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Abstract
Random diffusive age-structured population models have been studied by many researchers.
Though nonlocal diffusion processes are more applicable to many biological and physical
problems compared with random diffusion processes, there are very few theoretical results
on age-structured population models with nonlocal diffusion. In this paper our objective is
to develop basic theory for age-structured population dynamics with nonlocal diffusion. In
particular, we study the semigroup of linear operators associated to an age-structured model
with nonlocal diffusion and use the spectral properties of its infinitesimal generator to deter-
mine the stability of the zero steady state. It is shown that (i) the structure of the semigroup
for the age-structured model with nonlocal diffusion is essentially determined by that of the
semigroups for the age-structured model without diffusion and the nonlocal operator when
both birth and death rates are independent of spatial variables; (ii) the asymptotic behavior
can be determined by the sign of spectral bound of the infinitesimal generator when both
birth and death rates are dependent on spatial variables; (iii) the weak solution and compar-
ison principle can be established when both birth and death rates are dependent on spatial
variables and time; and (iv) the above results can be generalized to an age-size structured
model. In addition, we compare our results with the age-structured model with Laplacian
diffusion in the first two cases (i) and (ii).
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1 Introduction

Let u(t, a, x) denote the density of a population at time t with age a at location x ∈ �,

where � is a bounded region in RN , N ≥ 1 is an integer, and a+ < ∞ is the maximum age.
Consider the following age-structured model with nonlocal dispersal:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u(t,a,x)
∂t + ∂u(t,a,x)

∂a = d(J ∗ u − u)(t, a, x) − μ(a, x)u(t, a, x), t, a > 0, x ∈ �,

u(0, a, x) = u0(a, x), a > 0, x ∈ �,

u(t, 0, x) = ∫ a+
0 β(a, x)u(t, a, x)da, t > 0, x ∈ �,

u(t, a, x) = 0, t, a > 0, x ∈ R
N\�.

(1.1)
where d is the diffusion rate, J is a diffusion kernel which is a C0, compactly supported,
nonnegative radial function with unit integral representing the spatial dispersal, i.e.,

∫

RN
J (x)dx = 1, J (x) ≥ 0, ∀x ∈ R

N , J (0) > 0

and

(J ∗ u − u)(t, a, x) =
∫

RN
J (x − y)u(t, a, y)dy − u(t, a, x).

The convolution
∫

RN J (x − y)u(t, a, y)dy is the rate at which individuals are arriving at
position x from other places and

∫

RN J (y − x)u(t, a, x)dy is the rate at which they are
leaving location x to travel to other sites. The mortality rateμ(a, x) is a positive and bounded
measurable function in any district [0, ac] × �, ac < a+ < ∞, and satisfies

sup
a∈[0,ac]

∫

�

μ2(a, x)dx is continuous with respect to ac ∈ [0, a+)

and
∫ a

0
μ(ρ)dρ < ∞ for a ∈ [0, a+) with

∫ a+

0
μ(ρ)dρ = ∞,
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in whichμ(a) = infx∈� μ(a, x) andμ(a) = supx∈� μ(a, x). While the fertility rate β(a, x)
is a bounded nonnegative measurable function on [0, a+] and satisfies

mes
{
a
∣
∣a ∈ [0, a+), β(a) = inf

x∈�
β(a, x) > 0

}
> 0.

u0(a, x) is the initial data with u0(a, x) ≥ 0.
In the following, we list some special cases of Eq. (1.1) or related models which have been

studied in the literature.

1.1 Age-StructuredModels

When u(t, a, x) = u(t, a) does not depend on the spatial variable x, Eq. (1.1) reduces
to the well-known age-structured model (McKendrick [39], von Foerster [48], Gurtin and
MacCamy [20])):

⎧
⎪⎨

⎪⎩

∂u(t,a)
∂t + ∂u(t,a)

∂a = −μ(a)u(t, a), t, a > 0,

u(0, a) = u0(a), a > 0,

u(t, 0) = ∫ a+
0 β(a)u(t, a)da, t > 0.

(1.2)

Properties of solutions to the age-structured model (1.2) have been extensively studied and
well-understood, we refer to the monographs by Anita [2], Iannelli [27], Inaba [30], Magal
and Ruan [37], and Webb [53] for basic theories, results and references.

1.2 Nonlocal DiffusionModels

If u(t, a, x) = u(t, x) does not depend on the age variable a, then Eq. (1.1) becomes the
nonlocal diffusion model:

⎧
⎪⎨

⎪⎩

∂u(t,x)
∂t = d(J ∗ u − u)(t, x) − μ(x)u(t, x), t > 0, x ∈ �,

u(0, x) = u0(x), x ∈ �,

u(t, x) = 0, t > 0, x ∈ R
N\�.

(1.3)

Great attention has also been paid to the dynamics of model (1.3), we refer to the monograph
by Andreu-Vaillo et al. [1] for fundamental theories and results and surveys by Bates [3] and
Ruan [42] for applications in materials science and epidemiology, respectively. As pointed
out in Bates et al. [3], J (x − y) is viewed as the probability distribution of jumping from
location y to location x , namely the convolution

∫

�
J (x − y)u(t, y)dy is the rate at which

individuals are arriving to position x from other places and
∫

�
J (y − x)u(t, x)dy is the rate

at which they are leaving location x to travel to other sites.

1.3 Age-StructuredModels with Laplace Diffusion

If the populationmoves randomly and aLaplace operator is used to described suchmovement,
then we have the following age-structured reaction-diffusion equation
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u(t,a,x)
∂t + ∂u(t,a,x)

∂a = d�u(t, a, x) − μ(a, x)u(t, a, x), t, a > 0, x ∈ �,

u(0, a, x) = u0(a, x), a > 0, x ∈ �,

u(t, 0, x) = ∫ a+
0 β(a, x)u(t, a, x)da, t > 0, x ∈ �,

Bu(t, a, x) = 0, t, a > 0, x ∈ ∂�,

(1.4)
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where Bu = 0 represents one of the regular boundary conditions (Dirichlet, Nuemann or
Robin), � is a Laplace operator. Such age-structured models with Laplace diffusion were
first proposed by Gurtin [19] and were consequently investigated by Chan and Guo [5], Di
Blasio [14], Ducrot et al. [15], Guo and Chan [18], Gurtin andMacCamy [21], Hastings [23],
Huyer [26], Langlais [34], MacCamy [36], Walker [49,51], Webb [52], and so on. We refer
to a survey by Webb [55] for detailed results and references.

Compared with random Laplace diffusion problems, nonlocal diffusion problems on one
hand are more applicable to many biological and physical phenomena (Bates [3], Ruan [42],
Zhao and Ruan [57]) and, on the other hand, post more technical challenges in analysis since
the semigroup generated by the associated operator is not compact for any t ≥ 0 (Andreu-
Vaillo et al. [1]). Though age-structured models with Laplace diffusion have been studied
extensively in the literature, inmost existing references the age-structured diffusion equations
in u(t, a, x) were changed into reaction-diffusion equations in u(t, x) by transforming the
age structure a into a delay structure, for example, see Lin and Weng [35] and the references
cited therein. To the best of our knowledge there are very few studies on the original age-
structuredmodels in u(t, a, x)with nonlocal diffusion. The purpose of this paper is to provide
a systematical and theoretical treatment of the age-structured problem (1.1) with nonlocal
diffusion. More specifically, we study the semigroup of linear operators associated to the
problem and use spectral properties of its infinitesimal generator to determine the stability of
the zero steady state. It is shown that (i) the structure of the semigroup for the age-structured
model with nonlocal diffusion is essentially determined by those of the semigroup for the
age-structured model without diffusion and the nonlocal operator when both birth rate and
death rates are independent of spatial variable; (ii) the asymptotic behavior can be determined
by the sign of spectral bound of the infinitesimal generator when both birth and death rates
are dependent on spatial variables; (iii) the weak solution and comparison principles can
be established when both birth and death rates depend on not only time t but also spatial
variables; and (iv) such results can be extended to an age-size structured model. In addition,
we compare our results with the age-structured model with Laplacian diffusion in the first
two cases (i) and (ii).

2 A Special CaseWhen Both Birth and Death Rates are Independent of
Spatial Variables

In this section, we first consider a special case where both birth and death rate functions are
spatial homogeneous; that is,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u(t,a,x)
∂t + ∂u(t,a,x)

∂a = d(J ∗ u − u)(t, a, x) − μ(a)u(t, a, x), t, a > 0, x ∈ �,

u(0, a, x) = u0(a, x), a > 0, x ∈ �,

u(t, 0, x) = ∫ a+
0 β(a)u(t, a, x)da, t > 0, x ∈ �,

u(t, a, x) = 0, t, a > 0, x ∈ R
N\�,

(2.1)
where μ(a) satisfies

∫ a

0
μ(ρ)dρ < ∞ for a ∈ [0, a+) with

∫ a+

0
μ(ρ)dρ = ∞,

and β is bounded and nonnegative on [0, a+).
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2.1 The Linear Operator

Introducing the state space E = L2((0, a+) × �) with the usual norm ‖·‖ and inner product
〈·, ·〉 and defining an operator A : E → E by

Aφ(a, x) = d(J ∗ φ − φ)(a, x) − ∂φ(a, x)

∂a
− μ(a)φ(a, x), ∀φ ∈ D(A),

D(A) = {
φ(a, x)

∣
∣φ, Aφ ∈ E, φ|RN \� = 0, φ(0, x) =

∫ a+

0
β(a)φ(a, x)da

}
, (2.2)

we can write Eq. (2.1) as an abstract Cauchy problem on the state space E :
{

du(t,a,x)
dt = Au(t, a, x), t > 0,

u(0, a, x) = u0(a, x).
(2.3)

Inwhat follows,we are only interested in the existence and uniqueness of principal eigenvalue
of A and leave the dependence of the principal eigenvalue on the diffusion rate d in the
future. Thus without loss of generality we assume that d = 1 in the following context. Now
we introduce the eigenvalues and eigenfunctions of the nonlocal problem with Dirichlet
boundary condition, which are denoted by (λi , ϕi )i≥0, in the domain � ⊂ R

N ; that is,
{

−(J ∗ ϕi − ϕi )(x) = λiϕi (x), x ∈ �

ϕi (x) = 0, x ∈ R
N\� (2.4)

with ∫

�

ϕ2
i (x)dx = 1, i ≥ 0. (2.5)

Note that the eigenfunctionsϕi of (2.4) satisfyϕi = 0 inRN\�, the integral in the convolution
term can indeed be considered in �. Therefore, we define the operator

L0u(x) =
∫

�

J (x − y)u(y)dy.

Now observe that λ is an eigenvalue of (2.4)–(2.5) if and only if λ̂ = 1 − λ is an eigenvalue
of L0 in L2(�). It is easy to see that L0 is compact and self-adjoint in L2(�). Hence, by
the classical spectral theorem, there exists an orthonormal basis consisting of eigenvectors of
L0 with corresponding eigenvalues {λ̂n} ⊂ R and λ̂n → 0. Furthermore, we are interested
in the existence of a principal eigenvalue, that is an eigenvalue associated to a nonnegative
eigenfunction. We state a result related to the principal eigenvalue (See Coville et al. [7],
García-Melián and Rossi [17], and Hutson et al. [25]).

Theorem 2.1 (García-Melián and Rossi [17]) Problem (2.4)–(2.5) admits an eigenvalue λ0
associated to a positive eigenfunction ϕ0 ∈ L2(�). Moreover, it is simple and unique and
satisfies 0 < λ0 < 1. Furthermore, λ0 can be variationally characterized as

λ0 = 1 −
⎛

⎝ sup
u∈L2(�),‖u‖L2(�)

=1

∫

�

(∫

�

J (x − y)u(y)dy

)2

dx

⎞

⎠

1/2

. (2.6)

For other eigenvalues we can arrange them as 0 < λ0 < λ1 ≤ λ2 ≤ · · · → 1. Next, we
denote the usual population operator by B without diffusion defined in L2(0, a+):

Bη(a) = −∂η(a)

∂a
− μ(a)η(a), ∀η ∈ D(B), (2.7)
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D(B) = {
η(a)|η, Bη ∈ L2(0, a+), η(0) =

∫ a+

0
β(a)η(a)da

}
(2.8)

and {γ j } j≥0 be the eigenvalues of B, i.e., the solution of the following equation
∫ a+

0
β(a)e−γ aπ(a)da = 1,

where π(a) = e− ∫ a0 μ(ρ)dρ . Arrange γ in the following way:

γ0 > Reγ1 ≥ Reγ2 ≥ · · ·
Next let us solve the resolvent equation

(σ I − A)φ = ψ, ∀ψ ∈ E .

If for any i, j ≥ 0, σ + λi 
= γ j , then define

φψ(a, x) =
∞∑

i=0

(
(σ + λi )I − B

)−1〈ψ(a, ·), ϕi 〉L2(�)ϕi (x),

where 〈ψ(a, ·), ϕi 〉L2(�) = ∫

�
ψ(a, x)ϕi (x)dx . Since B is the infinitesimal generator of a

bounded strongly continuous semigroup, there exist constants M > 0 and ω ∈ R such that

‖(σ I − B)−1‖ ≤ M

Reσ − ω
, ∀Reσ > ω.

Recall that λi > 0 for all i , then Re(σ + λi ) > ω for all i > 0 provided Reσ > ω,

∞∑

i=0

‖((σ + λi )I − B
)−1〈ψ(a, ·), ϕi 〉L2(�)‖2

≤
[

M

Re(σ + λ0) − ω

]2 ∞∑

i=0

‖〈ψ(a, ·), ϕi 〉L2(�)‖2

≤
[

M

Re(σ + λ0) − ω

]2

‖ψ‖2 < ∞. (2.9)

Thus, φψ(a, x) is well defined. Moreover, for any n > 0,

(σ I − A)

n∑

i=0

(
(σ + λi )I − B

)−1〈ψ(a, ·), ϕi 〉L2(�)ϕi (x)

=
n∑

i=0

〈ψ(a, ·), ϕi 〉L2(�)ϕi (x) → ψ(a, x) in E as n → ∞

Since B and L := J ∗ −I are both closed operators on E , so is A. Hence (σ I − A)φψ = ψ ,
i.e. φψ(a, x) is a solution of the resolvent equation. Now choose φ ∈ D(A), we have

〈Aφ, φ〉 =
∫

(0,a+)×�

−∂φ(a, x)

∂a
φ(a, x)dadx −

∫

(0,a+)×�

μ(a)|φ(a, x)|2dadx

+
∫

(0,a+)×�

(J ∗ φ(a, x) − φ(a, x))φ(a, x)dadx

≤ 1

2

∫

�

|φ(0, x)|2dx
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= 1

2

∫

�

[∫ a+

0
β(a)φ(a, x)da

]2

dx

≤ 1

2

∫

�

[∫ a+

0
β2(a)da

][∫ a+

0
φ2(a, x)da

]

dx

= 1

2
‖β‖2L2(0,a+)

‖φ‖2E , (2.10)

where we used the symmetry of J
∫

(0,a+)×�

(J ∗ φ(a, x) − φ(a, x))φ(a, x)dadx

=
∫

(0,a+)

∫

�

∫

�

J (x − y)(φ(a, y) − φ(a, x))φ(a, x)dydxda

= −1

2

∫

(0,a+)

∫

�

∫

�

J (x − y)(φ(a, y) − φ(a, x))2dydxda ≤ 0. (2.11)

It follows that for all sufficiently large σ , A − σ I is a dissipative operator on E .
On the other hand, it can be shown that φ is the unique solution of the resolvent equation

by the uniqueness resolvent solution of age-structured models with orthonormal basis in
L2(�), and thus σ ∈ ρ(A), the resolvent set of A, and

(σ I − A)−1ψ =
∞∑

i=0

(
(σ + λi )I − B

)−1〈ψ(a, ·), ϕi 〉L2(�)ϕi (x). (2.12)

It follows thatR(σ I − A), the range of σ I − A is equal to the whole space E , and by (2.10),
A − σ I is dissipative when σ is sufficiently large, it implies from [41, Chapter I, Theorem
4.6] that D(A−σ I ) is dense and D(A − σ I ) = E , so does D(A) and D(A) = E . Moreover,
from (2.9) we have

‖(σ I − A)−1‖ ≤ M

Re(σ + λ0) − ω
.

It follows from Hille–Yosida theorem that A is an infinitesimal generator of a C0-semigroup
{S(t)}t≥0. (In fact, one can conclude the same result by using Lumer–Phillips theorem in
[41].)

If there are some i, j such that σ + λi = γ j , then

φi (a, x) = e−(σ+λi )aπ(a)ϕi (x)

satisfies (σ I − A)φi = 0, i.e. σ ∈ σp(A), the point spectrum of A. Furthermore, if (σ I −
A)φ = 0, expanding the known initial function φ(0, x) as

φ(0, x) =
∞∑

i=0

αiϕi (x) in L2(�),

then we have

φ(a, x) =
∞∑

i=0

αi e
−(σ+λi )aπ(a)ϕi (x).
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In view of the initial condition

φ(0, x) =
∫ a+

0
β(a)φ(a, x)da,

we get for each i that either αi = 0 or
∫ a+
0 β(a)e−(σ+λi )aπ(a)da = 1. In particular, for

σ0 = γ0 − λ0, which is the dominant eigenvalue of A, (σ I − A)φ = 0 has only one
independent linear solution, which is

φσ0(a, x) = e−γ0aπ(a)ϕ0(x), (2.13)

so σ0 is of geometric multiplicity one.
Define an operator

Hσ =
∫ a+

0
β(a)e−σaπ(a)eLada.

It is easy to see thatHσ is a positive and self-adjoint operator in L2(�) since L is self-adjoint
and that ϕ0(x) is the eigenfunction of the eigenvalue 1 of Hσ0 . Thus, r(Hσ0) ≥ 1.

In addition, note that {ϕi }i≥0 are indeed in C(�) due to the fact that J is continuous and
eLa : Cb(�) → Cb(�) is a contraction mapping with contraction coefficient e−a (see [16]),
where Cb(�) represents the space of continuous bounded functions in �. It follows that

re(Hσ0 ) ≤ ‖Hσ0‖e ≤
∫ a+

0
β(a)e−σ0aπ(a)‖eLa‖eda ≤

∫ a+

0
β(a)e−γ0aπ(a)e−(1−λ0)ada < 1,

where re(A) and ‖A‖e represent the essential spectral radius and essential norm of operator
A, respectively. Now suppose that r(Hσ0) > 1, for the sake of contraction, we then see from
the generalized Krein–Rutman theorem (see Nussbaum [40] or Zhang [56]) that r(Hσ0) is
an eigenvalue of Hσ0 corresponding to a positive eigenvector ψ ∈ L2(�). It follows that

r(Hσ0)〈ψ, ϕ0〉L2(�) = 〈Hσ0ψ, ϕ0〉L2(�) = 〈ψ,Hσ0ϕ0〉L2(�) = 〈ψ, ϕ0〉L2(�),

which implies that r(Hσ0) = 1 since 〈ψ, ϕ0〉 > 0. This is a contradiction. Thus r(Hσ0) = 1.
In summary, we have the following theorem.

Theorem 2.2 The following statements are valid.

(i) The operator A defined in (2.2) generates a strongly continuous semigroup {S(t)}t≥0

on E;
(ii) σ(A) = σP (A) = {γi − λ j }∞i, j=0;
(iii) The operator A has a real dominant eigenvalue σ0 corresponding to the eigenfunction

φσ0 defined in (2.13), that is σ0 is greater than any real part of eigenvalues of A;
(iv) σ0 is a simple eigenvalue of A;
(v) For the operator Hσ0 , 1 is an eigenvalue with an eigenfunction ϕ0(x). Furthermore,

r(Hσ0) = 1.

The proofs of (i)–(iv) are similar to those in [5, Theorem 1].We omit them here. The proof
of (v) is shown in the above argument.

2.2 The Semigroup

In this section, we discuss the C0-semigroup {S(t)}t≥0 generated by the operator A by using
the idea from Chan and Guo [5]. For every φ ∈ E , define a family of operators {Ŝ(t)}t≥0 as
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follows:

Ŝ(t)φ(a, x) =
∞∑

i=0

eBt e−λi t 〈φ(a, ·), ϕi 〉L2(�)ϕi (x), (2.14)

where eBt is the semigroup generated by B.
It is obvious that Ŝ(t) is a well-defined bounded linear operator on E for every t ≥ 0 and

for all φn,q(a, x) = ∑n
j=0 q j (a)ϕ j (x), q j (a) ∈ L2(0, a+), j = 0, 1, . . . , n, n > 0, we can

directly verify that

Ŝ(t + s)φn,q(a, x) = Ŝ(t)Ŝ(s)φn,q(a, x), ∀t, s ≥ 0.

Since {φn,q(a, x)} is dense in E , so Ŝ(t + s) = Ŝ(t)Ŝ(s) for all t, s ≥ 0. Moreover,

lim
t→0

Ŝ(t)φn,q = φn,q

and since ‖Ŝ(t)‖ ≤ Me(ω−λ0)t , it follows that

lim
t→0

Ŝ(t)φ = φ, ∀φ ∈ E .

This shows that {Ŝ(t)}t≥0 is also a C0-semigroup on E . A simple calculation shows that

lim
t→0

Ŝ(t) − I

t
φn,q = Aφn,q

for all φn,q . Hence, Ŝ(t) = S(t) for all t ≥ 0. We have the following result.

Theorem 2.3 The operator A defined in (2.2) is the infinitesimal generator of aC0-semigroup
{S(t)}t≥0 on the state space E. Thus, if u0 ∈ E, then there exists a unique mild solution to
(2.3) such that

u(t, ·, ·) = S(t)u0 ∈ C([0,∞), E),

and if u0 ∈ D(A), then there exists a classical solution to (2.3) such that

u(t, ·, ·) = S(t)u0 ∈ C1([0,∞), E).

2.3 Asymptotic Behavior

First, we recall the asymptotic behavior of solutions to the following age-structured model
without diffusion:

⎧
⎪⎨

⎪⎩

∂u(t,a)
∂t + ∂u(t,a)

∂a + μ(a)u(t, a) = 0, t, a > 0,

u(t, 0) = ∫ a+
0 β(a)u(t, a)da, t > 0,

u(0, a) = u0 ∈ L1(0, a+), a > 0.

(2.15)

Denote

R =
∫ a+

0
β(a)e− ∫ a0 μ(s)dsda.

In the case that u0 
≡ 0 (c > 0 where c is defined in the following (2.16)), we can infer that
(see, e.g., [2, Remark 2.3.2])

Proposition 2.4 The following results hold,
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(i) limt→∞ ‖u(t)‖L∞(0,a+) = 0 if R < 1;
(ii) limt→∞ ‖u(t)‖L1(0,a+) = ∞ if R > 1;
(iii) limt→∞ ‖u(t) − ũ‖L∞(0,a+) = 0 if R = 1,

where ũ(a) = ce− ∫ a0 μ(s)ds,∀a ∈ (0, a+) is a nontrivial steady state of (2.15) and

c =
∫ a+
0 β(a)

[∫ a
0 u0(s)e

∫ s
0 μ(ξ)dξds

]
e− ∫ a0 μ(ξ)dξda

∫ a+
0 aβ(a)e− ∫ a0 μ(ξ)dξda

. (2.16)

Now we establish the asymptotic behavior of the age-structured model with nonlocal
diffusion under Dirichlet boundary conditions.

Theorem 2.5 Assume that a+ < ∞.

(i) If R < 1, then limt→∞ ‖u(t)‖L2((0,a+)×�) = 0;
(ii) If R = 1, then limt→∞ ‖u(t)‖L2((0,a+)×�) = 0;
(iii) If R > 1, γ0 < λ0, then limt→∞ ‖u(t)‖L2((0,a+)×�) = 0; while if γ0 > λ0 and u0 is a

nontrivial datum, then limt→∞ ‖u(t)‖L2((0,a+)×�) = ∞.

Proof BasedonTheorem2.2,we see that if R < 1, γ0 < 0, then the principal eigenvalueσ0 =
γ0 − λ0 < 0, which implies (i). If R = 1, γ0 = 0, then σ0 = −λ0 < 0, which implies (ii).
When R > 1, γ0 > 0, if γ0 < λ0, then σ0 < 0 which implies limt→∞ ‖u(t)‖L2((0,a+)×�) =
0; while if γ0 > λ0, then σ0 > 0, hence the solution u will blow up in E , which implies (iii).

��
Remark 2.6 There are some differences between Laplace diffusion and nonlocal diffusion.
For the Laplace diffusion problem, from Chan and Guo [5] we have the following asymptotic
expression for the solution u(t, a, x) :

u(t, a, x) = Cu0(x)e
−μ0a−∫ a0 μ(ρ)dρeσ0tϕ0(x) + o(e(σ0−ε)t ),

where σ0 = γ0 − λ0 is the dominant eigenvalue of A, ε is a small positive number such that
σ(A) ∩ {σ |σ0 − ε ≤ Reσ < σ0} = ∅, and

Cu0(x) =
∫ a+
0 β(a)

[∫ a
0 e−γ0(a−s)−∫ as μ(ρ)dρ〈u0(a, x), ϕ0(x)〉ds

]
da

− ∫ a+
0 aβ(a)e−γ0a−∫ a0 μ(ρ)dρda

,

since the semigroup {Ŝ(t)}t≥0 generated by the operator Â, where the nonlocal diffusion is
replaced by Laplace diffusion in A, is compact when t ≥ a+. However, for the nonlocal
diffusion problem, the semigroup {S(t)}t≥0 generated by the operator A is not compact for
any t ≥ 0, so such an asymptotic expression for solutions of the nonlocal diffusion problem
does not hold. In fact, such asymptotic expression comes from asynchronous exponential
growth which was introduced in details by Webb [54] and is based on the spectral bound and
essential growth rate of A.

3 The General CaseWhen Both Birth and Death Rates are Dependent
on Spatial Variables

Now we consider the general case where both birth and death rate functions depend on the
spatial variable. In this section, one will see that since the semigroup or evolution family
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generated by nonlocal diffusion loses compactness, we need to deal with it via different
arguments compared with the case of Laplace diffusion. Introducing the state space E =
L2((0, a+) × �) with the usual norm ‖·‖ and inner product 〈·, ·〉 and defining the operator
A′ : E → E by

A′φ(a, x) = d(J ∗ φ − φ)(a, x) − ∂φ(a, x)

∂a
− μ(a, x)φ(a, x), ∀φ ∈ D(A′),

D(A′) = {
φ(a, x)

∣
∣φ, A′φ ∈ E, φ|RN \� = 0, φ(0, x) =

∫ a+

0
β(a, x)φ(a, x)da

}
,

(3.1)

we can write the Eq. (1.1) as an abstract Cauchy problem on the state space E :
{

du(t,a,x)
dt = A′u(t, a, x)

u(0, a, x) = u0(a, x).
(3.2)

3.1 The Semigroup

In the following without loss of generality we assume that d = 1. In addition, we need a
lemma similar to Lemma 1 in Guo and Chan [18].

Lemma 3.1 For any 0 ≤ a0 < a+, there exists a unique mild solution u(a, x), 0 ≤ τ ≤ a ≤
a+ − a0, to the evolution equation on E for any initial function φ ∈ L2(�):

{
∂u(a,x)

∂a = [L − μ(a0 + a, x)]u(a, x)

u(τ, x) = φ(x),
(3.3)

where L := J ∗ −I is the part of a nonlocal operator with Dirichlet boundary condition.
Define the solution operator of the initial value problem (3.3) by

F (a0, τ, a)φ(x) = u(a, x), ∀φ ∈ L2(�), (3.4)

then {F (a0, τ, a)}0≤τ≤a≤a+−a0 is a family of uniformly linear bounded positive operators
on E and is strong continuous in τ and a.

Proof We first consider (3.3) in the interval [0, ā], where ā < a+ − a0 is any given number.
Define a mapping F (a0) from C([τ, ā], L2(�)) into itself by

F (a0)u(a, x) = eLaφ(x) −
∫ a

τ

eL(a−σ)μ(a0 + σ, x)u(σ, x)dσ. (3.5)

Denoting ‖u‖∞ = maxτ≤a≤ā ‖u(a, ·)‖ and M = supτ≤a≤ā,x∈� μ(a0 + a, x), it is easy to
check that

‖F n(a0)u − F n(a0)v‖∞ ≤ Mn(ā − τ)n

n! ‖u − v‖∞, ∀u, v ∈ C([τ, ā], L2(�)), n ≥ 1.

For n large enough, Mn(ā−s)n/n! < 1, and by the well known Banach contraction mapping
theorem, F (a0) has a unique fixed point u in C([τ, ā], L2(�)) for which

u(a, x) = eLaφ(x) −
∫ a

τ

eL(a−σ)μ(a0 + σ, x)u(σ, x)dσ.

By assumption on μ and the property of eLt , the right hand side of the above expression
is continuous. Thus {F (a0, τ, a)}0≤τ≤a≤a+−a0 is a family of uniformly linear continuous
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positive operators on E and is strongly continuous in τ, a. And it is easy to note that when
μ(a, x) = μ(a),

F (a0, τ, a) = e− ∫ aτ μ(a0+σ)dσ eL(a−τ).

This completes the proof. ��
Furthermore, we have

e− ∫ aτ μ(a0+ρ)dρeL(a−τ)φ ≤ F (a0, τ, a)φ ≤ e− ∫ aτ μ(a0+ρ)dρeL(a−τ)φ, ∀φ ∈ L2+(�).

(3.6)
Now, we consider the resolvent equation

(λI − A′)φ = ϕ, ∀ϕ ∈ E,

i.e. ⎧
⎪⎨

⎪⎩

∂φ(a,x)
∂a = (J ∗ −I )φ(a, x) − (λ + μ(a, x))φ(a, x) + ϕ(a, x),

φ(0, x) = ∫ a+
0 β(a, x)φ(a, x)da,

φ(a, x) = 0, x ∈ R
N\�.

(3.7)

Letting F (0, τ, a) = F (τ, a), we have

φ(a, x) = e−λaF (0, a)φ(0, x) +
∫ a

0
e−λ(a−σ)F (σ, a)ϕ(σ, x)dσ,

and accordingly

φ(0, x) −
∫ a+

0
β(a, x)e−λaF (0, a)φ(0, x)da

=
∫ a+

0
β(a, x)

∫ a

0
e−λ(a−σ)F (σ, a)ϕ(σ, x)dσda.

Define an operator Gλ : L2(�) → L2(�) for λ ∈ R by

Gλφ(x) =
∫ a+

0
β(a, x)e−λaF (0, a)φ(x)da, ∀φ ∈ L2(�). (3.8)

Then

λ ∈ ρ(A′) ⇔ 1 ∈ ρ(Gλ),

and for λ ∈ ρ(A′),

(λI − A′)−1ϕ(a, x) = e−λaF (0, a)(I − Gλ)−1
∫ a+

0
β(a, x)da

∫ a

0
e−λ(a−σ)F (σ, a)ϕ(σ, x)dσ

+
∫ a

0
e−λ(a−σ)F (σ, a)ϕ(σ, x)dσ. (3.9)

It is easy to see from (3.8) that

lim
λ→∞ ‖Gλ‖ = 0.

Hence, for all sufficiently large λ > 0, (I−Gλ)
−1 exists and so does the operator (λI−A′)−1.

It follows that for sufficient large λ > 0, R(I − (A′ − λI )), the range of the operator
I − (A′ − λI ) is equal to the whole space E .
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Next, by similar computations in (2.10), we have

〈A′φ, φ〉 ≤ 1

2
sup
x∈�

∫ a+

0
β2(a, x)da‖φ‖2, ∀φ ∈ D(A′),

which implies that A′ is dissipative for sufficient large λ > 0. Together with R(I − (A′ −
λI )) = E we can conclude that D(A′ − λI ) is dense in E and so is D(A′). It follows
from Lumer–Phillips Theorem in Pazy [41] that A′ − λI is the infinitesimal generator of
a C0-semigroup of contractions on E . Hence, A′ is also the infinitesimal generator of a
C0-semigroup {S′(t)}t≥0 (but of not contractions) on E .

In summary, we have a theorem similar to Theorem 2.3 in the following.

Theorem 3.2 Theoperator A′ defined in (3.1) is the infinitesimal generator of aC0-semigroup
{S′(t)}t≥0 on the state space E. Thus, if u0 ∈ E, then there exists a unique mild solution to
(2.3) such that

u(t, ·, ·) = S′(t)u0 ∈ C([0,∞), E),

and if u0 ∈ D(A′), then there exists a classical solution

u(t, ·, ·) = S′(t)u0 ∈ C1([0,∞), E).

Moreover, when λ ∈ σp(A′), its corresponding eigenfunction φ(a, x) can be expressed as

φ(a, x) = e−λaF (0, a)φ0(x),

where φ0(x) is the nonzero solution of

φ(x) −
∫ a+

0
β(a, x)e−λaF (0, a)φ(x)da = 0.

3.2 The Infinitesimal Generator

In this section we study the spectral bound of the operator A′ and therefore determine the
stability of the zero steady state.

Define

Cλ =
∫ a+

0
β(a)e−λaπ ′(a)eLada,

where β(a) = infx∈� β(a, x) and π ′(a) = e− ∫ a0 μ(σ)dσ with μ(a) = supx∈� μ(a, x). It is
easy to see that Gλ ≥ Cλ in the positive operator sense.

Now we claim that r(Gλ) is continuous with respect to the parameter λ ∈ R.

Lemma 3.3 r(Gλ) is continuous with respect to the parameter λ ∈ R. Moreover, it is decreas-
ing with respect to λ.

Proof Note that Gλ is a positive operator in L2(�)with a positive cone L2+(�)which consists
of nonnegative functions in L2(�), since F (0, a) is a positive operator in L2(�) with the
same positive cone L2+(�). We claim that ∀λ1 ≥ λ2, one can obtain

e(λ2−λ1)a+
r(Gλ2) ≤ r(Gλ1) ≤ r(Gλ2), (3.10)
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which implies that r(Gλ) is decreasing in λ. In fact, it is sufficient to show that

e(λ2−λ1)a+
Gλ2φ ≤ Gλ1φ ≤ Gλ2φ, ∀φ ∈ L2+(�),

where the second inequality is obvious. Thus, we only need to show the first inequality. It is
easy to see that

Gλ1φ =
∫ a+

0
β(a, x)e−λ1aF (0, a)φ(x)da

=
∫ a+

0
β(a, x)e−(λ1−λ2)ae−λ2aF (0, a)φ(x)da

≥ e−(λ1−λ2)a+
Gλ2φ, ∀φ ∈ L2+(�). (3.11)

It follows that e(λ2−λ1)a+
Gλ2φ ≤ Gλ1φ, ∀φ ∈ L2+(�), which is our desired result. ��

Next, we claim that r(Gλ) is log convex with respect to λ ∈ R.

Lemma 3.4 r(Gλ) is log convex with respect to λ ∈ R.

Proof We use the generalized Kingman’s theorem from Kato [32] to show it. First claim
that λ → Gλ is completely monotonic. Then, λ → r(Gλ) is superconvex by Thieme [45,
Theorem 2.5] and hence log convex. By the definition from Thieme [45], an infinitely often
differentiable function f : (a,∞) → X+ is called completely monotonic if

(−1)n f (n)(λ) ∈ X+, ∀λ > a, n ∈ N,

where X+ is a normal and generating cone of an orderedBanach space X . A family {F(λ)}λ>a

of positive operators on X is called completely monotonic if f (λ) = F(λ)x is completely
monotonic for every x ∈ X+. For our case, Gλ is indeed infinitely often differentiable with
respect to λ ∈ R and

(−1)nG (n)
λ φ =

∫ a+

0
β(a, x)ane−λaF (0, a)φ(x)da ∈ L2+(�), λ ∈ R, n ∈ N, φ ∈ L2+(�).

Thus, our result follows. ��
Remark 3.5 Here we need to emphasize that, the continuity and strict monotonicity of λ →
r(Gλ)was established byDelgado et al. [13] andWalker [50] based on the fact that r(Gλ) is an
eigenvalue of Gλ via showing Gλ is a compact and strongly positive operator and then using
Krein–Rutman theorem. However, in our case, Gλ loses compactness since the evolution
family F (0, a) generated by a nonlocal operator does not have regularity, which is a key
difference and a main difficulty compared with the case of Laplace diffusion.

On the other hand, from Theorem 2.2-(v) there exists a unique simple real value λ0 such
that r(Cλ0) = 1. Therefore, by the theory of positive operators,

r(Gλ0) ≥ r(Cλ0) = 1.

Moreover, limλ→∞ r(Gλ) = 0. Now since r(Gλ) is continuous and decreasing with respect
to λ by Lemma 3.3, there exists a real λ̂0 such that r(G

λ̂0
) = 1. Since Gλ is positive,

1 = r(G
λ̂0

) ∈ σ(G
λ̂0

) 
= ∅, which implies that λ̂0 ∈ σ(A′) thus σ(A′) 
= ∅. Assume
that there is λ1 < λ2 such that r(Gλ1) = r(Gλ2) = 1. Since λ → r(Gλ) is decreasing and log
convex, it follows that r(Gλ) = 1 for all λ ≥ λ1. This contradicts the fact that r(Gλ) → 0
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as λ → ∞. So there is a unique λ̂0 ∈ R such that r(G
λ̂0

) = 1. This is equivalent to the

uniqueness of λ̂0 ∈ σ(A′). Moreover, we have shown that the mapping λ → r(Gλ) is either
strictly decreasing on the interval (−∞,∞) or strictly decreasing on some interval (−∞, λ0)

with r(Gλ) = 0 for all λ ≥ λ0.
Furthermore, for any λ ∈ R, when λ > λ̂0 we have r(Gλ) < r(G

λ̂0
) = 1, (I −Gλ)

−1 exists
and is positive. Moreover, 1 ∈ ρ(Gλ) ⇒ λ ∈ ρ(A′). Therefore, the semigroup {S′(t)}t≥0

generated by A′ is positive and further λ̂0 is larger than any other real spectral values in
σ(A′). It follows that λ̂0 = sR(A′) := sup{λ ∈ R : λ ∈ σ(A′)}. Next we claim that A′
is a resolvent positive operator. In fact, it is easy to see the resolvent set of A′ contains an
infinite ray (λ̂0,∞) and (λI − A′)−1 is a positive operator for λ > λ̂0 by (3.9) sinceF (τ, a)

is positive. But since E = L2((0, a+) × �) is a Banach lattice with normal and generating
cone E+ = L2+((0, a+) × �) and s(A′) ≥ λ̂0 > −∞ due to λ̂0 ∈ σ(A′), we can conclude
from Theorem 3.5 in Thieme [45] that s(A′) = sR(A′) = λ̂0. Thus we have the following
result.

Theorem 3.6 For the operator A′ defined in (3.1), there is only one real value λ̂0 ∈ σ(A′)
satisfying r(G

λ̂0
) = 1 such that s(A′) = λ̂0.

Now we expect to establish the criterion of stability of the zero steady state via s(A′).
Fortunately, for a Banach lattice E = L2((0, a+) × �) we have s(A′) = ω0(A′), where
ω0(A) := limt→∞ log ‖S(t)‖

t is the growth bound of {S(t)}t≥0 with infinitesimal generator
A (see Thieme [46, Theorem 6.4] or Clément et al. [6, Theorem 9.7]). Thus, we have the
following result.

Theorem 3.7 If R0 := r(G0) < 1, then the zero steady state of system (3.2) is globally
exponentially stable. Otherwise, if R0 > 1, then the zero steady state is unstable.

Proof If R0 = r(G0) < 1, there exists a unique λ0 < 0 such that r(Gλ0) = 1, then by
Theorem 3.6, ω0(A′) = s(A′) = λ0 < 0, thus the zero steady state is globally exponentially
stable. While, if R0 = r(G0) > 1, there exists a unique λ0 > 0 such that r(Gλ0) = 1, then
by Theorem 3.6, ω0(A′) = s(A′) = λ0 > 0. Thus the zero steady state is unstable by Webb
[53, Proposition 4.12].

Remark 3.8 Note that Thieme [46] discussed age-structured models with an additional struc-
ture and gave a theorem which states that s(A′) has the same sign as r(G0) − 1, provided
ω(F ) < 0. In fact, in our present paper, we obtain the same result. Moreover, we find s(A′)
explicitly in Theorem 3.6, after setting the concrete function space E = L2((0, a+) × �)

and spatial diffusion defined in (3.1) when one notes that

sup
τ≥0

∫ a+

τ

‖F (τ, a)x‖2L2(�)
da < ∞, x ∈ L2(�)

indeed holds in our case due to (3.6), which is equivalent to ω(F ) < 0.

Remark 3.9 As was seen above, we analyzed the spectrum of A′ partially and established the
stability criterion via the sign of s(A′). But, it is noted that we do not know whether such
s(A′) is an eigenvalue of A′ due to the lost of compactness of Gλ. In fact, it is interesting and
worth to analyze the essential spectrum of Gλ via the fact that the semigroup generated by
nonlocal operators is an α-contraction and obtain an estimate of its essential spectral radius

re(Gλ) ≤ ‖Gλ‖e ≤
∫ a+

0
β(a)e−λae− ∫ a0 μ(ρ)dρe−ada,
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where re(A) and ‖A‖e represent the essential spectral radius and essential norm of operator
A, respectively. However, we do not know whether re(Gλ) < r(Gλ) holds and then use the
generalized Krein–Rutman theorem to conclude that s(A′) is indeed an eigenvalue.

4 Weak Solutions and Comparison Principle: Nonautonomous Case

In the previous sections, we considered the autonomous cases where β and μ depend on
age a or/and spatial variable x and analyzed the spectra of the infinitesimal generators and
determined the asymptotic behavior of solutions. In this sectionwewill establish the existence
and uniqueness of the weak solutions (see the definition in the following) of the following
nonautonomous and nonhomogeneous age-structured model with nonlocal diffusion where
β and μ are both dependent on t, a, x :
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u(t,a,x)
∂t + ∂u(t,a,x)

∂a = d(J ∗ u − u)(t, a, x) − μ(t, a, x)u(t, a, x) + f (t, a, x) a.e. in QT

u(0, a, x) = u0(a, x) in L2(�) a.e. a ∈ (0, a+)

u(t, 0, x) = ∫ a+
0 β(t, a, x)u(t, a, x)da in L2(�) a.e. t ∈ (0, T )

u(t, a, x) = 0 a.e. (0, T ) × (0, a+) × R
N \�,

(4.1)
where the mortality rate μ(t, a, x) satisfies

μ(t, a, x) ∈ L∞
loc(QT ), μ(t, a, x) ≥ μ0(t, a) ≥ 0 a.e. in QT , μ0 ∈ L∞

loc((0, T ) × (0, a+)),

(4.2)

and in addition, it satisfies that
∫ a+
0 μ0(t−a++a, a)da = ∞ a.e. t ∈ (0, T ), whereμ0(t, a)

is extended by zero on (−∞, 0) × (0, a+). Then the solution u is zero, for a = a+; i.e.

lim
ε→0+ u(t − ε, a+ − ε, x) = 0, a.e. (t, x) ∈ (0, T ) × �

while the fertility rate β(t, a, x) is a bounded nonnegative measurable function satisfying

β(t, a, x) ∈ L∞(QT ), β(t, a, x) ≥ 0 a.e. in QT , (4.3)

in which QT := (0, T ) × (0, a+) × �. f (t, a, x) is the recruitment term which satisfies
f (t, a, x) ∈ L2(QT ) and f (t, a, x) ≥ 0 a.e. in QT . u0(a, x) ∈ L2((0, a+) × �) is the
initial data with u0(a, x) ≥ 0 a.e.

Since the system is nonautonomous, it is not easy to study it by the method of semigroups
as above, especially the spectrum analysis. We would like to use energy estimates to deal
with it. Moreover, we will also establish the comparison principle. In the following we will
prove lemmas and theorems under the conditions μ ∈ L∞(QT ) and μ(t, a, x) ≥ 0 a.e. in
QT . For μ ∈ L∞

loc(QT ), one can use the truncation technique in Anita [2, Theorem 4.1.3],
so we omit it.

Lemma 4.1 For any u0 ∈ L2(�), g ∈ L2((0, T ) × �), there exists a unique solution

u ∈ C([0, T ], L2(�)) ∩ AC((0, T ), L2(�)) ∩ L2((0, T ) × �)

of the following system
⎧
⎪⎨

⎪⎩

∂u(t,x)
∂t − d(J ∗ u − u)(t, x) = g(t, x), t > 0, x ∈ �,

u(t, x) = 0, t > 0, x ∈ R
N\�,

u(0, x) = u0(x), x ∈ �.

(4.4)
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Moreover, if 0 ≤ u10 ≤ u20, g1 ≤ g2 a.e., then 0 ≤ u1(t, x) ≤ u2(t, x) a.e. in (0, T ) × �.

Proof The proof is in the “Appendix”. ��

Using the notation of Anita [2], we introduce the definition of a solution of (4.1). By a
solution to system (4.1) we mean a function u ∈ L2(QT ), which belongs to C(L, L2(�)) ∩
AC(L, L2(�)) ∩ L2(L, L2(�)) for almost any characteristic line L of equation

a − t = a0 − t0 (a, t) ∈ (0, a+) × (0, T ),

where (a0, t0) ∈ {0} × (0, T ) ∪ (0, a+) × {0}, and satisfies
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u(t,a,x)
∂t + ∂u(t,a,x)

∂a = d(J ∗ u − u)(t, a, x) − μ(t, a, x)u(t, a, x) + f (t, a, x) a.e. in QT ,

lim
ε→0+ u(ε, a + ε, ·) = u0(a, ·) in L2(�) a.e. a ∈ (0, a+),

lim
ε→0+ u(t + ε, ε, ·) = ∫ a+

0 β(t, a, ·)u(t, a, ·)da in L2(�) a.e. t ∈ (0, T ),

u(t, a, x) = 0 a.e. (0, T ) × (0, a+) × R
N \�.

(4.5)
We can write the characteristic line as

L = {(a, t) ∈ (0, a+) × (0, T ) : a − t = a0 − t0} = {(a0 + s, t0 + s : s ∈ (0, α)},
here (a0+α, t0+α) ∈ a+ ×(0, T )∪(0, a+)×{T }. We give the following lemmasmotivated
by Anita [2].

Lemma 4.2 For any f ∈ L2(QT ), b ∈ L2((0, T ) × �), there exists a unique solution
ub ∈ L2(QT ) of the following system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u
∂t + ∂u

∂a − d(J ∗ u − u) + μ(t, a, x)u = f (t, a, x) a.e. in QT ,

u(0, a, x) = u0(a, x) in L2(�) a.e. a ∈ (0, a+),

u(t, 0, x) = b(t, x) in L2(�), a.e. t ∈ (0, T ),

u(t, a, x) = 0, (0, T ) × (0, a+) × R
N\�.

(4.6)

Proof Fix any w ∈ L2(QT ), we first prove that the following system has a unique solution
ub,w(t, a, x) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u
∂t + ∂u

∂a − d(J ∗ u − u) + μ(t, a, x)w = f (t, a, x) a.e. in QT ,

u(0, a, x) = u0(a, x) in L2(�) a.e. a ∈ (0, a+),

u(t, 0, x) = b(t, x) in L2(�) a.e. t ∈ (0, T ), ,

u(t, a, x) = 0, x ∈ R
N\�.

(4.7)

We can view (4.7) as a collection of linear nonlocal equations on the characteristic line L .
Define

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ũ(s, x) = u(t0 + s, a0 + s, x), (s, x) ∈ (0, α) × �,

w̃(s, x) = w(t0 + s, a0 + s, x), (s, x) ∈ (0, α) × �,

f̃ (s, x) = f (t0 + s, a0 + s, x), (s, x) ∈ (0, α) × �,

μ̃(s, x) = u0(t0 + s, a0 + s, x), (s, x) ∈ (0, α) × �.
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According to Lemma 4.1, the following system admits a unique solution ũ ∈ C([0, α],
L2(�)) ∩ AC((0, α), L2(�)) ∩ L2((0, α) × �):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ ũ
∂s − d(J ∗ ũ − ũ) = f̃ − μ̃w̃ (s, x) ∈ (0, α) × �,

ũ(0, x) =
{
b(t0, x), a0 = 0, x ∈ �,

u0(a0, x), t0 = 0, x ∈ �,

ũ(s, x) = 0, (s, x) ∈ (0, α) × R
N\�.

(4.8)

In fact, multiplying the first equation of system (4.8) by ũ and integrating on (0, s) × �, we
have

‖ũ(s)‖2L2(�)
≤ ‖ũ(0)‖2L2(�)

+ ‖ f̃ − μ̃w̃‖2L2((0,α)×�)
+
∫ s

0
‖ũ(τ )‖2L2(�)

dτ,

where we used inequality (2.11). Then by Gronwall’s inequality we obtain

‖ũ(s)‖2L2(�)
≤ C

(
‖ũ(0)‖2L2(�)

+ ‖ f̃ − μ̃ũ‖2L2((0,α)×�)

)
eα, ∀s ∈ [0, α]. (4.9)

Now if we denote

ub,w(t0 + s, a0 + s, x) = ũ(s, x), (s, x) ∈ (0, α) × �

for any characteristic line L . It follows from Lemma 4.1 and (4.9) that

ub,w ∈ C(L, L2(�)) ∩ AC(L, L2(�)) ∩ L2(L, L2(�))

for almost any characteristic line L , and ub,w satisfies
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ub,w
∂t + ∂ub,w

∂a − d(J ∗ ub,w − ub,w) + μ(t, a, x)w = f (t, a, x) a.e. in QT ,

ub,w(0, a, x) = u0(a, x) a.e. in (0, a+) × �,

ub,w(t, 0, x) = b(t, x) a.e. in (0, T ) × �,

ub,w(t, a, x) = 0 a.e. in (0, T ) × (0, a+) × R
N\�,

(4.10)

where

ub,w(t, 0, ·) = lim
ε→0+ ub,w(t + ε, ε, ·), in L2(�) a.e. t ∈ (0, T )

and

ub,w(0, a, ·) = lim
ε→0+ ub,w(ε, a + ε, ·), in L2(�) a.e. a ∈ (0, a+).

Now we need to show that ub,w ∈ L2(QT ) to make ub,w a solution of (4.10). Recall that
there exists an orthonormal basis {ϕ j } j∈N ⊂ L2(�) and {λ j } j∈N ⊂ R

+, λ j → 1 as j → ∞,

such that
{

−(J ∗ ϕ j − ϕ j ) = λ jϕ j ,

ϕ j = 0, x ∈ R
N\�.

Then we have

f (t, a, x) − μ(t, a, x)w =
∞∑

j=0

v j (t, a)ϕ j (x) in L2(�) a.e. (t, a) ∈ (0, T ) × (0, a+),

b(t, x) =
∞∑

j=0

b j (t)ϕ j (x) in L2(�) a.e. t ∈ (0, T ),
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u0(a, x) =
∞∑

j=0

u j
0(a)ϕ j (x) in L2(�) a.e. a ∈ (0, a+),

and

ub,w(t, a, x) =
∞∑

j=0

u j
b,w(t, a)ϕ j (x), in L2(�) a.e. (t, a) ∈ (0, T ) × (0, a+).

Plugging it into (4.10), we have
⎧
⎪⎪⎨

⎪⎪⎩

∂u j
b,w
∂t + ∂u j

b,w
∂a + dλ j u

j
b,w = v j (t, a), (t, a) ∈ (0, T ) × (0, a+),

u j
b,w(0, a) = u j

0(a), a ∈ (0, a+),

u j
b,w(t, 0) = b j (t), t ∈ (0, T ).

(4.11)

Multiplying the first equation of (4.11) by u j
b,w we obtain that

1

2

∂

∂t
|u j

b,w(t, a)|2 + 1

2

∂

∂a
|u j

b,w(t, a)|2 ≤ |v j (t, a)||u j
b,w(t, a)|

≤ 1

2
|u j

b,w(t, a)|2 + 1

2
|v j (t, a)|2

and integrating on (0, t) × (0, a+) we get
∫ a+

0
|u j

b,w(t, a)|2da ≤
∫ a+

0
|u j

0(a)|2da +
∫ t

0
|b j (s)|2ds +

∫ t

0

∫ a+

0
|u j

b,w(s, a)|2dads

+
∫ t

0

∫ a+

0
|v j (s, a)|2dads.

By Gronwall’s inequality we have

‖u j
b,w(t)‖2L2(0,a+)

≤ et
(
‖u j

0‖2L2(0,a+)
+ ‖b j‖2L2(0,T )

+ ‖v j‖2L2((0,T )×(0,a+)

)
, ∀t ∈ (0, T )

and it follows that

‖u j
b,w‖2L2((0,T )×(0,a+))

≤ (eT − 1)
(
‖u j

0‖2L2(0,a+)
+ ‖b j‖2L2(0,T )

+ ‖v j‖2L2((0,T )×(0,a+)

)
, ∀ j ∈ N.

In conclusion, ub,w ∈ L2(QT ) and

‖ub,w‖2L2(QT )
=

∞∑

j=0

‖u j
b,w‖2L2((0,T )×(0,a+)

≤ (eT − 1)
(
‖u0‖2L2((0,a+)×�)

+ ‖b‖2L2((0,T )×�)
+ ‖ f − μw‖2L2(QT )

)
. (4.12)

Now for anyw(t, a, x) ∈ L2(QT ), we prove that system (4.7) has a solution ub,w ∈ L2(QT ).
Define a mapping F : L2(QT ) → L2(QT ) by F (wi (t, a, x)) = ub,wi (t, a, x), i = 1, 2.
Take any two functions w1, w2 ∈ L2(QT ), then ub,w1 − ub,w2 satisfies
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂(ub,w1−ub,w2 )

∂t + ∂(ub,w1−ub,w2 )

∂a − d(J ∗ (ub,w1 − ub,w2 ) − (ub,w1 − ub,w2 )) + μ(w1 − w2) = 0 a.e. in QT ,

(ub,w1 − ub,w2 )(0, a, x) = 0 a.e. in (0, a+) × �,

(ub,w1 − ub,w2 )(t, 0, x) = 0 a.e. in (0, T ) × �,

(ub,w1 − ub,w2 )(t, a, x) = 0 a.e. in (0, T ) × (0, a+) × R
N \�.

(4.13)
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By the result of (4.12), we have

‖ub,w1 − ub,w2‖2L2(QT )
≤ (eT − 1)(‖μ(w1 − w2)‖2L2(QT )

) in L2(QT ).

It is easy to see that when T is small enough, ub,w(t, a, x) is a contraction mapping with
respect to w(t, a, x). Consequently, there exists a unique solution ub of system (4.6) for
sufficient small T . Furthermore, we can extend T by following previous steps for t ∈ (T , 2T )

since this is a linear equation. Hence, system (4.6) has a unique solution ub ∈ L2(QT ) with
ub ∈ C(L, L2(�)) ∩ AC(L, L2(�)) ∩ L2(L, L2(�)) for almost any characteristic line L . ��

Next we need to establish the following auxiliary result.

Lemma 4.3 Under the hypotheses of Lemma 4.2, for any b1, b2 ∈ L2((0, T ) × �), 0 ≤
b1(t, x) ≤ b2(t, x) a.e. in (0, T ) × �, we have that

0 ≤ ub1(t, a, x) ≤ ub2(t, a, x) a.e. in QT .

Proof Consider v = ub1 − ub2 , which is a solution of
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂v
∂t + ∂v

∂a − d(J ∗ v − v) + μ(t, a, x)v = 0 a.e. in QT ,

v(0, a, x) = 0 a.e. in (0, a+) × �,

v(t, 0, x) = b1(t, x) − b2(t, x) a.e. in (0, T ) × �,

v(t, a, x) = 0 a.e. in (0, T ) × (0, a+) × R
N\�.

(4.14)

Multiplying the first equation by v+ and integrating over Qt , we obtain

1

2

∫ a+

0

∫

�

|v+(t, a, x)|2dxda ≤
∫ t

0

∫

�

(b1 − b2)(s, x)v
+(s, 0, x)dxds, ∀t ∈ [0, T ].

Consequently v+ = 0 a.e. in QT . So we get the conclusion of the lemma. ��
We now show that system (4.1) has a unique solution u(t, a, x) ∈ L2(QT ).

Lemma 4.4 There exists a unique solution u ∈ L2(QT ) of system (4.1).

Proof Define an operator G : L2((0, T ) × �) → L2((0, T ) × �) by

(G b)(t, x) =
∫ a+

0
β(t, a, x)ub(t, a, x)da a.e. in(0, T ) × �.

For any fixed bi ∈ L2((0, T ) × �), i = 1, 2, let ub1 and ub2 be the solutions of system (4.6)
with b1(t, x) and b2(t, x), respectively. Let v(t, a, x) = ub1(t, a, x) − ub2(t, a, x). Then
v(t, a, x) satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂v
∂t + ∂v

∂a − d(J ∗ v − v) + μ(t, a, x)v = 0 a.e. in QT ,

v(0, a, x) = 0 a.e. in (0, a+) × �,

v(t, 0, x) = b1(t, x) − b2(t, x) a.e. in (0, T ) × �,

v(t, a, x) = 0 a.e. in (0, T ) × (0, a+) × R
N\�.

(4.15)

Multiplying the first equation by v and integrating over Qt , we obtain

‖v(t)‖2L2((0,a+)×�)
≤
∫ t

0
‖b1(s) − b2(s)‖2L2(�)

ds.
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Consequently,
∫ T

0
e−λt‖v(t)‖2L2((0,a+)×�)

dt =
∫ T

0

∫ t

0
e−λt‖b1(s) − b2(s)‖2L2(�)

dsdt

=
∫ T

0

∫ T

s
e−λt‖b1(s) − b2(s)‖2L2(�)

dtds.

This implies that
∫ T

0
e−λt‖w(t)‖2L2((0,a+)×�)

dt ≤ 1

λ

∫ T

0
e−λt‖b1(t) − b2(t)‖2L2(�)

dt (4.16)

for any λ ∈ (0,∞). Consider L2((0, T ) × �) with the norm

‖g‖ =
(∫ T

0
e−λt‖b(t)‖2L2(�)

dt

)1/2

, ∀g ∈ L2((0, T ) × �),

which is equivalent to the usual norm (the constant λ will be given later). Then we have

‖G b1 − G b2‖2 =
∫ T

0
e−λt‖

∫ a+

0
β(t, a, x)(ub1(t, a, x) − ub2(t, a, x)da‖2L2(�)

dt

≤ a+‖β‖2L∞(QT )

∫ T

0
e−λt‖v(t)‖2L2((0,a+)×�)

dt

≤ a+

λ
‖β‖2L∞(QT )‖b1 − b2‖2. (4.17)

It is now obvious that for any λ > a+‖β‖2L∞(QT ),G is a contractionmapping on (L2((0, T )×
�), d), where d is the metric defined by

d(b1, b2) = ‖b1 − b2‖, ∀b1, b2 ∈ L2((0, T ) × �).

Now Banach contraction mapping theorem allows us to conclude that there exists a unique
b ∈ L2((0, T ) × �) such that b = G b.

Finally we present the comparison principle for system (4.1).

Theorem 4.5 There is a unique solution u ∈ L2(QT ) of system (4.1) with μ satisfying
(4.2). If u1 and u2 are the solutions of system (4.1) with μ1, f1, β1, u01 and μ2, f2, β2, u02,
respectively, and μ1 ≥ μ2 satisfy (4.2), f1 ≤ f2, β1 ≤ β2, u01 ≤ u02, then

0 ≤ u1(t, a, x) ≤ u2(t, a, x) a.e. in QT .

Proof Define operators Gi : L2((0, T ) × �) → L2((0, T ) × �), i = 1, 2, by

(Gi b)(t, x) =
∫ a+

0
β(t, a, x)ui (t, a, x)da a.e. (t, x) ∈ (0, T ) × �,

where ui (i = 1, 2) are solutions of (4.6) corresponding to (βi , μi , fi , u0i ) respectively. By
Lemma 4.1 we have for any b ∈ L2((0, T ) × �) that

u1,b(s, x) ≤ u2,b(s, x) for almost every characteristic line L,

which implies that

u1,b(t, a, x) ≤ u2,b(t, a, x) a.e. in QT ,
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It follows that

(G1b)(t, x) ≤ (G2b)(t, x) a.e. in (0, T ) × �.

We have already proved that there exists a unique fixed point b2 of G2 in L2((0, T ) × �).
Since the set

C = {b ∈ L2((0, T ) × �); 0 ≤ b(t, x) ≤ b2(t, x) a.e. in (0, T ) × �}
is closed, it follows that G has a unique fixed point b1 ∈ C . Thus,

0 ≤ b1(t, x) ≤ b2(t, x) a.e. in (0, T ) × �

and the conclusion follows from Lemma 4.3. ��
Remark 4.6 For the semigroup {S(t)}t≥0 generated by A, we have determined its dominant
eigenvalue σ0 in Theorem 2.2. The stability of the zero steady state is also determined by
the sign of σ0 via the comparison principle. In fact, let u(t, φσ0) = eσ0tφσ0 , where φσ0 ∈ E
is the eigenfunction corresponding to σ0, then u(t, φσ0) is obvious a solution of (2.3). Now
for any Φ ∈ E with Φ ≥ 0, there exists M > 0, such that Φ ≤ Mφσ0 , then by comparison
principle, we have

0 ≤ u(t, Φ) ≤ u(t, Mφσ0) = Meσ0tφσ0 , ∀t ≥ 0.

Hence, when σ0 < 0, u(t, Φ) → 0 as t → ∞, which implies stability of the zero steady
state.

5 An Age- and Size-StructuredModel with Nonlocal Diffusion

In population dynamics, besides the age structure, there are some other physiological struc-
tures that need to be taken into account, for example the size of individuals which is used to
distinguish cohorts (Tucker and Zimmerman [47],Webb [55]), infection agewhich is the time
elapsed since infection, and recovery age which is the time elapsed since the last infection
(Inaba [30]). In fact, various size-structured models have been studied in the literature, see
Cushing [8–11], Calsina [4] and Gwiazda, Lorenz and Marciniak [22]. Kooijman and Metz
[33] considered a nonlinear age-size structured model with experiments and later Thieme
[44] analyzed the model by formulating it as an integral equation.

In this section, we consider the following age- and size-structured model with nonlocal
diffusion:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u(t,a,s,x)
∂t + ∂u(t,a,s,x)

∂a + ∂u(t,a,s,x)
∂s = d(J ∗ u − u)(t, a, s, x) − μ(a, s)u(t, a, s, x), t, a, s > 0, x ∈ �,

u(0, a, s, x) = u0(a, s, x), a, s > 0, x ∈ �,

u(t, 0, s, x) = ∫ s+
0

∫ a+
0 β(a, p, s)u(t, a, p, x)dadp, t, s > 0, x ∈ �,

u(t, a, 0, x) = ∫ a+
0

∫ s+
0 χ(a, p, s)u(t, p, s, x)dsdp, t, a > 0, , x ∈ �,

u(t, a, s, x) = 0, t, a, s > 0, x ∈ R
N \�,

(5.1)
where s ∈ [0, s+] is the size of the population. We assume that a+, s+ < ∞.

Assumption 5.1 (i) The rate β ∈ L2([0, a+) × [0, s+) × [0, s+)) is Lipschitz continuous
and zero outside the domain,

sup
(a,p)∈[0,a+)×[0,s+)

β(a, p, s) ≤ β(s) and β ∈ L2(0, s+),

123



Journal of Dynamics and Differential Equations (2022) 34:789–823 811

while χ ∈ L2([0, a+)×[0, a+)×[0, s+)) is Lipschitz continuous and zero outside the
domain,

sup
(p,s)∈[0,a+)×[0,s+)

χ(a, p, s) ≤ χ(a) and χ(a) ∈ L2(0, a+);

(ii) The following limits

lim
h→0

∫ s+

0
|β(a, p, s + h) − β(a, p, s)|2ds = 0

and

lim
h→0

∫ a+

0
|χ(a + h, p, s) − χ(a, p, s)|2da = 0

hold uniformly for (a, p) ∈ (0, a+) × (0, s+) and (p, s) ∈ (0, a+) × (0, s+), respec-
tively;

(iii) There exists nonnegative functions ε1(p) and ε2(p) such that β(a, p, s) ≥ ε1(p) > 0
and χ(a, p, s) ≥ ε2(p) > 0, respectively, for all a, s > 0 (a, s > 0);

(iv)
∫ a+
0 μ(a, s)da = ∞ uniformly in s ∈ (0, s+) and

∫ s+
0 μ(a, s)ds = ∞ uniformly in

a ∈ (0, a+), where μ(a, s) is extended by zero outside its domain.

This assumption implies that u(t, a+, s) = 0 for any t, s > 0 and u(t, a, s+) = 0 for any
t, a > 0 respectively.

We consider Eq. (5.1) in the state space Ẽ := L2((0, a+) × (0, s+) × �) with the usual
norm ‖·‖ and inner product 〈·, ·〉. Define the operator Ã : Ẽ → Ẽ as follows:

Ãφ(a, s, x) = d(J ∗ φ − φ)(a, s, x) − ∂φ(a, s, x)

∂a

−∂φ(a, s, x)

∂s
− μ(a, s)φ(a, s, x), ∀φ ∈ D( Ã),

D( Ã) =
{
φ(a, s, x)|φ, Ãφ ∈ Ẽ, φ|RN \� = 0, φ(0, s, x)

=
∫ s+

0

∫ a+

0
β(a, p, s)φ(a, p, x)dadp,

φ(a, 0, x) =
∫ a+

0

∫ s+

0
χ(a, p, s)φ(p, s, x)dsdp

}
. (5.2)

Thus, Eq. (5.1) can be written as an evolutionary equation on Ẽ :
{

du(t,a,s,x)
dt = Ãu(t, a, s, x)

u(0, a, s, x) = u0(a, s, x).
(5.3)

Now define an operator H on L2((0, a+) × (0, a+)) by

Hφ(a, s) = −∂φ(a, s)

∂a
− ∂φ(a, s)

∂s
− μ(a, s)φ(a, s), φ ∈ D(H),

D(H) =
{
φ(a, s)|φ, Hφ ∈ L2((0, a+) × (0, s+), φ(0, s)

=
∫ s+

0

∫ a+

0
β(a, p, s)φ(a, p)dadp,
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φ(a, 0) =
∫ a+

0

∫ s+

0
χ(a, p, s)φ(p, s)dsdp

}
. (5.4)

Solving the resolvent equation

(λI − H)φ(a, s) = ψ(a, s), ∀ψ ∈ L2((0, a+) × (0, s+)), λ ∈ C,

i.e. ⎧
⎪⎨

⎪⎩

∂φ
∂a + ∂φ

∂s + (λ + μ(a, s))φ(a, s) = ψ(a, s),

φ(0, s) = ∫ s+
0

∫ a+
0 β(a, p, s)φ(a, p)dadp,

φ(a, 0) = ∫ a+
0

∫ s+
0 χ(a, p, s)φ(p, s)dsdp

(5.5)

by using the method of characteristic lines, we obtain

φ(a, s) =
{

ψ(a − s, 0)e−λs�(a, s, s) + ∫ s
0 e−λσ �(a, s, σ )ψ(a − σ, s − σ)dσ, a − s ≥ 0,

ψ(0, s − a)e−λa�(a, s, a) + ∫ a
0 e−λσ �(a, s, σ )ψ(a − σ, s − σ)dσ, a − s < 0,

(5.6)
where �(a, s, σ ) = e− ∫ σ

0 μ(a−τ,s−τ)dτ , α(s) = φ(0, s) and η(a) = φ(a, 0). Plugging them
into the boundary conditions in (5.5), we obtain that

α(t) =
∫ a+

0

∫ a

0
f1(a, p, t)η(a − p)e−λpdpda +

∫ s+

0

∫ p

0
f2(a, p, t)α(p − a)e−λadadp

+
∫ a+

0

∫ a

0
K1(t, a, p)ψ(a, p)dpda +

∫ s+

0

∫ p

0
K2(t, a, p)ψ(a, p)dadp,

η(t) =
∫ a+

0

∫ p

0
f3(t, p, s)η(p − s)e−λsdsdp +

∫ s+

0

∫ s

0
f4(t, p, s)α(s − p)e−λpdpds

+
∫ a+

0

∫ p

0
K3(t, p, s)ψ(p, s)dsdp +

∫ s+

0

∫ s

0
K4(t, p, s)ψ(p, s)dpds, (5.7)

where

f1(a, p, t) = β(a, p, t)�(a, p, p),

f2(a, p, t) = β(a, p, t)�(a, p, a),

f3(t, p, s) = χ(t, p, s)�(p, s, s),

f4(t, p, s) = χ(t, p, s)�(p, s, p),

K1(t, a, p)ψ(a, p) = β(a, p, t)
∫ p

0
e−λσ �(a, p, σ )ψ(a − σ, p − σ)dσ,

K2(t, a, p)ψ(a, p) = β(a, p, t)
∫ a

0
e−λσ �(a, p, σ )ψ(a − σ, p − σ)dσ,

K3(t, p, s)ψ(p, s) = χ(t, p, s)
∫ s

0
e−λσ �(p, s, σ )ψ(p − σ, s − σ)dσ,

K4(t, p, s)ψ(p, s) = χ(t, p, s)
∫ p

0
e−λσ �(p, s, σ )ψ(p − σ, s − σ)dσ. (5.8)

One can rewrite (5.7) as the following functional equations:
(

α

η

)

= Fλ

(
α

η

)

+
(
G1

λψ

G2
λψ

)

, (5.9)
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where

Fλ = (F1λ, F2λ) : L2(0, s+) × L2(0, a+) → L2(0, s+) × L2(0, a+),

F1λ(α, η) =
∫ a+

0

∫ a

0
f1(a, p, t)η(a − p)e−λpdpda +

∫ s+

0

∫ p

0
f2(a, p, t)α(p − a)e−λadadp,

F2λ(α, η) =
∫ a+

0

∫ p

0
f3(t, p, s)η(p − s)e−λsdsdp +

∫ s+

0

∫ s

0
f4(t, p, s)α(s − p)e−λpdpds,

G1
λψ =

∫ a+

0

∫ a

0
K1(t, a, s)ψ(a, s)dsda +

∫ s+

0

∫ s

0
K2(t, a, s)ψ(a, s)dads,

G2
λψ =

∫ a+

0

∫ a

0
K3(t, a, s)ψ(a, s)dsda +

∫ s+

0

∫ s

0
K4(t, a, s)ψ(a, s)dads. (5.10)

In fact, α, η are respectively in the projection space of L2((0, s+) × (0, a+)), that is, α is
obtained from φ(a, s) ∈ L2((0, s+) × (0, a+)) by fixing a = 0, while η is obtained by
fixing s = 0. However, L2((0, s+) × (0, a+)) ⊂ L2(0, s+) × L2(0, a+). Thus, we consider
(α, η) ∈ L2(0, a+)× L2(0, a+). It is easy to check that Fλ maps L2(0, s+)× L2(0, a+) into
itself since by Holder inequality

‖F1λ(α, η)‖2

=
∫ s+

0

[∫ a+

0

∫ a

0
f1(a, p, t)η(a − p)e−λpdpda +

∫ s+

0

∫ p

0
f2(a, p, t)α(p − a)e−λadadp

]2

dt

≤ 2
∫ s+

0

[∫ a+

0

∫ a

0
f1(a, p, t)η(a − p)e−λpdpda

]2

dt + 2
∫ s+

0

[∫ s+

0

∫ p

0
f2(a, p, t)α(p − a)e−λadadp

]2

dt

≤ 2
∫ s+

0
β
2
(t)dt

[∫ a+

0
η(a − p)da

∫ a

0
e−(λ+μ)pdp

]2

+ 2
∫ s+

0
β
2
(t)dt

[∫ s+

0
α(p − a)dp

∫ p

0
e−(λ+μ)ada

]2

≤ 2‖β‖2L2(0,s+)

1

(λ + μ)2

⎡

⎣

(∫ a+

0
η(a − p)da

)2

+
(∫ s+

0
α(p − a)dp

)2
⎤

⎦

≤
2‖β‖2

L2(0,s+)

(λ + μ)2
max{a+, s+}‖(α, η)‖2, (5.11)

where ‖·‖ denotes the norm in the space L2+(0, s+) × L2+(0, a+) in this section. Similarly,
for F2λ, we also have an estimate as follows:

‖F2λ(α, η)‖2 ≤
2‖χ‖2

L2(0,a+)

(λ + μ)2
max{a+, s+}‖(α, η)‖2. (5.12)

Lemma 5.2 Let Assumption 5.1 hold. Then the operator Fλ is compact and non-supporting
for all λ ∈ R.

Proof For the compactness of Fλ, it is equivalent to show that for a bounded set K of
L2((0, s+)) × L2((0, a+)),

lim
h→0

∫ s+

0
|F1λ(α, η)(t + h) − F1λ(α, η)(t)|2dt = 0

uniformly for (α, η) ∈ L2((0, s+)) × L2((0, a+))

and

lim
h→0

∫ a+

0
|F2λ(α, η)(t + h) − F2λ(α, η)(t)|2dt = 0
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uniformly for (α, η) ∈ L2((0, s+)) × L2((0, a+)).

Now consider F1λ, that is,

∫ s+

0

[ ∫ a+

0

∫ a

0
f1(a, p, t + h)e−λpη(a − p)dpda +

∫ s+

0

∫ p

0
f2(a, p, t + h)e−λaα(p − a)dadp

−
∫ a+

0

∫ a

0
f1(a, p, t)e−λpη(a − p)dpda −

∫ s+

0

∫ p

0
f2(a, p, t)e−λaα(p − a)dadp

]2
dt

≤
∫ s+

0

[ ∫ a+

0

∫ a

0
| f1(a, p, t + h) − f1(a, p, t)||e−λp||η(a − p)|dpda

+
∫ s+

0

∫ p

0
| f2(a, p, t + h) − f2(a, p, t)||e−λa ||α(p − a)|dadp

]2
dt

≤ 2
∫ s+

0

[ ∫ a+

0

∫ a

0
| f1(a, p, t + h) − f1(a, p, t)||e−λp||η(a − p)|dpda

]2
dt

+2
∫ s+

0

[ ∫ s+

0

∫ p

0
| f2(a, p, t + h) − f2(a, p, t)||e−λa ||α(p − a)|dadp

]2
dt

→ 0 as h → 0 (5.13)

byAssumption 5.1-(ii) on β, χ andμ. Similarly, we can show the convergence for F2λ, which
implies that Fλ is a compact operator for any λ ∈ R.

Next, for λ ∈ R define a positive functional Fλ = (F1λ,F2λ) by

〈F1λ, (α, η)〉 :=
∫ a+

0

∫ a

0
ε1(p)�(a, p, p)e−λpη(a − p)dpda

+
∫ s+

0

∫ p

0
ε1(p)�(a, p, a)e−λaα(p − a)dadp

〈F2λ, (α, η)〉 :=
∫ a+

0

∫ p

0
ε2(p)�(p, s, s)e−λsη(p − s)dsdp

+
∫ s+

0

∫ s

0
ε2(p)�(p, s, p)e−λpα(s − p)dpds,

where �(a, p, t) := exp[− ∫ t0 μ(a − τ, p − τ)dτ ]. From Assumption 5.1-(iii), Fλ is a
strictly positive functional and we have

Fλ(α, η) = (F1λ(α, η), F2λ(α, η)) ≥ (〈F1λ, (α, η)〉e1, 〈F2λ, (α, η)〉e2),
lim

λ→−∞(〈F1λ, (e1, e2)〉, 〈F2λ, (e1, e2)〉) = (+∞,+∞), (5.14)

where (e1, e2) ≡ 1 is a quasi-interior point in L2(0, s+) × L2(0, a+). Moreover, for any
integer n, we have

F2
λ (α, η) = Fλ(F1λ(α, η), F2λ(α, η)) = (F1λ(F1λ(α, η), F2λ(α, η)), F2λ(F1λ(α, η), F2λ(α, η))),

where

Fiλ(F1λ(α, η), F2λ(α, η)) ≥ 〈Fiλ, (F1λ(α, η), F2λ(α, η))〉ei
≥ 〈Fiλ, (〈F1λ, (α, η)〉e1, 〈F2λ, (α, η)〉e2)〉ei
≥ min{〈F1λ, (α, η)〉, 〈F2λ, (α, η)〉}〈Fiλ, (e1, e2)〉ei
:= min〈Fλ, (α, η)〉〈Fiλ, (e1, e2)〉ei , i = 1, 2.
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It follows that

F2
λ (α, η) ≥ min〈Fλ, (α, η)〉(〈F1λ, (e1, e2)〉e1, 〈F2λ, (e1, e2)〉e2)

≥ min〈Fλ, (α, η)〉min〈Fλ, (e1, e2)〉(e1, e2).
By induction we have

Fn+1
λ (α, η) ≥ min〈Fλ, (α, η)〉 [min〈Fλ, (e1, e2)〉]n (e1, e2).

Then we obtain 〈F , Fn
λ (α, η)〉 > 0, n ≥ 1, for every pair (α, η) ∈ L2+(0, s+) ×

L2+(0, a+)\{(0, 0)},F ∈ (L2+(0, s+))∗ × (L2+(0, a+))∗\{(0, 0)}; that is, Fλ is a non-
supporting operator. In summary, Fλ is a compact and non-supporting operator.

Remark 5.3 More results on non-supporting operators are given in “Appendix A.1”.

Now we give a proposition on the spectrum of H with its dominant eigenvalue.

Proposition 5.4 We have the following statements:

(i) � := {λ ∈ C : 1 ∈ σ(Fλ)} = {λ ∈ C : 1 ∈ σP (Fλ)}, where σ(A) and σP (A) are the
spectrum and point spectrum of the operator A, respectively;

(ii) There exists a unique real number ϑ0 ∈ � such that r(Fϑ0) = 1 and ϑ0 > 0 if
r(F0) > 1; ϑ0 = 0 if r(F0) = 1; and ϑ0 < 0 if r(F0) < 1;

(iii) ϑ0 > sup{Reθ : λ ∈ �\{ϑ0}};
(iv) {λ ∈ C : λ ∈ ρ(H)} = {λ ∈ C : 1 ∈ ρ(Fθ )}, where ρ(A) is the resolvent set of A;
(v) ϑ0 is the dominant eigenvalue of H; i.e. ϑ0 is greater than all real parts of eigenvalues

of H. Moreover, it is a simple eigenvalue of H;
(vi) ϑ0 = s(H) := sup{Reλ : λ ∈ σ(H)}.

We refer to Kang et al. [31] for the proof and for more results on population models with
two physiological structures in L1+((0, s+) × (0, a+)).

Note that by Proposition 5.4 the eigenvalues of H are countable. Thus, we can denote
the eigenvalues of H by {ϑ0, ϑ1, ϑ2, . . .} to distinguish those with a nonlocal operator. As
before, we can rearrange {ϑ j } in the following way:

ϑ0 > Reϑ1 ≥ Reϑ2 ≥ · · ·
For any i, j ≥ 0, σ + λi 
= ϑ j , define

φψ(a, s, x) =
∞∑

i=0

((σ + λi )I − H)−1〈ψ(a, s, ·), ϕi 〉ϕi (x),

where 〈ψ(a, s, ·), ϕi 〉 = ∫

�
ψ(a, s, x)ϕi (x)dx . Now following the same steps as the age-

structured model with the nonlocal diffusion in the Sect. 2.1, we can obtain similar results as
in Theorems 2.2, 2.3 and 2.5.

Remark 5.5 There is only a slight difference between these two cases once one verifies that
Ã is a dissipative operator. We point it out here.

〈 Ãφ, φ〉 =
∫

(0,a+)×(0,s+)×�

−∂φ(a, s, x)

∂a
φ(a, s, x)dadsdx

−
∫

(0,a+)×(0,s+)×�

∂φ(a, s, x)

∂s
φ(a, s, x)dadsdx
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−
∫

(0,a+)×(0,s+)×�

μ(a, s)|φ(a, s, x)|2dadsdx

+
∫

(0,a+)×(0,s+)×�

(J ∗ φ(a, s, x) − φ(a, s, x))φ(a, s, x)dadsdx

≤ 1

2

∫

(0,a+)×�

|φ(a, 0, x)|2dadx + 1

2

∫

(0,s+)×�

|φ(0, s, x)|2dsdx

= 1

2

∫

(0,a+)×�

[∫ a+

0

∫ s+

0
χ(a, p, s)φ(p, s, x)dsdp

]2

dadx

+1

2

∫

(0,s+)×�

[∫ s+

0

∫ a+

0
β(a, p, s)φ(a, p, x)dadp

]2

dsdx

≤ 1

2

∫ a+

0

∫ a+

0

∫ s+

0
χ2(a, p, s)dsdpda

∫

�

∫ a+

0

∫ s+

0
φ2(p, s, x)dsdpdx

+1

2

∫ s+

0

∫ s+

0

∫ a+

0
β2(a, p, s)dadpds

∫

�

∫ s+

0

∫ a+

0
φ2(a, p, x)dadpdx

≤ 1

2
‖β‖2‖φ‖2

Ẽ
+ 1

2
‖χ‖2‖φ‖2

Ẽ
. (5.15)

6 Discussion

In modeling real world problems (such as transmission dynamics of infectious diseases,
population dynamics, cancer therapy, etc.), one usually needs to consider multiple internal
variables such as time, age, size, stage, location and so on. For example, for the transmission
of coronavirus disease (COVID-19) it is now known that the mortality rate in seniors is
significantly higher than in juniors, so age structure of the host population plays a crucial
role; when an individual who was infected in Asia or Europe is traveling to the U.S., it is
very likely to import the virus to there, thus the location and spatial movement of infected
individuals are also very important in modeling the spatio-temporal transmission dynamics
of COVID-19. Such models would be described by partial differential equations with time,
age, and spatial variable.

Great attention has been paid to the study of age-structured population dynamics with
random (Laplace) diffusion (see Chan and Guo [5], Di Blasio [14], Guo and Chan [18],
Gurtin [19], Gurtin and MacCamy [21], Hastings [23], Huyer [26], Langlais [34], MacCamy
[36], Walker [49,51], Webb [52], and a survey by Webb [55]). Notice that these models
are constructed under the assumption that species or individuals disperse in the connected
spatial domain randomly. As far as the geographical spread of infectious diseases such as
the spatial spread of COVID-19 by long distance traveling is concerned, the random Laplace
diffusion is no longer valid and nonlocal convolution diffusion seems to be more appropriate.
In fact nonlocal convolution diffusion processes are more applicable to many biological
populations and physical materials (Andreu-Vaillo et al. [1], Bates [3], Ruan [42]) compared
with random diffusion processes. However, there are very few theoretical studies on age-
structured populationmodelswith nonlocal diffusion due to the complexity of these equations
and the lack of methods and techniques.

In this paper we provided a systematical and theoretical treatment of the age-structured
problem (1.1) with nonlocal diffusion. More specifically, first we studied a special case
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when both birth and death rate functions are independent of the spatial variable. Then we
considered the general case when both birth and death rate functions are dependent of the
spatial variable. In each case we studied the semigroup of linear operators associated to the
nonlocal diffusion problem and used the spectral properties of its infinitesimal generator
to determine the stability of the zero steady state. In addition, we compared our results
with that for the age-structured model with random Laplace diffusion. It is shown that the
structure of the semigroup for the age-structured model with nonlocal diffusion is essentially
determined by those of the semigroup for the age-structured model without diffusion and the
nonlocal operator when birth and death rates are only dependent on age. Next we studied
the weak solution and the comparison principle for a nonautonomous and nonhomogeneous
age-structured model where birth and death rate functions depend on all variables t, a, x with
nonlocal diffusion. Then we generalized our techniques and results to a nonlocal diffusion
model with age and size structures.

We expect that age-structured models with nonlocal diffusion exhibit more interesting
dynamics such as the existence of bifurcations and traveling wave solutions and leave this
for future consideration. consideration. Also, it will be very interesting to propose an age-
structured susceptible-exposed-infectious-recovered (SEIR) model with nonlocal diffusion
to study the spatio-temporal transmission dynamics ofCOVID-19 via long-distance traveling.
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at Weihai for very helpful discussions and suggestions and in particular for the proof of Lemma 3.3. They are
also very grateful to the anonymous referee for his/her careful reading and valuable comments.

A Appendix

A.1 Positive Operators

In this section, we recall some definitions and results of positive operator theory on ordered
Banach spaces from Inaba [28,29]. For more complete exposition, we refer to Daners et al.
[12], Heijmans [24], Marek [38], and Sawashima [43].

Let E be a real or complex Banach space and E∗ be its dual (the space of all linear
functionals on E). Write the value of f ∈ E∗ at ψ ∈ E as 〈 f , ψ〉. A nonempty closed
subset E+ is called a cone if the following hold: (i) E+ + E+ ⊂ E+, (ii) λE+ ⊂ E+ for
λ ≥ 0, (iii) E+ ∩ (−E+) = {0}. Define the order in E such that x ≤ y if and only if
y − x ∈ E+ and x < y if and only if y − x ∈ E+\{0}. The cone E+ is called total if the set
{ψ − φ : ψ, φ ∈ E+} is dense in E . The dual cone E∗+ is the subset of E∗ consisting of all
positive linear functionals on E ; that is, f ∈ E∗+ if and only if 〈 f , ψ〉 ≥ 0 for all ψ ∈ E+.
ψ ∈ E+ is called a quasi-interior point if 〈 f , ψ〉 > 0 for all f ∈ E∗+\{0}. f ∈ E∗+ is said
to be strictly positive if 〈 f , ψ〉 > 0 for all ψ ∈ E+\{0}. The cone E+ is called generating if
E = E+ − E+ and is called normal if E∗ = E∗+ − E∗+.

An orderedBanach space (E,≤) is called aBanach lattice if (i) any two elements x, y ∈ E
have a supremum x∨ y = sup{x, y} and an infimum x∧ y = inf{x, y} in E; and (ii) |x | ≤ |y|
implies ‖x‖ ≤ ‖y‖ for x, y ∈ E, where the modulus of x is defined by |x | = x ∨ (−x).

Let B(E) be the set of bounded linear operators from E to E . T ∈ B(E) is said to be
positive if T (E+) ⊂ E+. For T , S ∈ B(E), we say T ≥ S if (T − S)(E+) ⊂ E+. A positive
operator T ∈ B(E) is called non-supporting if for every pair ψ ∈ E+\{0}, f ∈ E∗+\{0},
there exists a positive integer p = p(ψ, f ) such that 〈 f , T nψ〉 > 0 for all n ≥ p. The
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spectral radius of T ∈ B(E) is denoted by r(T ). σ(T ) denotes the spectrum of T and σP (T )

denotes the point spectrum of T .
From results in Sawashima [43] and Inaba [29], we state the following proposition.

Proposition A.1 Let E be aBanach lattice and let T ∈ B(E) be compact and non-supporting.
Then the following statements holds:

(i) r(T ) ∈ σP (T )\{0} and r(T ) is a simple pole of the resolvent; that is, r(T ) is an
algebraically simple eigenvalue of T ;

(ii) The eigenspace of T corresponding to r(T ) is one-dimensional and the corresponding
eigenvector ψ ∈ E+ is a quasi-interior point. The relation Tφ = μφ with φ ∈ E+
implies that φ = cψ for some constant c;

(iii) The eigenspace of T ∗ corresponding to r(T ) is also a one-dimensional subspace of E∗
spanned by a strictly positive functional f ∈ E∗+.

The following comparison theorem is due to Marek [38]:

Proposition A.2 Suppose that E is a Banach lattice. Let S and T be positive operators in
B(E).

(i) If S ≤ T , then r(S) ≤ r(T );
(ii) If S and T are semi-nonsupporting and r(S), r(T ) are respectively eigenvalues of S, T ,

then S ≤ T , S 
= T and r(T ) 
= 0 imply that r(S) < r(T ).

A.2 Linear Nonlocal Problems

We prove the following lemma which is actually Lemma 4.1 and the proof is motivated by
Anita [2].

Lemma A.3 If y0 ∈ L2(�) and g ∈ L2((0, T ) × �), then there exists a unique y ∈
C([0, T ], L2(�)) ∩ AC((0, T ), L2(�) ∩ L2((0, T ) × �) such that

⎧
⎪⎨

⎪⎩

∂ y
∂t − k(J ∗ u − u)(t, x) = g(t, x) a.e. in (0, T ) × �,

y(t, x) = 0, t > 0, x ∈ R
N\�,

y(0, x) = y0(x) a.e. in �.

(A.1)

If y0 ≥ 0 a.e. in� and g(t, x) ≥ 0 a.e. in (0, T )×�, then y(t, x) ≥ 0 a.e. (t, x) ∈ (0, T )×�.

Proof We are particularly interested in the constructive proof. Since we know that there is
an orthonormal basis {ϕ j } j∈N ⊂ L2(�) and {λ j } ⊂ R

+, 0 < λ0 < 1, λ j → 1 as j → ∞,

such that {
−(J ∗ ϕ j (x) − ϕ j (x)) = λ jϕ(x), x ∈ �,

ϕ j (x) = 0, x ∈ R
N\�.

(A.2)

We are looking for a solution y of the form

y(t, x) =
∞∑

j=0

y j (t)ϕ(x), (t, x) ∈ (0, T ) × �, (A.3)
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where y j are unknown functions. Formally substituting (A.3) into (A.1), we obtain for y j

the differential equations
{

(y j )′(t) + λ j ky j (t) = g j (t), t ∈ (0, T ),

y j (0) = y j
0 , j ∈ N,

(A.4)

where

y j
0 = (y0, ϕ j ) =

∫

�

y0(x)ϕ j (x)dx

and

g j (t) = (g(t), ϕ j ) =
∫

�

g(t, x)ϕ j (x)dx .

Here (·, ·) denotes the usual product in L2(�). Solving the problem (A.4), we obtain

y j (t) = e−λ j kt y j
0 +

∫ t

0
e−λ j k(t−s)g j (s)ds, t ∈ [0, T ],

and by (A.3) we have

y(t, x) =
∞∑

j=0

(

e−λ j kt y j
0 +

∫ t

0
e−λ j k(t−s)g j (s)ds

)

ϕ j (x). (A.5)

Let us prove that y ∈ C([0, T ], L2(�)). It is sufficient to show that the series
∞∑

j=0

(

e−λ j kt y j
0 +

∫ t

0
e−λ j k(t−s)g j (s)ds

)2

(A.6)

is uniformly convergent in [0, T ]. Indeed, we have

(y j )2(t) =
(

e−λ j kt y j
0 +

∫ t

0
e−λ j k(t−s)g j (s)ds

)2

≤ 2e−2λ j kt (y j
0 )2 + 2

(∫ t

0
e−λ j k(t−s)g j (s)ds

)2

≤ 2(y j
0 )2 + 2

∫ T

0
|g j (s)|2ds, ∀ j ∈ N, t ∈ [0, T ].

Now the Parseval’s formula allows us to conclude that

‖y0‖2L2(�)
=

∞∑

j=0

(y j
0 )2, ‖g(t)‖2L2(�)

=
∞∑

j=0

|g j (t)|2, t ∈ [0, T ].

Then by Beppo–Levi Theorem, we have

∞∑

j=0

∫ T

0
|g j (s)|2ds =

∫ T

0

⎛

⎝
∞∑

j=0

|g j (s)|2
⎞

⎠ ds =
∫

(0,T )×�

|g(t, x)|2dxdt .

This implies that the series (A.6) is uniformly convergent in [0, T ]. Next we shall prove that
y ∈ L2((0, T ) × �). By (A.5) we may rewrite y as

y(t, x) =
∞∑

j=0

√
1 + λ j y

j (t)φ j (x), (t, x) ∈ (0, T ) × �,
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whereφ j (x) = (
√
1 + λ j )

−1ϕ j . Since {φ j } j∈N is an orthonormal complete system in L2(�),
it suffices to show that the series

∞∑

j=0

(1 + λ j )‖y j‖2L2(0,T )

is convergent, or equivalently that the series

∞∑

j=0

λ j‖y j‖2L2(0,T )
(A.7)

is convergent. This yields by (A.6) that

λ j (y
j )2(t) ≤ 2λ j e

−2λ j kt (y j
0 )2 + 1

k

∫ T

0
|g j (s)|2ds, ∀ j ∈ N

and by Parseval’s formula we have

∞∑

j=0

λ j‖y j‖2L2(0,T )
≤ 1

k

(
‖y0‖2L2(�)

+ ‖g‖L2((0,T )×�)

)
.

It follows that (A.7) holds and so y ∈ L2((0, T ) × �).
In order to prove that yt ∈ L2((δ, T − δ), L2(�)), it suffices to show that the

series
∑∞

j=0 ‖y′
j‖2L2(δ,T−δ)

is convergent for any δ > 0 small enough. Since (y j )′(t) =
−λ j ky j (t) + g j (t), and since

∞∑

j=0

‖g j‖2L2(0,T )
= ‖g‖2L2((0,T )×�)

,

it suffices to prove the convergence of the series

∞∑

j=0

λ2j k
2‖y j‖2L2(δ,T−δ)

for any δ > 0 small enough. By the solution of y j , we have

λ2j k
2(y j )2(t) ≤ 2λ2j k

2e−2λ j kt (y j
0 )2 + 2λ2j k

2e−2λ j kt
(∫ t

0
eλ j ksds

)(∫ t

0
eλ j ks |g j (s)|2ds

)

≤ 2

t2
(y j

0 )2 + 2λ j ke
−λ j kt

∫ t

0
eλ j ks |g j (s)|2ds.

Since the series
∞∑

j=0

∫ T−δ

δ

2

t2
(y j

0 )2dt

is convergent and

∞∑

j=0

∫ T−δ

δ

λ j ke
−λ j kt

∫ t

0
eλ j ks |g j (s)|2dsdt ≤ 2

∞∑

j=0

∫ T

0
eλ j ks |g j (s)|2

∫ T

s
(−e−λ j kt )′dtds ≤ 2‖g‖2L2((0,T )×�)

,
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we conclude that
∞∑

j=0

‖(y j )′‖2L2(δ,T−δ)

is convergent. It follows that yt ∈ L2((δ, T − δ), L2(�)) and that

y ∈ AC((0, T ), L2(�)).

For now we mollify the initial data y0 and the force term g by a positive smooth function
ρε = ρε(x), denote them by y0ε := ρε ∗ y0 and gε := ρε ∗g, respectively, where ∗ represents
the convolution. It follows that the solution yε will be smooth. Let us now consider the
mollified solution yε and assume by contradiction that yε(t, x) is negative somewhere. Let
vε(t, x) = yε(t, x) + δt with δ so small that vε is still negative somewhere. Then, if (t0, x0)
is a point where vε attains its negative minimum, we have t0 > 0 and

vεt (t0, x0) = y(t0, x0) + δ >

∫

RN
J (x − z)yε((t0, z) − yε(t0, x0))dz

=
∫

RN
J (x − z)(vε(t0, y) − vε(t0, y0))dy ≥ 0, (A.8)

which is a contradiction. Thus, yε ≥ 0. Since yε(t, ·) → y(t, ·) in L2(�) for any t ∈ (0, T )

as ε → 0 and ρε is positive, it implies that y ≥ 0 a.e. ��
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