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Abstract
We consider a periodic function p : R → R of minimal period 4 which satisfies a family of
delay differential equations

x ′(t) = g(x(t − d�(xt ))), � ∈ R, (0.1)

with a continuously differentiable function g : R → R and delay functionals

d� : C([−2, 0],R) → (0, 2).

The solution segment xt in Eq. (0.1) is given by xt (s) = x(t + s). For every � ∈ R the
solutions of Eq. (0.1) defines a semiflow of continuously differentiable solution operators
S�,t : x0 �→ xt , t ≥ 0, on a continuously differentiable submanifold X� of the space
C1([−2, 0],R), with codim X� = 1. At� = 0 the delay is constant, d0(φ) = 1 everywhere,
and the orbit O = {pt : 0 ≤ t < 4} ⊂ X0 of the periodic solution is extremely stable in
the sense that the spectrum of the monodromy operator M0 = DS0,4(p0) is σ0 = {0, 1},
with the eigenvalue 1 being simple. For |�| ↗ ∞ there is an increasing contribution of
variable, state-dependent delay to the time lag d�(xt ) = 1+ · · · in Eq. (0.1). We study how
the spectrum σ� of M� = DS�,4(p0) changes if |�| grows from 0 to ∞. A main result is
that at � = 0 an eigenvalue �(�) < 0 of M� bifurcates from 0 ∈ σ0 and decreases to −∞
as |�| ↗ ∞. Moreover we verify the spectral hypotheses for a period doubling bifurcation
from the periodic orbit O at the critical parameter �∗ where �(�∗) = −1.
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1 Introduction

The present paper is a case study of the impact of variable delay on periodic motion. We
consider a periodic solution of an autonomous differential equation with a constant time lag
and ask how stability properties of the periodic solution change when the constant time lag
is replaced by a variable, state-dependent delay—in such a way that the periodic solution is
preserved. Let an odd continuously differentiable function g : R → R be given with

g(ξ) = 1 on (−∞, b] and g′(ξ) < 0 on (−b, b),

for some b ∈ (0, 1
3

)
. We begin with the equation

x ′(t) = g(x(t − 1)) (1.1)

which models negative feedback with respect to a stationary state (here given by ξ = 0),
for a scalar variable and with a constant time lag. Proceeding as in [2, Section XV.1] we
find a periodic solution: Take any continuous function φ : [−1, 0] → R with φ(t) ≤ −b
on [−1,−b] and φ(t) = t on [−b, 0]. Integrate Eq. (1.1) successively over the intervals
[0, 1 − b], [1 − b, 1 + b], [1 + b, 2], with the initial condition x(t) = φ(t) on [−1, 0]. This
yields a function p : [−1, 2] → R with

p(t) = t on [−b, 1 − b],
p(t) = 1 − b +

∫ t−1

−b
g(s)ds on (1 − b, 1 + b),

p(t) = 2 − t on [1 + b, 2],
which satisfies Eq. (1.1) on [0, 2]. Extension by the symmetry p(t) = −p(t−2) for 2 ≤ t ≤ 4
and upon that periodic continuation of the restriction p|[0, 4] to a function p : R → R defines
a periodic solution of Eq. (1.1) with the said symmetry and minimal period 4. Equation (1.1)
shows that p is twice continuously differentiable.

Let C = C([−2, 0],R) denote the Banach space of continuous real functions on [−2, 0],
with the norm given by |φ| = max−2≤t≤0 |φ(t)|. For a function x : dom → R and t ∈ Rwith
[t − 2, t] ⊂ dom recall the notation xt for the shifted segment [−2, 0] � s �→ x(t + s) ∈ R.

By the symmetry, pt (0) + pt (−2) = 0 for all t ∈ R. Therefore the function p solves
every equation of the form

x ′(t) = g(x(t − d(pt )))

where the delay functional d : C → R is given by

d(φ) = 1 + ρ(φ∗φ),

with the linear functional φ∗ : C � φ �→ φ(0) + φ(−2) ∈ R and a real function ρ : R →
(−1, 1) satisfying ρ(0) = 0. We fix a continuously differentiable function δ : R2 → (−1, 1)
with

δ(ξ, 0) = 0 for all ξ ∈ R,

δ(0,�) = 0 for all � ∈ R,

∂1δ(0,�) = � for all � ∈ R,

e. g., δ(ξ,�) = sin(ξ �), or δ(ξ,�) = tanh(ξ �), and define d� : C → (0, 2) for � ∈ R

by

d�(φ) = 1 + δ(φ∗φ,�).
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Then d�(pt ) = 1 for all t ∈ R, and p becomes a solution of the equation

x ′(t) = g(x(t − d�(xt ))), (1.2)

which for � = 0 is Eq. (1.1) with the constant time lag 1 while for � = 0 there is a
state-dependent contribution to the time lag in the differential equation. Notice that

Dd�(pt )χ = ∂1δ(0,�)φ∗χ = �φ∗χ for all t ∈ R, χ ∈ C .

The stability properties whichwe study in the sequel require linearization, which for differen-
tial equationswith state-dependent delay is possible in the framework introduced in [4,11]. Let
C1 = C1([−2, 0],R) denote the Banach space of continuously differentiable real functions
on [−2, 0], with the norm given by |φ|1 = |φ|+|φ′|, and let j : C1 → C denote the inclusion
map. For � ∈ R given consider the functional f� : C1 → R, f�(φ) = g(φ(−d�( jφ))),
which represents the right hand side of Eq. (1.2). The following proposition verifies the
hypothesis for the results from [4,11] which we need.

Proposition 1.1 Let � ∈ R be given. The maps d = d� and f = f� are continuously
differentiable with

D f (φ)χ = g′(φ(−d( jφ))){χ(−d( jφ)) − φ′(−d( jφ))Dd( jφ) jχ}
for all φ ∈ C1 and χ ∈ C1. Moreover,
(e) each derivative D f (φ) : C1 → R, φ ∈ C1, extends to a linear map De f (φ) : C → R

and the map

C1 × C � (φ, χ) �→ De f (φ)χ ∈ R

is continuous.

We prove Proposition 1.1 at the end of this introduction. The extension property (e) in
Proposition 1.1 is a version of the notion of being almost Fréchet differentiable from [7], and
is crucial for the following to hold. For every � ∈ R the non-empty set

X� = {φ ∈ C1 : φ′(0) = f�(φ)}
is a continuously differentiable submanifold of codimension 1 in C1, with tangent spaces

Tφ X� = {χ ∈ C1 : χ ′(0) = D f�(φ)χ}.
Each initial valueφ ∈ X� continues to a uniquemaximal solution x�,φ : [−2, t(�, φ)) → R

of Eq. (1.2), which means that 0 < t(�, φ)) ≤ ∞, x�,φ is continuously differentiable,
Eq. (1.2) holds for 0 ≤ t < t(�, φ), and any other continuously differentiable solution
x : [−2, tx ) → R, 0 < tx ≤ ∞, of the initial value problem

x ′(t) = g(x(t − d�(xt ))) for t > 0, x0 = φ ∈ X�,

is a restriction of x�,φ . All solution operators

S�,t : {φ ∈ X� : t < t(�, φ)} � φ �→ x�,φ
t ∈ X�, t ≥ 0.

are continuously differentiable, and the semiflow on X� given by (t, φ) �→ x�,φ
t is contin-

uous. For φ ∈ X� and 0 ≤ u < t(�, φ) the derivative

DS�,u(φ) : Tφ X� → TS�,u(φ) X�
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satisfies

DS�,u(φ)χ = v�,φ,χ
u

with the unique maximal solutions v = v�,φ,χ of the initial value problems

v′(t) = D f�(S�,t (φ))vt for 0 ≤ t < t(�, φ),

v0 = χ ∈ Tφ X�. (1.3)

Equation (1.3) is called the variational equation along the solution x�,φ , and the functions
v�,φ,χ : [−2, t(�, φ)) → R are continuously differentiable.
The stability properties of p as a solution to Eq. (1.2) which we have in mind are the spectral
properties of the monodromy operator M� = DS�,4(p0), that is, of the linearization of the
period map S�,4 at its fixed point p0. Using Proposition 1.1 and the computation of Dd� we
see that the variational equation Eq. (1.3) along p becomes

v′(t) = D f�(pt )vt

= g′(p(t − 1)){v(t − 1) − p′(t − 1)�[v(t) + v(t − 2)]}. (1.4)

From g′(p(0− 1)) = 0 we have D f�(p0) = 0, and it follows that the domain Tp0 X� of the
monodromy operator is

Y = {χ ∈ C1 : χ ′(0) = 0},
which is independent of the parameter �.
The spectral properties of M� refer to its complexification. Instead of the latter we study the
analogue of M� which is given by complex-valued solutions of the variational equation. Let
C1 denote the Banach space analogous to C1 which consists of complex-valued functions,
consider the closed subspace Y = {η ∈ C1 : η′(0) = 0} analogous to Y , and observe
that for every � ∈ R and η ∈ Y there is a unique continuously differentiable function
v�,η : [−2,∞) → C with v

�,η
0 = η so that v = v�,η satisfies Eq. (1.4) for all t ≥ 0, and

that we have v
�,η
4 ∈ Y . This is easily seen by decomposition into real and imaginary parts.

The linear map

M� : Y � η �→ v
�,η
4 ∈ Y

analogous to M� is conjugate to the complexification of M� by a topological isomorphism,
and more convenient for our purpose .
In the next section we verify that each map M�, � ∈ R, is continuous and compact.
Consequently the spectrum

σ� = {λ ∈ C : M� − λ id is not bijective}
is at most countable, every λ ∈ σ� \ {0} is an eigenvalue with finite-dimensional eigenspace,
and isolated in σ�. The eigenvalues λ = 0 - which in the context of monodromy operators
are also called Floquet multipliers - can accumulate only at 0 ∈ C. From dim Y = ∞ we
have 0 ∈ σ�. For λ ∈ C we abbreviate M� − λ = M� − λ id , and (M� − λ)−n(0) =
((M� − λ)n)−1(0) for all n ∈ N. For every Floquet multiplier the chain length

n(λ) = min{n ∈ N : (T − λ id)−n(0) = (T − λ)−(n+1)(0)},
and the algebraic multiplicity

m(λ) = dim (M� − λ)−n(λ)(0),
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are finite. A Floquet multiplier λ is called simple if m(λ) = 1. For every� ∈ R the resolvent
set

ρ� = C \ σ�

is open, the resolvent map ρ� � λ �→ (M� −λ)−1 ∈ Lc(Y,Y) is analytic, and each Floquet
multiplier λ ∈ σ� \ {0} is a pole of the resolvent map whose order is equal to the chain length
n(λ), see e. g. [9].
The derivative p′

c of the periodic function pc : R � t �→ p(t) ∈ C satisfies Eq. (1.4) for
every � ∈ R. This yields

M� p′
c,0 = p′

c,4 = p′
c,0,

and p′
c,0 is an eigenvector of the Floquet multiplier 1 ∈ σ� for every � ∈ R.

The construction of p described above is a first indication that the periodic orbit

O = {pt ∈ C1 : 0 ≤ t ≤ 4} ⊂ X0

is stable and locally attracting in X0 (but not globally attracting, due to the infinite-
dimensional stable manifold of the zero solution [4, Section 3]). One can show that attraction
towards O is extreme: There is a neighbourhood U of O in X0 so that for every φ ∈ U we
have t(0, φ) = ∞, and there exist tφ ∈ [0, 7] and s = sφ ∈ [0, 4) with x0,φt = ps+t ∈ O for
all t ≥ tφ [8].
In Proposition 2.4we obtain σ0 = {0, 1} andY = (M0)

−1(0)⊕C p′
c,0. These facts reflect the

strong stability properties of the periodic solution p of Eq. (1.1) on the level of linearization
- and tell us that for � = 0, when state-dependent delay is present, the only possible change
in stability properties on the level of linearization is some kind of destabilization.
Propositions 2.5 and 2.6 at the end of Sect. 2 express a kind of continuity of the spectra σ�

at � = 0.
In Sect. 3 we derive a characteristic equation for the Floquet multipliers and compute resol-
vents (M�−λ)−1 for� ∈ R and λ ∈ ρ�. This is inspired by an approach going back to [10].
Sections 4–6 prepare the search for solutions to the characteristic equation and for results
on multiplicity of Floquet multipliers. Important are the computations in Sect. 6 which bring
the characteristic equation into a tractable form. Corollary 6.5 excludes Floquet multipliers
in (1,∞) for any � ∈ R \ {0}.
Sections 7, 8 contain the main results. Due to a symmetry in the characteristic equation it is
enough to consider parameters � ≥ 0. Theorem 7.2 says that at � = 0 a Floquet multiplier
�(�) ∈ σ� ∩ (−∞, 0) bifurcates from 0 ∈ C and decreases to −∞ as � → ∞, with
nonzero speed. This means a loss of stability of the periodic orbit O for � > 0; for � > 0
with �(�) < −1 the orbitO is unstable. Theorem 8.2 guarantees that the Floquet multiplier
1 is simple not only for small � (as in Proposition 2.6) but for all parameters � ≥ 0, and
that the Floquet multiplier �(�) is simple for � = �∗ with �(�∗) = −1.
For parameters � ≥ 0 with σ� \ {1} contained in the open unit circle the simplicity of
the Floquet multiplier 1 allows to apply a result by Mallet-Paret and Nussbaum [6] which
guarantees that the orbit O is stable and exponentially attracting in X� with asymptotic
phase.
In Sect. 9wedescribe howFloquetmultipliers inσ�∩(0, 1) arise and behave for� → ∞, and
address subcritical bifurcations into pairs of nonreal, complex conjugate Floquet multipliers.
Finally we comment on a period doubling bifurcation from the periodic orbitO at the critical
parameter � = �∗, for which Theorems 7.2 and 8.2 provide sufficient hypotheses.
Let us mention that we are not aware of any other example of a period doubling bifurcation
in differential equations with state-dependent delay. Period-doubling bifurcations in families

123



S30 Journal of Dynamics and Differential Equations (2024) 36:S25–S52

of delay differential equations with constant time lags were found by Campbell and LeBlanc
[1].
For another result on Floquet multipliers of periodic solutions of a family of differential
equations with state-dependent delay, in a singular perturbation setting, see [5] by Mallet-
Paret and Nussbaum.
As in the case of periodic solutions of ordinary differential equations the Floquet multipliers
and their multiplicities should be invariants of the orbit O ⊂ X�, which means that they
should not change if the solution p of Eq. (1.2) is replacedwith a translate p(t +·), 0 < t < 4.
A proof of this in case of delay differential equations with constant time lags is found in [2,
Chapters XIII-XIV].
One may ask what happens if instead of a non-constant periodic solution of a family of
delay differential equations as above the simpler case of a constant solution of such a family
is considered: Suppose g : R → R is continuously differentiable, and g(ξ) = 0, so that
c : R � t �→ ξ ∈ R satisfies Eq. (1.1). Replacing the time lag 1 in Eq. (1.1) by any
continuously differentiable delay functional d : C → (0, 2) with 1 = d(c0) (= d(ct ) for
all t ∈ R) would neither change the tangent space analogous to Y = Tp0 X� above nor the
variational equation along the solution c, both due to the term φ′(−d( jφ)) in Proposition 1.1
which is zero for constant φ = c0. Consequently the introduction of state-dependent delay
with 1 = d(c0) would have no effect on spectral properties of linearized solution operators
along the constant solution c. For related facts compare [4, Section 3].
Notation, conventions, preliminaries

Concerning roots recall that for every λ0 ∈ C \ {0} there exist an open disk D ⊂ C \ {0}
centered at λ0 and an analytic function z : D → C \ {0} with (z(λ))2 = λ on D. Obviously,
z(λ) = −z(λ) on D.
The algebra of 2×2-matriceswith complex entries is denoted byC2×2, and I = (δ jk)1≤ j,k≤2.
For reals s < t and K = R or K = C the Banach space of continuous functions [s, t] → K,
with the norm given by |φ| = maxs≤u≤t |φ(u)|, is denoted by C([s, t],K), and the Banach
space of continuously differentiable functions [s, t] → K, with the norm given by |φ|1 =
|φ|+ |φ′|, is denoted by C1([s, t],K). For s = −2 and t = 0 we use the abbreviations C, C1

in case K = R and C, C1 in case K = C.
Further Banach spaces which occur in the sequel are C1([−b, b],C2) analogous to
C1([−b, b],C), and the subspacesC1

0 ([−b, b],C) ⊂ C1([−b, b],C) andC1
0 ([−b, b],C2) ⊂

C1([−b, b],C2) which are defined by the boundary conditions φ′(−b) = 0 = φ′(b). The
vectorspace C([−2,∞),C) is considered without a topology on it.
For Banach spaces B, E over the fieldK,K = R orK = C, the Banach space of continuous
linear maps T : B → E , with |T | = sup|b|≤1 |T b|, is denoted by Lc(B, E).

Proof of Proposition 1.1. 1. The evaluation map ev : C × [−2, 0] → R, ev(φ, t) = φ(t), is
continuous, and linear in the first argument. The evaluationmap ev1 : C1×(−2, 0) → R,
ev1(φ, t) = φ(t), is continuously differentiable with the partial derivatives

D1ev1(φ, t)(χ, s) = ev1(χ, t) = χ(t) and D2ev1(φ, t)s = s D2ev1(φ, t)1 = s φ′(t),

hence Dev1(φ, t)(χ, s) = χ(t) + s φ′(t) for φ, χ in C1. The chain rule applied to
f = g ◦ ev1 ◦ (id × (−(d ◦ j))) yields that f is differentiable with

D f (φ)χ = Dg(ev1(φ,−d( jφ))){D1ev1(φ,−d( jφ))χ

+D2ev1(φ,−d( jφ))D(−d( jφ) jχ}
= g′(φ(−d( jφ))){χ(−d( jφ)) − φ′(−d( jφ))Dd( jφ) jχ}
= g′(φ,−d( jφ))){ev1(χ,−d( jφ)) − ev(φ′,−d( jφ))Dd( jφ) jχ}
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for φ, χ in C1.
2. Proof that the map D f : C1 � φ �→ D f (φ) ∈ Lc(C1,R) is continuous. The map

Ev : [−2, 0] → Lc(C1,R) given by Ev(t)χ = ev(χ, t) is continuous, due to the
estimate

|χ(t) − χ(s)| ≤ max−2≤u≤0
|χ ′(u)||t − s| ≤ |χ |1|t − s|

for χ ∈ C1 and t, s in [−2, 0]. Using this, and the fact that differentiation C1 � φ �→
φ′ ∈ C is linear and continuous, and the expression for D f (φ)χ from Part 1, one easily
completes the proof that the map D f is continuous.

3. Verification of property (e). For φ ∈ C1 and χ ∈ C define De f (φ)χ by the formula for
D f (φ)χ but with ev1(χ,−d( jφ)) replaced by ev(χ,−d( jφ) and jχ replaced by χ .
Then the continuity of the map C1 × C � (φ, χ) �→ De f (φ)χ ∈ R becomes obvious.

��

2 Continuity, Compactness, the Case1 = 0

Proposition 2.1 The map R × Y × [0,∞) � (�, η, t) �→ v
�,η
t ∈ C1 is continuous.

Proof We only indicate the steps of the proof.

1. For every � ∈ R and χ ∈ Y the continuous differentiability of v�,χ : [−2,∞) → C

implies that the curve [0,∞) � t �→ v
�,χ
t ∈ C1 is continuous.

2. For (�, η) ∈ R × Y and 0 ≤ t ≤ 1 represent the solution v�,η by the variation-of-
constants formula for ordinary differential equations and show that the map R × Y �
(�, η) �→ v�,η|[0, 1] ∈ C([0, 1],C) is continuous. Conclude that the map R × Y �
(�, η) �→ v�,η|[−2, 1] ∈ C([−2, 1],C) is continuous.

3. Show by induction that for every n ∈ N the map R × Y � (�, η) �→ v�,η|[−2, n] ∈
C([−2, n],C) is continuous.

4. Use Eq. (1.4) in order to show that for every n ∈ N also the map R × Y � (�, η) �→
(v�,η)′|[0, n] ∈ C([0, n],C) is continuous. Next, obtain the continuity of the maps
R×Y � (�, η) �→ (v�,η)′|[−2, n] ∈ C([−2, n],C), and deduce that the mapsR×Y �
(�, η) �→ v�,η|[−2, n] ∈ C1([−2, n],C), n ∈ N, are continuous.

5. For reals �, �̄ and χ, χ̄ in Y set v = v�,χ and v̄ = v�̄,χ̄ , and consider 0 ≤ s ≤ t <

n ∈ N. Then

|v̄s − vt |1 ≤ |v̄s − vs |1 + |vs − vt |1
≤ |(v̄ − v)|[−2, n]|1 + |vs − vt |1,

and it becomes obvious how the assertion of Proposition 2.1 follows by means of Parts 1 and
4 of the proof. ��
Proposition 2.2 (Compactness) For every bounded set B ⊂ R × Y and for every t ≥ 2 the
closure of the set {v�,η

t : (�, η) ∈ B} ⊂ C1 is compact.

Proof We only indicate the steps of the proof. Let a bounded subset B ⊂ R × Y be given.

1. For (�, η) ∈ B and 0 ≤ t ≤ 1 represent the solution v�,η by the variation-of-constants
formula for ordinary differential equations and show that the set {v�,η(t) ∈ C : (�, η) ∈
B, 0 ≤ t ≤ 1} is bounded. As B is bounded, it follows that also the set {v�,η(t) ∈ C :
(�, η) ∈ B,−2 ≤ t ≤ 1} is bounded.
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2. Proceed by induction and obtain that every set {v�,η(t) ∈ C : (�, η) ∈ B,−2 ≤ t ≤ n},
n ∈ N, is bounded.

3. Letn ∈ N. UseEq. (1.4) andobtain that the set {(v�,η)′(t) ∈ C : (�, η) ∈ B, 0 ≤ t ≤ n},
is bounded. Use the boundedness of B and deduce that the set {(v�,η)′(t) ∈ C : (�, η) ∈
B,−2 ≤ t ≤ n}, is bounded. It follows that there is a uniform Lipschitz constant for
the functions v�,η|[−2, n], (�, η) ∈ B, and the set of these function is equicontinuous
at every t ∈ [−2, n]. Use Eq. (1.4) in order to deduce that also the set of all derivatives
(v�,η)′|[0, n], (�, η) ∈ B, is equicontinuous at every t ∈ [0, n].

4. Let t ≥ 2 be given. Choose an integer n ≥ t . It follows that both sets V = {v�,η
t ∈

C1 : (�, η) ∈ B} and V ′ = {(v�,η)′t ∈ C : (�, η) ∈ B} are bounded with respect to
the norm on C and equicontinuous at every s ∈ [−2, 0]. Therefore their closures in C are
compact. Now let a sequence (φ j )

∞
1 in V be given. A subsequence (φ jk )

∞
1 converges in

C, and a subsequence of the sequence of derivatives ((φ jk )
′)∞1 converges in C. This yields

a subsequence of (φ j )
∞
1 which converges in C1. It follows that V has compact closure in

C1. ��
Notice that the factor g′(p(t − 1)) on the right hand side of Eq. (1.4) is zero on the set
[0, 1 − b] ∪ [1 + b, 3 − b] ∪ [3 + b, 4] + 4N0, due to g′(ξ) = 0 for |ξ | ≥ b and |p(s)| ≥ b
on [−1,−b] ∪ [b, 2 − b] ∪ [2 + b, 3] + 4N0.

Corollary 2.3 Each solution v�,η, � ∈ R and η ∈ Y , is constant on each of the intervals
[0, 1 − b], [1 + b, 3 − b], [3 + b, 4], and on their translates by 4N0.

We turn to the case � = 0, for which d0(φ) = 1 everywhere.

Proposition 2.4 (i) M0Y = C p′
c,0 and σ0 = {0, 1},

(ii) Y = M−1
0 (0) ⊕ Cp′

c,0,
(iii) 0 ∈ C is an eigenvalue with chain length 1, and
(iv) the eigenvalue 1 is simple.

Proof 1. On assertion (i). Let η ∈ Y , set v = v0,η. By Corollary 2.3 both functions v and
p′

c are constant on the interval [1+ b, 2+ b]. For w = v(1+ b)/p′
c(1+ b) = −v(1+ b)

we have v(t) = w pc(t) on [1 + b, 2 + b]. Notice that for � = 0 Eq. (1.4) reads
v′(t) = g′(p(t − 1))v(t − 1). Successively integrating this equation on the intervals
[1+ b + n, 2+ b + n], n ∈ N, we obtain v(t) = w pc(t) for all t ≥ 1+ b. In particular,
M0η = v4 = w p′

c,4 = w p′
c,0, hence

M0Y ⊂ C p′
c,0 (⊂ M0Y). (2.1)

Now consider λ ∈ σ0 \ {0}. For an eigenvector χ ∈ Y \ {0}, χ = 1
λ
M0χ ∈ C p′

c,0 (see
(2.1)). It follows that χ = M0χ = λχ , and thereby, λ = 1.

2. Proof ofY ⊂ M−1
0 (0)+Cp′

c,0. Let η ∈ Y , set v = v0,η. By assertion (i),M0η = w p′
c,0

for some w ∈ C. We have

M0(η − w p′
c,0) = w p′

c,0 − M0w p′
c,0 = 0

because of M0 p′
c,0 = p′

c,0. Hence

η = (η − w p′
c,0) + w p′

c,0 ∈ M−1
0 (0) + Cp′

c,0.

3. Proof of M−1
0 (0) ∩ Cp′

c,0 = {0}. For χ ∈ M−1
0 (0) ∩ Cp′

c,0, 0 = M0χ and χ = a p′
c,0

for some a ∈ C, hence 0 = a M0 p′
c,0 = a p′

c,0, a = 0, χ = 0.
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4. Parts 2 and 3 yield assertion (ii).
5. Assertion (ii) implies that 0 ∈ C is an eigenvalue with eigenspace M−1

0 (0). The chain
length is 1 because for every χ ∈ M−2

0 (0)we getM0χ ∈ M−1
0 (0)∩C p′

c,0 = {0} (with
assertion (i) and Part 3), hence χ ∈ M−1

0 (0).
6. Proof of (M0−1)−1(0) ⊂ C p′

c,0. Forχ ∈ (M0−1)−1(0)we haveχ = M0χ ∈ C p′
c,0,

see assertion (i).
7. Proof of assertion (iv). For every χ ∈ (M0 − 1)−2(0) we have (M0 − 1)χ ∈ (M0 −

1)−1(0) ⊂ C p′
c,0 (see Part 6). It follows that

χ ∈ M0χ + C p′
c,0 ⊂ C p′

c,0 (with assertion (i))

⊂ (M0 − 1)−1(0).

��

The next results are about persistence, or continuity, of spectra for small �.

Proposition 2.5 For every ε > 0 there exists �ε > 0 with

{λ ∈ σ� : λ = 1} ⊂ {λ ∈ C : |λ| < ε}
for all � ∈ R with |�| < �ε .

Proof We argue by contradiction. Suppose there exist ε > 0 and sequences (�n)∞1 in R

and (λn)∞1 in {λ ∈ σ� : λ = 1} with �n → 0 and |λn | ≥ ε for all n ∈ N0. Choose an
eigenvector χn ∈ Y for each eigenvalue λn . Let pr : Y → Y denote the projection along
Cp′

c,0 onto K = M−1
0 (0). Let n ∈ N. Because of λn = 1 we have χn /∈ C p′

c,0, hence
ζn = pr χn belongs to K \ {0}, and we may assume |ζn |1 = 1. As pr M�n (id − pr)Y ⊂
pr M�nC p′

c,0 ⊂ pr C p′
c,0 = 0 we have

λnζn = λn pr χn = pr λnχn = pr M�n χn = pr M�n pr χn = pr M�n ζn,

and ζn is an eigenvector of the eigenvalue λn of the map K � ζ �→ pr M�n ζ ∈ K .
Proposition 2.2 yields that the elements λnζn = pr M�n ζn , n ∈ N, belong to a compact
subset of the Banach space K . In particular the moduli |λn | = |λnζn |1 are bounded, and a
subsequence (λn j )

∞
j=1 convergences to some λ ∈ C, |λ| ≥ ε > 0. Using ζn = 1

λn
pr M�n ζn

and compactness we find a subsequence of the eigenvectors ζn j which converges to some
ζ ∈ K with |ζ |1 = 1. Using �n → 0 and Proposition 2.1 we arrive at 0 = λ ζ = pr M0ζ ,
in contradiction to M0K = 0. ��

Proposition 2.6 There exists �1 > 0 so that for all � ∈ R with |�| < �1 the eigenvalue 1
of M� is simple.

Proof 1. (Geometric multiplicities) Proof that there exists �g > 0 with dim (M� −
1)−1(0) = 1 for |�| ≤ �g . Suppose there is a sequence (�n)∞1 in R converging to
0, with dim(M�n − 1)−1(0) ≥ 2 for all n ∈ N. For n ∈ N, choose an eigenvector
χn /∈ C p′

c,0. With K and pr as in the proof of Proposition 2.5, set ζn = pr χn ∈ K \{0}.
We may assume |ζn |1 = 1. As in the proof of Proposition 2.5 we get that ζn is an eigen-
vector of the eigenvalue 1 of the map K � ζ �→ pr M�n ζ ∈ K , and compactness
and continuity arguments yield an element ζ ∈ K with |ζ |1 = 1 and ζ = pr M0ζ , in
contradiction to M0K = 0.
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2. Proof that there exists �c ∈ (0,�g) so that for |�| ≤ �c the eigenvalue 1 of M� has
chain length 1. Suppose the contrary. Then there are sequences (�n)∞1 converging to 0
and (wn)∞1 inY withwn ∈ M�n −1)−2(0)\(M�n −1)−1(0) for all n ∈ N. Using Part 1
we get (M�n −1)wn ∈ (M�n −1)−1(0) = C p′

c,0 andwn /∈ (M�n −1)−1(0) = C p′
c,0,

hence ρn = pr wn ∈ K \ {0}. We may assume |ρn |1 = 1. Observe that as in the proof of
Proposition 2.5 we have

(pr M�n − 1)ρn = pr M�n ρn − pr wn = pr M�n wn − pr wn,

and consequently (pr M�n − 1)ρn = pr (M�n − 1)wn ∈ pr C p′
c,0 = 0, or

pr M�n ρn = ρn = 0. Now continuity and compactness arguments as in the proof
of Proposition 2.5 yield an element ρ ∈ K with |ρ|1 = 1 and ρ = pr M0ρ, in contra-
diction to M0K = 0.

3. Combining the results of Parts 1 and 2 we get that for |�| ≤ �c the algebraic eigenspace
of the eigenvalue 1 of M� is one-dimensional. ��

In Sect. 8 we shall see that the algebraic multiplicity of the eigenvalue 1 of M� is 1 for all
� ∈ R, and in Sects. 7 and 9 we shall find eigenvalues different from 0 and 1. The proofs of
these results rely on the characteristic equation for eigenvalues which is derived in the next
section, and on the computation of resolvents, also in the next section.

3 The Characteristic Equation and the Resolvents

We begin with the computation of the preimages χ ∈ Y of a given element η ∈ (M� −λ)Y ,
for � ∈ R and λ ∈ C \ {0}. Let v = v�,χ . Then χ = 1

λ
(v4 − η). As v is constant on each of

the intervals [0, 1− b], [1+ b, 3− b], [3+ b, 4] it is determined on [0, 4] by its restrictions
to the intervals [1− b, 1+ b] and [3− b, 3+ b]. The following proposition shows that these
restrictions correspond to a solution of a boundary value problem on the interval [−b, b].
Proposition 3.1 Let � ∈ R, λ ∈ C \ {0}, η = (M� − λ)χ , v = v�,χ . Then the map

y =
(

u
w

)
∈ C1

0 ([−b, b],C2)

given by u(t) = v(t + 3) and w(t) = v(t + 1) ∈ C satisfies

y′(t) = g′(t){� A(λ)y(t) + y(−b) + Z(�, λ, η, t)} on [−b, b] (3.1)

and

y(−b) = B(λ)y(b) + N (λ, η), (3.2)

with the maps

A : C \ {0} � λ �→
(
1 1
1
λ

−1

)
∈ C

2×2,

Z : R × (C \ {0}) × Y × [−b, b] → C
2

given by

Z(�, λ, η, t) =
(

0
1
λ
(η(0) − η(t)) + �

λ
η(t − 1)

)
∈ C

2 on [−b, 0]
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and

Z(�, λ, η, t) =
(

0
�
λ
η(t − 1)

)
∈ C

2 on [0, b]

for � ∈ R, λ ∈ C \ {0}, η ∈ Y ,

B : C \ {0} � λ �→
(
0 1
1
λ
0

)
∈ C

2×2,

N : (C \ {0}) × Y � (λ, η) �→
(

0
−η(0)

λ

)
∈ C

2.

Moreover, χ = 1
λ
(v4 − η) with

v4(t) =
⎧
⎨

⎩

u(−b) on [−2,−1 − b]
u(1 + t) on [−1 − b,−1 + b]
u(b) on [−1 + b, 0]

(3.3)

Proof From v′(t) = 0 on [0, 1−b]∪[1+b, 3−b]∪[3+b, 4]we have y′(−b) = 0 = y′(b),
so that indeed y ∈ C1

0 ([−b, b],C2). For t ∈ [−b, b],
u′(t) = v′(3 + t) = g′(p(2 + t)){v(2 + t) − p′(2 + t)�[v(3 + t) + v(1 + t)]}

= g′(p(t)){u(−b) + �[u(t) + w(t)]}
(v is constant on [1 + b, 3 − b])

= g′(t)�(u(t) + w(t)) + g′(t)u(−b)

and

w′(t) = v′(1 + t) = g′(p(t)){v(t) − p′(t)�[v(1 + t) + v(t − 1)]}
= g′(t){v(t) − �[w(t) + χ(t − 1)]}.

We have

χ(t − 1) = 1

λ
(v(4 + t − 1) − η(t − 1)) = 1

λ
(u(t) − η(t − 1))

and in case t ∈ [0, b],
v(t) = v(1 − b) = w(−b)

while in case t ∈ [−b, 0],

v(t) = χ(t) = 1

λ
(v(4 + t) − η(t)) = 1

λ
(v(4) − η(t))

= 1

λ
(v(4) − η(0) + η(0) − η(t)) = v(0) + 1

λ
(η(0) − η(t))

= v(1 − b) + 1

λ
(η(0) − η(t)) = w(−b) + 1

λ
(η(0) − η(t)).

For t ∈ [0, b] we obtain

w′(t) = g′(t)�
(

−u(t)

λ
− w(t)

)
+ g′(t)w(−b) + g′(t)�

λ
η(t − 1),

123



S36 Journal of Dynamics and Differential Equations (2024) 36:S25–S52

and for t ∈ [−b, 0] we get

w′(t) = g′(t)�
(

−u(t)

λ
− w(t)

)
+ g′(t)w(−b) + g′(t)1

λ
(η(0) − η(t)) + g′(t)�

λ
η(t − 1).

It follows that y satisfies Eq. (3.1). Also,

u(−b) = v(3 − b) = v(1 + b) = w(b)

and

w(−b) = v(1 − b) = v(0) = 1

λ
(v(4) − η(0)) = 1

λ
(v(3 + b) − η(0)) = 1

λ
(u(b) − η(0))

which yields Eq. (3.2). Finally, χ = 1
λ
(M�χ − η) = 1

λ
(v4 − η) with

v4(t) =
⎧
⎨

⎩

u(−b) on [−2,−1 − b]
u(1 + t) on [−1 − b,−1 + b]
u(b) on [−1 + b, 0]

��
Next we characterize the solutions y : [−b, b] → C

2 of Eq. (3.1) which satisfy the boundary
condition (3.2), by an equation for the initial data c = y(−b). The matrices g′(t)� A(λ),
t ∈ [−b, b], commute. It follows that for −b ≤ s ≤ t ≤ b the solutions z : [−b, b] → C

2

of the nonautonomous linear ordinary differential equation z′(t) = g′(t)� A(λ)z(t) satisfy
z(t) = U (t, s)z(s) with

U (t, s) = U (�, λ, t, s) = e
∫ t

s g′(r)� A(λ)dr = e(g(t)−g(s))� A(λ) ∈ C
2×2.

Using the variation-of-constants formula we get

y(t) = U (t,−b)c +
∫ t

−b
U (t, s)g′(s)cds +

∫ t

−b
U (b, s)g′(s)Z(�, λ, η, s)ds (3.4)

for −b ≤ t ≤ b. The boundary condition for c = y(−b) becomes

c = B(λ)y(b) + N (λ, η)

= B(λ)

(
U (b,−b) +

∫ b

−b
U (b, s)g′(s)I ds

)
c

+B(λ)

∫ b

−b
U (b, s)g′(s)Z(�, λ, η, s)ds + N (λ, η),

or equivalently,
(

(I − B(λ)

(
U (b,−b) +

∫ b

−b
U (b, s)g′(s)I ds)

))
c

= B(λ)

∫ b

−b
U (b, s)g′(s)Z(�, λ, η, s)ds + N (λ, η). (3.5)

Define

H : R × (C \ {0}) → C
2×2

by

H(�, λ) = I − B(λ)

(
U (b,−b) +

∫ b

−b
U (b, s)g′(s)I ds

)
∈ C

2×2.
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We call P : R × (C \ {0}) → C given by

P(�, λ) = det H(�, λ)

the characteristic function associated with the operator M�.

Proposition 3.2 For all � ∈ R and λ ∈ C \ {0}, P(�, λ) = 0 if and only if λ ∈ σ�.

Proof 1. Let � ∈ R and λ ∈ σ� \ {0} be given. Choose an eigenvector χ ∈ Y \ {0} of the
eigenvalue λ. Then

0 = (M� − λ)χ = v4 − λ v0

for v = v�,χ . Observe that Z(�, λ, 0, t) = 0 on [−b, b] and N (λ, 0) = 0. We apply
Proposition 3.1 with η = 0. In terms of the remarks before Proposition 3.2 we obtain

that the map y =
(

u
w

)
with the components u : [−b, b] � t �→ v(3 + t) ∈ C

and w : [−b, b] � t �→ v(1 + t) ∈ C is given by Eq. (3.4) with c = y(−b) and
Z(�, λ, 0, s) = 0, and H(�, λ)c = 0 (with Z(�, λ, 0, s) = 0 and N (λ, 0) = 0).
We have c = 0 since otherwise Eq. (3.4) with Z(�, λ, 0, s) = 0 and c = 0 yields

0 = y =
(

u
w

)
, which means v(t) = 0 on [1 − b, 1 + b] ∪ [3 − b, 3 + b], and as y

is constant on [0, 1 − b], [1 + b, 3 − b], [3 + b, 4] it follows that v(t) = 0 on [2, 4],
hence χ = v0 = 1

λ
v4 = 0, in contradiction to χ = 0. Now H(�, λ)c = 0 yields

P(�, λ) = det H(�, λ) = 0.
2. Conversely, assume P(�, λ) = 0 for some � ∈ R, λ ∈ C \ {0}. Then there exists

c ∈ C
2 \ {0} with H(�, λ)c = 0. The map y : [−b, b] → C

2 given by Eq. (3.4) with
η = 0, hence Z(�, λ, 0, s) = 0, satisfies y(−b) = c and, because of H(�, λ)c = 0,

y(−b) = B(λ)y(b). Set

(
u
w

)
= y. Then u(−b) = w(b) and w(−b) = 1

λ
u(b). Define

v : [−2, 4] → C by

v(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t − 3) on [3 − b, 3 + b]
w(t − 1) on [1 − b, 1 + b]
u(−b) = w(b) on [1 + b, 3 − b]
u(b) = λw(−b) on [3 + b, 4]
w(−b) = 1

λ
u(b) on [−1 + b, 1 − b]

(then, for − 1 + b ≤ t ≤ 0, v(t) = 1
λ
v(4 + t))

1
λ
v(4 + t) on [−2,−1 + b]

In particular, v(t) = 1
λ
v(4 + t) on [−2, 0], or v4 = λv0. The function v is continuous

and Eq. (1.4) holds on

[0, 1 − b) ∪ (1 + b, 3 − b) ∪ (3 + b, 4].
On (3 − b, 3 + b) we have

v′(t) = u′(t − 3) = g′(t − 3)�
(

u(t − 3) + w(t − 3)
)

+ g′(t − 3)u(−b)

= g′(p(t − 3))
{
(v(t − 1) − p′(t − 1)�

[
v(t) + v(t − 2)

]}

= g′(−p(t − 1))
{
v(t − 1) − p′(t − 1)�

[
v(t) + v(t − 2)

]}

= g′(p(t − 1))
{
v(t − 1) − p′(t − 1)�

[
v(t) + v(t − 2)

]}
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and on (1 − b, 1 + b) we have

v′(t) = w′(t − 1) = g′(t − 1)�

(
−1

λ
u(t − 1) − w(t − 1)

)
+ g′(t − 1)w(−b)

= g′(p(t − 1))

{
v(t − 1) − p′(t − 1)�

[
v(t) + 1

λ
u(t − 1)

]}
.

Observe that

1

λ
u(t − 1) = 1

λ
v(t + 2) = 1

λ
v(4 + t − 2) = v(t − 2).

It follows that also on (1− b, 1+ b) Eq. (1.4) is satisfied by v. A look at the continuous
coefficient g′(p(t − 1)) which is zero at 1− b, 1+ b, 3− b, 3+ b yields that v′ has limit
zero at each of these points. We infer that v is continuously differentiable and satisfies
Eq. (1.4) on [0, 4]. By v′

0(0) = v′(0) = 0, v0 ∈ Y , and we have v4 = M�v0, hence
M�v0 = v4 = λv0. For λ to be an eigenvalue it remains to show v0 = 0. This is a

consequence of 0 = c =
(

u(−b)

w(−b)

)
, which implies v(t) = 0 for some t ∈ [0, 4], hence

v0 = 0. ��
For� ∈ R and λ ∈ ρ�\{0}we now compute the resolvent (M�−λ)−1 : Y → Y . Let η ∈ Y
be given, set χ = (M� − λ)−1η. Then χ = 1

λ
(M�χ − η) = 1

λ
(v4 − η) with v = v�,χ . Or,

χ = L(λ, v4, η) with the continuous map

L : (C \ {0}) × Y × Y → Y
given by L(λ, φ,ψ) = 1

λ
(φ −ψ). Notice that each map L(λ, ·, ·) : Y ×Y → Y , 0 = λ ∈ C,

is linear. The argument v4 in L(λ, v4, η) is given by Eq. (3.3) where u is the first component
of the map

y =
(

u
w

)
∈ C1

0 ([−b, b],C2)

defined by Eq. (3.4), with c ∈ C
2 satisfying H(�, λ)c = E(�, λ, η) where the map

E : R × (C \ {0}) × Y → C
2

is given by the right hand side of Eq. (3.5). As 0 = λ ∈ ρ� we have 0 = P(�, λ) =
det H(�, λ), and obtain c = H(�, λ)−1E(�, λ, η).
In order to collect the result of the previous discussion in a formula for the resolvents consider
the continuous linear map

V : C1
0([−b, b],C) → Y

which is given by the right hand side of Eq. (3.3), the projection

p1 : C1
0([−b, b],C2) → C1

0 ([−b, b],C)

onto the first component, and the map

S : R × (C \ {0}) × Y × C
2 � (�, λ, η, c) �→ y ∈ C1

0([−b, b],C2)

which is given by Eq. (3.4). Each map

S(�, λ, ·, ·) : Y × C
2 → C1

0([−b, b],C2),

for � ∈ R and 0 = λ ∈ C, is linear.
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Corollary 3.3 For � ∈ R and 0 = λ ∈ ρ� and η ∈ Y ,

(M� − λ)−1η = L
(
λ, V

(
p1S(�, λ, η, H(�, λ)−1E(�, λ, η))

)
, η
)
.

4 Continuity Properties

We collect some results on continuity. For the maps L, V , p1 continuity is obvious or easily
seen.

Proposition 4.1 The maps S, H , P, E are continuous.

Proof 1. The first component of the map Z is constant. The second component of Z is given
by

1

λ
ev∗(βαη, t) + �

λ
ev(η, t − 1)

with the continuous linear maps

α : C → C([−b, 0],C), αη(t) = η(0) − η(t) on [−b, 0],
β : C([−b, 0],C) → C([−b, b],C), βφ(t) = φ(t) on [−b, 0]

and βφ(t) = φ(0) on [0, b],
ev∗ : C([−b, b],C) × [−b, b] → C, ev∗(χ, s) = χ(s),

ev : C × [−2, 0] → C, ev(φ, s) = φ(s).

2. On the map S. As g′, A, and Z are continuous the solutions of the initial value problems

r ′(t) = g′(t)
[
�A(λ)r(t) + c + Z(�, λ, η, t)

]
,

r(−b) = ĉ ∈ C
2,

depend continuously on

(�, λ, η, c, ĉ, t) ∈ R × (C \ {0}) × Y × C
2 × C

2 × [−b, b].
It follows that the map

Ŝ : R × (C \ {0}) × Y × C
2 × [−b, b] � (�, λ, η, c, t) �→ S(�, λ, η, c)(t) ∈ C

2

is continuous. Using this and the differential equation above we infer that the map

∂5 Ŝ : R × (C \ {0}) × Y × C
2 × [−b, b] → C

2,

∂5 Ŝ(�, λ, η, c, t) = S(�, λ, η, c)′(t),

is continuous. A compactness argument yields that for both maps Ŝ and ∂5 Ŝ continuity
is uniform with respect to t ∈ [−b, b], and the continuity of S (with respect to the norm
on C1([−b, b],C2)) follows.

3. Continuity of H and P . Let e1 ∈ C
2 and e2 ∈ C

2 be given by the first and second
column of the unit matrix I ∈ C

2×2, respectively. Consider the solutions of the initial
value problems

r ′(t) = g′(t)
[
�A(λ)r(t) + e j

]
,
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r(−b) = 0,

for j ∈ {1, 2}. Their values at t = b are given by the maps

R × (C \ {0}) � (�, λ) �→
∫ b

−b
U (�, λ, b, s)g′(s)e j ds ∈ C

2, j ∈ {1, 2}.

Due to continuous dependence on parameters both maps are continuous, and it follows
that the matrix-valued map

R × (C \ {0}) � (�, λ) �→
∫ b

−b
U (�, λ, b, s)g′(s)I ds ∈ C

2×2

is continuous. Combining this with the continuity of the map B we infer that H : R ×
(C \ {0}) → C

2×2 is continuous, and that P = det ◦ H is continuous.
4. Continuity of E . Continuous dependence of solutions of the initial value problem

r ′(t) = g′(t)
[
�A(λ)r(t) + Z(�, λ, η, t)

]
,

r(−b) = 0,

on parameters yields that the map

R × (C \ {0}) × Y � (�, λ, η) �→
∫ b

−b
U (�, λ, b, s)g′(s)Z(�, λ, η, s)ds ∈ C

2

is continuous. Use this and the continuity of B and N in order to complete the proof that
E is continuous. ��

Proposition 4.2 The map

{(�, λ, η) ∈ R × (C \ {0}) × Y : λ ∈ ρ�} � (�, λ, η) �→ P(�, λ) · (M� − λ)−1η ∈ Y
has a continuous extension to R × (C \ {0}) × Y .

Proof 1. Consider the map Ĥ : R × (C \ {0}) → C
2×2 given by

Ĥ(�, λ) =
(

H22 −H12

−H21 H11

)

with the entries Hjk = Hjk(�, λ) of H(�, λ). For all � ∈ R and all λ ∈ ρ� \ {0} we
have P(�, λ) = 0 and H(�, λ)−1 = 1

P(�,λ)
Ĥ(�, λ). The continuity of H (Proposition

4.1) yields that Ĥ is continuous. Using the continuity of L, V , p1, S, Ĥ , E, P we infer
that the map

R∗ : R × (C \ {0}) × Y → Y
given by

R∗(�, λ, η) = L
(
λ, V

(
p1S(�, λ, P(�, λ)η, Ĥ(�, λ)E(�, λ, η))

)
, P(�, λ)η

)

is continuous.
2. Let � ∈ R and λ ∈ ρ� \ {0} be given. From Corollary 3.3 in combination with the

equation P(�, λ)H(�, λ)−1 = Ĥ(�, λ) and with the linearity of the maps L(λ, ·, ·) :
Y × Y → Y and p1, V , and S(�, λ, ·, ·) : Y × C

2 → C1
0 ([−b, b],C2), we obtain that

for every η ∈ Y we have
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P(�, λ) · (M� − λ)−1η = R∗(�, λ, η).

��

5 Analyticity, Order of Zeros and Poles

We begin with the computation of H(�, λ) for � ∈ R \ {0} and λ ∈ C \ {0, 1}. Then
det A(λ) = 1

λ
− 1 = 0, and A(λ) is invertible. We have

H(�, λ) = I − B(λ)

(
U (�, λ, b,−b) +

∫ b

−b
U (�, λ, b, s)g′(s)I ds

)

with

U (�, λ, b,−b) = e(g(b)−g(−b))�A(λ) = e−2�A(λ)

and
∫ b

−b
U (�, λ, b, s)g′(s)I ds =

∫ b

−b
e(g(b)−g(s))�A(λ)g′(s)A(λ)A(λ)−1ds

= eg(b)�A(λ)

(
− 1

�

[
e−g(b)�A(λ) − e−g(−b)�A(λ)

]
A(λ)−1

)

= 1

�
(e−2�A(λ) − I )A(λ)−1.

In order to compute the exponential term e−2�A(λ) observe that the characteristic equation
of A(λ) is z2 = 1 − 1

λ
. Any square root z = z(λ) of 1 − 1

λ
is an eigenvalue of A(λ) with

associated eigenvector

a = a(z) =
( 1

z−1
1

)
,

and −z is an eigenvalue with associated eigenvector

b = b(z) =
( −1

z+1
1

)
.

Using A(λ) = (a b)

(
z 0
0 −z

)
(a b)−1 we obtain

e−2� A(λ) =
∞∑

n=0

(−2�)n

n! A(λ)n = (a b)

(
e−2� z 0

0 e2� z

)
(a b)−1. (5.1)

It follows that

H(�, λ) =
(
1 0
0 1

)
−
(
0 1
1
λ

0

)[
(a b)

(
e−2� z 0
0 e2� z

)
(a b)−1

+ 1

�

[
(a b)

(
e−2� z 0
0 e2� z

)
(a b)−1 −

(
1 0
0 1

)]
A(λ)−1

]
. (5.2)

Corollary 5.1 Each map P(�, ·) : C \ {0} → C, 0 = � ∈ R, is analytic.
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Proof Let � ∈ R\ {0} be given, and let λ0 ∈ C\ {0, 1} be given. Then 1− 1
λ0

= 0. Choose a

square root of 1− 1
λ0
. An application of the Implicit Function Theorem for analytic maps [12,

Corollary 4.23] yields an open disk D ⊂ C \ {0, 1} centered at λ0 and an analytic function
ζ : D → C with ζ(λ)2 = 1 − 1

λ
on D. The preceding calculations with z(λ) = ζ(λ) show

that the restriction of P(�, ·) = det H(�, ·) to D is analytic. It follows that the restriction
of P(�, ·) to C \ {0, 1} is analytic. As P(�, ·) is continuous (Proposition 4.1), λ = 1 is a
removable singularity, and P(�, ·) is analytic. ��

Corollary 5.2 For every � ∈ R \ {0} and for every λ ∈ σ� \ {0} the order j(λ) ∈ N of λ as
a pole of the resolvent

ρ� � μ �→ (M� − μ)−1 ∈ Lc(Y,Y)

is majorized by the order o(λ) ∈ N of λ as a zero of P(�, ·).

Proof Let � ∈ R \ {0} and λ ∈ σ� \ {0} be given. Proposition 4.2 yields an ε > 0 and a
bound b ≥ 0 with

|P(�,μ)(M� − μ)−1η|1 ≤ b

for 0 < |μ − λ| < ε and |η|1 ≤ ε. It follows that P(�,μ)(M� − μ)−1 ∈ Lc(Y,Y) is
bounded by b/ε for 0 < |μ − λ| < ε. Use the power series for P(�, ·) at μ = λ and the
Laurent series for the resolvent at μ = λ in order to obtain

P(�,μ)(M� − μ)−1 = (μ − λ)o(λ)− j(λ)L + h(μ)

for 0 < |μ − λ| < ε, with 0 = L ∈ Lc(Y,Y) and h : {μ ∈ C : |μ − λ| < ε} → Lc(Y,Y)

analytic. This representation in combination with the previous statement on boundedness
implies o(λ) − j(λ) ≥ 0. ��

6 The Characteristic Function in Terms of Elementary Functions

In this section it is convenient to use the following abbreviations, for 0 = � ∈ R and
λ ∈ C \ {0, 1} given: z = z(λ) is a square root of 1 − 1

λ
, a = a(z) and b = b(z) are

eigenvectors as in Sect. 5, and

Ch = cosh(2� z), Sh = sinh(2� z), α = Sh

z
− Ch − 1

�z2
.

Notice that z /∈ {−1, 0, 1}. As cosh is even and sinh is odd the values Ch, z Sh, Sh
z , and α

do not depend on the choice of the square root z.

Proposition 6.1 For 0 = � ∈ R and λ ∈ C \ {0, 1},

e−2� A(λ) =
(

Ch − Sh
z − Sh

z
Sh
λz Ch + Sh

z

)

.
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Proof Let 0 = � ∈ R and λ ∈ C \ {0, 1} be given. Recall Eq. (5.1) for e−2� A(λ). We have

(a b)

(
e−2� z 0
0 e2� z

)
=
(

e−2� z

z−1
e2� z

−z−1

e−2� z e2� z

)

and

(a b)−1 = z2 − 1

2z

(
1 1

z+1

−1 1
z−1

)

,

hence

e−2� A(λ) = z2 − 1

2z

(
e−2� z

z−1
e2� z

−z−1

e−2� z e2� z

)(
1 1

z+1

−1 1
z−1

)

= z2 − 1

2z

(
e2� z

z+1 + e−2� z

z−1
e−2� z−e2� z

z2−1

e−2� z − e2� z e−2� z

z+1 + e2� z

z−1

)

=
(

Ch − Sh
z − Sh

z
Sh
λ z Ch + Sh

z

)

(
with z2 = 1 − 1

λ

)
.

��
Proposition 6.2 For 0 = � ∈ R and λ ∈ C \ {0, 1},

−H(�, λ) =
(

α
λ

− 1
(
Ch − Sh

�z

)+ α

1
λ

(
Ch − Sh

�z

)− α
λ

−1 − α
λ

)

.

Proof Recall Eq. (5.2) for H(�, λ). We have

A(λ)−1 = λ

1 − λ

(−1 −1
1
λ

1

)
.

Using this and Proposition 6.1 and z2 = 1 − 1
λ

= λ−1
λ

we get

1

�
(e−2� A(λ) − I )A(λ)−1 = − 1

� z2

(
Ch − Sh

z − 1 − Sh
z

Sh
λ z Ch + Sh

z − 1

)(−1 −1
1
λ

1

)

= − 1

� z2

(
1 + Sh

z − Ch − Sh
λ z 1 + Sh

z − Ch − Sh
z

− Sh
λ z + Ch

λ
+ Sh

λ z − 1
λ

− Sh
λ z + Ch + Sh

z − 1

)

= 1

�

(
Ch−1

z2
− Sh

z
Ch−1

z2

−Ch−1
λ z2

−Ch−1
z2

− Sh
z

)

and therefore, with Proposition 6.1,

−H(�, λ) = B(λ)

[
e−2� A(λ) + 1

�
(e−2� A(λ) − I )A(λ)−1

]
− I

= B(λ)

(
Ch − Sh

z + Ch−1
� z2

− Sh
� z − Sh

z + Ch−1
� z2

Sh
λ z − Ch−1

� λ z2
Ch + Sh

z − Ch−1
� z2

− Sh
� z

)

− I
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=
(

Sh
λ z − Ch−1

� λ z2
− 1 Ch + Sh

z − Ch−1
� z2

− Sh
� z

Ch
λ

− Sh
λ z + Ch−1

� λ z2
− Sh

λ � z − Sh
λ z + Ch−1

� λ z2
− 1

)

=
(

α
λ

− 1
(
Ch − Sh

� z

)+ α

1
λ

(
Ch − Sh

� z

)− α
λ

−1 − α
λ

)

��
Proposition 6.3 For 0 = � ∈ R and λ ∈ C \ {0, 1},

P(�, λ) = p(�, λ)

�2(λ − 1)

with

p(�, λ) = 2(1 − cosh(2� z)) + �2

λ
(λ − 1)2 + 2� z sinh(2� z),

and z2 = 1 − 1
λ

.

Proof For 0 = � ∈ R and λ ∈ C \ {0, 1},

P(�, λ) = det(H(�, λ)) = det(−H(�, λ))

(with H(�, λ) ∈ C
2×2)

= 1 − α2

λ2
− 1

λ

[(
Ch − Sh

� z

)2
− α2

]

= 1 + α2
(
1

λ
− 1

λ2

)
− 1

λ

(
Ch − Sh

� z

)2

(
now use α2

(
1

λ
− 1

λ2

)
= α2

λ
z2 and the definition of α

)

= 1 + z2

λ

(
Sh

z
− Ch − 1

� z2

)2
− 1

λ

(
Ch − Sh

� z

)2

= 1 + 1

λ

{(
Sh − Ch − 1

� z

)2
−
(

Ch − Sh

� z

)2}

(in the sequel use Ch2 − Sh2 = 1)

= 1 + 1

λ

{
−1 + (Ch − 1)2

�2 z2
− 2

Sh

� z
(Ch − 1) + 2

Sh Ch

� z
− Sh2

�2z2

}

= 1 + 1

λ

{
−1 + (Ch − 1)2

�2 z2
+ 2

Sh

� z
− Sh2

�2z2

}

= 1 + 1

λ

{
−1 + 2

Sh

� z
+ 1

�2 z2
− 2

Ch

�2 z2
+ 1

�2 z2

}

= 1 + 1

λ�2z2

{
2 − �2z2 + 2

[
� z Sh − Ch

]}

(now use λ z2 = λ − 1)
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= 1

�2(λ − 1)

{
�2(λ − 1) + 2 − �2

(
1 − 1

λ

)
+ 2
[
� z Sh − Ch

]}

= 1

�2(λ − 1)

{
�2 (λ − 1)2

λ
+ 2
[
� z Sh + 1 − Ch

]}
.

��
The power series

∑∞
2

2(n−1)
(2n)! un−2 defines an analytic function R : C → C.

Proposition 6.4 For 0 = � ∈ R, λ ∈ C\{0, 1}, and u = 4�2
(
1 − 1

λ

)
, we have 4�2−u = 0

and

p(�, λ) = u2

4(4�2 − u)
+ u2R(u).

Proof Let 0 = � ∈ R, λ ∈ C \ {0, 1}, and u = 4�2
(
1 − 1

λ

)
. Then 4�2 − u = 4�2

λ
= 0.

With a square root z of 1 − 1
λ
and w = 2� z we have u = w2 and

p(�, λ) − �2

λ
(λ − 1)2 = 2(1 − cosh(w)) + w sinh(w)

= 2

(

1 −
∞∑

0

w2n

(2n)!

)

+ w

∞∑

0

w2n+1

(2n + 1)!

= −
∞∑

1

2w2n

(2n)! +
∞∑

1

2n w2n

(2n)! =
∞∑

1

2(n − 1)w2n

(2n)!

=
∞∑

2

2(n − 1)w2n

(2n)! =
∞∑

2

2(n − 1) un

(2n)! = u2R(u).

From λ u = 4�2(λ − 1) we get

λ = 4�2

4�2 − u
,

hence

�2

λ
(λ − 1)2 = u

4
(λ − 1) = u

4

4�2 − (4�2 − u)

4�2 − u
= u2

4(4�2 − u)
.

��
Notice that for 0 = � ∈ R and λ ∈ (1,∞) we have u = 4�2

(
1 − 1

λ

)
> 0, 4�2 − u > 0,

and R(u) > 0.

Corollary 6.5 For every � ∈ R \ {0} there are no eigenvalues of M� in (1,∞).

7 Bifurcation of a Negative Floquet Multiplier

Consider the function

Q : R2 � (�, u) �→ 4(4�2 − u)R(u) + 1 ∈ R.
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For 0 = � ∈ R and 0 = u ∈ R with 4�2 = u we have

Q(�, u) = 0 if and only if
u2

4(4�2 − u)
+ u2R(u) = 0.

With Proposition 6.4 in mind we first look for zeros of the functions Q(�, ·) : R → R.
Obviously,

Q(�, u) > 0 for 0 < u < 4�2,

and

∂2Q(�, u) = −4R(u) + 4(4�2 − u)R′(u) < 0 for 4�2 < u < ∞.

Because of Q(�, u) = Q(−�, u) we restrict attention to � > 0.

Proposition 7.1 (i) For every � > 0 there exists exactly one zero u ∈ (4�2,∞) of the
function Q(�, ·) : R → R.

(ii) The function U : (0,∞) → R given by Q(�,U(�)) = 0 and 4�2 < U(�) is analytic.
(iii) 0 < U ′(�) < 8� for all � > 0.
(iv) lim�↘0 U(�) = u∗ > 0 satisfies u∗ R(u∗) = 1

4 .
(v) We have

1 <
U(�)

4�2 for all � > 0 and lim
�→∞

U(�)

4�2 = 1.

Proof 1. On (i). Existence follows by continuity from limu↘4�2 Q(�, u) = 1 and
limu→∞ Q(�, u) = −∞. Uniqueness is due to ∂2Q(�, u) < 0 for 4�2 < u < ∞.

2. Analyticity. The map Q is analytic. Let �0 > 0, u0 = U(�0) ∈ (4�2
0,∞). Then

Q(�0, u0) = 0 and ∂2Q(�0, u0) = 0. By the Implicit Function Theorem for analytic
maps [12, Corollary 4.23], there are open neighbourhoods N of �0 and V of u0 with
4�2 < u on N × V , and an analytic function Û : N → V with Û(�0) = u0 and

{(�, u) ∈ N × V : Q(�, u) = 0} = {(�, Û(�)) : � ∈ N }
Using this and Part (i) we get U(�) = Û(�) on N , and the analyticity of U follows.

3. On (iii). Differentiation of Q(�,U(�)) = 0 yields

U ′(�) = −∂1Q(�,U(�))

∂2Q(�,U(�))
= − 32� R(U(�))

∂2Q(�,U(�))
> 0 for all � > 0.

Using the definition of Q we infer

0 = (8� − U ′(�))R(U(�)) + (4�2 − U(�))R′(U(�))U ′(�) for all � > 0.

The terms R(U(�)), R′(U(�)),U ′(�) are positive while 4�2 − U(�) < 0. It follows
that 8� − U ′(�) > 0.

4. On (iv). Boundedness from below and monotonicity according to Part (iii) yield the
existence of lim�↘0 U(�) = u∗ ≥ 4�2. Passing to the limit in 0 = Q(�,U(�)) =
4(4�2 − U(�))R(U(�)) + 1 gives u∗ R(u∗) = 1

4 .
5. On (v). The inequality holds by the definition of U . In order to find the limit observe that

the equation 0 = Q(�,U(�)) yields

0 = 1 − U(�)

4�2 + 1

16�2R(U(�))
for all � > 0,

with R(U(�)) ≥ R(0) > 0. ��
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Theorem 7.2 Each operator M�, � > 0, has exactly one eigenvalue λ = λ� in (−∞, 0).
The function � : (0,∞) → (−∞, 0) given by �(�) = λ� is analytic, with �′(�) < 0 for
all � > 0 and

lim
�↘0

�(�) = 0 and lim
�→∞ �(�) = −∞.

Proof 1. (Uniqueness) Suppose λ < 0 is a eigenvalue of M� for some � > 0. Apply
Propositions 3.2, 6.3, and 6.4. It follows that u = 4�2

(
1 − 1

λ

)
satisfies u > 4�2 and

0 = p(�, λ) = u2R(u) + u2

4(4�2−u)
, hence Q(�, u) = 0, and thereby u = U(�). We

obtain 4�2

λ
= 4�2 − U(�), or

λ = 4�2

4�2 − U(�)
.

2. The last equation defines an analytic function � : (0,∞) � � �→ λ ∈ (−∞, 0).
We show that given � > 0 the value λ = �(�) is an eigenvalue of M� : Indeed,

u = U(�) satisfies u = U(�) = 4�2 − 4�2

�(�)
= 4�2

(
1 − 1

λ

)
. Using Proposition 6.4

and 0 = Q(�,U(�)) = Q(�, u) we obtain

0 = u2R(u) + u2

4(4�2 − u)
= p(�, λ) = p(�,�(�))

which means �(�) ∈ σ(M�), according to Propositions 6.3 and 3.2.
3. The relation lim�↘0 �(�) = 0 follows from Proposition 7.1 (iv) in combination with

the definition of �. Proposition 7.1 (v) yields lim�→∞ �(�) = −∞. Using

�′(�) = 8�(4�2 − U(�)) − 4�2(8� − U ′(�))

(4�2 − U(�))2

in combination with 4�2 − U(�) < 0 and 8� − U ′(�) > 0 (Proposition 7.1 (iii)) we
obtain �′(�) < 0 for all � > 0. ��

8 Simplicity

Theorem 8.1 (Geometric multiplicity) For every � > 0 and all λ ∈ σ� \ {0},
dim (M� − λ)−1(0) = 1.

Proof 1. Let� > 0 be given.We show dim {c ∈ C
2 : H(�, λ)c = 0} = 1 for 0 = λ ∈ σ�.

For all λ ∈ C \ {0, 1} the sum of the diagonal entries of the matrix H(�, λ) is 2,
see Proposition 6.2. By continuity (Proposition 4.1) this holds also for λ = 1. For
0 = λ ∈ C, we get H(�, λ) = 0 ∈ C

2×2, and H(�, λ)c = 0 for some c ∈ C
2,

hence dim {c ∈ C
2 : H(�, λ)c = 0} ≤ 1. For 0 = λ ∈ σ�, Proposition 3.2 gives

0 = P(�, λ) = det H(�, λ), which yields 0 < dim {c ∈ C
2 : H(�, λ)c = 0}.

2. Letλ ∈ σ�\{0} be given. Part 1 of the proof of Proposition 3.2 shows that the composition
L∗ = L3 ◦ L2 ◦ L1 of the linear maps

L1 : (M� − λ)−1(0) � χ �→ v�,χ ∈ C([−2,∞),C),

L2 : C([−2,∞),C) � w �→
(

w(· + 3)
w(· + 1)

)
∈ C([−b, b],C2),
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L3 : C([−b, b],C2) �
(

y
z

)
�→
(

y(−b)

z(−b)

)
∈ C

2

satisfies H(�, λ)L∗χ = 0 for all χ ∈ (M� − λ)−1(0), and L∗χ = 0 in case χ = 0.
Therefore L∗ defines an injective linear map from (M� − λ)−1(0) into {c ∈ C

2 :
H(�, λ)c = 0}, which yields 0 < dim (M� − λ)−1(0) ≤ dim {c ∈ C

2 : H(�, λ)c =
0} = 1. ��

We turn to algebraic multiplicities. Notice that due to Theorem 7.2 there exists exactly one
parameter �∗ > 0 so that λ = −1 is an eigenvalue of the operator M�∗ . The algebraic
multiplicity of eigenvalues on the unit circle is of interest for bifurcation from the periodic
orbit O.

Theorem 8.2 The eigenvalue −1 of M�∗ is simple, and 1 is a simple eigenvalue of M� for
all � > 0.

In the next section we shall argue that for certain � > 0 also non-simple eigenvalues are
present, in the interval (0, 1).

Proof of Theorem 8.2.

1. We show ∂2P(�∗,−1) = 0. For every eigenvalue λ ∈ C\{0, 1} ofM�,� > 0, Proposi-
tion 3.2 yields P(�, λ) = 0. Using Proposition 6.3 we get p(�, λ) = 0. Differentiation
of the formula in Proposition 6.3 shows that for every � > 0 and for every eigenvalue
λ ∈ C \ {0, 1} of M�, ∂2P(�, λ) = 0 if and only if ∂2 p(�, λ) = 0. With the analytic

function g : (0,∞) × (−∞, 0) � (�, λ) �→ 2�

√
1 − 1

λ
∈ (0,∞),

p(�, λ) = 2
(
1 − cosh(g(�, λ))

)
+ �2

λ
(λ − 1)2 + g(�, λ)sinh(g(�, λ))

for all � > 0 and λ < 0, hence

∂2 p(�, λ) = ∂2g(�, λ)
[

− 2 sinh(g(�, λ)) + sinh(g(�, λ)) + g(�, λ)cosh(g(�, λ))
]

+�2

λ2

[
2(λ − 1)λ − (λ − 1)2

]

= ∂2g(�, λ)
[
g(�, λ)cosh(g(�, λ)) − sinh(g(�, λ))

]
+ �2

(
1 − 1

λ2

)

for these � and λ. In particular,

∂2 p(�∗,−1) = ∂2g(�∗,−1)[g(�∗,−1)cosh(g(�∗,−1)) − sinh(g(�∗,−1))] > 0

since g(�∗,−1) > 0 and

∂2g(�∗,−1) = �

λ2

√
λ

λ − 1
> 0

and sinh(x)
cosh(x)

< x for all x > 0.
2. Proof of ∂2P(�, 1) > 0 for all � > 0. Let � > 0 be given. By 1 ∈ σ�, P(�, 1) = 0,

see Proposition 3.2. Using this and Proposition 6.3 we get

∂2P(�, 1) = lim
1 =λ→1

P(�, λ)

λ − 1
= lim

1 =λ→1

p(�, λ)

�2(λ − 1)2
.
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Proposition 6.4 shows that with u = 4�2
(
1 − 1

λ

)
, or, λ − 1 = λ u

4�2 , we have

p(�, λ)

�2(λ − 1)2
= 16�2

λ2

p(�, λ)

u2 = 16�2

λ2

(
1

4(4�2 − u)
+ R(u)

)

= 16�2

λ2

(
λ

16�2 + R

(
4�2

(
1 − 1

λ

)))

for all λ ∈ C \ {0, 1}. It follows that

∂2P(�, 1) = lim
1 =λ→1

p(�, λ)

�2(λ − 1)2
= 16�2

(
1

16�2 + R(0)

)
> 0.

3. From Corollary 5.2 in combination with the result of Part 1 we obtain that the order of
the pole of the resolvent ρ�∗ → Lc(Y,Y) at λ = −1 is 1. Therefore the chain length
of the eigenvalue λ = −1 of M�∗ is 1, and Theorem 8.1 gives simplicity. The proof of
simplicity of the eigenvalue 1 of M� for every � > 0 is analogous. ��

9 About Further Eigenvalues and Period Doubling

We discuss real eigenvalues of the operators M�, � > 0, in the remaining interval (0, 1),
address the existence of non-real eigenvalues, and sketch finally how to deduce from The-
orems 7.2 and 8.2 that a period doubling bifurcation from the periodic orbit O occurs at
� = �∗.

By Propositions 3.2 and 6.3 the eigenvalues λ ∈ (0, 1) of the operators M�, � > 0,
are given by the zeros of the functions p(�, ·) in (0, 1). For λ ∈ (0, 1) we may write√
1 − 1

λ
= i
√

1
λ

− 1 with
√

1
λ

− 1 > 0. Setting v = 2�

√
1
λ

− 1 > 0 we get

p(�, λ) = 2(1 − cosh(iv)) + i v sinh(iv) + v4

4(4�2 + v2)
(9.1)

= 2(1 − cos(v)) − v sin(v) + v4

4(4�2 + v2)
. (9.2)

As the map T : (0,∞) × (0, 1) → (0,∞) × (0,∞) given by T (�, λ) = (�, v) is bijective
we now look for � > 0 and v > 0 so that the maps α : [0,∞) → R, α(v) = 2(1 −
cos(v)) − v sin(v), and β : (0,∞) × [0,∞) → [0,∞), β(�, v) = v4

4(4�2+v2)
, satisfy

α(v) = −β(�, v). We have α(0) = 0 and β(�, 0) = 0 for all � > 0, and each function
β(�, ·), � > 0, is strictly increasing. For the next remarks compare Fig. 1 below.

The zeros of α form a strictly increasing sequence (z j )
∞
0 . For � ≥ 0 sufficiently small

the function −β(�, ·) is strictly below α on (0,∞). If � increases it moves towards the
horizontal axis, and there is a first �1 > 0 so that the functions α and −β(�1, ·) touch, at a
zero v1 of α + β(�1, ·) which is situated in the interval (z1, z2). If � increases beyond �1

the zero v1 bifurcates into a pair of simple real zeros v1−(�) < v1+(�) of α + β(�, ·) in
(z1, z2), with

v1−(�) → z1 and v1+(�) → z2 as � → ∞.

In each interval (z2n, z2n+1), n ∈ N0, the function α is positive, and there are no zeros of
any function α + β(�, ·), � > 0. In the intervals (z2n+1, z2n+2), n ∈ N, the creation and
asymptotic behaviour of zeros of α + β(�, ·), � > 0, is as in (z1, z2), with the associated
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Fig. 1 Intersections of α and β(�, ·) for � increasing

critical parameters�n strictly increasing. Using the transformation T we obtain that for each

� > 0 the zeros of p(�, ·) in (0, 1) are given as λ = 4�2

v2+4�2 , with the zeros v of α+β(�, ·)
in (0,∞), and we arrive at the following description of the zeroset of p in (0,∞) × (0, 1):
For every n ∈ N there exists a zero λn ∈ (0, 1) of p(�n, ·) which bifurcates for � > �n

into a pair of simple zeros λn+(�) < λn−(�) in (0, 1), and both λn+(�) and λn−(�) tend
to 1 as � → ∞. For n ∈ N and �n ≤ � and 2 ≤ j ≤ n we have λ j−(�) < λ j−1,+(�).
Continuity arguments now show that for every n ∈ N the order of the zero λn of p(�n, ·) is
2. For � < �n close to �n the double zero λn bifurcates into a complex conjugate pair of
simple zeros vnc(�) = vnc(�) of p(�, ·). - Recall from Proposition 2.5 that for � ↘ 0 all
eigenvalues λ = 1 of M� uniformly tend to 0 ∈ C.
We turn to period doubling which is a bifurcation from the periodic orbitO at � = �∗ in the
sense that every neighbourhood of (�∗, p0, 8) in R × C1 × R contains triples (�, φ�, ω�)

such that φ� = p0 is the initial value of a periodic solution of Eq. (1.2) with minimal period
ω�.
The initial data φ� arise as fixed points of the first iterates of Poincaré maps P� for � close
to �∗. In the sequel we describe the situation. Recall that the periodic solution p : R → R

is twice continuously differentiable. This implies that the curve R � t �→ pt ∈ C1 is
continuously differentiable. Its tangent vector at t = 0 is p′

0 ∈ Y ⊂ C1, which does not
belong to the closed hyperplane H = {φ ∈ C1 : φ(0) = 0} since p′(0) = 1. We have

Y = (Y ∩ H) ⊕ Rp′
0.

For every parameter � ∈ R sufficiently small neighbourhoods N� of p0 in X� ∩ H are
continuusly differentiable submanifolds of X�, all with the same tangent space Y ∩H at p0.
There exist a neighbourhood U� of p0 in X� and a continuously differentiable return time
map

τ� : U� → (0,∞)

with τ�(p0) = 4 and

x�,φ

τ�(φ) ∈ H
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for every φ ∈ U�, with the solution x�,φ of Eq. (1.2). The segment p0 becomes a fixed point
of the Poincaré map

P� : U� ∩ H � φ �→ x�,φ

τ�(φ) ∈ X� ∩ H.

The simplicity of the eigenvalue 1 of M� (Theorem 8.2) yields that the spectrum of the
derivative DP�(p0) : Y ∩ H → Y ∩ H is σ� \ {1}. For the first iterate

P2
� : {φ ∈ U� ∩ H : P�(φ) ∈ U�} → X� ∩ H

of P� the spectrum of its derivative at the fixed point p0 is the set

{λ2 ∈ C : 1 = λ ∈ σ�}.
Theorems 7.2 and 8.2 guarantee that at� = �∗ the positive eigenvalue (�(�))2 of DP2

�(p0)
crosses the unit circle with positive velocity and algebraic multiplicity 1. This yields a change
of the fixed point index, and bifurcation of fixed points φ� = p0 of the iterates P2

� follows.
For the maps P� the points φ� = p0 have period 2, and they determine periodic solutions
of Eq. (1.2) with periods ω� close to 8, due to continuity of the map (�, φ) �→ τ�(φ). The
periods ω� are minimal since otherwise one obtains a contradiction to the fact that p0 is the
only fixed point of P� in a certain neighbourhood, for � close to �∗.
Notice that a complete proof along the lines above must take care of the fact that the Poincaré
maps P� are defined on domains in different manifolds, each one containing the fixed point
p0.
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