springer, Cham (2016)
30. Hu, Y., Lê, K.: Nonlinear Young integrals and differential systems in Hölder media. Trans. Am. Math.

Soc. 369(3), 1935–2002 (2017)
31. Hu,Y., Nualart, D.: Differential equations driven by Hölder continuous functions of order greater than

1/2. In: Stochastic Analysis and Applications, pp. 399–413. Springer (2007)

123

http://arxiv.org/abs/2002.10432
http://arxiv.org/abs/1406.7675
http://arxiv.org/abs/1905.07270
http://arxiv.org/abs/2003.14264
http://arxiv.org/abs/2004.00872
http://arxiv.org/abs/2008.02335
http://arxiv.org/abs/2007.01093
http://arxiv.org/abs/2010.15517
http://arxiv.org/abs/2003.05816


1046 Journal of Dynamics and Differential Equations (2023) 35:985–1046

32. Hu, Y., Nualart, D.: Rough path analysis via fractional calculus. Trans. Am.Math. Soc. 361(5), 2689–2718
(2009)

33. Lejay, A.: Controlled differential equations as Young integrals: a simple approach. J. Differ. Equ. 249(8),
1777–1798 (2010)

34. Lyons, T.: Differential equations driven by rough signals (I): an extension of an inequality of L.C. Young.
Math. Res. Lett. 1(4), 451–464 (1994)

35. Lyons, T.: Differential equations driven by rough signals. Revista Matemática Iberoamericana 14(2),
215–310 (1998)

36. Maurelli, M.: Regularization by noise in finite dimension. PhD thesis, Scuola Normale Superiore di Pisa
37. Nualart, D., Rascanu, A.: Differential equations driven by fractional Brownian motion. Collect. Math.

53(1), 55–81 (2002)
38. Nualart, D., Xia, P.: On nonlinear rough paths. Preprint arXiv:1904.11526 (2019)
39. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer,

Berlin (2012)
40. Samko, S.G., Kilbas, A.A.,Marichev,O.I.: Fractional Integrals andDerivatives, vol. 1. Gordon andBreach

Science Publishers, Yverdon Yverdon-les-Bains (1993)
41. Shaposhnikov, A.V.: Some remarks on Davie’s uniqueness theorem. Proc. Edinburgh Math. Soc. 59(4),

1019–1035 (2016)
42. Van Kampen, E.R.: Remarks on systems of ordinary differential equations. Am. J. Math. 59(1), 144–152

(1937)
43. Vidossich, G.: On the structure of the set of solutions of nonlinear equations. J. Math. Anal. Appl. 34(3),

602–617 (1971)
44. Young, L.C.: An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. 67(1),

251–282 (1936)
45. Zähle, M.: Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Relat.

Fields 111(3), 333–374 (1998)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/1904.11526

	Nonlinear Young Differential Equations: A Review
	Abstract
	1 Introduction
	2 The Nonlinear Young Integral
	2.1 Preliminaries
	2.2 Construction and First Properties
	2.3 Nonlinear Young Calculus

	3 Existence, Uniqueness, Numerical Schemes
	3.1 Existence
	3.2 A Priori Estimates
	3.3 Uniqueness
	3.4 The Case of Continuous t A
	3.5 Further Variants
	3.5.1 Mixed Equations
	3.5.2 Fractional Young Equations


	4 Flow
	4.1 Flow of Diffeomorphisms
	4.2 Differentiability of the Itô map

	5 Conditional Uniqueness
	5.1 A Van Kampen Type Result for YDEs
	5.2 Averaged Translations and Conditional Comparison Principle
	5.3 Conditional Rate of Convergence for the Euler Scheme

	6 Young Transport Equations
	7 Parabolic Nonlinear Young PDEs
	Acknowledgements
	A Appendix
	A.1 Some Useful Lemmas
	A.2 Alternative Constructions of Young Integrals
	A.3 The Set of Solutions to Nonlinear YDEs

	References




