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Abstract
We consider skew-product maps on T

2 of the form F(x, y) = (bx, x + g(y)) where g :
T → T is an orientation-preserving C2-diffeomorphism and b ≥ 2 is an integer. We show
that the fibred (upper and lower) Lyapunov exponent of almost every point (x, y) is as close
to

∫
T
log(g′(η))dη as we like, provided that b is large enough.

1 Introduction

In this paper we investigate the dynamics of circle diffeomorphisms which are driven by the
strongly expanding map x �→ bx (mod 1) on T = R/Z, where the integer b � 1. More
precisely, we consider skew-product maps F : T2 → T

2 of the form

F(x, y) = (bx, x + g(y)) (1.1)

where g : T → T is an orientation-preserving C2-diffeomorphism.1

We are interested in the question of finding conditions on b and g for which F acts (for a.e.
(x, y) ∈ T

2) contracting in the fibre direction. Numerical experiments (see, e.g., the intro-
duction in [6]) indicates that this many times seems to be the case. There are also rigorous
results for certain classes of g [1,6]. In the present paper we will derive very precise bounds
for the contraction for general g, under the condition that the driving map x �→ bx is chaotic
enough (b sufficiently large). The contraction is measured by the (fibred) Lyapunov expo-
nents, which are defined as follows. Given (x, y) we use the notation (xn, yn) = Fn(x, y).

1 For example, if g(y) = y + a sin(2π y) we have that the maps in the fibres are all members of the Arnol’d
family fx (y) = x + y + a sin(2π y).
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Since yn = bn−1x + g(yn−1) we have by the chain rule that

∂ yn
∂ y

=
n−1∏

j=0

g′(y j ).

The upper and lower (fibred) Lyapunov exponent L±(x, y) of the point (x, y) are now defined
by

L+(x, y) = lim
n→∞

1

n
log

∂ yn
∂ y

= lim
n→∞

1

n

n−1∑

j=0

log(g′(y j )) and

L−(x, y) = lim
n→∞

1

n
log

∂ yn
∂ y

= lim
n→∞

1

n

n−1∑

j=0

log(g′(y j )).

(1.2)

Before stating our main result we introduce the following notation. If w : T → R we let
‖w‖ denote the supremum norm, i.e., ‖w‖ = supy∈T |w(y)|. We also let

h(y) = log(g′(y)).

Theorem 1 For any β > 0 there exists a b0 = b0(β, ‖h‖, ‖h′‖) ≥ 2 such that for all integers
b ≥ b0 we have

∫

T

h(η)dη − β ≤ L−(x, y) ≤ L+(x, y) ≤
∫

T

h(η)dη + β

for a.e. (x, y) ∈ T
2.

As an immediate application of this theorem we have: Assume that u : T → R is a C2-
function and let gε(y) = y+εu(y). Since log(1+ t) = t− t2/2+O(t3) and

∫
T
g′(η) dη = 0

(because g : T → R) we see that applying Theorem 1 with g = gε and β = ε3, where ε > 0
is small, we get

−ε2

2

∫

T

u′(η)2dη − Cε3 ≤ L−(x, y) ≤ L+(x, y) ≤ −ε2

2

∫

T

u′(η)2dη + Cε3

for all large b. Thus, we have L±(x, y) ≈ −ε2 almost surely. Note that the smaller is ε the
larger we have to take b for this to hold. However, we would expect that the asymptotic is
true for all small ε for some fixed b. A similar asymptotic is indeed true in the closely related
case of the Schrödinger cocyle with small potentials [4].

A heuristic argument for the latter type of results goes as follows (here we follow [7,
Section II]). Let Fε(x, y) = (bx, x + y + εu(y)). As we saw above we have

1

n
log

∂ yn
∂ y

= 1

n

n−1∑

j=0

log(1 + εu′(y j )) = 1

n

n−1∑

j=0

(εu′(y j ) − ε2u′(y j )2/2 + O(ε3)). (1.3)

For the unperturbed map F0(x, y) = (bx, x + y) it is not difficult to verify that the iterates
y j = π2(F

j
0 (x, y)) are uniformly distributed in T for a.e.(x, y). Thus one could expect that

the iterates y j = π2(F
j

ε (x, y)) also are “close to” uniformly distributed for small ε and thus
that the right hand side of (1.3) would converge to (or at least to something very close to)

ε

∫

T

u′(η) dη − (ε2/2)
∫

T

u′(η)2 dη + O(ε3) = −(ε2/2)
∫

T

u′(η)2 dη + O(ε3)
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as n → ∞.
This is the route we will take to prove Theorem 1. In fact, we will show that for fixed

g : T → T and fixed scale (fine partition of T), the iterates (y j )∞j=1 of a.e. point (x, y)
are as close to uniformly distributed (relative the fixed scale) as we want, provided that b is
large enough (see Proposition 2.1 below). It is thus possible to work with g which are not
necessarily close to the identity when b is large.

The approach we use is close in spirit to the ones we use in [1,2], which both are based
on ideas from [8,9] (especially the idea that strong expansion in the base, i.e., b large, is
a powerful tool to get a good control on the statistics of typical orbits). However, the big
difference, compared with the present situation, is that both [1,2] deal with a situation where
(most of) the fibre maps are far from a rigid rotation. In the present paper we can handle the
intermediate region between “very close to rotation” and “far from rotation”.

One could expect that, in the case when L+(x, y) is almost surely negative, one has a
”global contraction” in the fibre, in the sense that |Fn(x, y)− Fn(x, y′)| → 0 as n → ∞ for
almost every (x, y), (x, y′) ∈ T

2. This is the situation in [1,6], and also in [9] (via Oseledets’
theorem). In our analysis we only control the distribution of most orbits (up to a fixed scale)
so we do not a priori get such a global contraction result. But we expect that this would be
the typical case.

A very interesting problem, which appears in [7] (and which to the best of our knowledge
still is open), would be to prove that a similar result to the ones above also hold true for
the map G(x, y) = (x + ω, x + y + εg(y)) where ω ∈ R\Q and ε is small. Numerical
experiments indicate that this indeed could be true (see [7, Section II]). In [3] we investigate
this type of maps when the fibre maps are far from the identity.

The rest of the paper is organized as follows. In Sect. 2 we prove Theorem 1 by applying
Proposition 2.1 which contains the main estimates. This proposition is in turn proved in
Sect. 3.

We end this introduction by remarking that the samemethod as we use to prove Theorem 1
can be used to handle other classes of forced circle maps (x, y) �→ (bx, fx (y)). However, for
simplicity and definiteness we have restricted our attention to maps of the form (1.1) which
allows a very transparent analysis.

2 Proof of Theorem 1

In this section we prove Theorem 1. The key ingredient in the proof is Proposition 2.1 stated
below. This proposition will be proved in the next section.

We shall use the following notation. If ϕ : T → T we denote by deg(ϕ) the degree of ϕ

(i.e., if 	 : R → R is a lift of ϕ then deg(ϕ) = 	(1) − 	(0)).
Given an integer m ≥ 1, let

Jk = Jk(m) =
[
k − 1

m
,
k

m

)

for 1 ≤ k ≤ m. (2.1)

Then the intervals are pairwise disjoint and
⋃m

k=1 Jk = T. Thus, (Jk(m))mk=1 is a partition of
T into m intervals of equal length.

Proposition 2.1 Let v : T → T be a C1-map of degree 1 and let G(x, y) = (bx, x + v(y)).
Given m ≥ 2 and δ > 0 there exists a b0 = b0(m, δ, ‖v′‖) ≥ 2 such that the following holds
for all b ≥ b0. For any y0 ∈ T there is a set Xy0 ⊂ T of full Lebesgue measure such that if
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we take x0 ∈ Xy0 and let yn = π2(Gn(x0, y0)) and let

Pn(k) = #{ j : 0 ≤ j ≤ n − 1, y j ∈ Jk(m)},
then |Pn(k)/n − 1

m | < δ for all 1 ≤ k ≤ m and all sufficiently large n.

Remark 1 Note that v need not be one-to-one.

From this proposition the statement in Theorem 1 easily follows. Let h(y) = log(g′(y))
and let M = ‖h′‖. Note that M < ∞ since g is an orientation-preserving circle diffeomor-
phism. Take m ≥ 1 so large so that if δ = 1/m2 then

M

m
+ mδ

∫

T

|h(η)| dη < β. (2.2)

Now we apply Proposition 2.1 with m and δ as above. Let b0 be as in the proposition
and assume that b ≥ b0. Fix y0 ∈ T and assume that x0 ∈ Xy0 . Thus we know that
|Pn(k)/n − 1/m| < δ for all 1 ≤ k ≤ m and all large n.

For any 1 ≤ k ≤ m and any t ∈ Jk we have, by applying the mean value theorem,
∣
∣
∣
∣

∫

Jk
h(y)dy − h(t)

m

∣
∣
∣
∣ ≤

∫

Jk
|h(y) − h(t)|dy ≤ M

m2 .

Hence we get
∣
∣
∣
∣
∣
∣

1

n

n−1∑

j=0

h(y j ) − m

n

m∑

k=1

Pn(k)
∫

Jk
h(η) dη

∣
∣
∣
∣
∣
∣
≤ m

n

m∑

k=1

Pn(k)
M

m2 = M

m
.

Moreover, provided that n is large enough we have
∣
∣
∣
∣
∣
m

n

m∑

k=1

Pn(k)
∫

Jk
h(η) dη −

∫

T

h(η) dη

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
m

m∑

k=1

(
Pn(k)

n
− 1

m

) ∫

Jk
h(η) dη

∣
∣
∣
∣
∣

≤ mδ

∫

T

|h(η)| dη.

By combining these two estimates, and recalling (2.2), we thus get
∣
∣
∣
∣
∣
∣

1

n

n−1∑

j=0

h(y j ) −
∫

T

h(η) dη

∣
∣
∣
∣
∣
∣
≤ M

m
+ mδ

∫

T

|h(η)| dη < β

for all large n. Recalling the definition of L±(x, y) in (1.2) finishes the proof.

3 Proof of Proposition 2.1

Let v and G be as in the statement of Proposition 2.1 and assume that m ≥ 1 and δ > 0 are
fixed. The integer b ≥ 2 is assumed to be sufficiently large, depending on m, δ and ‖v′‖.

Fix any y0 ∈ T (this is the y0 in the statement of the proposition) and define the functions
ϕn : T → T by

ϕn(x) = π2(G
n(x, y0)), n ≥ 0.

Thus, we need to control the distribution of the iterates {ϕn(x)} for fixed x .
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Let J be one of the intervals Jk(m) (1 ≤ k ≤ m) defined in (2.1). We define the sets

An = ϕ−1
n (J ), n ≥ 1. (3.1)

As we will see below we have |An | ≈ 1/m for all n provided that b is sufficiently large. The
strategy is to prove that “the events” An are very close of being independent.

3.1 Geometry of the graphs of'n

From the definition we have ϕ0(x) = y0 and

ϕn+1(x) = bnx + v(ϕn(x)) for n ≥ 0.

Since deg(v) = 1 we have deg(ϕn+1) = bn + deg(ϕn). By using the fact that deg(ϕ0) = 0
we therefore get

deg(ϕn+1) =
n∑

j=0

b j = bn+1 − 1

b − 1
.

We also have

ϕ′
n+1(x) = bn + v′(ϕn(x))ϕ

′
n(x).

Since ϕ1(x) = x + v(y0), and hence ϕ′
1(x) = 1, we get, by induction,

ϕ′
n+1(x) ≤ bn + bn−1‖v′‖ + bn−2‖v′‖2 + · · · + ‖v′‖n

and

ϕ′
n+1(x) ≥ bn − bn−1‖v′‖ − bn−2‖v′‖2 − · · · − ‖v′‖n .

Thus, for any τ > 0 we have
∣
∣
∣
∣
ϕ′
n+1(x)

bn
− 1

∣
∣
∣
∣ < τ, (3.2)

provided that b is large enough, depending on τ and ‖v′‖.
Since we, in particular, have ϕ′

n(x) > 0 for each x ∈ T and for each n ≥ 1 (for large b),

it follows that for every n ≥ 1 we can find deg(ϕn) pairwise disjoint intervals I
j
n ⊂ T such

that
⋃deg(ϕn)

j=1 I jn = T, ϕn(I
j
n ) = T, the restriction of ϕn to I jn is one-to-one, and An ∩ I jn is

a single interval (recall the definition of An in (3.1)).2 Moreover, from (3.2) we get

1

bn−1(1 + τ)
≤ |I jn | ≤ 1

bn−1(1 − τ)
for j = 1, 2, . . . , deg(ϕn). (3.3)

Furthermore, since the length of the interval J is 1/m, we get, by using (3.2), the following
bounds on the intervals An ∩ I jn :

1

mbn−1(1 + τ)
≤ |An ∩ I jn | ≤ 1

mbn−1(1 − τ)
for j = 1, 2, . . . , deg(ϕn). (3.4)

Thus, |An | ≈ 1/m for all n, and the approximations become better and better the larger is b.

2 The intervals I jn are not uniquely defined for n ≥ 2. We can take any possible choice.
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3.2 Probability

We will now show that “the events” An are very close of being independent and use this
fact to prove the statement of Proposition 2.1. Below we shall use the following notation: If
r ∈ R we denote the integer part of r by �r�.

We shall begin by stating an elementary intersection result. By using the above estimates
of the intervals I jn we get:

Lemma 3.1 Let U ⊂ T be an interval of length � > 0. For each n ≥ 2 we have that the
interval J contains at least ��bn−1(1− τ)� − 2 of the intervals I jn ; and J intersects at most
��bn−1(1 + τ)� + 2 of the intervals I jn .

Proof Since (I jn )
deg(ϕn)
j=1 is a partition of T, the result follows easily by using the estimates in

(3.3). ��
Based on the estimates in the previous lemma we introduce the following integers:

N1 =
⌊
b(1 − τ)

m(1 + τ)

⌋

− 2, N2 =
⌊
b(1 + τ)

m(1 − τ)

⌋

+ 2

and

M1 =
⌊

b

(
1 − τ

1 + τ
− 1

m

)⌋

− 4, M2 =
⌊

b

(
1 + τ

1 − τ
− 1

m

)⌋

+ 4.

Lemma 3.2 For all n ≥ 1 the following holds for all 1 ≤ j ≤ deg(ϕn):

(1) An ∩ I jn contains at least N1 intervals I in+1 and intersects at most N2 intervals I in+1.

(2) I jn \An contains at least M1 intervals I in+1 and intersects at most M2 intervals I in+1.

Proof (1) We know that An ∩ I jn is an interval which satisfies the length estimates (3.4).
Applying Lemma 3.1 yields the results.

(2) The set I jn \An is either a single interval or consists of two disjoint intervals. By
combining (3.3) and (3.4) we get the estimate

1/(bn−1(1 + τ)) − 1/(mbn−1(1 − τ)) ≤ |I jn \An | ≤ 1/(bn−1(1 − τ)) − 1/(mbn−1(1 + τ)).

Assuming that I jn \An consists of two intervals (which is the worst case), and applying
Lemma 3.1 to each interval, using the above estimate of the sum of the lengths, gives the
statement. ��
Lemma 3.3 For any n ≥ 1 the following holds. Let C ⊂ T be a set of the format C =
B1 ∩ B2 ∩ · · · ∩ Bn, where B j = A j for k (0 ≤ k ≤ n) indices j and B j = T\A j for n − k
indices j . Then C contains at least Nk

1 M
n−k
1 of the intervals I in+1, and C intersects at most

Nk
2 M

n−k
2 of the intervals I in+1.

Proof We use induction to prove the statement. When n = 1 the statement follows directly
from Lemma 3.2 since I 11 = T.

To prove the inductive step we do as follows. Assume that n ≥ 1 and that C ⊂ T is a
set that contains at least N ≥ 1 of the intervals I in+1, and C intersects at most M ≥ N of
the intervals I in+1. Then it follows from Lemma 3.2 that C ∩ An+1 contains at least NN1 of

the intervals I jn+2 and intersects at most MN2 of them; and C ∩ (T\An+1) contains at least

NM1 of the intervals I
j
n+2 and intersects at most MM2 of them. ��
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For each n ≥ 1 we now let

Sn(k) = {x ∈ T : x ∈ A j for exactly k indices j, 1 ≤ j ≤ n}, 0 ≤ k ≤ n.

Clearly the sets Sn(k), 0 ≤ k ≤ n, are pairwise disjoint and
⋃n

k=0 Sn(k) = T. Moreover, by
definition we have that if x ∈ Sn(k), then #{ j : 1 ≤ j ≤ n and ϕ j (x) ∈ J } = k. Thus, we

need to prove that almost every x ∈ T belongs to
⋃(1/m+δ)n−1

k=(1/m−δ)n+1 Sn(k) for all large n.

Since there are
(n
k

)
possible ways to choose k different indices in {1, 2, . . . , n}, it follows

from Lemma 3.3 and the estimates of |I in+1| in (3.3) that

(
n

k

)
Nk
1 M

n−k
1

bn(1 + τ)
≤ |Sn(k)| ≤

(
n

k

)
Nk
2 M

n−k
2

bn(1 − τ)
.

By letting p = N2/b and q = 1−M2/bwe canwrite the second part of the above inequalities
as

|Sn(k)| ≤
(
n

k

)
pk(1 − q)n−k

(1 − τ)
= 1

1 − τ

(
n

k

)

(p/q)kqk(1 − q)n−k . (3.5)

Note that p > q and that we can get p and q as close to 1/m as we like by choosing
τ sufficiently small and taking b large. In particular, if we let δ′ = δ/2 we have p/q <

exp((δ′)2) if b is sufficiently large.
Let

Xn =
(q+δ′)n⋃

k=(q−δ′)n
Sn(k) and X =

∞⋃

i=1

∞⋂

n=i

Xn .

The set X = Xy0 will be the set in the statement of Proposition 2.1. By the definition of X
we have for each x ∈ X that

1/m − δ < q − δ′ ≤ #{ j : 1 ≤ j ≤ n and ϕ j (x) ∈ J }
n

≤ q + δ′ < 1/m + δ

for all sufficiently large n. It thus remains to show that X has full measure.
Before estimating the measure of T\Xn we first recall a few well-known facts about the

binomial distribution. For fixed 0 < t < 1, let

Hn(k) =
k∑

j=0

(
n

j

)

t j (1 − t)n− j for all n ≥ 1.

By Hoeffding’s inequality [5] we have the following tail bounds for a > 0:

Hn((t − a)n) ≤ exp(−2a2n) and 1 − Hn((t + a)n − 1) ≤ exp(−2a2n).

By combining this inequality with (3.5), and recalling that p > q , we get
∣
∣
∣
∣
∣
∣

(q−δ′)n⋃

k=0

Sn(k)

∣
∣
∣
∣
∣
∣
≤ (p/q)(q−δ′)n

1 − τ

(q−δ′)n∑

k=0

(
n

k

)

qk(1 − q)n−k

≤ (p/q)(q−δ′)n

1 − τ
exp(−2(δ′)2n) < 2(p/q)n exp(−2(δ′)2n);
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and similarly
∣
∣
∣
∣
∣
∣

n⋃

k=(q+δ′)n
Sn(k)

∣
∣
∣
∣
∣
∣
≤ (p/q)n

1 − τ
exp(−2(δ′)2n) < 2(p/q)n exp(−2(δ′)2n)

Hence we have (since p/q < exp((δ′)2))

|T\Xn | ≤ 4 exp(−(δ′)2n).

It therefore follows from the Borel-Cantelli lemma that |T\X | = 0, i.e. |X | = 1. This finishes
the proof of Proposition 2.1.

Acknowledgements Open access funding provided by KTH Royal Institute of Technology.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bjerklöv, K.: A note on circle maps driven by strongly expanding endomorphisms on T. Dyn. Syst. 33(2),
361–368 (2018)

2. Bjerklöv, K.: Positive Lyapunov exponent for some Schrödinger cocycles over strongly expanding circle
endomorphisms. Commun. Math. Phys. (2020). https://doi.org/10.1007/s00220-020-03810-4

3. Bjerklöv, K.: On some generalizations of skew-shifts on T2. Ergod Theory Dyn. Syst. 39(1), 19–61 (2019)
4. Chulaevsky, V., Spencer, T.: Positive Lyapunov exponents for a class of deterministic potentials. Commun.

Math. Phys. 168(3), 455–466 (1995)
5. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58,

13–30 (1963)
6. Homburg, A.J.: Circle diffeomorphisms forced by expanding circle maps. Ergod. Theory Dyn. Syst. 32(6),

2011–2024 (2012)
7. Kim, J.-W., Kim, S.-Y., Hunt, B., Ott, E.: Fractal properties of robust strange nonchaotic attractors in maps

of two or more dimensions. Phys. Rev. E (3) 67(3), 036211 (2003)
8. Viana, M.: Multidimensional nonhyperbolic attractors. Inst. Hautes Études Sci. Publ. Math. 85, 63–96

(1997)
9. Young, L.-S.: Some open sets of nonuniformly hyperbolic cocycles. Ergod. Theory Dyn. Syst. 13(2),

409–415 (1993)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00220-020-03810-4

	On the Lyapunov Exponents for a Class of Circle Diffeomorphisms Driven by Expanding Circle Endomorphisms
	Abstract
	1 Introduction
	2 Proof of Theorem 1
	3 Proof of Proposition 2.1
	3.1 Geometry of the graphs of n
	3.2 Probability

	Acknowledgements
	References




