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Abstract
In theoretical ecology, models describing the spatial dispersal and the temporal evolution of
species having non-overlapping generations are often based on integrodifference equations.
For various such applications the environment has an aperiodic influence on the models
leading to nonautonomous integrodifference equations. In order to capture their long-term
behaviour comprehensively, both pullback and forward attractors, as well as forward limit
sets are constructed for general infinite-dimensional nonautonomous dynamical systems in
discrete time. While the theory of pullback attractors, but not their application to integrod-
ifference equations, is meanwhile well-established, the present novel approach is needed in
order to understand their future behaviour.
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1 Introduction

Integrodifference equations not only occur as temporal discretisations of integrodifferential
equations or as time-1-maps of evolutionary differential equations, but are of interest in
themselves. First and foremost, they are a popular tool in theoretical ecology to describe the
dispersal of species having non-overlapping generations (see, for instance, [18] or [9,17,25]).
While the theory of Urysohn or Hammerstein integral equations is now rather classical [19],
both numerically and analytically, our goal is here to study their iterates from a dynamical
systems perspective. This means one is interested in the long term behaviour of recursions
based on a fixed nonlinear integral operator. In applications, the iterates for instance represent
the spatial distribution of interacting species over a habitat. One of the central questions in
this context is the existence and structure of an attractor. These invariant and compact sets
attract bounded subsets of an ambient state space X and fully capture the asymptotics of
an autonomous dynamical system [8,23]. The dynamics inside the attractor can be very
complicated and even chaotic [7].

Extending this situation, the main part of this paper is devoted to general nonautonomous
difference equations in complete metric spaces. Their right-hand side can depend on time
allowing to model the dispersal of species in temporally fluctuating environments [3,9] being
not necessarily periodic. Thus, the behaviour depends on both the initial and the actual time.
This iswhymany dynamically relevant objects are contained in the extended state spaceZ×X
(one speaks of nonautonomous sets) [10], rather than being merely subsets of the state space
X as in the autonomous case. Furthermore, a complete description of the dynamics in a time-
variant setting necessitates a strict distinction between forward and pullback convergence
[10,15]. For this reason only a combination of several attractor notions yields the full picture:

– The pullback attractor [4,11,15,20] is a compact, invariant nonautonomous set which
attracts all bounded sets from the past. As fixed target problem, it is based on previous
information, at a fixed time from increasingly earlier initial times. Since it consists of
bounded entire solutions to a nonautonomous system (see [20, p. 17, Cor. 1.3.4]), a
pullback attractor can be seen as an extension of the global attractor to nonautonomous
problems and apparently captures the essential dynamics to a certain point. Meanwhile
the corresponding theory is widely developed in discrete and continuous time. However,
pullback attractors reflect the past rather than the future of systems (see [14]) and easy
examples demonstrate that differential or difference equations with identical pullback
attractors might have rather different asymptotics as t → ∞ and possibly feature limit
sets, which are not captured by the pullback dynamics.

– This led to the development of forward attractors, which are also compact and invariant
nonautonomous sets [15]. This dual concept depends on information from the future
and given a fixed initial time, the actual time increases beyond all bounds — they are
a moving target problem. Forward attractors are not unique, independent of pullback
attractors, but often do not exist. Nevertheless, we will describe forward attractors using
a pullback construction, even though this has the disadvantage that information on the
system over the entire time axis Z is required.

– Therefore, it was suggested in [12] to work with forward limit sets, a concept related to
the uniform attractor due to [24]. They correctly describe the asymptotic behaviour of all
forward solutions to a nonautonomous difference equation. These limit sets have forward
attraction properties, but different frompullback and forward attractors, they are not (even
positively) invariant and constitute a single compact set, rather than a nonautonomous
set. Nonetheless, asymptotic forms of positive (and negative) invariance do hold.
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The situation for forward attractors and limit sets is not as well-established as their pullback
counterparts and deserves to be developed for the above reasons. Their initial construction in
[12,16] requires a locally compact state space, but recent continuous-time results in [6], which
extend these to infinite-dimensional dynamical systems, will be transferred here. We indeed
address nonautonomous difference equations in (not necessarily locally compact) metric and
Banach spaces, introduce the mentioned attractor types and study their properties.

This brings us to our second purpose. The above abstract setting allows concrete applica-
tions to a particularly interesting class of infinite-dimensional dynamical systems in discrete
time, namely integrodifference equations (IDEs for short). We provide sufficient criteria for
the existence of pullback attractors tailor-made for a quite general class of IDEs. Their right-
hand sides go beyond pure integral operators and might also include superposition operators,
which are used to describe populations having a sedentary fraction. Such results follow from
a corresponding theory of set contractions contained in [20, pp. 15ff], [19, pp. 79ff]. For
completely continuous right-hand sides (i.e., Urysohn operators) we construct forward limit
sets and provide an application to asymptotically autonomous IDEs. We restrict to rather
simple IDEs in the space of continuous functions over a compact domain as state space.
More complicated equations and the behaviour of attractors under spatial discretisation will
be tackled in future papers.

The contents of this paper are as follows: In Sect. 2 we establish the necessary terminology
and provide a useful dissipativity condition for nonautonomous difference equations. The
key notions related to pullback convergence, i.e., limit sets and attractors are reviewed and
established in Sect. 3. The subsequent Sect. 4 addresses the corresponding notions in forward
time. In detail, it establishes forward limit sets and their (weakened) invariance properties.
For a class of asymptotically autonomous equations it is shown that their forward limit sets
coincide with the global attractor of the limit equation. Moreover, a construction of forward
attractors is suggested. Finally, in Sect. 5 we provide some applications to various IDEs.
In particular, we illustrate the above theoretical results by studying pullback attractors and
forward limit sets.

Notation Let R+:=[0,∞). A discrete interval I is defined as the intersection of a real
interval with the integers Z, I′:= {t ∈ I : t + 1 ∈ I} and N0:= {0, 1, 2, . . .}.

On a metric space (X , d), IX is the identity map, Br (x):= {y ∈ X : d(x, y) < r}
the open ball with center x ∈ X and radius r > 0, and B̄r (0) denotes its closure.
We write dist

(
x, A

):= infa∈A d(x, a) for the distance of x from a set A ⊆ X and
Br (A):= {

x ∈ X : dist
(
x, A

)
< r

}
for its r -neighbourhood. The Hausdorff semidistance

of bounded and closed subsets A, B ⊆ X is defined as

dist
(
A, B

):= sup
a∈A

inf
b∈B d(a, b).

The Kuratowski measure of noncompactness on X (cf. [19, pp. 16ff, I.5]) is denoted by
χ : B(X) → R, where B(X) stands for the family of bounded subsets of X .

A mapping F : X → X is said to be bounded, if it maps bounded subsets of X into
bounded sets and globally bounded, if F(X) is bounded. We say a bounded F satisfies a
Darbo condition, if there exists a real constant k ≥ 0 such that

χ
(
F(B)

) ≤ kχ(B) for all B ∈ B(X).

The smallest such k is the Darbo constant dar
(
F

) ∈ [0,∞) of F. A completely continuous
mapping F is bounded, continuous and satisfies dar

(
F

) = 0.
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A subset A ⊆ I × X with t-fibres A(t):={x ∈ X : (t, x) ∈ A}, t ∈ I, is called
nonautonomous set. If all fibresA(t) ⊆ X , t ∈ I, are compact, thenA is denoted as compact
nonautonomous set andwe proceed accordingly with other topological notions. Furthermore,
one speaks of a bounded nonautonomous setA, if there exists real R > 0 and a point x0 ∈ X
such that A(t) ⊆ BR(x0) holds for all t ∈ I.

Finally, on a Banach space X , L(X) denotes the space of bounded linear operators and
ρ(L) is the spectral radius of a L ∈ L(X).

2 Nonautonomous Difference Equations

Unless otherwise noted, let (X , d) be a complete metric space. We consider nonautonomous
difference equations in the abstract form

ut+1 = Ft (ut ) (Δ)

with continuous right-hand sides Ft : Ut → X and defined on closed sets Ut ⊆ X , t ∈ I
′.

For an initial time τ ∈ I, a forward solution to (Δ) is a sequence (φt )τ≤t with φt ∈ Ut

satisfying
φt+1 ≡ Ft (φt ) (2.1)

for all τ ≤ t , t ∈ I
′, while an entire solution (φt )t∈I satisfies (2.1) on I′. The unique forward

solution starting at τ ∈ I in uτ ∈ Uτ is denoted by ϕ(·; τ, uτ ); it is denoted as general
solution to (Δ) and reads as

ϕ(t; τ, uτ ):=
{
Ft−1 ◦ · · · ◦ Fτ (uτ ), τ < t,

uτ , τ = t,
(2.2)

as long as the compositions stay inUt . Under the inclusionFt (Ut ) ⊆ Ut+1, t ∈ I
′, the general

solution ϕ(t; τ, ·) : Uτ → Ut exists for all τ ≤ t and the process property

ϕ(t; s, ϕ(s; τ, u)) = ϕ(t; τ, u) for all τ ≤ s ≤ t, u ∈ Uτ (2.3)

holds; we introduce the nonautonomous set U := {(t, u) ∈ I × X : u ∈ Ut }.
One denotes (Δ) as θ -periodic with some θ ∈ N, if Ft = Ft+θ , Ut = Ut+θ and tacitly

I = Z hold for all t ∈ Z. In this case the general solution satisfies

ϕ(t + θ; τ + θ, uτ ) = ϕ(t; τ, uτ ) for all τ ≤ t, (τ, uτ ) ∈ U (2.4)

yielding a rather tame time-dependence. An autonomous equation (Δ) is 1-periodic.
A nonautonomous set A ⊆ U is called positively or negatively invariant (w.r.t. the differ-

ence equation (Δ)), if the respective inclusion

Ft
(A(t)

) ⊆ A(t + 1), A(t + 1) ⊆ Ft
(A(t)

)
for all t ∈ I

′

holds; an invariant set A is both positively and negatively invariant, that is, Ft
(A(t)

) =
A(t + 1) for all t ∈ I

′. One denotes A as θ -periodic, if A(t) = A(t + θ) holds for all t ∈ I

with t + θ ∈ I.
The next two subsections provide some preparations on nonautonomous difference equa-

tions in Banach spaces (X , ‖·‖):

123



Journal of Dynamics and Differential Equations (2022) 34:671–699 675

2.1 Semilinear Difference Equations

Let Lt ∈ L(X), t ∈ I
′, be a sequence of bounded linear operators. For a linear difference

equation

ut+1 = Lt ut

we define the transition operator Φ : {
(t, τ ) ∈ I

2 : τ ≤ t
} → L(X) by

Φ(t, τ ):=
{
Lt−1 · · ·Lτ , τ < t,

IX , t = τ.

Then (Δ) is understood as semilinear, if its right-hand side can be represented as

Ft = Lt + Nt (2.5)

with continuous mappings Nt : Ut → X , t ∈ I
′. The variation of constants formula [20,

p. 100, Thm. 3.1.16] yields the general solution of (Δ) in the form

ϕ(t; τ, uτ ) = Φ(t, τ )uτ +
t−1∑

s=τ

Φ(t, s + 1)Ns
(
ϕ(s; τ, uτ )

)
for all τ ≤ t, uτ ∈ Uτ . (2.6)

The following result will be helpful in the construction of absorbing sets:

Lemma 2.1 Let Ft : Ut → Ut+1 be of semilinear form (2.5) and suppose there exist reals
αt ≥ 0, K ≥ 1 with

‖Φ(t, s)‖ ≤ K
t−1∏

r=s

αr for all s ≤ t . (2.7)

If there exist reals at ≥ 0, bt ≥ 0 such that the nonlinearity fulfills

‖Nt (u)‖ ≤ bt + at ‖u‖ for all t ∈ I
′, u ∈ Ut , (2.8)

then the general solution of (Δ) satisfies the estimate

‖ϕ(t; τ, uτ )‖ ≤ K ‖uτ‖
t−1∏

r=τ

(αr + Kar ) + K
t−1∑

s=τ

bs

t−1∏

r=s+1

(αr + Kar ) (2.9)

for all τ ≤ t and uτ ∈ Uτ .

Remark 2.2 (Linear growth) In caseLt ≡ 0 on I′ one can choose K = 1, αt = 0 in (2.7) and
the estimate (2.9) simplifies to

‖ϕ(t; τ, uτ )‖ ≤ ‖uτ‖
t−1∏

r=τ

ar +
t−1∑

s=τ

bs

t−1∏

r=s+1

ar for all τ ≤ t, uτ ∈ Uτ .

Proof Let τ ∈ I. It is convenient to abbreviate eα(t, s):= ∏t−1
r=s αr and we first assume that

αt �= 0, t ∈ I
′. Given uτ ∈ Uτ , from (2.6) and (2.7) we obtain

‖ϕ(t; τ, uτ )‖ ≤ Keα(t, τ ) ‖uτ‖ + K
t−1∑

s=τ

eα(t, s + 1) ‖Ns(ϕ(s; τ, uτ ))‖
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(2.8)≤ Keα(t, τ ) ‖uτ‖ + K
t−1∑

s=τ

eα(t, s + 1)
(
bs + as ‖ϕ(s; τ, uτ )‖

)

and therefore the sequence u(t):= ‖ϕ(t; τ, uτ )‖ eα(τ, t) satisfies

u(t) ≤ K ‖uτ‖ + K
t−1∑

s=τ

bseα(τ, s + 1) + K
t−1∑

s=τ

as
αs

u(s) for all τ ≤ t .

Thus, the Grönwall inequality from [20, p. 348, Prop. A.2.1(a)] implies

u(t) ≤ Ke1+ Ka
α

(t, τ ) ‖uτ‖ + K
t−1∑

s=τ

bseα(τ, s + 1)e1+ Ka
α

(t, s + 1)

and consequently

‖ϕ(t; τ, uτ )‖ ≤ Keα+Ka(t, τ ) ‖uτ‖ + K
t−1∑

s=τ

bseα+Ka(t, s + 1) for all τ ≤ t,

which is the claimed inequality (2.9). �

2.2 Additive Difference Equations

We now address right-hand sides
Ft = Gt + Kt , (2.10)

where Gt : Ut → X is bounded and continuous, while Kt : Ut → X , t ∈ I
′, is assumed to

be completely continuous.

Lemma 2.3 If Ft : Ut → Ut+1 is of additive form (2.10), then the general solution of (Δ)
satisfies

dar
(
ϕ(t; τ, ·)) ≤

t−1∏

s=τ

dar
(
Gs

)
for all τ ≤ t .

Proof Since Ft = Gt + Kt : Ut → X for every t ∈ I
′ is continuous and bounded, their

composition (2.2) is also continuous and bounded. The estimate for the Darbo constant of
ϕ(t; τ, ·)will be established bymathematical induction. For t = τ the assertion is clear, since
ϕ(τ ; τ, ·) = IX and the Lipschitz constant of the identity mapping is 1; it provides an upper
bound for the Darbo constant (see [19, p. 81, Prop. 5.3]). For times t ≥ τ , from dar

(
Kt ◦

ϕ(t; τ, ·)) = 0, which holds becauseKt is completely continuous (cf. [19, p. 82, Prop. 5.4]),
it follows that

dar
(
ϕ(t + 1; τ, ·)) = dar

(
Gt ◦ ϕ(t; τ, ·) + Kt ◦ ϕ(t; τ, ·)) ≤ dar

(
Gt ◦ ϕ(t; τ, ·))

≤ dar
(
Gt

)
dar

(
ϕ(t; τ, ·)) =

t∏

s=τ

dar
(
Gs

)
for all τ ≤ t

from [19, pp. 79–80, Prop. 5.1]. This establishes the claim. �

123



Journal of Dynamics and Differential Equations (2022) 34:671–699 677

3 Pullback Convergence

In this section, suppose that I is unbounded below and that Ft : Ut → Ut+1, t ∈ I
′, i.e., (Δ)

generates a process on U .
A difference equation (Δ) is said to be pullback asymptotically compact, if for every

τ ∈ I, every sequence (sn)n∈N in N0 with limn→∞ sn = ∞ and every bounded sequence
(an)n∈N with an ∈ U(τ − sn), the sequence

(
ϕ(τ ; τ − sn, an)

)
n∈N possesses a convergent

subsequence.

3.1 Pullback Limit Sets

The pullback limit set ωA ⊆ U of a bounded subset A ⊆ U is given by the fibres

ωA(τ ):=
⋂

0≤s

⋃

s≤t

ϕ(τ ; τ − t,A(τ − t)) for all τ ∈ I. (3.1)

For pullback asymptotically compact nonautonomous difference equations (Δ) it is shown
in [20, p. 14, Thm. 1.2.25] that ωA is nonempty, compact, invariant and pullback attracts A,
i.e., the limit relation

lim
s→∞ dist

(
ϕ(τ ; τ − s,A(τ − s)), ωA(τ )

) = 0 for all τ ∈ I (3.2)

holds. For positively invariant sets A the defining relation (3.1) simplifies to

ωA(τ ) =
⋂

0≤s

ϕ(τ ; τ − s,A(τ − s)). (3.3)

Therefore, as a fundamental tool for the construction of pullback limit sets and attractors, as
well as for forward attractors in Sect. 4.3, we state

Proposition 3.1 Suppose that (Δ) has a nonempty, positively invariant, closed and bounded
subset A ⊆ U . If (Δ) is pullback asymptotically compact, then the fibres

A�(τ ):=
⋂

0≤s

ϕ(τ ; τ − s,A(τ − s)) for all τ ∈ I (3.4)

define a maximal invariant, nonempty and compact nonautonomous set A� ⊆ A, which
pullback attracts A.

If the nonautonomous setA is even compact, then Proposition 3.1 applies without the asymp-
totic compactness assumption.

Proof Since (Δ) generates a continuous process ϕ in discrete time, the assertion results via an
adaption of [13, Prop. 5], where pullback asymptotic compactness yields that the intersection
of the nested sets in (3.4) is nonempty. �

3.2 Pullback Attractors

A pullback attractor A∗ ⊆ U of (Δ) is a nonempty, compact, invariant nonautonomous set
which pullback attracts all bounded nonautonomous setsB ⊆ U . Bounded pullback attractors
are unique and allow the dynamical characterisation

A∗ =
{
(τ, u) ∈ U

∣∣∣∣
there exists a bounded entire solution
(φt )t∈I of (Δ) satisfying φτ = u

}
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(cf. [20, p. 17, Cor. 1.3.4]). Despite being pullback attracting nonautonomous sets withinA,
the set A� constructed in Proposition 3.1 needs not to be a pullback attractor, since nothing
was assumed outside of A. Remedy provides the notion of a pullback dissipative difference
equation (Δ). This means there exists a bounded set A ⊆ U such that for every τ ∈ I and
every bounded nonautonomous set B ⊆ U there is an absorption time S = S(τ,B) ∈ N such
that

ϕ(τ ; τ − s,B(τ − s)) ⊆ A(τ ) for all s ≥ S.

For a uniformly pullback dissipative equation (Δ) the absorption time S is independent of τ .
One denotes A as a pullback absorbing set.

If A is pullback absorbing, then the set A� obtained from Proposition 3.1 becomes a
pullback attractor, i.e., A� = A∗, and one has the characterisation

A∗ = ωA. (3.5)

A possibility to construct pullback absorbing sets provides

Proposition 3.2 (Pullback absorbing set) On a Banach space X, let ρ > 0 and Ft : Ut →
Ut+1 be of semilinear form (2.5) satisfying (2.7), (2.8). If the limit relations

lim
s→∞

τ−1∏

r=τ−s

(αr + Kar ) = 0, Rτ :=K
τ−1∑

s=−∞
bs

τ−1∏

r=s+1

(αr + Kar ) < ∞

hold for all τ ∈ I, then the difference equation (Δ) is pullback dissipative with absorbing set
A:= {(τ, u) ∈ U : ‖u‖ ≤ ρ + Rτ }. In case lims→∞ supτ∈I

∏τ−1
r=τ−s(αr + Kar ) = 0 holds,

the difference equation (Δ) is uniformly pullback dissipative.

Proof The assertion follows from Lemma 2.1 by passing over to the pullback limit τ → −∞
in the estimate (2.9). �

A construction of pullback attractorsA∗ based on set contractions, rather than asymptotic
compactness, is suitable for later applications to integrodifference equations (see Sect. 5):

Theorem 3.3 If a difference equation (Δ) of additive form (2.10) is uniformly pullback dis-
sipative and

T−1∏

s=−∞
dar

(
Gs

) = 0 for some T ∈ I

holds, then there exists a unique bounded pullback attractor of (Δ).

Remark 3.4 (Periodic equations) For θ -periodic difference equations (Δ) and setsA, it results
from (2.4) that also the pullback limit sets ωA from (3.1), the set A� from Proposition 3.1
and the pullback attractor A∗ are θ -periodic (cf. [20, pp. 21ff, Sect. 1.4]). Furthermore,
Theorem 3.3 applies when

∏θ−1
s=0 dar

(
Gs

)
< 1.

Proof The terminology of [20] and results therein will be used. Let B̂ denote the family of
all bounded sets in I × X . Then Lemma 2.3 ensures that the general solution ϕ(t; τ, ·) is
B̂-contracting in the sense of [20, p. 15, Def. 1.2.26(i)].

Since (Δ) has a bounded absorbing setA, for every bounded nonautonomous set B, there
exists an S ∈ N0 such that ϕ(τ ; τ − s,B(τ − s)) ⊆ A(t) holds for all s ≥ S. This implies
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that the S-truncated orbit γ S
B , fibrewise given by

γ S
B(τ ):=

⋃

s≥S

ϕ(τ ; τ − s,B(τ − s)) ⊆ A(τ ) for all τ ∈ I,

is bounded. Hence, [20, p. 16, Prop. 1.2.30] implies that (Δ) is B̂-asymptotically compact,
so (Δ) has a pullback attractor A∗ by [20, p. 19, Thm. 1.3.9].

Finally, the pullback attractor A∗ is contained in the closure of the absorbing set A, so is
bounded and thus uniquely determined. �

4 Forward Convergence

In the previous section, we constructed pullback attractors of pullback asymptotically com-
pact nonautonomous difference equations (Δ) as pullback limit sets of such absorbing sets.
Our next aim is to provide related notions in forward time. Due to the conceptional difference
between pullback and forward convergence some modifications are necessary, yet.

Above all, this requires a discrete interval I to be unbounded above. Now the right-hand
sides Ft : Ut → Ut+1, t ∈ I, are defined on a common closed subset Ut = U ⊆ X , i.e.,
the extended state space U = I × U has constant fibres. Therefore, the general solution
ϕ : {(t, τ, u) ∈ I × U : τ ≤ t} → U is well-defined.

Given a nonautonomous set A ⊆ U , a difference equation (Δ) is said to be

– A-asymptotically compact, if there exists a compact set K ⊆ U such that K forward
attracts A(τ ), i.e.,

lim
s→∞ dist

(
ϕ(τ + s; τ,A(τ )), K

) = 0 for all τ ∈ I,

– strongly A-asymptotically compact, if there exists a compact set K ⊆ U so that every
sequence

(
(sn, τn)

)
n∈N in N × I with sn → ∞, τn → ∞ as n → ∞ yields

lim
n→∞ dist

(
ϕ(τn + sn; τn,A(τn)), K

) = 0.

Remark 4.1 If A is positively invariant, then strong A-asymptotic compactness (needed in
Theorem4.10 below) is a tightening ofA-asymptotic compactness (required in Theorem4.9).
Indeed, suppose that the sequence (dist

(
ϕ(tn; τ,A(τ )), K

)
)n∈N does not converge to 0.

Hence, the strong A-asymptotic compactness of (Δ) and positive invariance of A yields
the contradiction

dist
(
ϕ(tn; τ,A(τ )), K

) = dist
(
Ftn (ϕ(tn − 1; τ,A(τ )), K

)

≤ dist
(
Ftn (A(tn − 1)), K

) −−−→
n→∞ 0.

4.1 Forward Limit Sets

Let us investigate the forward dynamics of (Δ) inside a nonautonomous set A. We first
capture the forward limit points from a single fibre A(τ ):

Lemma 4.2 Suppose thatA �= ∅ is a bounded nonautonomous set. If (Δ) isA-asymptotically
compact with a compact subset K ⊆ U, then the fibres
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ΩA(τ ):=
⋂

0≤s

⋃

s≤t

ϕ(τ + t; τ,A(τ )) ⊆ K for all τ ∈ I (4.1)

are nonempty, compact, and forward attract A(τ ), i.e.,

lim
s→∞ dist

(
ϕ(τ + s; τ,A(τ )),ΩA(τ )

) = 0. (4.2)

An analogous result for pullback limit sets is given in [20, p. 9, Lemma 1.2.12].

Remark 4.3 (Characterisation of ΩA(τ )) The fibres ΩA(τ ), τ ∈ I, consist of points v such
that there is a sequence

(
(sn, an)

)
n∈N with limn→∞ sn = ∞, an ∈ A(τ ) and

lim
n→∞ ϕ(τ + sn; τ, an) = v. (4.3)

This readily yields the monotonicity A1 ⊆ A2 ⇒ ΩA1(τ ) ⊆ ΩA2(τ ) for all τ ∈ I.

Proof Let τ ∈ I. Given a sequence yn :=ϕ(τ +sn; τ, an) ∈ ϕ(τ +sn; τ,A(τ ))with sn −−−→
n→∞∞ and an ∈ A(τ ), by the A-asymptotic compactness of (Δ), we obtain

0 ≤ dist
(
yn, K

) ≤ dist
(
ϕ(τ + sn, τ,A(τ )), K

) −−−→
n→∞ 0.

Since K ⊆ U is compact, dist
(
yn, K

) = mink∈K d(yn, k). This implies that there exist a
sequence (kn)n∈N in K satisfying

d(yn, kn) = dist
(
yn, K

) −−−→
n→∞ 0,

and a subsequence (kn j ) j∈N converging to k̄ ∈ K . Thus,

0 ≤ d
(
yn j , k̄

) ≤ d
(
yn j , kn j

) + d
(
kn j , k̄

) = dist
(
yn j , K

) + d
(
kn j , k̄

) −−−→
j→∞ 0,

which implies that the subsequence (yn j ) j∈N converges to k̄. Hence, by the characterisation
(4.3), k̄ ∈ ΩA(τ ), i.e., ΩA(τ ) is nonempty.

Now choose a sequence (vn)n∈N in ΩA(τ ). By Remark 4.3, for each fixed n ∈ N, there is
a sequence

(
(snm, anm)

)
m∈N satisfying limm→∞ snm = ∞ and anm ∈ A(τ ) for all m ∈ N such

that

lim
m→∞ ϕ(τ + snm; τ, anm) = vn,

i.e., for every ε > 0, there is a M = M(n, ε) ∈ N such that

d
(
ϕ(τ + snm; τ, anm), vn

)
< ε for all m ≥ M .

Since limm→∞ snm = ∞, there is a M ′ = M ′(n) ∈ N satisfying snm > n for all m ≥ M ′.
Pick ε = 1

n , (s̄n)n∈N as a subsequence (snmn
)n∈N of (snm)n∈N and (ān)n∈N as a subsequence

(anmn
)n∈N of (anm)n∈N in such a way that

m1 = max
{
1, M, M ′} + 1, mn+1 = max

{
1, M, M ′,mn

} + 1 for all n ∈ N.

Clearly, mn+1 > max
{
1, M, M ′,mn

}
for n ∈ N. Hence, we constructed a sequence(

(s̄n, ān)
)
n∈N with limn→∞ s̄n = ∞ and ān ∈ A(τ ) such that

d
(
ϕ(τ + s̄n; τ, ān), vn

)
< 1

n for all n ∈ N.
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Therefore,

0 ≤ dist
(
vn, K

) ≤ d
(
ϕ(τ + s̄n; τ, ān), vn

) + dist
(
ϕ(τ + s̄n; τ,A(τ )), K

)

≤ 1
n + dist

(
ϕ(τ + s̄n; τ,A(τ )), K

) −−−→
n→∞ 0.

Similarly as above, because K is compact, there is a subsequence (vn j ) j∈N converging to
v̄ ∈ K . Moreover, since ΩA(τ ) is closed by definition, v̄ ∈ ΩA(τ ), which implies that
ΩA(τ ) is compact. Also note that limn→∞ dist

(
vn, K

) = 0, so vn ∈ K , i.e., ΩA(τ ) ⊆ K .
Suppose that ΩA(τ̃ ) does not forward attract A(τ̃ ) for some τ̃ ∈ I, i.e., there exist a real

ε̃ > 0 and a sequence (s̃n)n∈N in N with limn→∞ s̃n = ∞ and

dist
(
ϕ(τ̃ + s̃n; τ̃ ,A(τ̃ )),ΩA(τ̃ )

) ≥ ε̃ for all n ∈ N. (4.4)

Although the supremum in the Hausdorff semidistance in the left-hand side of (4.4) may not
be attained due to no condition ensuring that the image ϕ(τ̃ + sn; τ̃ ,A(τ̃ )) is compact, there
still exists a point ỹn :=ϕ(τ̃ + s̃n; τ̃ , ãn) ∈ ϕ(τ̃ + s̃n; τ̃ ,A(τ̃ )) for each n ∈ Nwith ãn ∈ A(τ̃ )

such that

dist
(
ϕ(τ̃ + s̃n; τ̃ ,A(τ̃ )),ΩA(τ̃ )

) − ε̃
2 ≤ dist

(
ỹn,ΩA(τ̃ )

)

≤ dist
(
ϕ(τ̃ + s̃n; τ̃ ,A(τ̃ )

)
,ΩA(τ̃ )).

The above inequalities in fact give dist
(
ỹn,ΩA(τ̃ )

) ≥ ε̃
2 for all n ∈ N. On the other hand,

since ỹn ∈ ϕ(τ̃ + sn; τ̃ ,A(τ̃ )), we obtain

dist
(
ỹn, K

) ≤ dist
(
ϕ(τ̃ + s̃n; τ̃ ,A(τ̃ )), K

) −−−→
n→∞ 0

and thus ỹn ∈ K . Moreover, since K is compact, there is a convergent subsequence (ỹn j ) j∈N
with limit ỹ ∈ K . This shows ỹ ∈ ΩA(τ̃ ) by definition, and thus

dist
(
ỹ,ΩA(τ̃ )

)
< ε for all ε > 0,

a contradiction to (4.4). Hence, every ΩA(τ ) must forward attract A(τ ). �
Corollary 4.4 If in additionA is positively invariant w.r.t. (Δ), then the inclusions ΩA(τ ) ⊆
ΩA(τ + 1) hold for all τ ∈ I.

Owing to the positive invariance of A, every ΩA(τ ) can also be written as

ΩA(τ ) =
⋂

0≤s

ϕ(τ + s; τ,A(τ )) for all τ ∈ I. (4.5)

Comparing the respective relations (4.1) and (3.1), (4.2) and (3.2), (4.5) and (3.3) shows that
the fibres ΩA(τ ) are counterparts to the pullback limit set ωA. However, their invariance
property is missing. This is easily demonstrated by

Example 4.5 Let I = N0 and α ∈ (0, 1
2 ]. The difference equation ut+1 = αut + αt in

R possesses the positively invariant and bounded set A = N0 × [− 1
α
, 1

α
]. This yields the

apparently not even positively invariant sets ΩA(τ ) = {0} for all τ ∈ N0.

Proof Let τ ∈ I. Given a point v ∈ ΩA(τ ), thanks to Fτ

(A(τ )
) ⊆ A(τ + 1) and the process

property (2.3), we obtain

v ∈ ϕ(τ + s; τ,A(τ )) ⊆ ϕ(τ + s; τ + 1,A(τ + 1)) ⊆ U for all s > 0.

This implies ΩA(τ ) ⊆ ΩA(τ + 1) ⊆ U . �
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While the fibres ΩA(τ ) from Lemma 4.2 yield the long term behaviour starting from a
single fibre ofA, the following result addresses all forward limit sets of (Δ) originating from
within an entire nonautonomous set A.

Theorem 4.6 (Forwardω-limit sets) Suppose thatA �= ∅ is positively invariant and bounded.
If (Δ) is A-asymptotically compact with a compact subset K ⊆ U, then

ω−
A:=

⋂

τ∈I
ΩA(τ ), ω+

A:=
⋃

τ∈I
ΩA(τ ) ⊆ K

are nonempty and compact. In particular, ω+
A forward attracts A, i.e.,

lim
s→∞ dist

(
ϕ(τ + s; τ,A(τ )), ω+

A
) = 0 for all τ ∈ I

and called forward ω-limit set of A.

Due to Corollary 4.4, ω+
A is a union over nondecreasing sets and actually a limit.

Remark 4.7 (Characterisation ofω+
A) The forwardω-limit setω+

A consists of all points v such
that there is a sequence

(
(sn, τn, an)

)
n∈N with limn→∞ τn = ∞, (τn, an) ∈ A and sn ∈ N0

satisfying

lim
n→∞ ϕ(τn + sn; τn, an) = v.

Remark 4.8 (Periodic equations) For θ -periodic difference equations (Δ) and setsA the fibres
ΩA(τ ) are θ -periodic due to (2.4) and (4.1). If A is moreover positively invariant, then ΩA
are even constant and thus ω−

A = ω+
A = ΩA(τ ) for all τ ∈ Z.

Proof of Theorem 4.6 SinceΩA(τ ) is nonempty, there exists a point v ∈ ΩA(τ ) for all τ ∈ I.
This implies that v is also contained in ω+

A, i.e., the forward ω-limit set ω+
A is nonempty.

From Lemma 4.2, we know thatΩA(τ ) ⊆ K for each τ ∈ I. This yieldsω+
A ⊆ K . Moreover,

since K is compact and ω+
A is closed, ω+

A is also compact. The claimed limit relation is a
consequence of (4.2) and ΩA(τ ) ⊆ ω+

A.
The properties of ω−

A are an immediate consequence of the fact that ω−
A is an intersection

of nested compact sets (cf. [23, p. 23, Lemma 22.2(5)]). �
Note that Example 4.5 demonstrates that both the set ω−

A, as well as the forward limit
sets ω+

A constructed in Theorem 4.6 are not invariant or even positively invariant. Yet, under
additional assumptions weaker forms of invariance hold:

Theorem 4.9 (Asymptotic positive invariance) Suppose that (Δ) is A-asymptotically com-
pact with a compact subset K ⊆ U for a bounded, positively invariant A �= 0. If for every
sequence

(
(sn, τn)

)
n∈N in N0 × I with limn→∞ τn = ∞, one has

lim
n→∞ dist

(
ϕ(τn + sn; τn, K ), K

) = 0,

then the forwardω-limit setω+
A is asymptotically positively invariant, that is, for every strictly

decreasing sequence εn ↘ 0, there exists a strictly increasing sequence Tn ↗ ∞ in I as
n → ∞ such that

ϕ(τ + s; τ, ω+
A) ⊆ Bεn

(
ω+
A

)
for all Tn ≤ τ, s ∈ N0. (4.6)

Recall the definition of the neighborhoods Bεn

(
ω+
A

)
and thus (4.6) reads as

dist
(
ϕ(τ + s; τ, ω+

A), ω+
A

)
< εn for all Tn ≤ τ, s ∈ N0.
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Proof Suppose by contradiction that there exists a fixed ε1 > 0 so that there is a sequence(
(s1n , τn)

)
n∈N with 0 ≤ s1n = s1n (ε1) ≤ T0(τn, ε1) and τn → ∞ as n → ∞ satisfying

dist
(
ϕ(τn + s1n ; τn, ω

+
A), ω+

A
) ≥ ε1 for all n ∈ N. (4.7)

Since ϕ is continuous and ω+
A is compact due to Theorem 4.6, ϕ(τn + s1n ; τn, ω

+
A) is also a

compact set. This implies that there exists a

y1n = y1n (ε1):=ϕ(τn + s1n ; τn, w
1
n) ∈ ϕ(τn + s1n ; τn, ω

+
A) ⊆ ϕ(τn + s1n ; τn, K )

with w1
n = w1

n(ε1) ∈ ω+
A ⊆ K such that

dist
(
y1n , ω

+
A

) = dist
(
ϕ(τn + s1n ; τn, w

1
n), ω

+
A

)

= dist
(
ϕ(τn + s1n ; τn, ω

+
A), ω+

A
) ≥ ε1 for all n ∈ N.

On the other hand, with y1n ∈ ϕ(τn + s1n ; τn, K ), by the assumption, we obtain

0 ≤ dist
(
y1n , K

) ≤ dist
(
ϕ(τn + s1n ; τn, K ), K

) −−−→
n→∞ 0,

implying that y1n ∈ K . Additionally, since the set K is compact, there is a subsequence
(yn j (ε1)) j∈N converging to ȳ1 = ȳ1(ε1) ∈ K . Therefore, by definition, the inclusion ȳ1 ∈
ΩA(τ ) ⊆ ω+

A leads to ȳ1 ∈ ω+
A, i.e., dist

(
ȳ1, ω

+
A

)
< ε for all ε > 0, a contradiction to (4.7).

Thus, for this ε1 > 0, there exists an integer s1 = s1(ε1) large enough such that

dist
(
ϕ(τ + s1; τ, ω+

A), ω+
A

)
< ε1.

Repeating inductively with εn+1 < εn and sn+1(εn+1) > sn(εn) for all n ∈ N, we then obtain
that ω+

A is asymptotically positively invariant. �
Theorem 4.10 (Asymptotic negative invariance) Suppose that (Δ) is strongly A-asympto-
tically compact with a compact subset K ⊆ U for a bounded, positively invariant A �= 0. If
for every ε > 0 and T ∈ N, there exists a real δ = δ(ε, T ) > 0 such that for all τ ∈ I, one
has the implication

u0, v0 ∈ A(τ ) ∪ K ,

d(u0, v0) < δ

}
⇒ sup

0≤s≤T
d
(
ϕ(τ + s; τ, u0), ϕ(τ + s; τ, v0)

)
< ε, (4.8)

then the forwardω-limit setω+
A is asymptotically negatively invariant, that is, for all u ∈ ω+

A,
ε > 0 and T ∈ N, there are integers s∗ = s∗(ε) satisfying τ + s∗ − T ∈ I and u∗

ε ∈ ω+
A

such that

d
(
ϕ(τ + s∗; τ + s∗ − T , u∗

ε), u
)

< ε.

Proof Consider reals ε > 0 and T ∈ N and take a point u ∈ ω+
A. Thanks to Remark 4.7,

there is a sequence
(
(sn, τn, an)

)
n∈N with T < sn = sn(ε) → ∞, τn → ∞ as n → ∞,

τn ∈ I, τn + sn − T ∈ I and an = an(ε) ∈ A(τn), and an integer N = N1(ε) with

d
(
ϕ(τn + sn; τn, an), u

)
< ε

2 for all n ≥ N1(ε).

Given a sequence yn :=ϕ(t∗n − T ; τn, an) ∈ ϕ(t∗n − T ; τn,A(τn)) ⊆ A(t∗n − T ) with t∗n =
t∗n (ε):=τn + sn , sn − T → ∞, τn → ∞ as n → ∞, τn ∈ I and an ∈ A(τn), by the strong
A-asymptotic compactness of (Δ), we obtain

0 ≤ dist
(
yn, K

) ≤ dist
(
ϕ(t∗n − T ; τn,A(τn)), K

) −−−→
n→∞ 0.
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Since K is compact, dist
(
yn, K

) = mink∈K d(yn, k). This implies that there exist a sequence
(kn)n∈N in K such that

d(yn, kn) = dist
(
yn, K

) −−−→
n→∞ 0,

and a subsequence (kn j ) j∈N converging to k̄ = k̄(ε) ∈ K . Thus,

0 ≤ d
(
yn j , k̄

) ≤ d
(
yn j , kn j

) + d
(
kn j , k̄

) = dist
(
yn, K

) + d
(
kn j , k̄

) −−−→
n→∞ 0,

implying yn j :=ϕ(t∗n j
− T ; τn j , an j ) −−−→

j→∞ k̄ with t∗n j
:=τn j + sn j . Hence, by Remark 4.7,

one has k̄ ∈ ω+
A. Moreover, with yn j ∈ A(t∗n j

− T ) and k̄ ∈ K , by the assumption, we obtain
for an integer N2(ε, T ) large enough,

d
(
ϕ(t∗n j

; t∗n j
− T , yn j ), ϕ(t∗n j

; t∗n j
− T , k̄)

)
< ε

2 for all n j ≥ N2(ε, T ).

Now the triangle inequality and the process property (2.3) yield

d
(
ϕ(t∗n j

; t∗n j
− T , k̄), u

)

≤ d
(
ϕ(t∗n j

; t∗n j
− T , k̄), ϕ(t∗n j

; t∗n j
− T , yn j )

) + d
(
ϕ(t∗n j

; t∗n j
− T , yn j ), u

)

= d
(
ϕ(t∗n j

; t∗n j
− T , k̄), ϕ(t∗n j

; t∗n j
− T , yn j )

)

+d
(
ϕ(t∗n j

; t∗n j
− T , ϕ(t∗n j

− T ; τn j , an j )), u
)

= d
(
ϕ(t∗n j

; t∗n j
− T , k̄), ϕ(t∗n j

; t∗n j
− T , yn j )

) + d
(
ϕ(t∗n j

; τn j , an j ), u
)

< ε
2 + ε

2 = ε for all n ≥ N1(ε), n j ≥ N2(ε, T ).

Setting u∗
ε :=k̄ ∈ ω+

A, we then obtain that ω+
A is asymptotically negatively invariant. �

4.2 Asymptotically Autonomous Difference Equations

In general it is difficult to obtain the forward limit set ω+
A given as limit of the fibres ΩA(τ )

explicitly. This situation simplifies, if (Δ) behaves asymptotically as an autonomous differ-
ence equation

ut+1 = F(ut ) (Δ∞)

with right-hand side F : U → U in a sense to be specified below. Here, it is common
to denote the iterates of F by Fs : U → U , s ∈ N0. A maximal, invariant and nonempty
compact set A∗ ⊆ U attracting all bounded subsets of U is called global attractor of (Δ∞)
(cf. [8, p. 17]).

For a class of nonautonomous equations (Δ) introduced next, the sets ΩA(τ ), τ ∈ I, turn
out to be constant and determined by the global attractor A∗ of (Δ∞).

Theorem 4.11 (Asymptotically autonomous difference equations) Suppose that (Δ∞) has a
bounded absorbing set A ⊆ U and a global attractor A∗ ⊆ A. If A:=I × A is a forward
absorbing set of (Δ) and the condition

lim
s→∞ sup

a∈A
d(ϕ(τ + s; τ, a),Fs(a)) = 0 for all τ ∈ I (4.9)

holds, then ΩA(τ ) = A∗ for all τ ∈ I and in particular ω−
A = ω+

A = A∗.
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Remark 4.12 Asymptotically autonomous difference equations were also studied in [5] in
order to show that the fibres A∗(τ ) of a pullback attractor A∗ to (Δ) converge to the global
attractor A∗ of the limit equation (Δ∞) as τ → ∞. In these results, however, asymptotic
autonomy is based on e.g. the limit relation

lim
τ→∞ d(ϕ(τ + s; τ, aτ ),F

s(a0)) = 0 for all s ∈ N0

(see [5, Thm. 1]) with sequences (an)n∈N converging to some a0. This condition is clearly
different from (4.9).

Proof Given any τ ∈ I, we have to show two inclusions:
(⊆) Let v ∈ ΩA(τ ). Due to Remark 4.3 there exist sequences an ∈ A and sn → ∞ as

n → ∞ with

lim
n→∞ ϕ(τ + sn; τ, an) = v

and it follows from (4.9) that

dist
(
v, A∗)

≤ d(v, ϕ(τ + sn; τ, an)) + d(ϕ(τ + sn; τ, an),F
sn (an)) + dist

(
Fsn (an), A

∗)

≤ d(v, ϕ(τ + sn; τ, an)) + d(ϕ(τ + sn; τ, an),F
sn (an)) + dist

(
Fsn (A), A∗) −−−→

n→∞ 0,

since the global attractor A∗ of (Δ∞) attracts the absorbing set A. This implies that v ∈ A∗,
and since v was arbitrary, the inclusion ΩA(τ ) ⊆ A∗ holds for τ ∈ I.

(⊇) Conversely, since A∗ is compact, there exists an a∗ ∈ A∗ with

dist
(
A∗,ΩA(τ )

) = dist
(
a∗,ΩA(τ )

)

≤ dist
(
a∗, ϕ(τ + s; τ, A∗)

) + dist
(
ϕ(τ + s; τ, A∗),ΩA(τ )

)

for all s ∈ I and we separately estimate the two terms on the right-hand side of this inequality.
First, due to the invariance of A∗ there exists a∗

s ∈ A∗ with a∗ = Fs(a∗
s ) and therefore

dist
(
a∗, ϕ(τ + s; τ, A∗)

) ≤ d(a∗, ϕ(τ + s; τ, a∗
s )) = d(Fs(a∗

s ), ϕ(τ + s; τ, a∗
s ))

≤ sup
a∈A∗

d(ϕ(τ + s; τ, a),Fs(a))
(4.9)−−−→
s→∞ 0.

Second, from A∗ ⊆ A = A(τ ) one has

dist
(
ϕ(τ + s; τ, A∗),ΩA(τ )

) ≤ dist
(
ϕ(τ + s; τ,A(τ )),ΩA(τ )

) (4.2)−−−→
s→∞ 0,

which guarantees the remaining inclusion A∗ ⊆ ΩA(τ ).
Hence, all ΩA(τ ) are constant, thus ω−

A = A∗ and ω+
A = A∗ = A∗. �

The following simple example illustrates the condition (4.9):

Example 4.13 (Beverton–Holt equation) If α > 1, then it is well known that all solutions to
the autonomous Beverton–Holt equation vt+1 = αvt

1+vt
starting with a positive initial value

converge to α − 1 (see [18, pp. 13ff]). We establish that an asymptotically autonomous, but
nonautonomous Beverton–Holt equation

vt+1 = ãtvt
1 + vt

, ãt := ft+1

ft
α (4.10)
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shares this behaviour, whenever the sequence ( ft )t∈I in (0,∞) satisfies

lim
t→∞

t−1∑

s=0

fτ+s

fτ+t
αs−t = 1

α − 1
for all τ ∈ I (4.11)

and grows at most polynomially. For instance, the relation (4.11) holds for the sequences
ft = (t + c)n with c ∈ R, n ∈ {1, 2, 3, 4}. Indeed, the explicit representation

ϕ(τ + t; τ, a) = (α − 1)a
α−1
αt

fτ
fτ+t

+ (α − 1)a
∑t−1

s=0
fτ+s
fτ+t

αs−t

of the general solution to (4.10) yields that limt→∞ ϕ(t + τ ; τ, a) = α − 1 holds uniformly
in a ∈ [ā,∞) for any ā > 0. Consequently, one has

sup
a≥ā

∣
∣ϕ(τ + t; τ, a) − Ft (a)

∣
∣ ≤ sup

a≥ā
|ϕ(τ + t; τ, a) − (α − 1)| + sup

a≥ā

∣
∣α − 1 − Ft (a)

∣
∣

−−−→
t→∞ 0

and therefore (4.9) is valid with arbitrary subsets A ⊆ [ā,∞).

We continue with two sufficient criteria for the condition (4.9) to hold. Thereto we assume
in the remaining subsection that (X , ‖·‖) is a Banach space.

Theorem 4.14 (Asymptotically autonomous linear difference equations) Suppose that
Lt ,L ∈ L(X), bt , b ∈ X, t ∈ I, satisfy

lim
t→∞Lt = L, lim

t→∞ bt = b. (4.12)

If ρ(L) < 1, then (Δ∞) with right-hand side F(u) = Lu + b and (Δ) with right-hand side
Ft (u) = Lt u + bt fulfill the limit relation (4.9) on every bounded subset A ⊆ X.

Proof We note that (4.12) implies that (Δ) is uniformly exponentially stable and that the
sequences (Lt )t∈I, (bt )t∈I are bounded. Thus, [2, Cor. 5 with H = �∞(I, X)] implies that
ϕ(·; τ, 0) is bounded and the representation ϕ(t; τ, uτ ) = Φ(t, τ )uτ +ϕ(t; τ, 0) for all t ≥ τ ,
uτ ∈ X shows that ϕ(·; τ, uτ ) is bounded uniformly in uτ from bounded subsets of X . Now
it is easy to see that the difference ϕ(t; τ, a) − Ft−τ (a) solves the initial value problem

wt+1 = Lwt + b̃t , uτ = 0,

whose inhomogeneity b̃t :=(Lt − L)ϕ(t; τ, a) + bt − b satisfies limt→∞ b̃t = 0 uniformly
in a from bounded subsets of X . Now using [2, Cor. 5 with H = c0(I, X)] guarantees that
the sequence ϕ(t; τ, a) − Ft−τ (a) converges to 0 as t → ∞ uniformly in a from bounded
subsets of X , that is, in particular (4.9) holds. �
Theorem 4.15 (Asymptotically autonomous semilinear difference equations) Let Ft : U →
U be of semilinear form (2.5) such that

‖Φ(t, s)‖ ≤ Kαt−s for all s ≤ t (4.13)

and
‖Nt (u) − Nt (ū)‖ ≤ L ‖u − ū‖ for all t ∈ I, u, ū ∈ U (4.14)

with K ≥ 1, α ∈ (0, 1) and L ∈ (0, 1−α
K ). If L ∈ L(X) and N : U → X satisfy

(i) there exists a K1 ≥ 0 such that ‖Lt − L‖ ≤ K1α
t for all t ∈ I,
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(ii) for every r > 0 there exists a K2(r) ≥ 1 such that

sup
u∈U∩Br (0)

‖Nt (u) − N(u)‖ ≤ K2(r)α
t for all t ∈ I,

then (Δ∞) with right-hand side F(u) = Lu + N(u) and (Δ) fulfill the limit relation (4.9)
even exponentially on every bounded subset A ⊆ X.

The assumption (4.13) holds in case ρ(L) < 1 with α ∈ (ρ(L), 1) (see [22, Thm. 5]).

Proof We proceed in two steps:
(I) Claim: All solutions to the autonomous equation (Δ∞) are bounded, i.e.,

∥
∥Ft (a)

∥
∥ ≤ K ‖a‖ + K

1 − α − K L
‖N(0)‖ for all t ≥ 0, a ∈ X . (4.15)

This is a consequence of [20, p. 155, Thm. 3.5.8(a)].
(II) Let a ∈ U andwe abbreviate ut :=ϕ(t; τ, a), vt :=Ft−τ (a). Due to step (I) the sequence

(vt )t≥τ is bounded and we choose r > 0 so large that ‖vt‖ < r for all t ∈ I. It is easy to see
that the difference wt :=ut − vt satisfies the equation

wt+1 = Ltwt + (Lt − L)vt + Nt (vt ) − N(vt ) + Nt (ut ) − Nt (vt ) (4.16)

and fulfills the initial condition uτ − vτ = a − a = 0. Using the variation of constants
formula [20, p. 100, Thm. 3.1.16] results

wt =
t−1∑

s=τ

Φ(t, s + 1) [(Ls − L)vs + Ns(vs) − N(vs) + Ns(us) − Ns(vs)] for all t ≥ τ,

consequently

‖wt‖ α−t

(4.13)≤ K

α

t−1∑

s=τ

α−s ‖(Ls − L)vs + Ns(vs) − N(vs)‖ + K

α

t−1∑

s=τ

α−s ‖Ns(us) − Ns(vs)‖

(4.14)≤ K

α

t−1∑

s=τ

α−s ‖(Ls − L)vs + Ns(vs) − N(vs)‖ + K L

α

t−1∑

s=τ

α−s ‖ws‖

and the Grönwall inequality [20, p. 348, Prop. A.2.1(a)] yields

‖wt‖ ≤ K

α

t−1∑

s=τ

(α + K L)t−s−1 ‖(Ls − L)vs + Ns(vs) − N(vs)‖ for all τ ≤ t

If we replace t by τ + t , then it results
∥∥ϕ(τ + t; τ, a) − Ft (a)

∥∥

≤ K

α

t+τ−1∑

s=τ

(α + K L)t+τ−s−1 ‖(Ls − L)vs + Ns(vs) − N(vs)‖

(i)≤ K

α

t+τ−1∑

s=τ

(α + K L)t+τ−s−1(K1rα
s + ‖Ns(vs) − N(vs)‖

)

(i i)≤ K
(
K1r + K2(r)

)

α
(α + K L)t+τ−1

t+τ−1∑

s=τ

(
α

α+K L

)s −−−→
t→∞ 0
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and therefore even exponential convergence holds in (4.9). �

4.3 Forward Attractors

In the previous Sect. 3.2 we constructed pullback attractors of nonautonomous difference
equations (Δ) by means of Proposition 3.1 applied to a pullback absorbing, positively invari-
ant nonautonomous set. Now it is our goal is to obtain a corresponding concept in forward
time.

Mimicking the approach for pullback attractors, we define a forward attractor A+ ⊂ U
of (Δ) as a nonempty, compact and invariant nonautonomous set forward attracting every
bounded subset B ⊆ U , i.e.,

lim
s→∞ dist

(
ϕ(τ + s; τ,B(τ )),A+(τ + s)

) = 0 for all τ ∈ I. (4.17)

As demonstrated in e.g. [16, Sect. 4], forward attractors need not to be unique. They are
Lyapunov asymptotically stable, that is, Lyapunov stable and attractive in the sense of (4.17)
(see [12, Prop. 3.1]).While it is often claimed in the literature that there is no counterpart to the
characterisation (3.5) of pullback attractorsA∗ for forward attractorsA+ of nonautonomous
equations, a suitable construction will be given now.

A nonautonomous difference equation (Δ) is denoted as forward dissipative, if there exists
a bounded set A ⊆ U such that for every τ ∈ I and bounded B ⊆ U there is an absorption
time S = S(τ,B) ∈ N such that

ϕ(τ + s; τ,B(τ )) ⊆ A(τ + s) for all s ≥ S; (4.18)

one says that A is as a forward absorbing set.

Proposition 4.16 (Forward absorbing set) On a Banach space X, let Ft : U → U be of the
semilinear form (2.5) satisfying (2.7), (2.8) and let ρ > 0. If the limit relations

lim
s→∞

τ+s−1∏

r=τ

(αr + Kar ) = 0, Rτ :=K lim
t→∞

t−1∑

s=τ

bs

t−1∏

r=s+1

(αr + Kar ) < ∞

hold for all τ ∈ I and supτ∈I Rτ < ∞, then the difference equation (Δ) is forward dissipative
with absorbing set A:= {

(t, u) ∈ U : ‖u‖ ≤ ρ + supτ∈I Rτ

}
.

For constant positive sequences αt ≡ α, at ≡ a, bt ≡ b in (2.8) satisfying α + Ka < 1,
both the pullback absorbing set from Proposition 3.2 and the forward absorbing set from
Proposition 4.16 have constant fibres and simplify to A = I × B

ρ+ Kb
1−α−aK

(0).

Proof The claim follows readily from relation (2.9) in Lemma 2.1. �
Using [12, Prop. 3.2 with compact replaced by open and bounded] one shows

Proposition 4.17 Every bounded forward attractor has a nonempty, positively invariant,
closed and bounded forward absorbing set.

First, this Proposition 4.17 allows us to choose a closed and bounded, positively invariant
setA ⊆ U . We then deduce a nonempty, invariant and compact nonautonomous setA� ⊆ A
from Proposition 3.1.

Second, the construction of forward attractors requires I = Z. Different from the pullback
situation (with A being pullback absorbing), having an forward absorbing set A does not
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ensure the forward convergence within A, i.e.,

lim
s→∞ dist

(
ϕ(τ + s; τ,A(τ )),A�(τ )

) = 0 for all τ ∈ Z

and in particular not forward convergence of a general bounded nonautonomous set B ⊆ U
toA∗. This is because (Δ) may have forward limit points starting inAwhich are not forward
limit points from within A�. Corresponding examples illustrating this are given in [14].

Now on the one hand, the set of forward ω-limit points for the dynamics starting in A� is
given by

ω�
A:=

⋂

τ∈Z

⋃

0≤s

ϕ(τ + s; τ,A�(τ )) =
⋂

τ∈Z

⋃

0≤s

A�(τ + s) ⊆ U

and is nonempty and compact as intersection of nested compact sets. It consists of all points
u ∈ U such that there is a sequence

(
(sn, an)

)
n∈N with limn→∞ sn = ∞ and an ∈ A(τ + sn)

with τ ∈ Z satisfying

lim
n→∞ ϕ(τ + sn; τ, an) = u.

On the other hand, the set of forward limit points ω+
A from within A was constructed in

Theorem 4.6. With A being positively invariant, the chain of inclusions ω−
A ⊆ ω+

A ⊆ K
holds, while ω�

A is not necessarily contained in ω−
A (see Example 4.20 for an illustration), as

well as

lim
t→∞ dist

(A�(t), ω−
A

) = 0.

Theorem 4.18 Suppose that (Δ) has a positively invariant, closed and bounded setA �= ∅. If
the assumptions inProposition3.1andTheorems4.9–4.10hold, then the following statements
are equivalent:

(a) A� is forward attracting A, that is,

lim
s→∞ dist

(
ϕ(τ + s; τ,A(τ )),A�(τ + s)

) = 0 for all τ ∈ Z, (4.19)

(b) ω+
A = ω�

A.

Proof (⇒) Suppose that A� is forward attracting from within A and that ω+
A �= ω�

A. Since
ω�
A ⊆ ω+

A, there exists a point ṽ ∈ ω+
A \ ω�

A, i.e., there are τ̃ ∈ Z and ε̃ = ε̃(τ̃ ) > 0 such
that ṽ ∈ ΩA(τ̃ ) and

dist
(
ṽ, ω�

A
)

> 2ε̃. (4.20)

Since ṽ ∈ ΩA(τ̃ ), there exists a sequence
(
(s̃n, b̃n)

)
n∈N with limn→∞ s̃n = ∞ and points

b̃n ∈ A(τ̃ ) satisfying dist
(
ṽ, ϕ(τ̃ + s̃n; τ̃ , b̃n)

)
< ε̃. Moreover, by the forward attraction of

A�, there exists an s′ > 0 such that

dist
(
ϕ(τ̃ + s′; τ̃ ,A(τ̃ )),A�(τ̃ + s′)

)
< ε̃.

Combining all of them, we obtain

dist
(
ṽ,A�(τ̃ + s̃n)

) ≤ dist
(
ṽ, ϕ(τ̃ + s̃n; τ̃ , b̃n)

) + dist
(
ϕ(τ̃ + s̃n; τ̃ , b̃n),A�(τ + s̃n)

)

≤ dist
(
ṽ, ϕ(τ̃ + s̃n; τ̃ , b̃n)

) + dist
(
ϕ(τ̃ + s̃n; τ̃ ,A(τ̃ )),A�(τ + s̃n)

)

< ε̃ + ε̃ = 2ε̃.
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Since
⋂

n∈N
⋃

m≥n A�(τ̃ + s̃n) ⊆ ω�
A by definition, it then follows

dist
(
ṽ, ω�

A
) ≤ dist

(

ṽ,
⋂

n∈N

⋃

m≥n

A�(τ̃ + s̃n)

)

≤ dist
(
ṽ,A�(τ̃ + s̃n)

)
< 2ε̃,

a contradiction to (4.20). Hence, ω+
A = ω�

A holds.
(⇐) Suppose that ω+

A = ω�
A, i.e., dist

(
ω+
A, ω�

A
)

< ε for all ε > 0, and that A� is not
forward attracting from within A, i.e., there exist a real ε̃ > 0 and a sequence (s̃n)n∈N in N0

with limn→∞ s̃n = ∞ and

dist
(
ϕ(τ + s̃n; τ,A�(τ )),A(τ + s̃n)

) ≥ 2ε̃ for all n ∈ N.

Although there is no condition ensuring the set ϕ(τ + sn; τ,A(τ )) is compact, which means
the supremum in the Hausdorff semidistance may not be attained, there still exists a point
ỹn :=ϕ(τ + sn; τ, b̃n) ∈ ϕ(τ + sn; τ,A(τ )) for all n ∈ N and b̃n ∈ A(τ ) such that

dist
(
ϕ(τ + s̃n; τ,A(τ )),A�(τ + s̃n)

) − ε̃ ≤ dist
(
ỹn,A�(τ + s̃n)

)

≤ dist
(
ϕ(τ + s̃n; τ,A(τ )

)
,A�(τ + s̃n)).

The above inequalities in fact give dist
(
ỹn,A�(τ + s̃n)

) ≥ ε̃ for all n ∈ N. Moreover, take a
point ãn ∈ A�(τ + s̃n), then

d(ỹn, ãn) ≥ dist
(
ỹn,A(τ + s̃n)

) ≥ ε̃ for all n ∈ N.

On the other hand, by assumptions and definitions, (Δ) is A-asymptotically compact and
both ỹn and ãn are in ϕ(τ + sn; τ,A(τ )) for all τ ∈ Z, so

dist
(
ỹn, K

) ≤ dist
(
ϕ(τ + s̃n; τ,A(τ )), K

) −−−→
n→∞ 0,

dist
(
ãn, K

) ≤ dist
(
ϕ(τ + s̃n; τ,A(τ )), K

) −−−→
n→∞ 0,

implying that both ỹn and ãn are in K as well. Additionally, since K is compact, there are
convergent subsequences (ỹn j ) j∈N with limit ỹ ∈ K and (ãn j ) j∈N with limit ã ∈ K . This
implies ỹ ∈ ΩA(τ ) ⊆ ω+

A and ã ∈ ω�
A by definitions. Combining this with d(ỹn, ãn) ≥ ε̃

for all n ∈ N, we arrive at the contradiction

dist
(
ω+
A, ω�

A
) ≥ dist

(
ỹn, ω

�
A

) ≥ d(ỹ, ã) ≥ ε̃ for all n ∈ N,

to the assumption. Thus, A� is forward attracting from within A. �
Corollary 4.19 Suppose in addition that A ⊆ U is forward absorbing. If ω+

A = ω�
A holds,

then A� is a forward attractor of (Δ).

Proof Due to Proposition 3.1 the set A� is already nonempty, compact, invariant and thus
it suffices to show that A� is forward attracting. Thereto, suppose that B ⊆ U is bounded
and choose τ ∈ Z arbitrarily. With the forward absorption time S ∈ N we obtain from
Theorem 4.18 that

0 ≤ dist
(
ϕ(τ + s; τ,B(τ )),A�(τ + s)

)

(2.3)= dist
(
ϕ
(
τ + s; τ + S, ϕ(τ + S, τ,B(τ ))

)
,A�(τ + s)

)

(4.18)≤ dist
(
ϕ(τ + s; τ + S,A(τ + S)),A�(τ + s)

) (4.19)−−−→
s→∞ 0

and this yields the assertion. �
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We close this section with a simple, yet illustrative example:

Example 4.20 (Beverton–Holt equation) Given reals 0 < α−, α+ we consider the asymptot-
ically autonomous Beverton–Holt equation

vt+1 = ãtvt
1 + vt

, ãt :=
{

α−, t < 0,

α+, 0 ≤ t
(4.21)

in U = R+ having the general solution

ϕ(t; τ, vτ ) = vτ

∏t−1
r=τ ãr

1 + vτ

∑t−1
s=τ

∏s−1
r=τ ãr

for all τ ≤ t, 0 ≤ vτ .

It possesses the absorbing set A = Z × [0,max {α−, α+} + 1] and the forward ω-limit set
ω+
A = [0,max {0, α+ − 1}]. Depending on the constellation of the parameters α−, α+ one

obtains the following capturing the forward dynamics:

α−, α+ A∗ = A� ω�
A ω−

A ω+
A

α−, α+ ≤ 1 {0} {0} {0}

α− ≤ 1 < α+ {0} {0} [0, α+ − 1]

α+ ≤ 1 < α− {0} {0} {0}

1 < α− < α+ [0, α+ − 1] [0, α− − 1] [0, α+ − 1]

1 < α+ ≤ α− [0, α+ − 1] [0, α+ − 1] [0, α+ − 1]

For α+ ≤ 1 all fibres ΩA(τ ) = {0} are constant. For α+ > 1 two cases arise:

– 1 ≤ α− < α+: Solutions starting in α+ + 1 at time τ < 0 first decay until time t = 0
and then increase again, which yields

ΩA(τ ) =
{

[0, ϕ(0; τ, α+ + 1)], τ < 0,

[0, α+ − 1], 0 ≤ τ.

– 1 ≤ α+ ≤ α−: Solutions starting in α+ + 1 decay to α+ − 1 and thus the fibres are
constant ΩA(τ ) ≡ [0, α+ + 1] on Z.

Except for α− ≤ 1 < α+, where the pullback and forward dynamics of (4.21) differ,
Corollary 4.19 applies and yields that the pullback attractorA∗ = A� is the forward attractor
A+.

As a conclusion, in case A is a positively invariant, forward absorbing nonautonomous
set this section provided two concepts to capture the forward dynamics of (Δ), namely
the limit set ω+

A from Theorem 4.6 and the forward attractor A+ = A� constructed in
Corollary 4.19. On the one hand, the limit set ω+

A ⊆ U is asymptotically positively invariant,
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forward attracts and is contained in all other sets with these properties. It depends only on
information in forward time. On the other hand, the forward attractor A+ ⊆ U shares these
properties, but is actually invariant. Its construction is based on information on the entire axis
Z and more restrictively, relies on the condition ω+

A = ω�
A from Theorem 4.18(b). The latter

might be hard to verify in concrete examples, unless rather strict assumptions like asymptotic
autonomy hold [5].

5 Integrodifference Equations

The above abstract results will now be applied to nonautonomous IDEs. For this purpose
let (Ω,A, μ) be a measure space satisfying μ(Ω) < ∞. Suppose additionally that Ω is
equipped with a metric such that it becomes a compact metric space.

We consider the Banach space X = C(Ω,Rd) of continuous Rd -valued functions over
Ω equipped with the norm ‖u‖0 :=maxx∈Ω |u(x)| . If Z ⊆ R

d is a nonempty, closed set,
then U :={

u : Ω → Z | u ∈ C(Ω,Rd)
}
is a complete metric space. Furthermore, we have

U = I ×U , where I is an unbounded discrete interval.
Given functions gt : Ω × Z → R

d and kt : Ω2 × Z → R
d , the Nemytskii operator

Gt : U → C(Ω,Rd) is defined by

Gt (u)(x):=gt (x, u(x)) for all (t, x) ∈ I
′ × Ω

and the Urysohn integral operators Kt : U → C(Ω,Rd) by

Kt (u)(x):=
∫

Ω

kt (x, y, u(y)) dμ(y) for all (t, x) ∈ I
′ × Ω.

With these operators, a nonautonomous difference equation (Δ) of the additive form (2.10)
is called an integrodifference equation and explicitly reads as

ut+1(x) = gt (x, ut (x)) +
∫

Ω

kt (x, y, ut (y)) dμ(y) for all (t, x) ∈ I
′ × Ω. (Ig)

Such problems are well-motivated from applications:

• For an integrodifferential equation D1u(t, x) = ∫
Ω

f (t, x, y, u(t, y)) dy with, e.g., a
continuous kernel function f : R × Ω2 × R

d → R
d , the forward Euler discretisation

with step-size h > 0 gives the IDE

ut+1(x) = ut (x) + h
∫

Ω

f (ht, x, y, ut (y)) dy for all (t, x) ∈ I
′ × Ω

matching (Ig) with a compact Ω ⊂ R
κ and the Lebesgue measure μ.

• Population genetics or ecological models of the form

ut+1(x) = (1 − ϑ)g(x, ut (x)) + ϑ

∫

Ω

f (x, y, ut (y)) dy for all (t, x) ∈ I
′ × Ω

are investigated in [25], where ϑ ∈ [0, 1] is a parameter and e.g. continuous functions
g : Ω × R

d → R
d , f : Ω2 × R

d → R
d . These problems are of the from (Ig) with a

compact Ω ⊂ R
κ and the Lebesgue measure μ.

• Let the compact set Ω ⊂ R
κ be countable, η ∈ Ω and wη ≥ 0 be reals. Then

μ(Ω ′):=∑
η∈Ω ′ wη defines a measure on the family of all countable subsets Ω ′ ⊂ R

κ .
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The assumption
∑

η∈Ω wη < ∞ ensures that μ(Ω) < ∞. W.r.t. the resulting μ-integral∫
Ω
u dμ = ∑

η∈Ω wηu(η) the IDE (Ig) becomes

ut+1(x) = gt (x, ut (x)) +
∑

η∈Ω

wηkt (x, η, ut (η)) for all (t, x) ∈ I
′ × Ω.

Such difference equations occur as Nyström methods with nodes η and weights wη as
used in numerical discretizations and simulations [1] of IDEs (Ig).

Hypothesis: For every t ∈ I
′ we suppose:

(H1) The function gt : Ω × Z → R
d is such that gt (·, z) : Ω → R

d is continuous and there
exist reals γt , �t ≥ 0 with

|gt (x, z)| ≤ γt , |gt (x, z) − gt (x, z̄)| ≤ �t |z − z̄| for all x ∈ Ω, z, z̄ ∈ Z .

(H2) The kernel function kt : Ω × Ω × Z → R
d is such that kt (x, ·, z) : Ω → R

d is
measurable for all x ∈ Ω , z ∈ Z , and the following holds for almost all y ∈ Ω:
kt (x, y, ·) : Z → R

d is continuous for all x ∈ Ω and the limit

lim
x→x0

∫

Ω

sup
z∈Z∩B̄r (0)

|kt (x, y, z) − kt (x0, y, z)| dμ(y) = 0 for all r > 0

holds uniformly in x0 ∈ Ω .
(H3) There exists a function κt : Ω2 → R+, measurable in the second argument with

supx∈Ω

∫
Ω

κt (x, y) dμ(y) < ∞ and for almost all y ∈ Ω one has

|kt (x, y, z)| ≤ κt (x, y) for all x ∈ Ω, z ∈ Z .

Then the Nemytskii operator Gt : U → C(Ω,Rd) satisfies

‖Gt (u)‖0 ≤ γt , ‖Gt (u) − Gt (ū)‖0 ≤ �t ‖u − ū‖0 for all u, ū ∈ U , (5.1)

while the Urysohn operators Kt : U → C(Ω,Rd) are globally bounded by

‖Kt (u)‖0 ≤ ρt := sup
x∈Ω

∫

Ω

κt (x, y) dμ(y) for all u ∈ U (5.2)

and completely continuous due to [19, p. 166, Prop. 3.2].
In the following we tacitly suppose Ft (U ) ⊆ U for all t ∈ I

′.

Proposition 5.1 (Dissipativity for (Ig)) If (H1–H3) with

sup
t∈I′

γt < ∞, sup
t∈I′

ρt < ∞ (5.3)

hold, then the bounded and closed set

A:= {(t, u) ∈ U : ‖u‖0 ≤ γt∗ + ρt∗ } , t∗:=
{
t − 1, t > min I,

t, t = min I

is positively invariant, forward absorbing (if I is unbounded above), pullback absorbing (if
I is unbounded below) w.r.t. (Ig) with absorption time 1.
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Proof Clearly the set A is closed and due to (5.3) also bounded. Let t, τ ∈ I with τ < t .
Thus, t∗ = t − 1 and our assumptions readily imply that

‖ϕ(t; τ, u)‖ (2.2)= ‖Ft−1(ϕ(t − 1; τ, u))‖
(2.10)≤ ‖Gt−1(ϕ(t − 1; τ, u))‖ + ‖Kt−1(ϕ(t − 1; τ, u))‖
(5.1)≤ γt−1 + ‖Kt−1(ϕ(t − 1; τ, u))‖ (5.2)≤ γt∗ + ρt∗ for all (τ, u) ∈ U

and consequently ϕ(t, τ,U(τ )) ⊆ A(t) holds for all τ < t . Thanks to A,B ⊆ U for any
bounded B this inclusion guarantees that A is positively invariant, but also forward and
uniformly absorbing with absorption time S = 1. �
Theorem 5.2 (Pullback attractor for (Ig)) Let I be unbounded below. If (H1–H3) are satisfied
with (5.3) and there exists a T ∈ I such that

∏T−1
s=−∞ �s = 0 hold, then the IDE (Ig) has a

unique and bounded pullback attractor A∗ ⊆ A.

Proof We aim to apply Theorem 3.3 to (Ig). Thereto, Proposition 5.1 guarantees that (Ig) is
uniformly pullback absorbing. Moreover, since the Lipschitz constant �t of the Nemytskii
operatorGt is an upper bound for its Darbo constant and becauseKt is completely continuous,
the assertion follows. �
Without further assumptions not much can be said about the detailed structure of the pullback
attractor A∗. Nevertheless, in case the functions gt , kt satisfy monotonicity assumptions in
the second resp. third argument, it is possible to construct “extremal” solutions in the attractor
[21]. We illustrate this in

Example 5.3 (spatial Beverton–Holt equation) Let ϑ ∈ [0, 1] and at : Ω → (0,∞), t ∈ I
′,

be continuous functions describing the space- and time-dependent growth rates and a compact
habitat Ω . The spatial Beverton–Holt equation

ut+1(x) = (1 − ϑ)
at (x)ut (x)

1 + ut (x)
+ ϑ

∫

Ω

k(x, y)
at (y)ut (y)

1 + ut (y)
dμ(y) (5.4)

for all (t, x) ∈ I
′ × Ω fits into the framework of (Ig) with Z = R+, U = C(Ω,R+),

gt : Ω × R+ → R+, gt (x, z):=at (x)z

1 + z
,

kt : Ω × Ω × R+ → R+, kt (x, y, z):=k(x, y)
at (y)z

1 + z

and a continuous kernel function k : Ω × Ω → (0,∞). Then (H1–H3) hold with

γt = (1 − ϑ)αt , �t = (1 − ϑ)αt , κt (x, y) = ϑαt k(x, y) for all x, y ∈ Ω

and αt :=maxx∈Ω at (x). If limt→−∞(1 − ϑ)T−t ∏T−1
s=t αs = 0 holds for some T ∈ I, then

Theorem 5.2 yields the existence of a pullback attractorA∗ ⊆ U for (5.4). Since the functions
gt (x, ·), kt (x, y, ·) : R+ → R+ are strictly increasing more can be said on the structure of
A∗. As in [21, Prop. 8], there exists an “extremal” entire solutionφ+ being pullback attracting
from above such that

A∗ ⊆ {
(t, u) ∈ U : 0 ≤ u(x) ≤ φ+

t (x) for all x ∈ Ω
}
.

We illustrate both the pullback convergence to the solution φ+, as well as the sets containing
solutions in the pullback attractor A∗ in Fig. 1, where Ω = [−π, π] is equipped with
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Fig. 1 Pullback convergence to the fibre φ+
τ : Ω → R+ (τ = 10, initial function u0(x) ≡ 4, left) and

sequence of sets containing the pullback attractor A∗ (0 ≤ t ≤ 10, right) for ϑ = 1
4

the 1-dimensional Lebesgue measure, at (x):=3 − sin t x
10 (artificial) and the Laplace kernel

k(x, y):= a
2 e

−a|x−y| for the dispersal rate a = 10.

The remaining section addresses forward attraction. For simplicity we restrict to the class
of Urysohn IDEs

ut+1(x) =
∫

Ω

kt (x, y, ut (y)) dμ(y) for all (t, x) ∈ I
′ × Ω. (I0)

Hypothesis: For every t ∈ I
′ we suppose:

(H4) For all r > 0 there exists a function λt : Ω2 → R+, measurable in the second argument
with supx∈Ω

∫
Ω

λt (x, y) dμ(y) < ∞ and for almost all y ∈ Ω one has

|kt (x, y, z) − kt (x, y, z)| ≤ λt (x, y) |z − z̄| for all x ∈ Ω, z, z̄ ∈ Z ∩ B̄r (0).

Proposition 5.4 (Dissipativity for (I0)) If (H2–H3) with R:= supt∈I ρt < ∞ hold, then the
bounded and compact nonautonomous set

A:={
(t, u) ∈ U : u ∈ Kt∗(U ∩ BR(0))

}
, t∗:=

{
t − 1, t > min I,

t, t = min I

is positively invariant, forward absorbing w.r.t. (I0) with absorption time 2.

Proof Let t ∈ I
′ with t − 1 ∈ I

′ and thus t∗ = t − 1. Since the Urysohn operators Kt−1 are
completely continuous, the fibres A(t) = Kt−1(U ∩ BR(0)) are compact. Thanks to

‖Kt (u)‖ (5.2)≤ ρt ≤ R for all u ∈ U

it follows that A is bounded. Moreover, Kt (A(t)) ⊆ Kt (U ∩ BR(0)) = A(t + 1) holds for
all t ∈ I

′ and A is positively invariant. Furthermore, from the inclusion

ϕ(t; τ, u)
(2.2)= Kt−1(ϕ(t − 1; τ, u)

︸ ︷︷ ︸
∈U∩BR(0)

) ∈ A(t) for all t − τ ≥ 2, u ∈ U
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we deduce that A is absorbing. �
Theorem 5.5 (Forward limit set for (I0)) Suppose that (H2–H3) hold with additionally
R:= supt∈I ρt < ∞. If

⋃
t∈IKt (U ∩ BR(0)) is relatively compact and A is the forward

absorbing set from Proposition 5.4, then the following are true:

(a) ω+
A is asymptotically positively invariant,

(b) ω+
A is asymptotically negatively invariant, provided (H4) is satisfied with

sup
τ≤t<τ+T

t−1∏

s=τ

∫

Ω

λs(x, y) dμ(y) < ∞ for all τ ∈ I, T ∈ N. (5.5)

The relative compactness of the union
⋃

t∈IKt (U ∩ BR(0)) holds for instance, if the
kernel functions kt stem from a finite set or the images Kt (U ∩ BR(0)) form a nonin-
creasing/nondecreasing sequence of sets.

Proof By assumption the set K :=⋃
t∈IKt (U ∩ BR(0)) is compact and this implies that (I0)

is strongly A-asymptotically compact.
(a) By construction of K ⊆ U the assertion results from Theorem 4.9.
(b) Let u, ū ∈ A(s) ∪ K and choose r > 0 so large thatA(s) ∪ K ⊆ Br (0). We conclude

|Ks(u)(x) − Ks(ū)(x)| ≤
∫

Ω

|ks(x, y, u(y)) − ks(x, y, ū(y)) dμ(y)|

≤
∫

Ω

λs(x, y) dμ(y) ‖u − ū‖0 for all (s, x) ∈ I × Ω

from assumption (H4). After passing to the least upper bound over x ∈ Ω it follows that
supx∈Ω

∫
Ω

λs(x, y) dμ(y) is a Lipschitz constant forKs onA(s)∪K . Hence, the assumption
(5.5) implies (4.8) and therefore Theorem 4.10 yields the claim. �

The above results do apply to the following

Example 5.6 (spatial Ricker equation) Suppose that the compact Ω ⊆ R
κ is equipped with

the κ-dimensional Lebesgue measure μ and that μ(Ω) > 0 holds. Let (αt )t∈I′ denote a
bounded sequence of positive reals, k : Ω × Ω → R+ be continuous and (bt )t∈I′ be a
bounded sequence in C(Ω,R+), t ∈ I

′. The spatial Ricker equation

ut+1(x) = αt

∫

Ω

k(x, y)ut (y)e
−ut (y) dy + bt (x) for all (t, x) ∈ I

′ × Ω (5.6)

fits in the framework of (I0) with Z = R+ and the kernel function

kt (x, y, z):=αt k(x, y)ze
−z + bt (x)

μ(Ω)
for all x, y ∈ Ω, z ∈ R+;

hence, (5.6) is defined on the cone U :=C(Ω,R+). If I is unbounded below, then (5.6)
possesses a pullback attractor A∗ ⊆ U ; see Fig. 2 for an illustration.

For our subsequent analysis it is convenient to set γ := supx∈Ω

∫
Ω
k(x, y) dy. We begin

with some preparatory estimates. Above all, (5.6) satisfies the assumption (H4) with
λt (x, y) = αt k(x, y), which guarantees the global Lipschitz condition

‖Kt (u) − Kt (ū)‖ ≤ αtγ ‖u − ū‖ for all u, ū ∈ U . (5.7)

If we represent the right-hand side of (5.6) in semilinear form (2.5) with

Lt u:=αt

∫

Ω

k(·, y)u(y) dy, Nt (u):=αt

∫

Ω

k(·, y)(e−u(y) − 1)u(y) dy + bt ,
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then ‖Lt‖ = αtγ holds, as well as the global Lipschitz condition

‖Nt (u) − Nt (ū)‖0 ≤ αt (1 + 1
e2

)γ ‖u − ū‖0 for all u, ū ∈ U . (5.8)

In order to obtain information on the forward attractor,we suppose that I = Z and that (5.6)
is asymptotically autonomous in forward time, i.e., there exist α+ > 0 and b ∈ C(Ω,R+)

such that

lim
t→∞ αt = α+ ∈ [0, 1), lim

t→∞ bt = b.

If α+γ < 1, then it follows from the contraction mapping principle and (5.7) that the
autonomous limit equation

ut+1(x) = α+
∫

Ω

k(x, y)ut (y)e
−ut (y) dy + b(x) for all (t, x) ∈ I

′ × Ω (5.9)

has a unique, globally attractive fixed-point u∗ ∈ U .
We choose I = N0 and an absorbing set A ⊆ U of the limit equation (5.9) such that

A = I × A is forward absorbing w.r.t. (5.6). If we assume sups≤t
∏t−1

r=s
αr
α+ ≤ K , then the

growth estimate (4.13) holds with α = α+γ due to

‖Φ(t, s)‖ ≤
t−1∏

r=s

‖Lr‖ = (α+γ )t−s
t−1∏

r=s

αr
α+ ≤ K (α+γ )t−s for all s ≤ t .

It follows from (5.8) that every nonlinearity Nt : U → C(Ω) has the Lipschitz constant
L:=(1+ 1

e2
)γ supt≥0 αt . Consequently, if furthermore (αt )t∈I converges exponentially to α+

with rate α, then Theorem 4.15 applies under the assumption

(1 + 1
e2

)γ sup
t≥0

αt < 1−α
K (5.10)

and thus (4.9) holds. Hence, we derive from Theorem 4.11 the relations

ΩA(τ ) = ω−
A = ω+

A = {
u∗} for all τ ∈ N0.

If we concretely define

αt :=
{

α+(1 + αt ), t ≥ 0,

α−, t < 0,
bt :=

{
b, t ≥ 0,

0, t < 0,

then this implies the elementary estimate

t−1∏

r=s

αr

α+
= exp

( t−1∑

r=s

ln(1 + αr )
) ≤ exp

( t−1∑

r=s

αr ) ≤ exp
( 1
1−α

)
for all s ≤ t .

Hence, we set K := exp
( 1
1−α

)
and (5.10) simplifies to 2(1 + 1

e2
)α exp

( 1
1−α

)
< 1 − α. This

assumption can be fulfilled for α = α+γ sufficiently close to 0, which requires the kernel
data γ or the asymptotic growth rate α+ to be small.

Even more concretely, on the habitat Ω = [−L, L] with some real L > 0 we again
consider the Laplace kernel k(x, y):= a

2 e
−a|x−y| with dispersal rate a > 0, which yields

γ = 1 − e−aL . In this framework, an illustration of the forward limit set ω+
A = {u∗} and

subfibres of the pullback attractorA∗ is given in Fig. 2. Here, both the pullback attractorA∗
and the forward limit set ω+

A capture the long term behaviour of (5.6).
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Fig. 2 Functions contained in the
fibres A∗(t) of the pullback
attractor over the times
−10 ≤ t ≤ 10 (blue) and the
forward limit set
N0 × ω+

A = N0 × {
u∗}

(red) for
the spatial Ricker equation (5.6)
with Laplace kernel (a = 2,
L = 10), α+ = 0.12, α− = 14
and the constant inhomogeneity
b(x):=5 cos x

8 . More detailed,
depicted are the 4-periodic orbits
(blue) of the spatial Ricker
equation, which is autonomous
for t < 0. In addition, the fibres
A∗(t) also contain 0, a nontrivial
fixed point and a 2-periodic orbit
(Color figure online)
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