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Abstract
Consider the Kirchhoff equation

∂t t u − �u
(
1 +

∫

Td
|∇u|2

)
= 0

on the d-dimensional torus T
d . In a previous paper we proved that, after a first step of

quasilinear normal form, the resonant cubic terms show an integrable behavior, namely they
give no contribution to the energy estimates. This leads to the question whether the same
structure also emerges at the next steps of normal form. In this paper, we perform the second
step and give a negative answer to the previous question: the quintic resonant terms give a
nonzero contribution to the energy estimates. This is not only a formal calculation, as we
prove that the normal form transformation is bounded between Sobolev spaces.
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1 Introduction

We consider the Kirchhoff equation on the d-dimensional torus Td , T := R/2πZ (periodic
boundary conditions)

∂t t u − �u
(
1 +

∫

Td
|∇u|2 dx

)
= 0. (1.1)
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Equation (1.1) is a quasilinear wave equation, and it has the structure of a Hamiltonian system
{

∂t u = ∇v H(u, v) = v,

∂tv = −∇u H(u, v) = �u
(
1 + ∫

Td |∇u|2dx
)
,

(1.2)

where the Hamiltonian is

H(u, v) = 1

2

∫

Td
v2dx + 1

2

∫

Td
|∇u|2dx +

(1
2

∫

Td
|∇u|2dx

)2
, (1.3)

and ∇u H , ∇v H are the gradients with respect to the real scalar product

〈 f , g〉 :=
∫

Td
f (x)g(x) dx ∀ f , g ∈ L2(Td ,R), (1.4)

namely H ′(u, v)[ f , g] = 〈∇u H(u, v), f 〉 + 〈∇v H(u, v), g〉 for all u, v, f , g. More com-
pactly, (1.2) is

∂tw = J∇ H(w), (1.5)

where w = (u, v), ∇ H = (∇u H ,∇v H) and

J =
(

0 1
−1 0

)
. (1.6)

The Cauchy problem for the Kirchhoff equation is given by (1.1) with initial data at time
t = 0

u(0, x) = α(x), ∂t u(0, x) = β(x). (1.7)

Such a Cauchy problem is known to be locally wellposed in time for initial data (α, β) in

the Sobolev space H
3
2 (Td)× H

1
2 (Td) (see the work of Dickey [18]). However, the conserved

Hamiltonian (1.3) only controls the H1 × L2 norm of the couple (u, v). Since the local well-
posedness has only been established in regularity higher than the energy space H1 × L2, it
is not trivial to determine whether the solutions are global in time. In fact, the question of
global wellposedness for the Cauchy problem (1.1)–(1.7) with periodic boundary conditions
(or with Dirichlet boundary conditions on bounded domains of Rd ) has given rise to a long-
standing open problem: while it has been known for eighty years, since the pioneering work
of Bernstein [7], that analytic initial data produce global-in-time solutions, it is still unknown
whether the same is true for C∞ initial data, even of small amplitude.

For initial data of amplitude ε, the linear theory immediately gives existence of the solution
over a time interval of the order of ε−2. In [4], we performed one step of quasilinear normal
form and established a longer existence time, of the order of ε−4; indeed, all the cubic terms
giving a nontrivial contribution to the energy estimates are erased by the normal form. One
may wonder whether the same type of mechanism works also for (one or more) subsequent
steps of normal form.

In this paper, we give a negative answer to such a question, as we explicitly compute the
second step of normal form for the Kirchhoff equation on T

d , erasing all the nonresonant
terms of degree five. It turns out that, differently from what happens for cubic terms, the
contribution to the energy estimates of the resonant terms of degree five is different from
zero. This, of course, leaves open the question whether for small amplitude initial data the
time of existence can be extended beyond the lifespan ∼ ε−4 (partial results in this direction
are in [5]). The presence of resonant terms of degree five that give a nontrivial contribution
to the energy estimates can, however, be interpreted as a sign of non-integrability of the
equation. Another interesting open question is whether these “non-integrable” terms in the
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normal form can somehow be used to construct “weakly turbulent” solutions pushing energy
from low to high Fourier modes, in the spirit of the works [11,22–25] for the semilinear
Schrödinger equations on T

2. Proving existence of such solutions may be a very hard task,
but one may at least hope to use the normal form that we compute in this paper to detect
some genuinely nonlinear behavior of the flow, over long time-scales (as in [20,27]) or even
for all times (as in [26]).

1.1 Main Result

To give a precise statement of our main result, we introduce here the functional setting.
Function space.On the torusTd , it is not restrictive to set the problem in the space of functions
with zero average in space, for the following reason. Given initial data α(x), β(x), we split
both them and the unknown u(t, x) into the sum of a zero-mean function and the average
term,

α(x) = α0 + α̃(x), β(x) = β0 + β̃(x), u(t, x) = u0(t) + ũ(t, x),

where ∫

Td
α̃(x) dx = 0,

∫

Td
β̃(x) dx = 0,

∫

Td
ũ(t, x) dx = 0 ∀t .

Then the Cauchy problem (1.1)–(1.7) splits into two distinct, uncoupled Cauchy problems:
one is the problem for the average u0(t), which is

u′′
0(t) = 0, u0(0) = α0, u′

0(0) = β0

and has the unique solution u0(t) = α0 +β0t ; the other one is the problem for the zero-mean
component ũ(t, x), which is

ũt t − �ũ
( ∫

Td
|∇ũ|2 dx

)
= 0, ũ(0, x) = α̃(x), ũt (0, x) = β̃(x).

Thus one has to study the Cauchy problem for the zero-mean unknown ũ(t, x) with zero-
mean initial data α̃(x), β̃(x); this means to study (1.1)–(1.7) in the class of functions with
zero average in x .

For any real s ≥ 0, we consider the Sobolev space of zero-mean functions

Hs
0 (Td ,C) :=

{
u(x) =

∑

j∈Zd\{0}
u j e

i j ·x : u j ∈ C, ‖u‖s < ∞
}
, (1.8)

‖u‖2s :=
∑
j �=0

|u j |2| j |2s, (1.9)

and its subspace
Hs
0 (Td ,R) := {u ∈ Hs

0 (Td ,C) : u(x) ∈ R} (1.10)

of real-valued functions u, for which the complex conjugates of the Fourier coefficients
satisfy u j = u− j . For s = 0, we write L2

0 instead of H0
0 the space of square-integrable

functions with zero average.
Let m1 := 1 if the dimension d = 1 and m1 := 2 if d ≥ 2. For s ≥ m1, δ > 0, denote

Bs(δ) := {
(u, v) ∈ H

s+ 1
2

0 (Td ,R) × H
s− 1

2
0 (Td ,R) : max{‖u‖m1+ 1

2
, ‖v‖m1− 1

2
} ≤ δ

}
,

Bs
sym(δ) := {(u, v) ∈ Hs

0 (Td ,C) × Hs
0 (Td ,C) : v = ū, ‖u‖m1 ≤ δ}.
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In this paper we prove the following normal form result.

Theorem 1.1 There exists δ > 0 and a map 	 : Bm1
sym(δ) → Bm1(2δ), “close to identity”

(see Remark 1.3), injective and conjugating system (1.2) to a system of the form

∂t

(
u
v

)
= W (u, v) = D1(u, v) + T≥3(u, v) + W5(u, v) + W≥7(u, v). (1.11)

The transformation 	 maps Bs
sym(δ) to Bs(2δ) for all s ≥ m1. The vector field D1, defined

in (4.2), is linear. The vector field T≥3 contains only terms of homogeneity ≥ 3. Moreover,
D1 and T≥3 give no contribution to the energy estimates, namely the Sobolev norms of the
solutions of the system ∂t (u, v) = D1(u, v) + T≥3(u, v) are constant. The vector field W5
contains only terms of homogeneity 5, it commutes withD1 and it gives a nonzero contribution
to the energy estimates (see (5.36)–(5.39)). Finally, the vector field W≥7 contains only terms
of homogeneity ≥ 7.

Remark 1.2 Notation warning: we are using the same notation (u, v) both for the original
coordinates (u, v) ∈ Bm1(2δ) in system (1.2) and for the final coordinates (u, v) ∈ Bm1

sym(δ)

in system (1.11), obtained after the normal form transformation 	.

Remark 1.3 In Sect. 2wewill introduce the transformations	(1) and	(2), which symmetrize
the systemand introduce complex coordinates. These transformations are not close to identity.
By saying that the map 	 is “close to identity” we mean that 	 = 	(1) ◦	(2) ◦	next, where
	next is bounded from Bs

sym(δ) to Bs
sym(2δ) for all s ≥ m1 and satisfies

‖(	next − Id)(u, v)‖s ≤ C‖(u, v)‖2m1
‖(u, v)‖s .

Remark 1.4 There is a certain similarity between our computation and the one performed by
Craig and Worfolk [14] for the normal form of gravity water waves. In both cases one deals
with an equation whose vector field is strongly unbounded (quasilinear here, fully nonlinear
in [14]) and in both cases the first steps of normal form show an “integrable” behavior, while
after few steps some genuinely non-integrable terms show up.

However, there is an important difference: while the normal form computed in [14] is only
the result of a formal computation, the transformation 	 that we construct here to put the
Kirchhoff equation in normal form is a bounded transformation that is well defined between
Sobolev spaces. This is obtained thanks to the “quasilinear symmetrization” performed in
[4], following the strategy for quasilinear normal forms introduced by Delort in the papers
[16]-[17] on quasilinear Klein-Gordon equations on T.

1.2 Related Literature

Equation (1.1) was introduced by Kirchhoff [31] to model the transversal oscillations of a
clamped string or plate, taking into account nonlinear elastic effects. The first results on the
Cauchy problem (1.1)–(1.7) are due to Bernstein. In his 1940 pioneering paper [7], he studied
the Cauchy problem on an interval, with Dirichlet boundary conditions, and proved global
wellposedness for analytic initial data (α, β).

After that, the research on theKirchhoff equation has been developed in various directions,
with a different kind of results on compact domains (bounded subsets of Rd with Dirichlet
boundary conditions, or periodic boundary conditions Td ) or non compact domains (Rd or
“exterior domains” 
 = R

d \ K , with K ⊂ R
d compact domain).
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On R
d , Greenberg and Hu [21] in dimension d = 1 and D’Ancona and Spagnolo [15]

in higher dimension proved global wellposedness with scattering for small initial data in
weighted Sobolev spaces.

On compact domains, dispersion, scattering and time-decaymechanisms are not available,
and there are no results of global existence, nor of finite time blowup, for initial data (α, β) of

Sobolev, orC∞, or Gevrey regularity. The local wellposedness in the Sobolev class H
3
2 ×H

1
2

has been proved by Dickey [18] (see also Arosio and Panizzi [2]). Beyond the question about
the global wellposedness for small data in Sobolev class, another open question concerns the
local wellposedness in the energy space H1 × L2 or in Hs × Hs−1 for 1 < s < 3

2 .
We also mention the recent results [3,12,34], which prove the existence of time periodic or

quasi-periodic solutions of time periodically or quasi-periodically forcedKirchhoff equations
on T

d , using Nash-Moser and KAM techniques.
For more details, generalizations and other open questions, we refer to Lions [32], to

the surveys of Arosio [1], Spagnolo [35], Matsuyama and Ruzhansky [33], and to other
references in our previous paper [4].

Concerning the normal form theory, and limiting ourselves to quasilinear PDEson compact
manifolds, we mention, in addition to the aforementioned papers of Delort [16,17], the
abstract result of Bambusi [6], the recent literature on water waves by Craig and Sulem [13],
Ifrim and Tataru [28], Ionescu and Pusateri [29,30], Berti and Delort [8], Berti, Feola and
Pusateri [9,10], and the work by Feola and Iandoli [19] on the quasilinear NLS on T.

2 Linear Transformations

We start by recalling the first standard transformations in [4], which transform system (1.2)
into another one (see (2.6)) where the linear part is diagonal, preserving both the real and the
Hamiltonian structure of the problem. These standard transformations are the symmetrization
of the highest order and then the diagonalization of the linear terms.

Symmetrization of the highest order. In the Sobolev spaces (1.8) of zero-mean functions,
the Fourier multiplier

� := |Dx | : Hs
0 → Hs−1

0 , ei j ·x �→ | j |ei j ·x

is invertible. System (1.2) writes
{

∂t u = v

∂tv = −(1 + 〈�u,�u〉)�2u,
(2.1)

where 〈·, ·〉 is defined in (1.4); the Hamiltonian (1.3) is

H(u, v) = 1

2
〈v, v〉 + 1

2
〈�u,�u〉 + 1

4
〈�u,�u〉2.

To symmetrize the system at the highest order, we consider the linear, symplectic transfor-
mation

(u, v) = 	(1)(q, p) = (�− 1
2 q,�

1
2 p). (2.2)

System (2.1) becomes {
∂t q = �p

∂t p = −(1 + 〈� 1
2 q,�

1
2 q〉)�q,

(2.3)
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which is the Hamiltonian system ∂t (q, p) = J∇ H (1)(q, p) with Hamiltonian H (1) = H ◦
	(1), namely

H (1)(q, p) = 1

2
〈� 1

2 p,�
1
2 p〉+ 1

2
〈� 1

2 q,�
1
2 q〉+ 1

4
〈� 1

2 q,�
1
2 q〉2, J :=

(
0 I

−I 0

)
. (2.4)

The original problem requires the “physical” variables (u, v) to be real-valued; this corre-

sponds to (q, p) being real-valued, too. Also, note that 〈� 1
2 p,�

1
2 p〉 = 〈�p, p〉.

Diagonalization of the highest order: complex variables. To diagonalize the linear part
∂t q = �p, ∂t p = −�q of system (2.3), we introduce complex variables.

System (2.3) and the Hamiltonian H (1)(q, p) in (2.4) are also meaningful, without any
change, for complex functions q, p. Thuswe define the change of complex variables (q, p) =
	(2)( f , g) as

(q, p) = 	(2)( f , g) =
( f + g√

2
,

f − g

i
√
2

)
, f = q + i p√

2
, g = q − i p√

2
, (2.5)

so that system (2.3) becomes
{

∂t f = −i� f − i 14 〈�( f + g), f + g〉�( f + g)

∂t g = i�g + i 14 〈�( f + g), f + g〉�( f + g)
(2.6)

where the pairing 〈·, ·〉 denotes the integral of the product of any two complex functions

〈w, h〉 :=
∫

Td
w(x)h(x) dx =

∑

j∈Zd\{0}
w j h− j , w, h ∈ L2(Td ,C). (2.7)

Themap	(2) : ( f , g) �→ (q, p) in (2.5) is aC-linear isomorphism of the space L2
0(T

d ,C)×
L2
0(T

d ,C) of pairs of complex functions.When (q, p) are real, ( f , g) are complex conjugate.
The restriction of 	(2) to the space

L2
0(T

d , c.c.) := {( f , g) ∈ L2
0(T

d ,C) × L2
0(T

d ,C) : g = f }
of pairs of complex conjugate functions is an R-linear isomorphism onto the space
L2
0(T

d ,R) × L2
0(T

d ,R) of pairs of real functions. For g = f , the second equation in (2.6)
is redundant, being the complex conjugate of the first equation. In other words, system (2.6)
has the following “real structure”: it is of the form

∂t

(
f
g

)
= F( f , g) =

(F1( f , g)

F2( f , g)

)

where the vector field F( f , g) satisfies

F2( f , f ) = F1( f , f ). (2.8)

Under the transformation 	(2), the Hamiltonian system (2.3) for complex variables (q, p)

becomes (2.6), which is the Hamiltonian system ∂t ( f , g) = i J∇ H (2)( f , g) with Hamilto-
nian H (2) = H (1) ◦ 	(2), namely

H (2)( f , g) = 〈� f , g〉 + 1

16
〈�( f + g), f + g〉2,

where J is defined in (2.4), 〈·, ·〉 is defined in (2.7), and ∇ H (2) is the gradient with respect
to 〈·, ·〉. System (2.3) for real (q, p) (which corresponds to the original Kirchhoff equation)
becomes system (2.6) restricted to the subspace L2

0(T
d , c.c.) where g = f .
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To complete the definition of the function spaces, for any real s ≥ 0 we define

Hs
0 (Td , c.c.) := {( f , g) ∈ L2

0(T
d , c.c.) : f , g ∈ Hs

0 (Td ,C)}.

3 Diagonalization of the Order One

In [4] (Section 3) the following global transformation 	(3) is constructed. Its effect is to
remove the unbounded operator � from the “off-diagonal” terms of the equation, namely
those terms coupling f and f̄ .

Lemma 3.1 (Lemma 3.1 of [4]). Let 	(3) be the map

	(3)(η, ψ) = N (η, ψ)

(
η

ψ

)
, (3.1)

where N (η, ψ) is the matrix

N (η, ψ) := 1√
1 − ρ2(P(η, ψ))

(
1 ρ(P(η, ψ))

ρ(P(η, ψ)) 1

)
, (3.2)

ρ is the function

ρ(x) := −x

1 + x + √
1 + 2x

, (3.3)

P is the functional

P(η, ψ) := ϕ(Q(η, ψ)), Q(η, ψ) := 1

4
〈�(η + ψ), η + ψ〉, (3.4)

and ϕ is the inverse of the function x �→ x
√
1 + 2x, namely

x
√
1 + 2x = y ⇔ x = ϕ(y). (3.5)

Then, for all real s ≥ 1
2 , the nonlinear map 	(3) : Hs

0 (Td , c.c.) → Hs
0 (Td , c.c.) is invertible,

continuous, with continuous inverse

(	(3))−1( f , g) = 1√
1 − ρ2(Q( f , g))

(
1 −ρ(Q( f , g))

−ρ(Q( f , g)) 1

) (
f
g

)
.

For all s ≥ 1
2 , all (η, ψ) ∈ Hs

0 (Td , c.c.), one has

‖	(3)(η, ψ)‖s ≤ C(‖η,ψ‖ 1
2
)‖η,ψ‖s

for some increasing function C. The same estimate is satisfied by (	(3))−1.

In [4] it is proved that system (2.6), under the change of variable ( f , g) = 	(3)(η, ψ),
becomes

⎧
⎪⎨
⎪⎩

∂tη = −i
√
1 + 2P(η, ψ)�η + i

4(1 + 2P(η, ψ))

(
〈�ψ,�ψ〉 − 〈�η,�η〉

)
ψ

∂tψ = i
√
1 + 2P(η, ψ)�ψ + i

4(1 + 2P(η, ψ))

(
〈�ψ,�ψ〉 − 〈�η,�η〉

)
η.

(3.6)

Note that system (3.6) is diagonal at the order one, i.e. the coupling of η and ψ (except for
the coefficients) is confined to terms of order zero. Also note that the coefficients of (3.6) are
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finite for η,ψ ∈ H1
0 , while the coefficients in (2.6) are finite for f , g ∈ H

1
2
0 : the regularity

threshold of the transformed system is 1
2 higher than before. The real structure is preserved,

namely the second equation in (3.6) is the complex conjugate of the first one, or, in other
words, the vector field in (3.6) satisfies property (2.8).
Quintic terms. By Taylor’s expansion,

ϕ(y) = y − y2 + O(y3) (y → 0). (3.7)

Hence

P(η, ψ) = Q(η, ψ) − Q2(η, ψ) + O(Q3(η, ψ)),

1

1 + 2P(η, ψ)
= 1 − 2Q(η, ψ) + 6Q2(η, ψ) + O(Q3(η, ψ)),

√
1 + 2P(η, ψ) = 1 + Q(η, ψ) − 3

2
Q2(η, ψ) + O(Q3(η, ψ)). (3.8)

The transformed Hamiltonian. Even if 	(3) is not symplectic, nonetheless it could be useful
to calculate the transformed Hamiltonian, because it is still a prime integral of the equation.
By definition (3.3), one has

ρ(x)

1 − ρ2(x)
= −x

2
√
1 + 2x

,
1 + ρ2(x)

1 − ρ2(x)
= 1 + x√

1 + 2x
∀x ≥ 0.

For ( f , g) = 	(3)(η, ψ), one has

〈� f , g〉 = ρ(P(η, ψ))

1 − ρ2(P(η, ψ))

(
〈�η, η〉 + 〈�ψ,ψ〉

)
+ 1 + ρ2(P(η, ψ))

1 − ρ2(P(η, ψ))
〈�η,ψ〉

and

1

16
〈�( f + g), f + g〉2 = Q2( f , g) = P2(η, ψ).

Hence the new Hamiltonian H (3) := H (2) ◦ 	(3) is

H (3)(η, ψ) = −P(η, ψ)

2
√
1 + 2P(η, ψ)

(
〈�η, η〉 + 〈�ψ,ψ〉

)

+ 1 + P(η, ψ)√
1 + 2P(η, ψ)

〈�η,ψ〉 + P2(η, ψ).

4 Normal Form: First Step

The next step is the cancellation of the cubic terms contributing to the energy estimate.
Following [4], we write (3.6) as

∂t

(
η

ψ

)
= X(η, ψ) = D1(η, ψ) + D≥3(η, ψ) + B3(η, ψ) + R≥5(η, ψ) (4.1)

where

D1(η, ψ) :=
(−i�η

i�ψ

)
, D≥3(η, ψ) := (

√
1 + 2P(η, ψ) − 1)D1(η, ψ), (4.2)
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B3(η, ψ) is the cubic component of the bounded, off-diagonal term

B3(η, ψ) = i

4

(
〈�ψ,�ψ〉 − 〈�η,�η〉

) (
ψ

η

)
(4.3)

and R≥5(η, ψ) is the bounded remainder of higher homogeneity degree

R≥5(η, ψ) = −i P(η, ψ)

2(1 + 2P(η, ψ))

(
〈�ψ,�ψ〉 − 〈�η,�η〉

) (
ψ

η

)
. (4.4)

In [4] the term B3 (and notD≥3, as it gives no contribution to the energy estimate) is removed
by the following normal form transformation. Let

	(4)(w, z) := (I + M(w, z))

(
w

z

)
, (4.5)

M(w, z) :=
(

0 A12[w,w] + C12[z, z]
A12[z, z] + C12[w,w] 0

)
, (4.6)

where A12, C12 are the bilinear maps

A12[u, v]h :=
∑

j,k �=0, | j |�=|k|
u jv− j

| j |2
8(| j | − |k|)hkeik·x , (4.7)

C12[u, v]h :=
∑

j,k �=0

u jv− j
| j |2

8(| j | + |k|)hkeik·x . (4.8)

For d ∈ N, let

m0 = 1 if d = 1, m0 = 3

2
if d ≥ 2. (4.9)

Lemma 4.1 (Lemma 4.1 of [4]). Let A12, C12, m0 be defined in (4.7), (4.8), (4.9). For all
complex functions u, v, h, all real s ≥ 0,

‖A12[u, v]h‖s ≤ 3

8
‖u‖m0‖v‖m0‖h‖s, ‖C12[u, v]h‖s ≤ 1

16
‖u‖1‖v‖1‖h‖s . (4.10)

The differential of 	(4) at the point (w, z) is

(	(4))′(w, z) = (I + K (w, z)), K (w, z) = M(w, z) + E(w, z), (4.11)

where M(w, z) is defined in (4.6), and

E(w, z)

(
α

β

)
:=

(
2A12[w, α]z + 2C12[z, β]z
2C12[w, α]w + 2A12[z, β]w

)
. (4.12)

To estimate matrix operators and vectors in Hs
0 (Td , c.c.), we define ‖(w, z)‖s := ‖w‖s =

‖z‖s for every pair (w, z) = (w,w) of complex conjugate functions.

Lemma 4.2 (Lemma 4.2 of [4]). For all s ≥ 0, all (w, z) ∈ Hm0
0 (Td , c.c.), (α, β) ∈

Hs
0 (Td , c.c.) one has

∥∥∥M(w, z)

(
α

β

) ∥∥∥
s

≤ 7

16
‖w‖2m0

‖α‖s, (4.13)

∥∥∥K (w, z)

(
α

β

) ∥∥∥
s

≤ 7

16
‖w‖2m0

‖α‖s + 7

8
‖w‖m0‖w‖s‖α‖m0 , (4.14)
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where m0 is defined in (4.9). For ‖w‖m0 < 1
2 , the operator (I + K (w, z)) : Hm0

0 (Td , c.c.)
→ Hm0

0 (Td , c.c.) is invertible, with inverse

(I + K (w, z))−1 = I − K (w, z) + K̃ (w, z), K̃ (w, z) :=
∞∑

n=2

(−K (w, z))n,

satisfying ∥∥∥(I + K (w, z))−1
(

α

β

) ∥∥∥
s

≤ C(‖α‖s + ‖w‖m0‖w‖s‖α‖m0),

for all s ≥ 0, where C is a universal constant.

The nonlinear, continuous map 	(4) is invertible in a ball around the origin.

Lemma 4.3 (Lemma 4.3 of [4]). For all (η, ψ) ∈ Hm0
0 (Td , c.c.) in the ball ‖η‖m0 ≤ 1

4 ,
there exists a unique (w, z) ∈ Hm0

0 (Td , c.c.) such that 	(4)(w, z) = (η, ψ), with ‖w‖m0 ≤
2‖η‖m0 . If, in addition, η ∈ Hs

0 for some s > m0, then w also belongs to Hs
0 , and ‖w‖s ≤

2‖η‖s . This defines the continuous inverse map (	(4))−1 : Hs
0 (Td , c.c.) ∩ {‖η‖m0 ≤ 1

4 }
→ Hs

0 (Td , c.c.).

Lemma 4.4 (Lemma 4.4 of [4]). For all complex functions u, v, y, h, one has

〈A12[u, v]y, h〉 = 〈y, A12[u, v]h〉, 〈C12[u, v]y, h〉 = 〈y, C12[u, v]h〉, (4.15)

A12[u, v]y = A12[u, v]y, C12[u, v]y = C12[u, v]y, (4.16)

[A12[u, v],�s] = 0, [C12[u, v],�s ] = 0 (4.17)

where u is the complex conjugate of u, and so on. Moreover, for all complex w, z,

M(w, z)D1 + D1M(w, z) = 0. (4.18)

Under the change of variables (η, ψ) = 	(4)(w, z), it is proved in [4] that system (3.6)
becomes

∂t

(
w

z

)
= (I + K (w, z))−1X(	(4)(w, z)) =: X+(w, z)

= (
1 + P(w, z)

)D1(w, z) + X+
3 (w, z) + X+

≥5(w, z) (4.19)

where
P(w, z) :=

√
1 + 2P(	(4)(w, z)) − 1, (4.20)

X+
3 (w, z) has components

(X+
3 )1(w, z) := − i

4

∑
j,k �=0, |k|=| j |

w jw− j | j |2zkeik·x , (4.21)

(X+
3 )2(w, z) := i

4

∑
j,k �=0, |k|=| j |

z j z− j | j |2wkeik·x , (4.22)

and

X+
≥5(w, z) := K (w, z)

(
I + K (w, z)

)−1(B3(w, z) − X+
3 (w, z)

) + R+
≥5(w, z)

− P(w, z)
(
I + K (w, z)

)−1(B3(w, z) − X+
3 (w, z)

)
(4.23)
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with

R+
≥5(w, z) := (I + K (w, z))−1R≥5(	

(4)(w, z)) + [B3(	
(4)(w, z)) − B3(w, z)]

+ ( − K (w, z) + K̃ (w, z)
)B3(	

(4)(w, z)), (4.24)

R≥5 defined in (4.4).

Lemma 4.5 (Lemma 4.5 of [4]). The maps M(w,w), K (w,w), and the transformation 	(4)

preserve the structure of real vector field (2.8). Hence X+ defined in (4.19) satisfies (2.8).

The terms (1 + P)D1 and X+
3 in (4.19) give no contributions to the energy estimate,

because, as one can check directly,

〈�s(1 + P)(−i�w),�s z〉 + 〈�sw,�s(1 + P)i�z〉 = 0

and
〈�s(X+

3 )1,�
s z〉 + 〈�sw,�s(X+

3 )2〉 = 0. (4.25)

Similarly, also PX+
3 gives no contribution to the energy estimate, because

〈�s(PX+
3 )1,�

s z〉 + 〈�sw,�s(PX+
3 )2〉 = P〈�s(X+

3 )1,�
s z〉 + P〈�sw,�s(X+

3 )2〉 = 0.

Lemma 4.6 (Lemma 4.6 of [4]). For all s ≥ 0, all pairs of complex conjugate functions
(w, z), one has

‖B3(w, z)‖s ≤ 1

2
‖w‖21‖w‖s, ‖X+

3 (w, z)‖s ≤ 1

4
‖w‖21‖w‖s, (4.26)

and, for ‖w‖m0 ≤ 1
2 , for all complex functions h,

‖P(w, z)h‖s = P(w, z)‖h‖s, 0 ≤ P(w, z) ≤ C‖w‖21
2
, (4.27)

‖R≥5(w, z)‖s ≤ 2P(w, z)‖B3(w, z)‖s ≤ C‖w‖21
2
‖w‖21‖w‖s (4.28)

where R≥5 is defined in (4.4) and C is a universal constant.

Lemma 4.7 (Lemma 4.7 of [4]). For all s ≥ 0, all (w, z) ∈ Hs
0 (Td , c.c.) ∩ Hm0

0 (Td , c.c.)
with ‖w‖m0 ≤ 1

2 , one has

‖X+
≥5(w, z)‖s ≤ C‖w‖21‖w‖2m0

‖w‖s (4.29)

where C is a universal constant.

Quintic terms. Now we extract the terms of quintic homogeneity order from X+
≥5(w, z).

Using (4.23), (4.24), (3.8), (3.4), (4.5), we calculate

X+
≥5(w, z) = P(w, z)X+

3 (w, z) + X+
5 (w, z) + X+

≥7(w, z) (4.30)

where

X+
5 (w, z) := −K (w, z)X+

3 (w, z) − 3Q(w, z)B3(w, z) + B′
3(w, z)M(w, z)

(
w

z

)
(4.31)

and X+
≥7(w, z) is defined in (4.30) by difference. As already observed, the term P(w, z)X+

3
(w, z) in (4.30) gives no contributions to the energy estimate. By (4.19), (4.30), the complete
vector field is

X+(w, z) = (1 + P(w, z))
(D1(w, z) + X+

3 (w, z)
) + X+

5 (w, z) + X+
≥7(w, z). (4.32)

Moreover, adapting the proof of Lemma 4.7, we obtain the following bounds.
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Lemma 4.8 For all s ≥ 0, all (w, z) ∈ Hs
0 (Td , c.c.) ∩ Hm0

0 (Td , c.c.) with ‖w‖m0 ≤ 1
2 , one

has
‖X+

5 (w, z)‖s ≤ C‖w‖4m0
‖w‖s, ‖X+

≥7(w, z)‖s ≤ C‖w‖6m0
‖w‖s,

where C is a universal constant.

We analyze the terms in (4.31). By (4.11), (4.12), the first component of K (w, z)X+
3 (w, z)

is

(K (w, z)X+
3 (w, z))1 = A12[w,w](X+

3 )2(w, z) + C12[z, z](X+
3 )2(w, z)

+ 2A12[w, (X+
3 )1(w, z)]z + 2C12[z, (X+

3 )2(w, z)]z,
and its second component is the conjugate of the first one. Recalling (4.3), the first component
of the last term in (4.31) is
(
B′
3(w, z)M(w, z)

(
w
z

))
1

= i

2

(
〈�z,�β〉 − 〈�w,�α〉

)
z + i

4

(
〈�z,�z〉 − 〈�w,�w〉

)
β

with

α = A12[w,w]z + C12[z, z]z, β = A12[z, z]w + C12[w,w]w,

namely
(
B′
3(w, z)M(w, z)

(
w
z

))
1

= i

2
〈�z, A12[z, z]�w〉z + i

2
〈�z, C12[w,w]�w〉z

− i

2
〈�w, A12[w,w]�z〉z − i

2
〈�w, C12[z, z]�z〉z

+ i

4
〈�z,�z〉A12[z, z]w + i

4
〈�z,�z〉C12[w,w]w

− i

4
〈�w,�w〉A12[z, z]w − i

4
〈�w,�w〉C12[w,w]w.

In Fourier series, with all indices in Z
d\{0}, one has

A12[w,w](X+
3 )2(w, z) = i

32

∑
j,k,�

| j |�=|k|=|�|

| j |2|�|2
| j | − |k|w jw− j z�z−�wkeik·x ,

C12[z, z](X+
3 )2(w, z) = i

32

∑
j,k,�

|k|=|�|

| j |2|�|2
| j | + |k| z j z− j z�z−�wkeik·x ,

A12[w, (X+
3 )1(w, z)]z = −i

32

∑
j,k,�

|�|=| j |�=|k|

| j |2|�|2
| j | − |k|w j z− jw�w−�zkeik·x ,

C12[z, (X+
3 )2(w, z)]z = i

32

∑
j,k,�

| j |=|�|

| j |2|�|2
| j | + |k| z jw− j z�z−�zkeik·x ,

Q(w, z) = 1

4

∑
j

| j |(w jw− j + 2w j z− j + z j z− j ),

(B3(w, z))1 = i

4

∑
j,k

| j |2(z j z− j − w jw− j )zkeik·x ,
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(
Q(w, z)B3(w, z)

)
1 = i

16

∑
j,k,�

|�|| j |2(w�w−� + 2w�z−�

+ z�z−�)(z j z− j − w jw− j )zkeik·x ,

〈�z, A12[z, z]�w〉z = 1

8

∑
j,k,�

|�|�=| j |

| j |2|�|2
|�| − | j | z jw− j z�z−�zkeik·x ,

〈�z, C12[w,w]�w〉z = 1

8

∑
j,k,�

| j |2|�|2
|�| + | j | z jw− jw�w−�zkeik·x ,

〈�w, A12[w,w]�z〉z = 1

8

∑
j,k,�

|�|�=| j |

| j |2|�|2
|�| − | j |w j z− jw�w−�zkeik·x ,

〈�w, C12[z, z]�z〉z = 1

8

∑
j,k,�

| j |2|�|2
|�| + | j |w j z− j z�z−�zkeik·x ,

〈�z,�z〉A12[z, z]w = 1

8

∑
j,k,�

|k|�=| j |

| j |2|�|2
| j | − |k| z j z− j z�z−�wkeik·x ,

〈�z,�z〉C12[w,w]w = 1

8

∑
j,k,�

| j |2|�|2
| j | + |k|w jw− j z�z−�wkeik·x ,

〈�w,�w〉A12[z, z]w = 1

8

∑
j,k,�

|k|�=| j |

| j |2|�|2
| j | − |k| z j z− jw�w−�wkeik·x ,

〈�w,�w〉C12[w,w]w = 1

8

∑
j,k,�

| j |2|�|2
| j | + |k|w jw− jw�w−�wkeik·x .

Thus the first component of the quintic term X+
5 (w, z) is

(X+
5 (w, z))1 = −A12[w,w](X+

3 )2(w, z) − C12[z, z](X+
3 )2(w, z)

− 2A12[w, (X+
3 )1(w, z)]z − 2C12[z, (X+

3 )2(w, z)]z
− 3

(
Q(w, z)B3(w, z)

)
1

+ i

2
〈�z, A12[z, z]�w〉z + i

2
〈�z, C12[w,w]�w〉z

− i

2
〈�w, A12[w,w]�z〉z − i

2
〈�w, C12[z, z]�z〉z

+ i

4
〈�z,�z〉A12[z, z]w + i

4
〈�z,�z〉C12[w,w]w

− i

4
〈�w,�w〉A12[z, z]w − i

4
〈�w,�w〉C12[w,w]w

and, in Fourier series,

(X+
5 (w, z))1 = − i

32

∑
j,k,�

| j |�=|k|=|�|

| j |2|�|2
| j | − |k|w jw− j z�z−�wkeik·x
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− i

32

∑
j,k,�

|k|=|�|

| j |2|�|2
| j | + |k| z j z− j z�z−�wkeik·x + i

16

∑
j,k,�

|�|=| j |�=|k|

| j |2|�|2
| j | − |k|w j z− jw�w−�zkeik·x

− i

16

∑
j,k,�

| j |=|�|

| j |2|�|2
| j | + |k| z jw− j z�z−�zkeik·x

− 3i

16

∑
j,k,�

|�|| j |2(w�w−� + 2w�z−� + z�z−�)(z j z− j − w jw− j )zkeik·x

+ i

16

∑
j,k,�

|�|�=| j |

| j |2|�|2
|�| − | j | z jw− j z�z−�zkeik·x + i

16

∑
j,k,�

| j |2|�|2
|�| + | j | z jw− jw�w−�zkeik·x

− i

16

∑
j,k,�

|�|�=| j |

| j |2|�|2
|�| − | j |w j z− jw�w−�zkeik·x − i

16

∑
j,k,�

| j |2|�|2
|�| + | j |w j z− j z�z−�zkeik·x

+ i

32

∑
j,k,�

|k|�=| j |

| j |2|�|2
| j | − |k| z j z− j z�z−�wkeik·x + i

32

∑
j,k,�

| j |2|�|2
| j | + |k|w jw− j z�z−�wkeik·x

− i

32

∑
j,k,�

|k|�=| j |

| j |2|�|2
| j | − |k| z j z− jw�w−�wkeik·x − i

32

∑
j,k,�

| j |2|�|2
| j | + |k|w jw− jw�w−�wkeik·x .

Notation. In the coefficients of the vector field X+
5 there appear several denominators,

which imply the corresponding restrictions on the indices j, k, � to prevent the denominators
from vanishing. From now on, wewill stop indicating explicitly the restrictions on the indices
in summations and adopt instead the convention 0/0 = 0 in the coefficients. For instance,
instead of

∑
j,k,�

|k|�=| j |

| j |2|�|2
| j | − |k| z j z− jw�w−�wkeik·x

we will write

∑
j,k,�

| j |2|�|2(1 − δ
|k|
| j |)

| j | − |k| z j z− jw�w−�wkeik·x .

In this example, when | j | = |k| the denominator of the coefficient vanishes; the numerator

also vanishes because of the factor (1− δ
|k|
| j |); this has to be interpreted as

| j |2|�|2(1−δ
|k|
| j |)

| j |−|k| being
zero when | j | = |k|.

We collect similar monomials, and we get that (X+
5 (w, z))1 is the sum of the following

eight terms:

Y (4)
11 [w,w,w,w]w := − i

32

∑
j,�,k

| j |2|�|2
| j | + |k|w jw− jw�w−�wkeik·x , (4.33)
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Y (2)
11 [w,w, z, z]w := i

32

∑
j,�,k

| j |2|�|2
(−δ

|k|
|�| (1 − δ

|k|
| j |)

| j | − |k| + 1

| j | + |k|

− (1 − δ
|k|
|�| )

|�| − |k|
)
w jw− j z�z−�wkeik·x , (4.34)

Y (0)
11 [z, z, z, z]w := i

32

∑
j,�,k

| j |2|�|2
( −δ

|k|
|�|

| j | + |k| + (1 − δ
|k|
| j |)

| j | − |k|
)

z j z− j z�z−�wkeik·x ,

(4.35)

Y (4)
12 [w,w,w,w]z := 3i

16

∑
j,�,k

| j |2|�|w jw− jw�w−�zkeik·x , (4.36)

Y (3)
12 [w,w,w, z]z := i

16

∑
j,�,k

| j |2|�|
( |�|δ| j |

|�| (1 − δ
|k|
|�| )

|�| − |k| + 6

+ |�|
|�| + | j | + |�|(1 − δ

| j |
|�| )

|�| − | j |

)
w jw− jw�z−�zkeik·x , (4.37)

Y (2)
12 [w,w, z, z]z := 3i

16

∑
j,�,k

| j ||�|(| j | − |�|)w jw− j z�z−�zkeik·x , (4.38)

Y (1)
12 [w, z, z, z]z := i

16

∑
j,�,k

| j ||�|2
( −| j |δ|�|

| j |
| j | + |k| − 6 + | j |(1 − δ

|�|
| j |)

|�| − | j |

− | j |
|�| + | j |

)
w j z− j z�z−�zkeik·x , (4.39)

Y (0)
12 [z, z, z, z]z := − 3i

16

∑
j,�,k

| j |2|�|z j z− j z�z−�zkeik·x . (4.40)

Symmetrizing in j ↔ � when it is possible, we also have

Y (4)
11 [w,w,w,w]w := − i

64

∑
j,�,k

( | j |2|�|2
| j | + |k| + | j |2|�|2

|�| + |k|
)
w jw− jw�w−�wkeik·x , (4.41)

Y (0)
11 [z, z, z, z]w := i

64

∑
j,�,k

| j |2|�|2
(

− δ
|k|
|�| + δ

|k|
| j |

| j | + |�|

+ (1 − δ
|k|
| j |)

| j | − |k| + (1 − δ
|k|
|�| )

|�| − |k|
)

z j z− j z�z−�wkeik·x , (4.42)

Y (4)
12 [w,w,w,w]z := 3i

32

∑
j,�,k

| j ||�|(| j | + |�|)w jw− jw�w−�zkeik·x , (4.43)

Y (0)
12 [z, z, z, z]z := − 3i

32

∑
j,�,k

| j ||�|(| j | + |�|)z j z− j z�z−�zkeik·x . (4.44)

123



1218 Journal of Dynamics and Differential Equations (2021) 33:1203–1230

5 Normal Form: Second Step

We consider a transformation of the form
(

w

z

)
= (I + M(u, v))

(
u
v

)
=: 	(5)(u, v), (5.1)

where M(u, v) is a matrix operator of homogeneity degree 4. In particular,

M(u, v) = A[u, u, u, u]+B[u, u, u, v]+C[u, u, v, v]+D[u, v, v, v]+F[v, v, v, v], (5.2)

where A[u, u, u, u] is of the form

A[u, u, u, u] =
(A11[u, u, u, u] A12[u, u, u, u]
A21[u, u, u, u] A22[u, u, u, u]

)

and similarly for the other terms and for M(u, v). We assume the following symmetries on
the multilinearity of the maps A,B, C,D,F :

A[u(1), u(2), u(3), u(4)] = A[u(2), u(1), u(3), u(4)] = A[u(1), u(2), u(4), u(3)],
B[u(1), u(2), u(3), v] = B[u(2), u(1), u(3), v],

C[u(1), u(2), v(1), v(2)] = C[u(2), u(1), v(1), v(2)] = C[u(1), u(2), v(2), v(1)],
D[u, v(1), v(2), v(3)] = D[u, v(1), v(3), v(2)],

F[v(1), v(2), v(3), v(4)] = F[v(2), v(1), v(3), v(4)] = F[v(1), v(2), v(4), v(3)],
for all u, v, u(n), v(n), n = 1, 2, 3, 4. We also assume that

C11[u(1), u(2), v(1), v(2)]h =
∑
j,�,k

u(1)
j u(2)

− jv
(1)
� v

(2)
−�hk c11( j, �, k) eik·x

for some coefficient c11( j, �, k) to be determined, and similarly for all the other terms. One
has

∂t

(
w

z

)
= (I + M(u, v))

(
∂t u
∂tv

)
+ {∂tM(u, v)}

(
u
v

)
= (I + K(u, v))

(
∂t u
∂tv

)

where
K(u, v) := (	(5))′(u, v) − I = M(u, v) + E(u, v) (5.3)

and, thanks to the previous assumptions,

E(u, v)

(
α

β

)
:= {2A[u, α, u, u] + 2A[u, u, u, α] + 2B[u, α, u, v]

+ B[u, u, α, v] + B[u, u, u, β] + 2C[u, α, v, v] + 2C[u, u, v, β] + D[α, v, v, v]
+ D[u, β, v, v] + 2D[u, v, v, β] + 2F[v, β, v, v] + 2F[v, v, v, β]}

(
u
v

)
. (5.4)

The transformed equation is

∂t

(
u
v

)
= W (u, v)

where
W (u, v) := (I + K(u, v))−1X+(	(5)(u, v)). (5.5)
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Recalling (4.32), we decompose

W (u, v) = (
1 + P(	(5)(u, v))

)(D1(u, v) + X+
3 (u, v)

) + W5(u, v) + W≥7(u, v), (5.6)

where (1 + P(	(5)))(D1 + X+
3 ) gives no contribution to the energy estimate,

W5(u, v) := X+
5 (u, v) + D1(M(u, v)[u, v]) − K(u, v)D1(u, v) (5.7)

and W≥7(u, v) is defined by difference and contains only terms of homogeneity at least seven
in (u, v).

We calculate each term of the first component (W5)1 of W5. First, one has

(W5)1(u, v) = (X+
5 )1(u, v) − i�

(M11(u, v)u + M12(u, v)v
)

−
(
M11(u, v)(−i�u) + M12(u, v)(i�v)

)
−

(
E(u, v)

(−i�u

i�v

))
1

= (X+
5 )1(u, v) − 2iM12(u, v)�v −

(
E(u, v)

(−i�u

i�v

))
1
.

Now

(
E(u, v)

(−i�u
i�v

) )
1

= −2iA11[u,�u, u, u]u − 2iA11[u, u, u, �u]u − 2iB11[u,�u, u, v]u
− iB11[u, u, �u, v]u + iB11[u, u, u, �v]u − 2iC11[u, �u, v, v]u + 2iC11[u, u, v,�v]u
− iD11[�u, v, v, v]u + iD11[u,�v, v, v]u + 2iD11[u, v, v, �v]u + 2iF11[v, �v, v, v]u
+ 2iF11[v, v, v, �v]u − 2iA12[u, �u, u, u]v − 2iA12[u, u, u,�u]v − 2iB12[u,�u, u, v]v
− iB12[u, u,�u, v]v + iB12[u, u, u,�v]v − 2iC12[u, �u, v, v]v + 2iC12[u, u, v,�v]v
− iD12[�u, v, v, v]v + iD12[u, �v, v, v]v + 2iD12[u, v, v, �v]v + 2iF12[v, �v, v, v]v
+ 2iF12[v, v, v, �v]v.

Thus the terms in (W5)1(u, v) containing the monomials u j u− j u�u−�ukeik·x are

Y (4)
11 [u, u, u, u]u + 2iA11[u,�u, u, u]u + 2iA11[u, u, u,�u]u

=
∑
j,�,k

u j u− j u�u−�ukeik·x(2i(| j | + |�|)a11( j, �, k) − i

64

( | j |2|�|2
| j | + |k| + | j |2|�|2

|�| + |k|
))

.

Hence we choose

a11( j, �, k) := | j |2|�|2
128(| j | + |�|)

( 1

| j | + |k| + 1

|�| + |k|
)
, (5.8)

so that (W5)1(u, v) does not contain monomials of the type u j u− j u�u−�ukeik·x .
Next, since (X+

5 )1(u, v) does not contain monomials u j u− j u�v−�ukeik·x , we fix

B11 = 0, (5.9)

so that (W5)1(u, v) also does not contain such monomials.
Next, the terms in (W5)1(u, v) containing the monomials u j u− jv�v−�ukeik·x are
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Y (2)
11 [u, u, v, v]u + 2iC11[u,�u, v, v]u − 2iC11[u, u, v,�v]u

=
∑
j,�,k

u j u− jv�v−�ukeik·x{ i

32
| j |2|�|2

(−δ
|k|
|�| (1 − δ

|k|
| j |)

| j | − |k| + 1

| j | + |k| − (1 − δ
|k|
|�| )

|�| − |k|
)

+ 2ic11( j, �, k)(| j | − |�|)
}
.

This term can be eliminated for | j | �= |�|, while for | j | = |�| it cannot be eliminated, and in
that case we fix c11 = 0. Thus we choose

c11( j, �, k) := 1

64
| j |2|�|2

(−δ
|k|
|�| (1 − δ

|k|
| j |)

| j | − |k| + 1

| j | + |k| − (1 − δ
|k|
|�| )

|�| − |k|
) 1 − δ

|�|
| j |

|�| − | j | , (5.10)

and the terms in (W5)1(u, v) containing the monomials u j u− jv�v−�ukeik·x become

∑
j,�,k

| j |=|�|

u j u− jv�v−�ukeik·x{ i

32
| j |2|�|2

(−δ
|k|
|�| (1 − δ

|k|
| j |)

| j | − |k| + 1

| j | + |k| − (1 − δ
|k|
|�| )

|�| − |k|
)}

= i

32

∑
j,�,k

| j |=|�|

u j u− jv�v−�ukeik·x | j |2|�|2
( 1

| j | + |k| − (1 − δ
|k|
|�| )

|�| − |k|
)
.

Next, since (X+
5 )1(u, v) does not contain monomials u jv− jv�v−�ukeik·x , we fix

D11 = 0, (5.11)

so that (W5)1(u, v) also does not contain such monomials.
Next, the terms in (W5)1(u, v) containing the monomials v jv− jv�v−�ukeik·x are

Y (0)
11 [v, v, v, v]u − 2iF11[v,�v, v, v]u − 2iF11[v, v, v,�v]u

=
∑
j,�,k

v jv− jv�v−�ukeik·x{ i

64
| j |2|�|2

(
− δ

|k|
|�| + δ

|k|
| j |

| j | + |�| + (1 − δ
|k|
| j |)

| j | − |k| + (1 − δ
|k|
|�| )

|�| − |k|
)

− 2i f11( j, �, k)(| j | + |�|)
}
.

Hence we fix

f11( j, �, k) := 1

128

(
− δ

|k|
|�| + δ

|k|
| j |

| j | + |�| + (1 − δ
|k|
| j |)

| j | − |k| + (1 − δ
|k|
|�| )

|�| − |k|
) | j |2|�|2

| j | + |�| , (5.12)

so that (W5)1(u, v) does not contain monomials of the type v jv− jv�v−�ukeik·x .
Next, the terms in (W5)1(u, v) containing the monomials u j u− j u�u−�vkeik·x are

Y (4)
12 [u, u, u, u]v − 2iA12[u, u, u, u]�v + 2iA12[u,�u, u, u]v + 2iA12[u, u, u,�u]v
=

∑
j,�,k

u j u− j u�u−�vkeik·x{ 3i

32
| j ||�|(| j | + |�|) − 2ia12( j, �, k)(|k| − | j | − |�|)

}
.

Hence we fix

a12( j, �, k) := 3

64
| j ||�|(| j | + |�|) (1 − δ

| j |+|�|
|k| )

|k| − | j | − |�| , (5.13)
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and the terms in (W5)1(u, v) containing the monomials u j u− j u�u−�vkeik·x become

3i

32

∑
j,�,k

|k|=| j |+|�|

u j u− j u�u−�vkeik·x | j ||�||k|.

Next, the terms in (W5)1(u, v) containing the monomials u j u− j u�v−�vkeik·x are

Y (3)
12 [u, u, u, v]v − 2iB12[u, u, u, v]�v + 2iB12[u,�u, u, v]v

+ iB12[u, u,�u, v]v − iB12[u, u, u,�v]v

=
∑
j,�,k

u j u− j u�v−�vkeik·x{ i

16
| j |2|�|

( |�|δ| j |
|�| (1 − δ

|k|
|�| )

|�| − |k| + 6 + |�|
|�| + | j |

+ |�|(1 − δ
| j |
|�| )

|�| − | j |
)

− 2ib12( j, �, k)(|k| − | j |)
}
.

Hence we fix

b12( j, �, k) := | j |2|�|
32

( |�|δ| j |
|�| (1 − δ

|k|
|�| )

|�| − |k| + 6+ |�|
|�| + | j | + |�|(1 − δ

| j |
|�| )

|�| − | j |
) 1 − δ

|k|
| j |

|k| − | j | , (5.14)

and the terms in (W5)1(u, v) containing the monomials u j u− j u�v−�vkeik·x become

∑
j,�,k

| j |=|k|

u j u− j u�v−�vkeik·x i

16
| j |2|�|

( |�|δ| j |
|�| (1 − δ

|k|
|�| )

|�| − |k| + 6 + |�|
|�| + | j | + |�|(1 − δ

| j |
|�| )

|�| − | j |
)

= i

16

∑
j,�,k

| j |=|k|

u j u− j u�v−�vkeik·x | j |2|�|
(
6 + |�|

|�| + | j | + |�|(1 − δ
| j |
|�| )

|�| − | j |
)
.

Next, the terms in (W5)1(u, v) containing the monomials u j u− jv�v−�vkeik·x are

Y (2)
12 [u, u, v, v]v − 2iC12[u, u, v, v]�v + 2iC12[u,�u, v, v]v − 2iC12[u, u, v,�v]v
=

∑
j,�,k

u j u− jv�v−�vkeik·x{ 3i

16
| j ||�|(| j | − |�|) − 2ic12( j, �, k)(|k| − | j | + |�|)

}
.

Hence we fix

c12( j, �, k) := 3

32
| j ||�|(| j | − |�|) 1 − δ

| j |−|�|
|k|

|k| − | j | + |�| , (5.15)

and the terms in (W5)1(u, v) containing the monomials u j u− jv�v−�vkeik·x become

3i

16

∑
j,�,k

|k|=| j |−|�|

u j u− jv�v−�vkeik·x | j ||�||k|.

Next, the terms in (W5)1(u, v) containing the monomials u jv− jv�v−�vkeik·x are

Y (1)
12 [u, v, v, v]v − 2iD12[u, v, v, v]�v + iD12[�u, v, v, v]v

− iD12[u,�v, v, v]v − 2iD12[u, v, v,�v]v
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=
∑
j,�,k

u jv− jv�v−�vkeik·x{ i

16

∑
j,�,k

| j ||�|2
( −| j |δ|�|

| j |
| j | + |k| − 6 + | j |(1 − δ

|�|
| j |)

|�| − | j |

− | j |
|�| + | j |

)
− 2id12( j, �, k)(|k| + |�|)

}
.

Hence we fix

d12( j, �, k) := | j ||�|2
32(|k| + |�|)

( −| j |δ|�|
| j |

| j | + |k| − 6 + | j |(1 − δ
|�|
| j |)

|�| − | j | − | j |
|�| + | j |

)
, (5.16)

so that (W5)1(u, v) does not contain monomials of the type u jv− jv�v−�vkeik·x .
Next, the terms in (W5)1(u, v) containing the monomials v jv− jv�v−�vkeik·x are

Y (0)
12 [v, v, v, v]v − 2iF12[v, v, v, v]�v − 2iF12[v,�v, v, v]v − 2iF12[v, v, v,�v]v
=

∑
j,�,k

v jv− jv�v−�vkeik·x{ − 3i

32

∑
j,�,k

| j ||�|(| j | + |�|) − 2i f12( j, �, k)(|k| + | j | + |�|)
}
.

Hence we fix

f12( j, �, k) := − 3| j ||�|(| j | + |�|)
64(|k| + | j | + |�|) , (5.17)

so that (W5)1(u, v) does not contain monomials of the type v jv− jv�v−�vkeik·x .
Summarizing, it remains

(W5)1(u, v) = i

32

∑
j,�,k

| j |=|�|

u j u− jv�v−�ukeik·x | j |2|�|2
( 1

| j | + |k| − (1 − δ
|k|
|�| )

|�| − |k|
)

+ 3i

32

∑
j,�,k

|k|=| j |+|�|

u j u− j u�u−�vkeik·x | j ||�||k|

+ i

16

∑
j,�,k

| j |=|k|

u j u− j u�v−�vkeik·x | j |2|�|
(
6 + |�|

|�| + | j | + |�|(1 − δ
| j |
|�| )

|�| − | j |
)

+ 3i

16

∑
j,�,k

|k|=| j |−|�|

u j u− jv�v−�vkeik·x | j ||�||k|. (5.18)

With similar calculations, or deducing the formula from the real structure, the second
component (W5)2 of W5 is

(W5)2(u, v) = − i

32

∑
j,�,k

| j |=|�|

v jv− j u�u−�vkeik·x | j |2|�|2
( 1

| j | + |k| − (1 − δ
|k|
|�| )

|�| − |k|
)

− 3i

32

∑
j,�,k

|k|=| j |+|�|

v jv− jv�v−�ukeik·x | j ||�||k|
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− i

16

∑
j,�,k

| j |=|k|

v jv− jv�u−�ukeik·x | j |2|�|
(
6 + |�|

|�| + | j | + |�|(1 − δ
| j |
|�| )

|�| − | j |
)

− 3i

16

∑
j,�,k

|k|=| j |−|�|

v jv− j u�u−�ukeik·x | j ||�||k|. (5.19)

Lemma 5.1 For all s ≥ 0, all (w, z) ∈ Hs
0 (Td , c.c.) ∩ Hm0

0 (Td , c.c.), one has

‖W5(u, v)‖s ≤ C‖u‖4m0
‖u‖s,

where C is a universal constant.

Proof The estimate is deduced from (5.18)–(5.19), using the following bound: if α, β ∈
Z

d \ {0}, 0 < ||α| − |β|| < 1, then |α|2 − |β|2 is a nonzero integer, |α| ≤ 2|β|, |β| ≤ 2|α|,
and

1

||α| − |β|| = |α| + |β|
||α|2 − |β|2| ≤ |α| + |β| ≤ C |α| ≤ C ′|β|. (5.20)

��
By (5.18)–(5.19), the system for the Fourier coefficients becomes

∂t uk = −i(1 + P)
(
|k|uk + 1

4

∑
| j |=|k|

u j u− j | j |2vk

)

+ i

32

∑
j,�

| j |=|�|

u j u− jv�v−�uk | j |2|�|2
( 1

| j | + |k| − (1 − δ
|k|
|�| )

|�| − |k|
)

+ 3i

32

∑
j,�

| j |+|�|=|k|

u j u− j u�u−�vk | j ||�||k|

+ i

16

∑
j,�

| j |=|k|

u j u− j u�v−�vk | j |2|�|
(
6 + |�|

|�| + | j | + |�|(1 − δ
| j |
|�| )

|�| − | j |
)

+ 3i

16

∑
j,�

| j |−|�|=|k|

u j u− jv�v−�vk | j ||�||k| + [(W≥7)1(u, v)]k (5.21)

and

∂tvk = i(1 + P)
(
|k|vk + 1

4

∑
| j |=|k|

v jv− j | j |2uk

)

− i

32

∑
j,�

| j |=|�|

v jv− j u�u−�vk | j |2|�|2
( 1

| j | + |k| − (1 − δ
|k|
|�| )

|�| − |k|
)

− 3i

32

∑
j,�

| j |+|�|=|k|

v jv− jv�v−�uk | j ||�||k|
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− i

16

∑
j,�

| j |=|k|

v jv− jv�u−�uk | j |2|�|
(
6 + |�|

|�| + | j | + |�|(1 − δ
| j |
|�| )

|�| − | j |
)

− 3i

16

∑
j,�

| j |−|�|=|k|

v jv− j u�u−�uk | j ||�||k| + [(W≥7)2(u, v)]k (5.22)

where [(W≥7)1(u, v)]k denotes the k-th Fourier coefficient of the first component of
W≥7(u, v), and similarly for the second component.

Now we prove that the transformation 	(5) is bounded and invertible in a ball. Let us
begin with estimating the denominators |k| ± | j | ± |�|.
Lemma 5.2 Let d ≥ 2, and let k, j, � ∈ Z

d \ {0}. If |k| − | j | + |�| is nonzero, then
∣∣∣ 1

|k| − | j | + |�|
∣∣∣ ≤ C | j |2|�|. (5.23)

If |k| − | j | − |�| is nonzero, then
∣∣∣ 1

|k| − | j | − |�|
∣∣∣ ≤ C | j ||�|(| j | + |�|). (5.24)

The constant C is universal (C = 27 is enough).

Proof Let |k|−| j |+|�| �= 0. If ||k|−| j |+|�|| ≥ 1, then (5.23) trivially holds. Thus, assume
that

0 < ||k| − | j | + |�|| < 1. (5.25)

Since | j | ≥ 1, it follows that

|k| + |�| < | j | + 1 ≤ 2| j |. (5.26)

The product

p := (|k| + | j | + |�|)(|k| + | j | − |�|)(|k| − | j | + |�|)(|k| − | j | − |�|)
= (|k|2 + | j |2 − |�|2)2 − 4|k|2| j |2 (5.27)

is an integer. If p �= 0, then |p| ≥ 1, and, using (5.26),
∣∣∣ 1

|k| − | j | + |�|
∣∣∣ ≤ |(|k| + | j | + |�|)(|k| + | j | − |�|)(|k| − | j | − |�|)|
≤ (3| j |)(3| j |)(3|�|) = C | j |2|�|.

If p = 0, then |k|+| j |−|�| = 0 or |k|−| j |−|�| = 0. If |k|+| j |−|�| = 0, then |k|−| j |+|�| =
2|k| ≥ 2, which contradicts (5.25). If |k| − | j | − |�| = 0, then |k| − | j | + |�| = 2|�| ≥ 2,
which also contradicts (5.25). This completes the proof of (5.23).

Now we prove (5.24). Let |k| − | j | − |�| �= 0. If ||k| − | j | − |�|| ≥ 1, then (5.24) trivially
holds. Thus, assume that

0 < ||k| − | j | − |�|| < 1. (5.28)

Then

|k| < | j | + |�| + 1 ≤ 2(| j | + |�|).
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Recalling (5.27), if p �= 0, then |p| ≥ 1, and
∣∣∣ 1

|k| − | j | − |�|
∣∣∣ ≤ |(|k| + | j | + |�|)(|k| + | j | − |�|)(|k| − | j | + |�|)| ≤ C(| j | + |�|)| j ||�|.

If p = 0, then |k|+| j |−|�| = 0or |k|−| j |+|�| = 0. If |k|+| j |−|�| = 0, then ||k|−| j |−|�|| =
2| j | ≥ 2, which contradicts (5.28). If |k| − | j | + |�| = 0, then ||k| − | j | − |�|| = 2|�| ≥ 2,
which also contradicts (5.28). ��
Remark 5.3 The bound |p| ≥ 1 in the proof of Lemma 5.2 is sharp. Indeed, it is enough
to show that there are infinitely many choices of k, j, � ∈ Z

d \ {0} such that the triple
(|k|2, | j |2, |�|2) is of the form (n, n + 1, 4n + 2) for some n ∈ N. In dimension d ≥ 3, this
is trivial.

In dimension d = 2, recall that the set of integers that can be written as the sum of two
squares is closed under multiplication, by Brahmagupta’s identity

(x2 + y2)(z2 + w2) = (xz + yw)2 + (xw − yz)2.

Then, it is enough to observe that for n = 4 the triple (n, n + 1, 4n + 2) = (4, 5, 18) =
(22 + 02, 22 + 12, 32 + 32) contains only numbers that are the sum of two squares, and
that, given any triple (n, n + 1, 4n + 2) that contains only numbers that are the sum of two
squares, the triple (2n2 + 2n, 2n2 + 2n + 1, 4(2n2 + 2n)+ 2) has the same property. Indeed,
2n2 + 2n + 1 = n2 + (n + 1)2 and 4(2n2 + 2n) + 2 = (2n + 1)2 + (2n + 1)2 are sums of
two squares for any n ∈ N, while 2n2 + 2n = 2n(n + 1) is the sum of two squares since it
is the product of numbers that are the sum of two squares (n, n + 1 are sums of two squares
by assumption, and 2 = 12 + 12).

Lemma 5.4 For d ≥ 2, the coefficients a11, c11, f11, a12, b12, c12, d12, f12 in (5.8)–(5.17)
all satisfy the bound

|coefficient(k, j, �)| ≤ C(| j |4|�|2 + | j |2|�|4)
for some universal constant C. For d = 1, they satisfy

|coefficient(k, j, �)| ≤ C | j |2|�|2.
Proof Let d ≥ 2. The denominators estimated in Lemma 5.2 appear only in a12 and c12.
The estimate for |a12| directly follows from (5.13) and (5.24). To estimate |c12|, for 0 <

||k|− | j |+ |�|| < 1 use (5.23) and (5.26), otherwise |c12| ≤ C | j ||�|(| j |+ |�|). The estimate
of a11, f12 is trivial. To estimate c11, f11, b12, d12, use repeatedly bound (5.20). In dimension
d = 1 all the estimates are trivial. ��
Lemma 5.5 Let

m1 :=
{
1 if d = 1,

2 if d ≥ 2.
(5.29)

All the operators G ∈ {A11, C11,F11,A12,B12, C12,D12,F12} satisfy

‖G[u, v, w, z]h‖s ≤ C‖u‖m1‖v‖m1‖w‖m1‖z‖m1‖h‖s (5.30)

for all complex functions u, v, w, z, h, all real s ≥ 0, where C is a universal constant.

Proof It is an immediate consequence of Lemma 5.4. ��
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We recall the definition ‖(w, z)‖s := ‖w‖s = ‖z‖s for all pairs (w, z) = (w,w) ∈
Hs
0 (Td , c.c.) of complex conjugate functions. By (5.2), (5.3), (5.4), we deduce the following

estimates.

Lemma 5.6 For all s ≥ 0, all (u, v) ∈ Hm1
0 (Td , c.c.), (α, β) ∈ Hs

0 (Td , c.c.) one has

∥∥∥M(u, v)

(
α

β

) ∥∥∥
s

≤ C‖u‖4m1
‖α‖s, (5.31)

∥∥∥K(u, v)

(
α

β

) ∥∥∥
s

≤ C‖u‖3m1
(‖u‖m1‖α‖s + ‖u‖s‖α‖m1), (5.32)

where m1 is defined in (5.29) and C is a universal constant. There exists a universal δ > 0
such that, for ‖u‖m1 < δ, the operator (I + K(u, v)) : Hm1

0 (Td , c.c.) → Hm1
0 (Td , c.c.) is

invertible, with inverse

(I + K(u, v))−1 = I − K(u, v) + K̃(u, v), K̃(u, v) :=
∞∑

n=2

(−K(u, v))n, (5.33)

satisfying ∥∥∥(I + K(u, v))−1
(

α

β

) ∥∥∥
s

≤ C(‖α‖s + ‖u‖3m1
‖u‖s‖α‖m1),

for all s ≥ 0.

The nonlinear, continuous map 	(5) is invertible in a ball around the origin.

Lemma 5.7 There exists a universal constant δ > 0 such that, for all (w, z) ∈ Hm1
0 (Td , c.c.)

in the ball ‖w‖m1 ≤ δ, there exists a unique (u, v) ∈ Hm1
0 (Td , c.c.) such that 	(5)(u, v) =

(w, z), with ‖u‖m1 ≤ 2‖w‖m1 . If, in addition, w ∈ Hs
0 for some s > m1, then u also

belongs to Hs
0 , and ‖u‖s ≤ 2‖w‖s . This defines the continuous inverse map (	(5))−1 :

Hs
0 (Td , c.c.) ∩ {‖w‖m1 ≤ δ} → Hs

0 (Td , c.c.).

Proof Using the estimates of Lemma 5.6, the proof of Lemma 5.7 is a straightforward adap-
tation of the proof of Lemma 4.3 in [4]. ��

We estimate the remainder W≥7(u, v). By (5.6) (which is the definition of W≥7(u, v)) and
(5.7), (5.5), (4.32), (5.1), we calculate

W≥7(u, v) = K̃(u, v)[1 + P(	(5)(u, v))]D1(u, v)

+ (−K(u, v) + K̃(u, v))[1 + P(	(5)(u, v))]D1(M(u, v)[u, v])
− K(u, v)P(	(5)(u, v))D1(u, v)

+ P(	(5)(u, v))D1(M(u, v)[u, v])
+ (−K(u, v) + K̃(u, v))[1 + P(	(5)(u, v))]X+

3 (u, v)

+ (−K(u, v) + K̃(u, v))X+
5 (u, v)

+ (I + K(u, v))−1[1 + P(	(5)(u, v))][X+
3 (	(5)(u, v)) − X+

3 (u, v)]
+ (I + K(u, v))−1[X+

5 (	(5)(u, v)) − X+
5 (u, v)]

+ (I + K(u, v))−1X+
≥7(	

(5)(u, v)), (5.34)

where K̃(u, v) is defined in (5.33). The only unbounded operator appearing in (5.34) is D1.
We rewrite the terms containing D1 by using the “homological equation” (5.7) (which is,
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in short, D1M − KD1 = W5 − X+
5 ) and the fact that the multiplication by P(	(5)(u, v))

commutes with K(u, v), because P(	(5)(u, v)) is a real scalar function of time only. Thus,
omitting to write (u, v) everywhere, the first two terms in (5.34) become

K̃(1 + P(	(5)))D1 + (−K + K̃)(1 + P(	(5)))D1M

= (1 + P(	(5)))
( ∞∑

n=2

(−K)nD1 +
∞∑

n=1

(−K)nD1M
)

= (1 + P(	(5)))

∞∑
n=1

(−K)n(−KD1 + D1M)

= (1 + P(	(5)))(−K + K̃)(W5 − X+
5 ).

Therefore (5.34) becomes

W≥7(u, v) = [1 + P(	(5)(u, v))](−K(u, v) + K̃(u, v))(W5(u, v) − X+
5 (u, v))

+ P(	(5)(u, v))(W5(u, v) − X+
5 (u, v))

+ (−K(u, v) + K̃(u, v))[1 + P(	(5)(u, v))]X+
3 (u, v)

+ (−K(u, v) + K̃(u, v))X+
5 (u, v)

+ (I + K(u, v))−1[1 + P(	(5)(u, v))][X+
3 (	(5)(u, v)) − X+

3 (u, v)]
+ (I + K(u, v))−1[X+

5 (	(5)(u, v)) − X+
5 (u, v)]

+ (I + K(u, v))−1X+
≥7(	

(5)(u, v)). (5.35)

Lemma 5.8 There exist universal constants δ > 0, C > 0 such that, for all s ≥ 0, for all
(u, v) ∈ Hm1

0 (Td , c.c.) ∩ Hs
0 (Td , c.c.) in the ball ‖u‖m1 ≤ δ, one has

‖W≥7(u, v)‖s ≤ C‖u‖6m1
‖u‖s .

Proof Use formula (5.35) and Lemmas 4.6, 4.8, 5.1, 5.6, 5.7. ��
Energy estimate. By (5.6), the energy estimate for the system ∂t (u, v) = W (u, v) on the real
subspace {v = ū} becomes

∂t (‖u‖2s ) = 〈�s∂t u,�sv〉 + 〈�su,�s∂tv〉 = Z6(u) + Z≥8(u) (5.36)

where

Z6(u) := 〈�s(W5)1(u, v),�sv〉 + 〈�su,�s(W5)2(u, v)〉,
Z≥8(u) := 〈�s(W≥7)1(u, v),�sv〉 + 〈�su,�s(W≥7)2(u, v)〉,

because the term
(
1 + P(	(5)(u, v))

)(D1(u, v) + X+
3 (u, v)

)
gives zero contribution. By

Lemma 5.8, one has

|Z≥8(u)| ≤ C‖u‖6m1
‖u‖2s .

By (5.18)–(5.19), we calculate

Z6(u) = 3i

32

∑
j,�,k

|k|=| j |+|�|

(u j u− j u�u−�vkv−k − v jv− jv�v−�uku−k)| j ||�||k|1+2s (5.37)
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+ 3i

16

∑
j,�,k

|k|=| j |−|�|

(u j u− jv�v−�vkv−k − v jv− j u�u−�uku−k)| j ||�||k|1+2s, (5.38)

which is the sum of the second and the fourth sums in both (W5)1 and (W5)2, because the first
and third sums in (W5)1 and (W5)2 cancel out. Then, we note that the sum over |k| = | j |−|�|
in (5.38), namely | j | = |k| + |�|, becomes, after renaming the indices, a sum over the same
set of indices as the sum in (5.37). Hence

Z6(u) = 3i

32

∑
j,�,k

|k|=| j |+|�|

(u j u− j u�u−�vkv−k − v jv− jv�v−�uku−k)| j ||�||k|(|k|2s − 2| j |2s),

namely, symmetrizing j ↔ �,

Z6(u) = 3i

32

∑
j,�,k

|k|=| j |+|�|

(u j u− j u�u−�vkv−k

− v jv− jv�v−�uku−k)| j ||�||k|(|k|2s − | j |2s − |�|2s). (5.39)

For s = 1
2 , one has |k|2s − | j |2s − |�|2s = |k| − | j | − |�| = 0 over the sum, and therefore

Z6(u) vanishes for s = 1
2 . Hence 〈�u, v〉 is a prime integral up to homogeneity order 8,

namely

|∂t (‖u‖21
2
)| = |∂t 〈�u, v〉| ≤ C‖u‖6m1

‖u‖21
2
.

This is not surprising, since s = 1
2 in (5.36) corresponds to the norm in the energy space

H1 × L2 of the original variables, and that norm is controlled by the Hamiltonian.
For s �= 1

2 , in general the term Z6(u) is not zero. For example, for s = 1 one has
|k|2s − | j |2s − |�|2s = (| j | + |�|)2 − | j |2 − |�|2 = 2| j ||�|.
Spheres in Fourier space. We observe that the system (or some relevant aspects of it concern-
ing the evolution of Sobolev norms) can be described by taking sums over all frequencies
k ∈ Z

d with a fixed (Euclidean) length |k| = λ. For each λ in the set

� := {|k| : k ∈ Z
d , k �= 0} ⊂ [1,∞), (5.40)

let

Sλ :=
∑

k:|k|=λ

|uk |2 =
∑

k:|k|=λ

ukv−k, Bλ :=
∑

k:|k|=λ

uku−k,

so that

Bλ =
∑

k:|k|=λ

vkv−k, ‖u‖2s =
∑
λ∈�

λ2s Sλ.

For each λ ∈ �, Sλ ≥ 0 and Bλ ∈ C. By (5.21)–(5.22), neglecting the terms from W≥7, one
has

∂t Sλ = 3i

32

∑
α,β∈�
α+β=λ

(Bα Bβ Bλ − Bα Bβ Bλ)αβλ + 3i

16

∑
α,β∈�
α−β=λ

(Bα Bβ Bλ − Bα Bβ Bλ)αβλ

(5.41)
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and

∂t Bλ = −2i(1 + P)
(
λ + 1

4
λ2Sλ

)
Bλ + i

16

∑
α∈�

|Bα|2Bλα
2
( 1

α + λ
− 1 − δλ

α

α − λ

)

+ 3i

16

∑
α,β∈�
α+β=λ

Bα Bβ Sλλαβ + i

8

∑
α∈�

Sα Sλ Bλλ
2α

(
6 + α

α + λ
+ α(1 − δλ

α)

α − λ

)

+ 3i

8

∑
α,β∈�
α−β=λ

Bα Bβ Sλαβλ. (5.42)

Equations (5.41)–(5.42) form a closed system in the variables (Sλ, Bλ)λ∈� . They play the
role of an “effective equation” for the dynamics of the Kirchhoff equation. This will be the
starting point for further analysis in the paper [5].
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