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Abstract
We study fractional differential equations of Riemann–Liouville and Caputo type in Hilbert
spaces. Using exponentially weighted spaces of functions defined on R, we define fractional
operators by means of a functional calculus using the Fourier transform. Main tools are
extrapolation- and interpolation spaces. Main results are the existence and uniqueness of
solutions and the causality of solution operators for non-linear fractional differential equa-
tions.

Keywords Fractional differential equations · Caputo derivative · Riemann–Liouville
derivative · Causality
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1 Introduction

The goal of this paper is to develop a unified framework for discussing fractional differential
operators and the associated differential equation in spaces of functions mapping to general
Hilbert spaces H .

Specifically, traditional fractional calculus (in the case where H = R
d with some d ∈ N)

usually deals with functions defined on intervals of the form [a, b] or [a,∞[with some finite
a ∈ R and then discusses initial value problems with initial conditions being given at the
point a (often chosen as a = 0) [3,12].
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On the other hand, the techniques from functional analysis and functional/operational
calculus that we will use are most naturally specified in the context of functions defined
on the entire real line. This is also the setting preferred by certain engineers and scientists
that apply fractional derivatives in areas like signal processing and systems theory where
causality is a desired property, cf., e.g., [7].

The concept of a fractional derivative ∂α
0 , α ∈ ]0, 1], which we utilize, will be based on

inverting a suitable continuous extension of the Riemann–Liouville fractional integral of
continuous functions f ∈ Cc(R) with compact support given by

t �→ 1√
2π

∫ t

−∞
1

�(α)
(t − s)α−1 f (s) ds

as an apparently natural interpolation suggested by the iterated kernel formula for repeated
integration. The choice of the lower limit as−∞ is determined by ourwish to study dynamical
processes, for which causality1 should play an important role.

It is a pleasant fact that the classical definition of ∂α
0 in the sense of [2] coincides with the

other natural choice of ∂α
0 as a function of ∂0 in the sense of a spectral functional calculus of

a realization of ∂0 as a normal operator in a suitable Hilbert space setting. This is specified
below.

TheHilbert space framework is based on observations in [9] and has already been exploited
for linear fractional partial differential equations in [10]. In this paper, however, we study
fractional differentiation and different notions of nonlinear fractional differential equations,
using extrapolated fractional Sobolev spaces.

The approach taken in this paper contrasts with other approaches in fractional calculus.
Indeed, in [13] a fractional derivative is defined as a derivative of a fractional integral, in [4]
the fractional derivative of C-valued functions on a bounded interval and linear fractional
differential equations are also studied with a functional calculus and fractional Sobolev
spaces. Here, using the above mentioned functional calculus of the derivative operator, we
obtain a causal implementation of the fractional derivative. The property of causality is not
shared by the fractional derivative operator constructed in [4] (cf. [4, Formula (2.3)]).

Our approach to study fractional differential equations is to identify initial value problems
involving fractional derivatives as a fixed point problem in a suitable Hilbert space. More
precisely, we will show that equations dealing with both standard cases of fractional deriva-
tives, the Riemann–Liouville derivative and the Caputo derivative, can be studied as such a
fixed point problem, however in different spaces. A similar idea was already used by three
of the authors in [5] to study differential equations with delay effects.

The article is structured as follows. We begin to introduce the Hilbert space setting in
Sect. 2 and to define the fractional derivative in terms of a functional calculus. Moreover, we
provide an explicit representation formula for the fractional integral in Theorem 2.6. Section
3 is devoted to the definition and basic properties of inter- and extrapolation spaces associated
with the differentiation operator introduced in Sect. 2. In contrast to the spaces used in [5]
and [9] we will need a continuous scale of extrapolation spaces to deal with fractional differ-
ential equations. In Sect. 4 we provide the abstract solution theory for fractional differential

1 Other frequent choices such as

t �→ 1√
2π

χ]a,∞[ (t)
∫ t

a

1
�(α)

(t − s)α−1 f (s) ds

for a ∈ R, would lose time-shift invariance (a suggestive choice is a = 0), which we consider undesirable. For
our choice of the limit case a = −∞ it should be noted that the Liouville and the Caputo fractional derivative
essentially coincide.
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equations posed as functional equations in the spaces introduced before. More precisely, we
consider equations of the form

∂α
0 u = F(u) (1.1)

for suitable functions F , which act on extrapolation spaces and satisfy a certain Lipschitz-
condition and show that these equations can be solved easily using the contraction mapping
theorem. Moreover, we address the issue of causality for the associated solution operator. In
the concluding section we study classical initial value problems for Riemann–Liouville and
Caputo fractional derivatives, as they are treated in the literature and show that both can be
reformulated as equations of the form (1.1) and their well-posedness is a direct consequence
of the abstract results obtained in the previous section.

2 Fractional Derivative in a Hilbert Space Setting

In the present section, we introduce the necessary operators to be used in the following. We
will formulate all results in the vector-valued, more specifically, in the Hilbert space-valued
situation.

To begin with, we introduce an L2-variant of the exponentially weighted space of continu-
ous functions that proved useful in the proof of the Picard–Lindelöf Theorem and is attributed
to Morgenstern, [6].

We denote by L p(R; H) and L1
loc(R; H) the space of p-Bochner integrable functions and

the space of locally Bochner integrable functions on a Hilbert space H , respectively.

Definition Let H be a Hilbert space, � ∈ R and p ∈ [1,∞]. For f ∈ L1
loc(R; H) we denote

e−�m f :=(R � t �→ e−�t f (t)). We define the normed spaces

L p
� (R; H):= { f ∈ L1

loc(R; H); e−�m f ∈ L p(R; H)
}
,

with norm

‖ f ‖L p
� (R;H):=

∥∥e−�m f
∥∥
L p(R;H)

=
(∫

R

‖ f (t)‖p
H e−p�t dt

)1/p
(p < ∞),

‖ f ‖L p
� (R;H):=

∥∥e−�m f
∥∥
L p(R;H)

= ess sup
∥∥e−�m f

∥∥
H (p = ∞).

Remark 2.1 The operator e−�m : L p
� (R; H) → L p(R; H), f �→ e−�m f is an isometric

isomorphism from L p
� (R; H) to L p(R; H). Moreover L2

�(R; H) is a Hilbert space with
scalar product

( f , g) �→ 〈 f , g〉L2
�(R;H) =

∫
R

〈 f (t), g(t)〉H e−2�t dt .

Next, we introduce the time derivative.

Definition Let H be a Hilbert space.

1. Let f , g ∈ L1
loc(R; H). We say that f ′ = g, if for all φ ∈ C∞

c (R)

−
∫
R

f φ′ =
∫
R

gφ.
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2. Let � ∈ R. We define

∂0,� : H1
� (R; H) ⊆ L2

�(R; H) → L2
�(R; H)

f �→ f ′,

where H1
� (R; H):={ f ∈ L2

�(R; H); f ′ ∈ L2
�(R; H)}.

The index 0 in ∂0,� shall indicate that the derivative is with respect to time. We will
introduce the fractional derivatives and fractional integrals by means of a functional calculus
for ∂0,�. For this, we introduce the Fourier–Laplace transform.

Definition Let H be a complex Hilbert space and � ∈ R. We recall that the Fourier transform
can be established as a unitary mapping F : L2(R; H) → L2(R; H), which for g ∈
L1(R; H) ∩ L2(R; H) is given by

Fg(ξ) = 1√
2π

∫
R

g(t)e−iξ t dt, ξ ∈ R.

Wedefine the Fourier–Laplace transform on L2
�(R; H) as the unitarymappingL�:=Fe−�m :

L2
�(R; H) → L2(R; H)

From now on, H denotes a complex Hilbert space. With the latter notion at hand, we
provide the spectral representation of ∂0,� as the multiplication-by-argument operator

dom(m):={ f ∈ L2(R; H); (R � ξ �→ ξ f (ξ)) ∈ L2(R; H)},
m : L2(R; H) ⊇ dom(m) → L2(R; H), f �→ (R � ξ �→ ξ f (ξ)).

Theorem 2.2 Let � ∈ R. Then

1. ∂0,0 = F∗imF ,
2. (e−�m)∗∂0,0e−�m = ∂0,� − �,
3. ∂0,� = L∗

�

(
im + �

)L�.

Proof For the proof of (a) we refer to [1, Vol 1, p.161-163]. Part (b) can easily obtained by
the product rule and (c) follows from (a) and (b).

Theorem 2.2 tells us that ∂0,� is unitarily equivalent to a multiplication operator with
spectrum equal to iR + � = {z ∈ C;Re z = �}. In particular, we are now in the position to
define functions of ∂0,�.

Definition Let � ∈ R and F : dom(F) ⊆ {it + � ; t ∈ R} → C be measurable such that
{t ∈ R ; it + � /∈ dom(F)} has Lebesgue measure zero. We define

F(∂0,�):=L∗
�F
(
im + �

)L�,

where

F
(
im + �

)
f :=
(
R � ξ �→ F

(
iξ + �
)
f (ξ)
)

in case f ∈ L2(R; H) is such that
(
ξ �→ F

(
iξ + �
)
f (ξ)
) ∈ L2(R; H).

We record an elementary fact on multiplication operators.
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Proposition 2.3 Let F be as in the previous definition. We denote ‖F‖�,∞ :=ess supξ∈R
|F(iξ + �)| ∈ [0,∞]. The operator F(∂0,�) is bounded, if and only if ‖F‖�,∞ < ∞. If
F(∂0,�) is bounded, then ‖F(∂0,�)‖ = ‖F‖�,∞.

Proof It is well-known that multiplication operators are bounded if and only if they stem
from a bounded function. Thus, the assertion follows from the unitarity of L�.

One important class of operators that can be rooted to be of the form just introduced are
fractional derivatives and fractional integrals:

Example 2.4 Let α > 0 and � ∈ R. Then the fractional derivative of order α is given by

∂α
0,� = L∗

�

(
im + �

)αL�

and the fractional integral of order α is given by

∂−α
0,� = L∗

�

( 1
im+�

)αL�.

Note that both expressions are well-defined in the sense of functions of ∂0,� defined above

and that ∂−α
0,� is bounded if and only if � �= 0. Moreover,

(
∂α
0,�

)−1 = ∂−α
0,� . We set ∂00,� as the

identity operator on L2
�(R; H).

In order to provide the connections to the more commonly known integral representation
formulas for the fractional integrals, we recall the multiplication theorem, that is,

√
2πF f · Fg = F( f ∗ g),

for f ∈ L1(R) and g ∈ L2(R; H).
We recall the cut-off function

χR>0(t):=
{
1, t > 0,

0, t ≤ 0.

Lemma 2.5 For all �, α > 0, and ξ ∈ R, we have
√
2πL�

(
t �→ 1

�(α)
tα−1χR>0(t)

)
(ξ) = ( 1

iξ+�

)α
. (2.1)

Proof We start by defining the function

f (ξ):=
∞∫

0

e−(iξ+�)ssα−1 ds

for ξ ∈ R. Then we have

f ′(ξ) =
∞∫

0

−ie−(iξ+�)ssα ds

= −i
α

iξ + �
f (ξ),

where we have used integration by parts. By separation of variables, it follows that

f (ξ) = f (0)
�α

(iξ + �)α
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for ξ ∈ R. Now, since

f (0) =
∞∫

0

e−�ssα−1 ds = 1

�α
�(α),

we infer

f (ξ) = �(α)
1

(iξ + �)α
.

Since the left hand side of (2.1) equals 1
�(α)

f (ξ), the assertion follows.

Next, we draw the connection from our fractional integral to the one used in the literature.

Theorem 2.6 For all �, α > 0, f ∈ L2
�(R; H) and t ∈ R, we have

∂−α
0,� f (t) =

∫ t

−∞
1

�(α)
(t − s)α−1 f (s) ds.

Proof. We set g:=(R � t �→ 1
�(α)

tα−1χR>0(t)
)
. Then g ∈ L1

�(R). For f ∈ L2
�(R; H) we

have by Young’s convolution inequality

(e−�mg) ∗ (e−�m f ) = e−�m(g ∗ f ) ∈ L2(R; H).

Using the convolution property of the Fourier transform we obtain
√
2πL�g · L� f = L�(g ∗ f ).

Using Lemma 2.5 we compute

∂−α
0,� f = L∗

�

(
1

im + �

)α

L� f

= L∗
�

(√
2πL�g · L� f

)
= L∗

�L�(g ∗ f )

=
∫ (·)

−∞
1

�(α)

(
(·) − s
)α−1

f (s) ds.

Corollary 2.7 Let �, α > 0. Then for all t ∈ R, we have for h ∈ H

(∂−α
0,�χR>0h)(t) =

{
1

�(α+1) t
αh, t > 0,

0, t ≤ 0.

Proof We use Theorem 2.6 and obtain for t ≤ 0

(∂−α
0,�χR>0h)(t) =

∫ t

−∞
1

�(α)
(t − s)α−1χR>0(s) h ds = 0,

since the integrand has positive support. For t > 0, we obtain

(∂−α
0,�χR>0h)(t) =

∫ t

0

1
�(α)

(t − s)α−1 ds h

=
∫ t

0

1
�(α)

sα−1 ds h = 1
�(α)

1
α
tα h.
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Remark 2.8 It seems to be hard to determine analogous formulas for the case � < 0, although
the operator ∂−α

0,� for � < 0, α > 0 is bounded. The reason for this is that the corresponding
multiplier (im + �)−α is not defined in 0 and has a jump there. In particular, it cannot be
extended to an analytic function on some right half plane of C. This, however, corresponds
to the causality or anticausality of the operator ∂−α

0,� by a Paley-Wiener result ([8] or [11, 19.2
Theorem]) and hence, we cannot expect to get a convolution formula as in the case � > 0.

3 Extra- and Interpolation Spaces

We begin to define extra- and interpolation spaces associated with the fractional derivative
∂α
0,� for � �= 0, α ∈ R. Since by definition

∂α
0,� = L∗

� (im + �)α L�,

we will define the extra- and interpolation spaces in terms of the multiplication operators
(im + �)α on L2(R; H).

Definition Let � �= 0. For each α ∈ R we define the space

Hα(im + �):=
⎧⎨
⎩ f ∈ L1

loc(R; H) ;
∫

R

‖(it + �)α f (t)‖2H dt < ∞
⎫⎬
⎭

and equip it with the natural inner product

〈 f , g〉Hα(im+�):=
∫

R

〈(it + �)α f (t), (it + �)αg(t)〉H dt

for each f , g ∈ Hα(im + �).

We shall use X ↪→ Y to denote the mapping X � x �→ x ∈ Y , if X ⊆ Y (under a
canonical identification, which will always be obvious from the context).

Lemma 3.1 For � �= 0 and α ∈ R the space Hα(im + �) is a Hilbert space. Moreover, for
β > α we have

jβ→α : Hβ(im + �) ↪→ Hα(im + �)

where the embedding is dense and continuous with ‖ jβ→α‖ ≤ |�|α−β .

Proof Note that Hα(im +�) = L2(μ; H), where μ is the Lebesgue measure on R weighted
with the function t �→ |it + �|2α . Thus, Hα(im + �) is a Hilbert space by the Fischer–Riesz
theorem. Let now β > α and f ∈ Hβ(im + �). Then
∫

R

‖(it + �)α f (t)‖2H dt =
∫

R

(t2 + �2)α−β‖(it + �)β f (t)‖2H dt ≤ (�2)α−β ‖ f ‖2Hβ (im+�)
,

which proves the continuity of the embedding jβ→α and the asserted norm estimate. The
density follows, since C∞

c (R; H) lies dense in Hγ (im + �) for each γ ∈ R.
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Definition Let � �= 0 and α ∈ R. We consider the space

Wα
� (R; H):=

{
u ∈ L2

�(R; H) ; L�u ∈ Hα(im + �)
}

equipped with the inner product

〈u, v〉�,α:=〈L�u,L�v〉Hα(im+�)

and set Hα
� (R; H) as its completion with respect to the norm induced by 〈·, ·〉�,α.

Lemma 3.2 Let � �= 0.

(a) For α ≥ 0 we have that Hα
� (R; H) = Wα

� (R; H) = dom(∂α
0,�).

(b) The operator

L� : Wα
� (R; H) ⊆ Hα

� (R; H) → Hα(im + �)

has a unique unitary extension, which will again be denoted by L�.

(c) For α, β ∈ R with β > α we have that

ιβ→α : Hβ
� (R; H) ↪→ Hα

� (R; H)

is continuous and dense with ‖ιβ→α‖ ≤ |�|α−β .

(d) For each β > 0 and α ∈ R the operator

∂
β
0,� : Hβ+|α|

� (R; H) ⊆ Hα
� (R; H) → Hα−β

� (R; H)

has a unique unitary extension, which will again be denoted by ∂
β
0,�.

Proof. (a) Let α ≥ 0. For u ∈ Hα(im+�), i.e. u ∈ L1
loc(R; H) and (im+�)αu ∈ L2(R; H),

we infer that u ∈ L2(R; H). It follows that u ∈ dom((im + �)α). Hence Hα(im + �) =
dom((im + �)α). Moreover,

u ∈ Wα
� (R; H) ⇔ u ∈ L2

�(R; H) ∧ L�u ∈ Hα(im + �)

⇔ u ∈ L2
�(R; H) ∧ L�u ∈ dom

(
(im + �)α

)
⇔ u ∈ dom(∂α

0,�),

by Example 2.4. Moreover, since

L� : Wα
� (R; H) → Hα(im + �)

is unitary, we infer thatWα
� (R; H) is complete with respect to ‖·‖�,α = ‖L� ·‖Hα(im+�),

and thus Hα
� (R; H) = Wα

� (R; H).

(b) Obviously,

L� : Wα
� (R; H) ⊆ Hα

� (R; H) → Hα(im + �)

is isometric by the definition of the normon Hα
� (R; H).Moreover, its range is dense, since

L∗
�ϕ ∈ Wα

� (R; H) for each ϕ ∈ C∞
c (R; H) and thus, C∞

c (R; H) ⊆ L�

[
Wα

� (R; H)
]
.

Hence, the continuous extension of L� to Hα
� (R; H) is onto and, thus, unitary.

(c) Since ιβ→α = L∗
� jβ→αL�, the assertion follows from Lemma 3.1.
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(d) Since,

(im + �)β : Hα(im + �) → Hα−β(im + �)

f �→ (t �→ (it + �)β f (t)
)

is obviously unitary, we infer that for u ∈ Hβ+|α|
� (R; H)

‖∂β
0,�u‖�,α−β = ‖L�∂

β
0,�u‖Hα−β (im+�)

= ‖(im + �)βL�u‖Hα−β (im+�)

= ‖L�u‖Hα(im+�)

= ‖u‖�,α,

which shows that ∂
β
0,� is an isometry. Moreover, for ϕ ∈ C∞

c (R; H), we have that

(im + �)γ ϕ ∈ C∞
c (R; H) for all γ ∈ R and thus, in particular L∗

�(im + �)−βϕ ∈⋂
γ∈R Hγ

� (R; H) ⊆ Hβ+|α|
� (R; H). Next,

∂
β
0,�L∗

�(im + �)−βϕ = L∗
�(im + �)βL�L∗

�(im + �)−βϕ = L∗
�ϕ

and thus, L∗
�[C∞

c (R; H)] ⊆ ∂
β
0,�[Hβ+|α|

� (R; H)]. Since C∞
c (R; H) is dense in

Hα−β(im+�), we infer that L∗
�[C∞

c (R; H)] is dense in Hα−β
� (R; H) and thus, ∂β

0,� has
dense range. This completes the proof.

We conclude this section by providing an alternative perspective to elements lying in
Hα

� (R; H) for some α ∈ R (with a particular focus on α < 0). In particular, we aim for

a definition of a support for those elements which coincides with the usual support of L2

functions in the case α ≥ 0.

Lemma 3.3 Let � �= 0 and α ∈ R. Then

σ−1 : Wα
� (R; H) ⊆ Hα

� (R; H) → Hα−�(R; H)

f �→ (t �→ f (−t))

extends to a unitary operator. Moreover, for f ∈ Hα
� (R; H) we have

L−�σ−1 f = σ−1L� f and L∗−�σ−1 f = σ−1L∗
� f .

Proof For f ∈ Wα
� (R; H) we have that

L−�σ−1 f = σ−1L� f

and hence,∫

R

∥∥(it − �)α
(L−�σ−1 f

)
(t)
∥∥2
H dt =

∫

R

(
t2 + �2)α ∥∥(L� f

)
(−t)
∥∥2
H dt

=
∫

R

(
t2 + �2)α ∥∥(L� f

)
(t)
∥∥2
H dt = ‖ f ‖2Hα

� (R;H),

which proves the isometry of σ−1. Moreover, σ−1 has dense range, since σ−1[Wα
� (R; H)] =

Wα−�(R; H). Hence, σ−1 extends to a unitary operator. The equality L−�σ−1 f = σ−1L� f
holds for f ∈ Hα

� (R; H), since Wα
� (R; H) is dense in its completion Hα

� (R; H).
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Proposition 3.4 Let � �= 0, α ∈ R and f ∈ Hα
� (R; H). Then

〈 f , ·〉 : C∞
c (R; H) → C

given by

〈 f , ϕ〉:=
∫

R

〈L� f (t),L−�ϕ(t)〉H dt

defines a distribution. Moreover, for f ∈ Hα
� (R; H) and ϕ ∈ C∞

c (R; H) we have

〈 f , ϕ〉 = 〈 f , ∂−α
0,� e

2�mσ−1∂
−α
0,� σ−1ϕ〉�,α.

In particular, for α = 0

〈 f , ϕ〉 =
∫

R

〈 f (t), ϕ(t)〉H dt .

Note that the operator ∂−α
0,� e

2�mσ−1∂
−α
0,� σ−1 maps H

−α−� (R; H) to Hα
� (R; H) unitarily.

Proof. Let f ∈ Hα
� (R; H). We first prove that the expression 〈 f , ·〉 is indeed a distribution.

Due to Lemma 3.2(c) it suffices to prove this for f ∈ H−k
� (R; H) for some k ∈ N. Indeed,

if f ∈ H−k
� (R; H), then we know that

(
t �→ (it + �)−k (L� f

)
(t)
)

∈ L2(R; H)

and hence, for ϕ ∈ C∞
c (R; H) we obtain using Hölder’s inequality and the fact that

L−�ϕ(k) = (im + �)kL−�ϕ

|〈 f , ϕ〉| ≤
∫

R

|〈(it + �)−k(L� f )(t), (−it + �)k
(L−�ϕ
)
(t)〉H | dt

≤ ∥∥L� f
∥∥
H−k (im+�)

‖L−�

(
ϕ(k)
)

‖L2(R;H)

≤ ∥∥L� f
∥∥
H−k (im+�)

⎛
⎜⎝
∫

spt ϕ

e2�t dt

⎞
⎟⎠

1
2

‖ϕ(k)‖∞,

which proves that 〈 f , ·〉 is indeed a distribution. Next, we prove the asserted formula. For
this, we note the following elementary equality

σ−1L�ϕ = L�e
2�mσ−1ϕ

for ϕ ∈ L2
�(R; H). Let f ∈ Hα

� (R; H) and compute

〈 f , ϕ〉 = 〈L� f ,L−�ϕ〉L2(R;H)

= 〈L� f , σ−1L�σ−1ϕ〉L2(R;H)

= 〈(im + �)αL� f , (−im + �)−ασ−1L�σ−1ϕ〉L2(R;H)

= 〈(im + �)αL� f , σ−1(im + �)−αL�σ−1ϕ〉L2(R;H)

= 〈(im + �)αL� f , σ−1L�∂−α
0,� σ−1ϕ〉L2(R;H)

= 〈(im + �)αL� f ,L�e
2�mσ−1∂

−α
0,� σ−1ϕ〉L2(R;H)
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= 〈(im + �)αL� f , (im + �)αL�∂−α
0,� e

2�mσ−1∂
−α
0,� σ−1ϕ〉L2(R;H)

= 〈 f , ∂−α
0,� e

2�mσ−1∂
−α
0,� σ−1ϕ〉�,α

for each ϕ ∈ C∞
c (R; H). In particular, in the case α = 0 we obtain

〈 f , ϕ〉 = 〈 f , e2�mϕ〉�,0 =
∫

R

〈 f (t), ϕ(t)〉H dt .

Remark 3.5 The latter proposition shows that
⋃

� �=0,α∈R Hα
� (R; H) ⊆ D(R; H)′. In partic-

ular, the support of f ∈ Hα
� (R; H) is then well-defined by

⋂
{R \U ;U ⊆ R open, ∀ϕ ∈ C∞

c (U ; H) : 〈 f , ϕ〉 = 0},
and the second part of the latter proposition shows, that it coincides with the usual L2-support
if α ≥ 0. Moreover, we can now compare elements in Hα

� (R; H) and Hβ
μ (R; H) by saying

that those elements are equal if they are equal as distributions. We shall further elaborate on
this matter in Proposition 3.9. In particular, we shall show that f �→ 〈 f , ·〉 is injective. We
shall also mention that the notation 〈 f , ϕ〉 is justified, as it does not depend on � nor α.

Example 3.6 Let f ∈ L2
�(R; H). Then, by definition, ∂0,� f ∈ H−1

� (R; H).We shall compute
the action of ∂0,� f as a distribution. For this let ϕ ∈ C∞

c (R; H) and we compute with the
formula outlined in Proposition 3.4 for α = −1:

〈∂0,� f , ϕ〉 = 〈∂0,� f , ∂0,�e
2�mσ−1∂0,�σ−1ϕ〉�,−1

= 〈(im + �)−1L�∂0,� f , (im + �)−1L�∂0,�e
2�mσ−1∂0,�σ−1ϕ〉L2(R;H)

= 〈L� f ,L�e
2�mσ−1∂0,�σ−1ϕ〉L2(R;H)

= −〈L� f ,L�e
2�m∂0,�ϕ〉L2(R;H)

= −〈 f , e2�mϕ′〉L2
�(R;H)

= −
∫
R

〈 f (t), ϕ′(t)〉H dt .

Thus, ∂0,� f coincides with the distributional derivative of L2
�(R; H) functions.

Lemma 3.7 Let α ∈ R. Let H∞
� (R; H):=⋂k∈N Hk

� (R; H) for � �= 0.

(a) Let ϕ ∈ C∞
c (R; H). For all � > 0 we have ∂α

� ϕ ∈ C∞(R; H) ∩ H∞
� (R; H) and

inf spt ∂α
� ϕ ≥ inf spt ϕ. For �,μ > 0, α ∈ R we have ∂α

0,�ϕ = ∂α
0,μϕ.

(b) Let α ∈ R and μ, � �= 0. Let ψ ∈ C∞(R; H) ∩ H∞
� (R; H) ∩ H∞

μ (R; H). Then there

is (ϕn)n∈N ∈ C∞
c (R; H)N s.t. ϕn → ψ for n → ∞ in Hα

� (R; H) and Hα
μ(R; H) and

spt(ϕn) ⊆ spt(ψ) for n ∈ N.

Proof (a): Let α ∈ R. Let μ, � > 0. For α > 0 it holds that ∂α
� = ∂

α−�α�
� ∂

�α�
� and ∂

�α�
� ϕ =

ϕ(�α�) = ∂
�α�
μ ϕ ∈ C∞

c (R; H) and α − �α� < 0. Thus we may assume that α < 0. By
Theorem 2.6 we have ∂α

0,�ϕ = ∂α
0,μϕ and inf spt ∂α

0,�ϕ > −∞. From ϕ ∈ H∞
� (R; H) we

deduce ∂α
0,�ϕ ∈ H∞

� (R; H).
(b): Let k ∈ N with k ≥ α. We choose a sequence (χn)n∈N in C∞

c (R) such that spt χn ⊆
[−n − 1, n + 1], χn = 1 on [−n, n] and

sup
{
‖χ( j)

n ‖∞ ; j ∈ {0, . . . , k}, n ∈ N

}
< ∞.
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Setϕn :=χnψ ∈ C∞
c (R; H). Then spt(ϕn) ⊆ spt(ψ) for n ∈ N. Since Hk

ν (R; H) is dense and
continuously embedded into Hα

ν (R; H) (ν �= 0), it suffices to show that ϕn → ψ (n → ∞)
in Hk

� (R; H) and Hk
μ(R; H). Indeed, by the product rule, the choice of χn and dominated

convergence we obtain

ϕ(k)
n =

k∑
j=0

(k
j

)
χ

( j)
n ψ(k− j) = χnψ

(k) +
k∑
j=1

(k
j

)
χ

( j)
n ψ(k− j) → ψ(k)

for n → ∞ in L2
�(R; H) and in L2

μ(R; H).

Lemma 3.8 Let � �= 0 and α ∈ R. Then C∞
c (R; H) is dense in Hα

� (R; H).

Proof. Let f ∈ Hα
� (R; H). We first note that it suffices to prove the assertion for � > 0,

since the operator σ−1 from Lemma 3.3 leaves C∞
c (R; H) invariant. It is well known

that C∞
c (R; H) is dense in L2

�(R; H). We have ∂α
0,� f ∈ L2

�(R; H). Let (ψn)n∈N ∈
C∞
c (R; H)N with ψn → ∂α

0,� f (n → ∞) in L2
�(R; H). By Lemma 3.7(a) we have

∂−α
0,�ψn ∈ C∞(R; H) ∩ H∞

� (R; H) and by Lemma 3.7(b) we find (ϕn)n∈N ∈ C∞
c (R; H)N

with
∥∥∥∂−α

0,�ψn − ϕn

∥∥∥
�,α

→ 0 (n → ∞). Then

‖ f − ϕn‖�,α ≤
∥∥∥ f − ∂−α

0,�ψn

∥∥∥
�,α

+
∥∥∥∂−α

0,�ψn − ϕn

∥∥∥
�,α

→ 0 (n → ∞).

With this result at hand, we can characterize those distributions, which belong to
Hα

� (R; H) for some α ∈ R, � �= 0, in the following way.

Proposition 3.9 Let ψ ∈ D(R; H)′ and α ∈ R, � �= 0. Then, there exists f ∈ Hα
� (R; H)

such that

ψ(ϕ) = 〈 f , ϕ〉 (ϕ ∈ C∞
c (R; H))

in the sense of Proposition 3.4 if and only if there is C ≥ 0 such that

|ψ(ϕ)| ≤ C‖ϕ‖−�,−α

for each ϕ ∈ C∞
c (R; H).

Proof. Assume first that there is f ∈ Hα
� (R; H) representing ψ. Then we estimate

|ψ(ϕ)| = |〈 f , ϕ〉|

=
∣∣∣∣∣∣
∫

R

〈L� f (t),L−�ϕ(t)〉H dt

∣∣∣∣∣∣

=
∣∣∣∣∣∣
∫

R

〈(it + �)αL� f (t), (−it + �)−αL−�ϕ(t)〉H dt

∣∣∣∣∣∣
≤ ‖L� f ‖Hα(im+�)‖L−�ϕ‖H−α(im−�)

= ‖ f ‖�,α‖ϕ‖−�,−α

for each ϕ ∈ C∞
c (R; H). Let C ≥ 0 such that ψ satisfies for ϕ ∈ C∞

c (R; H)

|ψ(ϕ)| ≤ C ‖ϕ‖−�,−α .
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The operator A:=∂−α
0,� e

2�mσ−1∂
−α
0,� σ−1 : H−α−� (R; H) → Hα

� (R; H) (cf. Proposition 3.4) is
unitary. Thus for ϕ ∈ C∞

c (R; H)

∣∣ψ(A−1ϕ)
∣∣ ≤ C
∥∥A−1ϕ

∥∥−�,−α
= C ‖ϕ‖�,α .

Moreover, C∞
c (R; H) ⊆ Hα

� (R; H) is dense. Thus ψ(A−1·) can be extended continuously
to Hα

� (R; H). By the Riesz representation theorem, there is a f ∈ Hα
� (R; H) such that for

ϕ ∈ Hα
� (R; H)

ψ(A−1ϕ) = 〈 f , ϕ〉�,α .

By Theorem 3.4 we have for ϕ ∈ C∞
c (R; H)

ψ(ϕ) = ψ(A−1Aϕ) = 〈 f , Aϕ〉�,α = 〈 f , ϕ〉 .

In the next proposition, we shall also obtain the announced uniqueness statement, that is,
the injectivity of the mapping f �→ 〈 f , ·〉.
Proposition 3.10 Letα ∈ Randμ, � > 0.Moreover, let f ∈ Hα

� (R; H)and g ∈ Hα
μ(R; H).

Then the following statements are equivalent:

(i) f = g in the sense of distributions, i.e., for each ϕ ∈ C∞
c (R; H) we have that

∫

R

〈L� f (t),L−�ϕ(t)〉H dt =
∫

R

〈Lμg(t),L−μϕ(t)〉H dt .

(ii) ∂α
0,� f = ∂α

0,μg as functions in L1
loc(R; H).

(iii) There is a sequence (ϕn)n∈N in C∞
c (R; H) with ϕn → f in Hα

� (R; H) and ϕn → g
in Hα

μ(R; H) as n → ∞.

Proof (i)⇒(ii): Let ψ ∈ C∞
c (R; H) and ψ̃ :=σ−1∂

α
� σ−1ψ = σ−1∂

α
μσ−1ψ . Then by Lemma

3.7(a) ψ̃ ∈ C∞(R; H) ∩ H∞−�(R; H) ∩ H∞−μ(R; H). By Lemma 3.7(b) there is (ϕn)n∈N ∈
C∞
c (R; H)N with ϕn → ψ̃ (n → ∞) in H−α−� (R; H) and in H−α−μ(R; H). Thus

∫
R

〈∂α
0,� f (t), ψ(t)〉H dt = 〈∂α

0,� f , e2�mψ〉�,0

= 〈 f , ∂−α
0,� e

2�mσ−1∂
−α
0,� σ−1(σ−1∂

α
0,�σ−1ψ)〉�,α

= lim
n→∞〈 f , ∂−α

0,� e
2�mσ−1∂

−α
0,� σ−1ϕn〉�,α

= lim
n→∞〈 f , ϕn〉

= lim
n→∞〈g, ϕn〉

= lim
n→∞〈 f , ∂−α

0,μe
2μmσ−1∂

−α
0,μσ−1ϕn〉μ,α

=
∫
R

〈∂α
0,μ f (t), ψ(t)〉H dt .

(ii)⇒ (iii): Define f̃n :=χ[−n,n] ·∂α
0,� f = χ[−n,n] ·∂α

0,μg for n ∈ N. Without loss of generality
let � < μ. Take a function ψn ∈ C∞

c (R; H) with sptψn ⊆ [−n, n] such that

‖ f̃n − ψn‖�,0 ≤ 1

n
e(�−μ)n .
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Then, we estimate

‖ f̃n − ψn‖2μ,0 =
n∫

−n

‖ f̃n(t) − ψn(t)‖2H e−2μt dt

=
n∫

−n

‖ f̃n(t) − ψn(t)‖2H e−2�te2(�−μ)t dt

≤ ‖ f̃n − ψn‖2�,0e
2(μ−�)n ≤ 1

n2
.

Hence ψn → ∂α
0,� f = ∂α

0,μg in L2
�(R; H) and in L2

μ(R; H) by the triangle inequality

and dominated convergence. We set ϕ̃n :=∂−α
0,�ψn = ∂−α

0,μψn ∈ C∞(R; H) ∩ H∞
� (R; H) ∩

H∞
μ (R; H). Then ϕ̃n → f and ϕ̃n → g in Hα

� (R; H) and in Hα
μ(R; H) respectively. We

use Lemma 3.7(b) and choose a sequence (ϕn)n∈N ∈ C∞
c (R; H)N with ‖ϕ̃n − ϕn‖�,α → 0.

Then

‖ f − ϕn‖�,α ≤ ‖ f − ϕ̃n‖�,α + ‖ϕ̃n − ϕn‖�,α → 0 (n → ∞),

‖g − ϕn‖μ,α ≤ ‖g − ϕ̃n‖μ,α + ‖ϕ̃n − ϕn‖μ,α → 0 (n → ∞).

(iii) ⇒ (i): Let (ϕn)n∈N be a sequence in C∞
c (R; H) such that ϕn → f and ϕn → g in

Hα
� (R; H) and Hα

μ(R; H), respectively. Let ϕ ∈ C∞
c (R; H). Then we have according to

Proposition 3.4
∫

R

〈L� f (t),L−�ϕ(t)〉H dt = 〈 f , ϕ〉

= 〈 f , ∂−α
0,� e

2�mσ−1∂
−α
0,� σ−1ϕ〉�,α

= lim
n→∞〈ϕn, ∂

−α
0,� e

2�mσ−1∂
−α
0,� σ−1ϕ〉�,α

= lim
n→∞〈ϕn, ϕ〉

= lim
n→∞〈ϕn, ∂

−α
0,μe

2μmσ−1∂
−α
0,μσ−1ϕ〉μ,α

= 〈g, ϕ〉,
=
∫

R

〈Lμ f (t),L−μϕ(t)
〉
dt

which completes the proof.

4 A Unified Solution Theory—Well-Posedness and Causality of
Fractional Differential Equations

We are now able to study abstract fractional differential equations of the form

∂α
0,�u = F(u).

In order to obtain well-posedness of the latter problem, we need to restrict the class of
admissible right-hand sides F in the latter equation.
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Definition Let�0 > 0 andβ, γ ∈ R.Wecall a function F : dom(F) ⊆⋂�≥�0
Hβ

� (R; H) →⋂
�≥�0

Hγ
� (R; H) eventually (β, γ )-Lipschitz continuous, if dom(F) ⊇ C∞

c (R; H) and
there exists ν ≥ �0 such that for each � ≥ ν the function F has a Lipschitz continuous
extension

F� : Hβ
� (R; H) → Hγ

� (R; H)

satisfying sup�≥ν |F�|Lip < ∞. Moreover, we call F eventually (β, γ )-contracting, if F is
eventually (β, γ )-Lipschitz continuous and lim sup�→∞ |F�|Lip < 1. Here, we denote by
| · |Lip the smallest Lipschitz constant of a Lipschitz continuous function:

∣∣F�

∣∣
lip := sup

f ,g∈Hβ
� (R;H), f �=g

∥∥F�( f ) − F�(g)
∥∥

�,γ

‖ f − g‖�,β

.

Note that by Lemma 3.8, any eventually Lipschitz continuous function is densely defined.
Thus, the Lipschitz continuous extension F� is unique.

Remark 4.1 (a) If f ∈ Hβ
� (R; H) and g ∈ Hβ

μ (R; H) generate the same distribution, we
have that

F�( f ) = Fμ(g).

Indeed, by Proposition 3.10 there exists a sequence (ϕn)n∈N in C∞
c (R; H) with ϕn → f

and ϕn → g in Hβ
� (R; H) and Hβ

μ (R; H), respectively. We infer that

F�( f ) = lim
n→∞ F(ϕn) and Fμ(g) = lim

n→∞ F(ϕn)

with convergence in Hγ
� (R; H) and Hγ

μ (R; H) respectively. Consequently

∂
γ
0,�F�( f ) ← ∂

γ
0,�F(ϕn) = ∂

γ
0,μF(ϕn) → ∂

γ
0,μFμ(g)

with convergence in L2
�(R; H) and hence almost everywhere for a suitable subsequence of

(ϕn)n∈N. The assertion follows from Proposition 3.10.
(b) We shall need the following elementary observation later on. Let F be evenutally

(β, γ )-Lipschitz continuous, α ∈ R. Let � ≥ �0. Then

F̃ : C∞
c (R; H) � ϕ �→ F�(∂α

0,�ϕ)

is eventually (β + α, γ )-Lipschitz continuous. Indeed, the assertion follows from part (a)
and
∥∥F̃( f ) − F̃(g)

∥∥
μ,γ

≤ ∣∣Fμ

∣∣
Lip

∥∥∥∂α
0,μ f − ∂α

0,μg
∥∥∥

μ,β
= ∣∣Fμ

∣∣
Lip ‖ f − g‖μ,α+β ,

for μ ≥ ν, f , g ∈ C∞
c (R; H).

Theorem 4.2 Let α > 0, β ∈ R, �0 > 0 and F : dom(F) ⊆ ⋂�≥�0
Hβ

� (R; H) →⋂
�≥�0

Hβ−α
� (R; H) be eventually (β, β − α)-contracting. Then there exists ν ≥ �0 such

that for each � ≥ ν there is a unique u� ∈ Hβ
� (R; H) satisfying

∂α
0,�u� = F�(u�). (4.1)
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Proof This is a simple consequence of the contraction mapping theorem. Indeed, choosing
ν ≥ �0 large enough, such that |F�|Lip < 1 for each � ≥ ν, we obtain that

∂−α
0,� F� : Hβ

� (R; H) → Hβ
� (R; H)

is a strict contraction, since ∂−α
0,� : Hβ−α

� (R; H) → Hβ
� (R; H) is unitary by Lemma 3.2.

Hence, the mapping ∂−α
0,� F� admits a unique fixed point u� ∈ Hβ

� (R; H),which is equivalent
to u� being a solution of (4.1).

Corollary 4.3 Let α > 0, β ∈ R, �0 > 0 and F : dom(F) ⊆ ⋂�≥�0
Hβ

� (R; H) →⋂
�≥�0

Hβ−γ
� (R; H) for some γ ∈ [0, α[ be eventually (β, β − γ )-Lipschitz continuous.

Then there exists ν ≥ �0 such that for each � ≥ ν there is a unique u� ∈ Hβ
� (R; H)

satisfying

∂α
0,�u� = F�(u�).

Proof. It suffices to prove that ιβ−γ→β−α◦F is eventually (β, β−α)-contracting byTheorem
4.2. Let ν ≥ �, s.t. for � ≥ ν, F� exists. Then for � ≥ ν∣∣ιβ−γ→β−α ◦ F�

∣∣
Lip ≤ ‖ιβ−γ→β−α‖|F�|Lip ≤ �γ−α|F�|Lip

by Lemma 3.2. Since |F�|Lip is bounded in � on [ν,∞[ by assumption, we infer

lim sup
�→∞
∣∣ιβ−γ→β−α ◦ F�

∣∣
Lip = 0 < 1.

Next, wewant to show that the solution u� of (4.1) is actually independent of the particular
choice of �. For doing so, we need the concept of causality, which will be addressed in the
next propositions.

Lemma 4.4 Let � > 0, α ∈ R and a ∈ R. Let f ∈ Hα
� (R; H) with spt f ⊆ R≥a. Then

there is a sequence (ϕn)n∈N ∈ C∞
c (R; H)N with spt ϕn ⊆ R≥a for n ∈ N and ϕn → f in

Hα
� (R; H) as n → ∞.

Proof. Let (ψ̃n)n∈N ∈ C∞
c (R; H)N be such that ψ̃n → ∂α

0,� f in H0
� (R; H) as n → ∞. We

may assume that spt ψ̃n ⊆ R>a . We set ψn :=∂−α
0,� ψ̃n for n ∈ N. Then ψn → f as n → ∞ in

Hα
� (R; H) and inf sptψn > a by Lemma 3.7(a). We use Lemma 3.7(b) and pick a sequence

(ϕn)n∈N ∈ C∞
c (R; H)N with spt(ϕn) ⊆ spt(ψn) for n ∈ N and ϕn − ψn → 0 in Hα

� (R; H)

when n → ∞. Then

‖ϕn − f ‖�,α ≤ ‖ϕn − ψn‖�,α + ‖ψn − f ‖�,α → 0 (n → ∞).

Proposition 4.5 Let f ∈ Hα
� (R; H) for some α ∈ R, � > 0. Assume that spt f ⊆ R≥a for

some a ∈ R. Then

spt ∂β
0,� f ⊆ R≥a

for all β ∈ R.

Proof. Let ϕ ∈ C∞
c (R; H) with spt ϕ ⊆ R<a . By Lemma 4.4 we pick a sequence (ϕn)n∈N ∈

C∞
c (R; H)N, s.t. spt ϕn ⊆ R≥a (n ∈ N) and ϕn → f in Hα

� (R; H). Then spt ∂β
0,�ϕn ⊆ R≥a

by Lemma 3.7(a). By Proposition 3.4 we have
〈
∂

β
0,�ϕn, ϕ

〉
=
∫
R

〈
∂

β
0,�ϕn(t), ϕ(t)

〉
H

dt = 0.
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Since ∂
β
0,� is unitary, we have ∂

β
0,�ϕn → ∂

β
0,� f in Hα−β

� (R; H). We compute

〈
∂

β
0,� f , ϕ

〉
= 〈∂β

0,� f , ∂−(α−β)
0,� e2�mσ−1∂

−(α−β)
0,� σ−1ϕ〉�,α−β

= lim
n→∞〈∂β

0,�ϕn, ∂
−(α−β)
0,� e2�mσ−1∂

−(α−β)
0,� σ−1ϕ〉�,α−β

= lim
n→∞
〈
∂

β
0,�ϕn, ϕ

〉

= 0.

The proof of the following theorem outlining causality of ∂−α
0,� F�, is in spirit similar to the

approach in [5, Theorem 4.5]. However, one has to adopt the distributional setting and the
(different) definition of eventually Lipschitz continuity here accordingly.

Theorem 4.6 Let the assumptions of Theorem 4.2 be satisfied. Then, for each � ≥ ν, where
ν is chosen according to Theorem 4.2, the mapping

∂−α
0,� F� : Hβ

� (R; H) → Hβ
� (R; H)

is causal, that is, for each u, v ∈ Hβ
� (R; H) satisfying spt(u − v) ⊆ R≥a for some a ∈ R, it

holds that spt
(
∂−α
0,� F�(u) − ∂−α

0,� F�(v)
)

⊆ R≥a . Here, the support is meant in the sense of

distributions.

Proof First of all, we shall show the result for u, v ∈ C∞
c (R; H). So, let u, v ∈ C∞

c (R; H)

with spt(u − v) ⊆ R≥a . Take ϕ ∈ C∞
c (R; H) with spt ϕ ⊆ R<a . Let μ ≥ �. Then

F�(u) = Fμ(u) and

〈
∂−α
0,� (F�(u) − F�(v)), ϕ

〉
=
〈
∂−α
0,μ(Fμ(u) − Fμ(v)), ϕ

〉

=
〈
∂−α
0,μ(Fμ(u) − Fμ(v)), ∂

−β
0,μe

2μmσ−1∂
−β
0,μσ−1ϕ

〉
μ,β

=
〈
Fμ(u) − Fμ(v), ∂

−(β−α)
0,μ e2μmσ−1∂

−β
0,μσ−1ϕ

〉
μ,β−α

≤ ∥∥Fμ(u) − Fμ(v)
∥∥

μ,β−α

∥∥∥∂−(β−α)
0,μ e2μmσ−1∂

−β
0,μσ−1ϕ

∥∥∥
μ,β−α

≤ ∣∣Fμ

∣∣
lip ‖u − v‖μ,β

∥∥∥∂−β
0,μσ−1ϕ

∥∥∥
μ,0

,

where we have used that ∂
−(β−α)
0,μ e2μmσ−1 : H0

μ(R; H) → Hβ−α
μ (R; H) is unitary and

ϕ ∈ H−β
−μ (R; H). According to Proposition 4.5 we have that spt ∂−β

0,μσ−1ϕ ⊆ R>−a and
hence, we compute

‖∂−β
0,μσ−1ϕ‖2μ,0

=
∞∫

−a

∥∥∥
(
∂

−β
0,μσ−1ϕ

)
(t)
∥∥∥2
H
e−2μt dt =

∞∫

0

∥∥∥
(
∂

−β
0,μσ−1ϕ

)
(t − a)

∥∥∥2
H
e−2μt dt e2μa .

On the other hand
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‖u − v‖2μ,β = ‖∂β
0,μ(u − v)‖2μ,0

=
∞∫

a

‖∂β
0,μ(u − v)(t)‖2H e−2μt dt

=
∞∫

0

∥∥∥∂β
0,μ(u − v)(t + a)

∥∥∥2
H
e−2μt dte−2μa

and consequently,

|Fμ|Lip‖u − v‖μ,β‖∂−β
0,μσ−1ϕ‖−μ,0

= |Fμ|Lip
⎛
⎝

∞∫

0

∥∥∥∂β
0,μ(u − v)(t + a)

∥∥∥2
H
e−2μt dt

⎞
⎠

1
2

·
∞∫

0

∥∥∥
(
∂

−β
0,μσ−1ϕ

)
(t − a)

∥∥∥2
H
e−2μt dt → 0 (μ → ∞),

by dominated convergence. Summarizing, we have shown that spt(∂−α
0,� F�(u)−∂−α

0,� F�(v)) ⊆
R≥a for u, v ∈ C∞

c (R; H) satisfying spt(u − v) ⊆ R≥a .
Before we conclude the proof, we show that if (wn)n∈N is a convergent sequence in

Hβ
� (R; H) with sptwn ⊆ R≥a for each n ∈ N, then its limit w also satisfies sptw ⊆ R≥a .

For doing so, let ϕ ∈ C∞
c (R; H) with spt ϕ ⊆ R<a . Then

〈w, ϕ〉 =
〈
w, ∂

−β
0,� e

2�mσ−1∂
−β
0,� σ−1ϕ

〉
�,β

= lim
n→∞
〈
wn, ∂

−β
0,� e

2�mσ−1∂
−β
0,� σ−1ϕ

〉
�,β

= lim
n→∞ 〈wn, ϕ〉 = 0.

Finally, let u, v ∈ Hβ
� (R; H) with spt(u − v) ⊆ R≥a According to Lemma 4.4 there is

a sequence (ϕn)n∈N ∈ C∞
c (R; H)N with spt ϕn ⊆ R≥a and ϕn → u − v in Hα

� (R; H)

as n → ∞. Let (vn)n∈N ∈ C∞
c (R; H) with vn → v in Hα

� (R; H) as n → ∞. We set
un :=ϕn + vn . Then un → u in Hα

� (R; H) and spt(un − vn) ⊆ R≥a . By the already proved

result for C∞
c (R; H), we infer that spt

(
∂−α
0,� F�(un) − ∂−α

0,� F�(vn)
)

⊆ R≥a for all n ∈ N.

Thus, letting n → ∞, we obtain spt
(
∂−α
0,� F�(u) − ∂−α

0,� F�(v)
)

⊆ R≥a , which shows the

claim.

Finally, we prove that our solution is independent of the particular choice of the parameter
� > ν in Theorem 4.2. The precise statement is as follows.

Proposition 4.7 Let the assumptions of Theorem 4.2 be satisfied and ν be chosen according
to Theorem 4.2. Let μ̃, μ > ν and uμ̃ ∈ Hβ

μ̃ (R; H), uμ ∈ Hβ
μ (R; H) satisfying

∂α
0,μ̃uμ̃ = Fμ̃(uμ̃) and ∂α

0,μuμ = Fμ(uμ).

Then uμ̃ = uμ as distributions in the sense of Proposition 3.4.
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Proof We note that it suffices to show vμ:=∂
β
0,μuμ = ∂

β
0,μ̃uμ̃=:vμ̃ as L1

loc(R; H) functions
by Proposition 3.10. We consider the function

F̃ : dom(F̃) ⊆
⋂

�≥�0

H0
� (R; H) →

⋂
�≥�0

Hβ−α
� (R; H)

given by

F̃(v):=F(∂
−β
0,� v) (v ∈ dom(F̃)) (4.2)

with maximal domain

dom(F̃) = {w ∈
⋂

�≥�0

H0
� (R; H) ; ∀� ≥ �0 : ∂

−β
0,� w ∈ dom(F)}.

Note that the expression on the right hand side of (4.2) does not depend on the particular
choice of � ≥ �0 by Proposition 3.10. Clearly, F̃ is eventually (0, β − α)-contracting (see
also Remark 4.1(b)) and

F̃� = F�(∂
−β
0,� (·)) (� ≥ �0).

In particular,

∂
α−β
0,μ vμ = ∂α

0,μuμ = Fμ(uμ) = F̃μ(vμ)

and analogously

∂
α−β
0,μ̃ vμ̃ = F̃μ̃(vμ̃).

Let now a ∈ R and assume without loss of generality that μ < μ̃. We note that spt(vμ̃ −
χR≤avμ̃) ⊆ χR≥a . We obtain, applying Theorem 4.6, that

χR≤avμ̃ = χR≤a∂
β−α
0,μ̃ F̃μ̃(vμ̃) = χR≤a∂

β−α
0,μ̃ F̃μ̃(χR≤avμ̃).

Now, since χR≤avμ̃ ∈ L2
μ(R; H) ∩ L2

μ̃(R; H), we infer that

χR≤avμ̃ = χR≤a∂
β−α
0,μ̃ F̃μ̃(χR≤avμ̃) = χR≤a∂

β−α
0,μ F̃μ(χR≤avμ̃),

i.e. χR≤avμ̃ is a fixed point of χR≤a∂
β−α
0,μ F̃μ. However, since χR≤avμ is also a fixed point of

this mapping, which is strictly contractive, we derive

χR≤avμ̃ = χR≤avμ

and since a ∈ R was arbitrary, the assertion follows.

5 Riemann–Liouville and Caputo Differential Equations

As it has been slightly touched in the introduction, there are two main concepts of frac-
tional differentiation (or integration). In this section we shall start to identify both these
notions as being part of the same solution theory developed in the previous sections. More
precisely, equipped with the results from the previous sections we will consider the initial
value problems for the Riemann–Liouville and for the Caputo derivative. In order to avoid
subtleties as much as possible, we will consider the associated integral equations for both
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the Riemann–Liouville differential equation and the Caputo differential equation and refor-
mulate these equivalently with the description of our realisation of the time-derivative and
derive the well-posedness from our abstract solution theory.

To start off, we recall the Caputo differential equation. In [2,3], the author treated the
following initial value problem of Caputo type for α ∈]0, 1]:

Dα∗ y(t) = f (t, y(t)) (t > 0)

y(0) = y0,

where a solution y is continuous at zero and y0 ∈ C
n is a given initial value; f : R>0×C

n →
C
n is continuous, satisfying

| f (t, y1) − f (t, y2)| ≤ c|y1 − y2| (5.1)

for some c ≥ 0 and all y1, y2 ∈ C
n, t > 0. For definiteness, we shall also assume that

(t �→ f (t, 0)) ∈ L2
�0

(R>0;Cn) (5.2)

for some �0 ∈ R. In order to circumvent discussions of how to interpret the initial condition,
we shall rather put [2, Equation (6)] into the perspective of the present exposition. In fact,
this equation reads in our notation and under the assumption α ∈]0, 1]

y(t) = y0 + 1

�(α)

∫ t

0
(t − s)α−1 f (s, y(s)) ds (t > 0). (5.3)

First of all, we remark that in contrast to the setting in the previous section, the differential
equation just discussed ‘lives’ on R>0, only. To this end we put

f̃ : R × C
n → C

n, (t, y) �→ χR>0(t) f (t, y),

with the apparent meaning that f̃ vanishes for negative times t . We note that by (5.1) and
(5.2) it follows that

L2
�(R) � y �→ (t �→ f̃ (t, y(t))) ∈ L2

�(R)

is a well-defined Lipschitz continuous mapping for all � ≥ �0. Obviously, (5.3) is equivalent
to

y(t) = y0χR>0(t) + 1

�(α)

∫ t

−∞
(t − s)α−1 f̃ (s, y(s)) ds (t > 0), (5.4)

which in turn can be (trivially) stated for all t ∈ R. Next, we present the desired reformulation
of equation (5.4).

Theorem 5.1 Let � > max{0, �0}. Assume that y ∈ L2
�(R). Then the following statements

are equivalent:

(i) y(t) = y0χR>0(t) + 1
�(α)

∫ t
−∞(t − s)α−1 f̃ (s, y(s)) ds for almost every t ∈ R,

(ii) y = ∂−α
0,� f̃ (·, y(·)) + y0χR>0 ,

(iii) ∂α
0,�(y − y0χR>0) = f̃ (·, y(·)).

Proof The assertion follows trivially from Theorem 2.6.

Remark 5.2 (a) For a real-valued function g : R>0 ×R
n → R

n wemay consider the Caputo
differential equation with f : R>0 × C

n → C
n, (t, z) �→ g(t,Re(z)).
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(b) In particular, we have shown in Theorem 5.1 that the notions of so-called mild and strong
solutions coincide.

Next we introduce Riemann–Liouville differential equations. Using the exposition in [12],
we want to discuss the Riemann–Liouville fractional differential equation given by

dα

dxα
y(x) = f (x, y(x)),

dα−1

dxα−1 y(x)

∣∣∣∣
x=0+

= y0,

where as before f satisfies (5.1) and (5.2) and y0 ∈ R, and α ∈]0, 1]. Again, not hinging
on too much of an interpretation of this equation, we shall rather reformulate the equivalent
integral equation related to this initial value problem. According to [12, Chapter 42] this
initial value problem can be formulated as

y(t) = y0
tα−1

�(α)
+ 1

�(α)

∫ t

0
(t − s)α−1 f (s, y(s)) ds (t > 0).

We abbreviate gβ(t):= 1
�(β+1) t

βχR>0(t) for t, β ∈ R. For α > 1/2 we have gα−1 ∈
L2

�(R; H). Let us assume that α > 1/2. Invoking the cut-off function χR>0 and defining

f̃ as before, we may provide a reformulation of the Riemann–Liouville equation on the
space L2

�(R; H) by

y = gα−1y0 + ∂−α
0,� f (·, y(·)), y ∈ L2

�(R; H).

By a formal calculation and when applying Corollary 2.7, i.e. ∂−α
0,�χR>0 y0 = gα y0, we would

obtain

gα−1y0 = ∂0,�gα y0 = ∂0,�∂−α
0,�χR>0 y0 = ∂−α

0,� ∂0,�χR>0 y0 = ∂−α
0,� y0δ0,

where ∂0,�χR>0 y0 is, when understood distributionally, the delta function y0δ0 and we could
reformulate the Riemann–Liouville equation by

∂α
0,�y = y0δ0 + f̃ (·, y(·)). (5.5)

In order to apply our solution theory, we need the following result.

Proposition 5.3 Let �0 > 0, n ∈ N, y0 ∈ R
n, f : R>0×C

n → C
n continuous. Assume there

exists c ≥ 0 such that for all y1, y2 ∈ R
n, t > 0 we have

| f (t, y1) − f (t, y2)| ≤ c|y1 − y2|.
Moreover, we assume that

(t �→ f (t, 0)) ∈ L2
�0

(R>0;Cn).

Define f̃ : R × C
n → C

n by

f̃ (t, y):=
{
f (t, y) if t > 0,

0 else.

Then the mapping F : C∞
c (R;Cn) → C(R;Cn) given by

F(ϕ)(t):= f̃ (t, ϕ(t) + y0) (ϕ ∈ C∞
c (R;Cn), t ∈ R),

is eventually (0, 0)-Lipschitz continuous.
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Proof Let � ≥ �0. In order to prove that F attains values in L2
�(R;Cn), we shall show

F(0) ∈ L2
�(R;Cn) first. For this we compute

∫
R

|F(0)(t)|2e−2�t dt =
∫
R>0

| f (t, y0)|2e−2�t dt

≤ 2

(∫
R>0

| f (t, y0) − f (t, 0)|2e−2�t dt +
∫
R>0

| f (t, 0)|2e−2�t dt

)

≤ 2

(
c2|y0|2 1

2�
+ | f (·, 0)|2L2

�0
(R>0;Cn)

)
< ∞.

Here we used that L2
�(R>0; H) ↪→ L2

�0
(R>0; H) as contraction. Next, let ϕ,ψ ∈

C∞
c (R;Rn). Then we obtain
∫
R

|F(ϕ)(t) − F(ψ)(t)|2e−2�t dt =
∫
R

| f̃ (t, ϕ(t) + y0) − f̃ (t, ψ(t) + y0)|2e−2�t dt

=
∫
R>0

| f (t, ϕ(t) + y0) − f (t, ψ(t) + y0)|2e−2�t dt

≤
∫
R>0

c2(|ϕ(t) − ψ(t)|)2e−2�t dt ≤ c2‖ϕ − ψ‖2L2
�
.

Since F(0) ∈ L2
�(R;Cn), the shown estimate yields F(ϕ) ∈ L2

�(R;Cn) for each ϕ ∈
C∞
c (R;Cn) as well as the eventual (0,0)-Lipschitz continuity of F .

The next result is concerned with the well-posedness for Caputo fractional differential
equations. We shall use the characterization of the Caputo differential equation outlined in
Theorem 5.1.

Theorem 5.4 Let y0 ∈ C
n. Then there is �1 > 0 such that for all � ≥ �1 there exists a unique

y ∈ L2
�(R;Cn) with y − y0χR>0 ∈ Hα

� (R;Cn) satisfying

∂α
0,�(y − y0χR>0) = f̃ (·, y(·)).

Moreover, spt y ⊆ R≥0.

Proof With F as defined in Proposition 5.3, we may apply Corollary 4.3 with β = γ = 0 to
obtain unique existence of z ∈ Hα

� (R;Cn) such that

∂α
0,�z = F�(z).

Setting y:=z+y0χR>0 ,weobtain in turn unique existence of a solution of the desired equation.
Since spt F�(z) ⊆ R≥0, we obtain with Proposition 4.5 that spt z = spt ∂−α

0,� F�(z) ⊆ R≥0.
Thus, spt y ⊆ R≥0.

We remark here that the condition spt y ⊆ R≥0 together with y − y0χR>0 ∈ Hα
� (R;Cn)

describes, how the initial value y0 is attained. Indeed, if α is large enough (e.g. α > 1/2) so
that Hα

� (R;Cn) is a subset of functions for which the limit at 0 exists, then the mentioned
conditions imply

0 = (y − y0χR>0)(0−) = (y − y0χR>0)(0+) = y(0+) − y0,

that is, the initial value is attained.
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We conclude this section by having a look at the case of the Riemann–Liouville fractional
differential equation (5.5). To this end, we note that χR>0 y0 ∈ H0

� (R; H) for � > 0 and by
Example 3.6 we have

∂0,�χR>0 y0 = δ0y0 ∈ H−1
� (R; H).

We also recall the notation gβ(t):= 1
�(β+1) t

βχR>0 for β, t ∈ R.

Proposition 5.5 Let y0 ∈ C
n. Assume that C∞

c (R; H) � ϕ �→ f̃ (·, ϕ(·)) is eventually
(α − 1, α − 1)-Lipschitz continuous and denote with Hα−1

� (R; H) � y �→ f̃�(·, y(·)) its
Lipschitz-continuous extension for some � > 0. There is �1 > 0 such that for � ≥ �1 we
have a unqiue solution y ∈ Hα−1

� (R; H) of the equation

∂α
0,�y = y0δ0 + f̃�(·, y(·)), y ∈ Hα−1

� (R; H),

with ∂α−1
0,� y − y0χR>0 ∈ H0

� (R; H) and spt(y) ⊆ R≥0.

Proof The mapping G defined by

G(ϕ)(t):= f̃ (t, ∂1−α
0,� ϕ(t) + gα−1(t)y0), ϕ ∈ C∞

c (R; H), t ∈ R,

is eventually (0, α − 1)-Lipschitz continuous. Indeed, this fact follows from gα−1y0 ∈
Hα−1

� (R; H) and the unitarity of ∂α−1
0,� : Hα−1

� (R; H) → H0
� (R; H). Let �1 > 0 be such

that f̃� and therefore G� exist for � ≥ �1. Let � ≥ �1. The Riemann–Liouville equation is
equivalent to

∂α−1
0,� y − χR>0 y0 = ∂−1

0,� f̃�(·, y(·)), y ∈ Hα
� (R; H).

With the transformation z = ∂α−1
0,� y−χR>0 y0 and using ∂1−α

0,� χR>0 y0 = ∂0,�gα y0 = gα−1y0
(cf. Corollary 2.7) this equation is equivalent to

∂0,�z = G�(z), z ∈ H0
� (R; H).

By Corollary 4.3 (with γ = α − 1) we find a unique solution z ∈ H0
� (R; H). We have

spt(∂−1
0,�G�(·)) ⊆ R≥0. By Proposition 4.5 spt z ⊆ R≥0. Hence we have a unqiue solution

y = ∂1−α
0,� (z−χR>0 y0) ∈ Hα−1

� (R; H) of the Riemann–Liouville equationwith spt y ⊆ R≥0

and ∂α−1
0,� y − χR>0 y0 = z ∈ H0

� (R; H).

Remark 5.6 The space H0
� (R; H) is continuously embedded into Hα−1

� (R; H). Thus, the

assumption that C∞
c (R; H) � ϕ �→ f̃ (·, ϕ(·)) is eventually (α − 1, α − 1)-Lipschitz con-

tinuous, can be replaced by the stronger assumption that C∞
c (R; H) � ϕ �→ f̃ (·, ϕ(·)) is

eventually (α − 1, 0)-Lipschitz continuous, which might be easier to compute.
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