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Abstract
This work concerns the local well-posedness to the Cauchy problem of a fully dispersive
Boussinesq systemwhichmodels fully dispersivewater waves in two and three spatial dimen-
sions. Our purpose is to understand the modified energy approach (Kalisch and Pilod in Proc
AmMath Soc 147:2545–2559, 2019) in a different point view by utilizing the symmetrization
of hyperbolic systems which produces an equivalent modified energy.
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1 Introduction andMain Results

The one-dimensional fully dispersive Boussinesq system is governed by{
∂tη = −K∂xu − ∂x (ηu),

∂t u = −∂xη − u∂xu,
(1.1)

here t, x ∈ R, and the surface elevation η and the velocity u at the surface are real functions.
We also consider the two-dimensional fully dispersive Boussinesq system which reads as:⎧⎨

⎩
∂tη = −Kdivv − div(ηv),

∂tv = −∇η − 1

2
∇|v|2, (1.2)

in which t ∈ R, x = (x1, x2) ∈ R
2 and the unknowns η ∈ R, v = (v1, v2) ∈ R

2. The
operatorK is a Fouriermultiplier with symbolm ∈ Sa∞(Rd), d = 1 or 2 for some a ∈ R\{0},
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that is

F(K f )(ξ) = m(ξ) f̂ (ξ), ∀ f ∈ S(Rd),

for some smooth even function m : R
d → R

d with the properties

m(ξ) � (1 + |ξ |)a, (1.3)

and

|m′(ξ)| � (1 + |ξ |)a−1. (1.4)

The system (1.1) was formally derived in [1,16] from the incompressible Euler equations
to model fully dispersive water waves whose propagation is allowed to be both left- and
rightward, andwas also proposed in [13,14,19] (aswell as the system (1.2)) as a full dispersion
system in the Boussinesq regime with the dispersion of the water waves system. This model
is the two-way equivalent of the one-dimensional Whitham equation

∂t u = −K1/2∂xu − u∂xu,

with m(ξ) = tanh(ξ)/ξ , which has taken a vast of attractions (we refer to [7] for a fairly
complete list of references). There have been several investigations on the system (1.1) with
m(ξ) = tanh(ξ)/ξ [which corresponds to a = −1 in (1.3)]: local well-posedness [13,18], a
logarithmically cusped wave of greatest height [6], existence of solitary wave solutions [17],
and numerical results [3,4,21]. We should point out that the assumption in [13,18] on the
initial surface elevation η0 ≥ C > 0 is nonphysical, which only yields the well-posedness
in homogeneous Sobolev spaces, however the Cauchy problem of (1.1) by this choice of
symbol is probably ill-posed for negative initial surface elevation (see a heuristic argument
in [13]).

When a > 0 in (1.3), because of the strong dispersion, the system (1.1) exhibits differ-
ent phenomenon regarding well-posedness. Very recently, considering the effect of surface
tension, i.e., m(ξ) = (tanh(|ξ |)/|ξ |)(1 + |ξ |2) [which corresponds to a = 1 in (1.3)], the
well-posedness in Sobolev spaces was shown in [10] for the Cauchy problem of the system
(1.1), as well as (1.2) with curl free initial velocity v0. Due to the lack of symmetry of the
nonlinearity, the usual energy estimates only give

d

dt
(‖η‖2Hs + ‖u‖2

Hs+ 1
2
) � (1 + ‖η‖Hs + ‖u‖

Hs+ 1
2
)(‖η‖2Hs + ‖u‖2

Hs+ 1
2
)

+
∣∣∣∣
∫

ηJ s∂xu J
sη dx

∣∣∣∣ .
(1.5)

To close the resulting energy estimate, the crucial idea is to define a modified energy, i.e.,
adding a lower order cubic term

∫
η(J s∂xu)2 dx (which has no fixed sign) to the LHS

of (1.5). Another important observation is that the non-cavitation assumption on η (which
means that the surface elevation of the wave cannot touch the bottom of the fluid) allows
‖u‖2

Hs+ 1
2
to control the part ‖u‖2

Hs+ 1
2

+ ∫
η(J s∂xu)2 dx of the modified energy from below.

Besides, the authors also used quite a few tricks such as some operator decompositions (to
reformulate the system (1.1)), and the estimate comparing the Bessel and Riesz potentials,
and so on. Please refer to [5,8,9,12] for other applications of modified energy approaches in
some related contexts of dispersive equations. We also refer to [13,15] for discussions and
interesting issues about the influence of dispersion on the lifespan of solutions to dispersive
perturbations of hyperbolic quasi-linear equations or systems which typically arise in water
waves theory.
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Inspired by [10,13], our purpose is to understand the modified energy approach in a
different point view. Our idea is to use symmetrization of hyperbolic systems, which will
help us to find the modified energy easily. The energy estimates are straightforward and
yield

d

dt

∫ (
(J sη)2 + η(J su)2 + (

√
KJ su)2

)
dx

� (‖η‖Hs + ‖u‖Hs + ‖η‖Hs‖u‖Hs )3 + ‖u‖Hs‖u‖2
Hs+ a

2
. (1.6)

The integration in the LHS of (1.6) is exactly the modified energy that we need. Notice that∫
(
√
KJ su)2 dx � ‖u‖2

Hs+ a
2
,

so we see that this modified energy is essentially same to the one in [10]. On the other hand,
this zeroth-order [s = 0] modified energy is corresponding to the Hamiltonian of the system
(1.1) (up to a constant coefficient). We also refer to [20] for using the idea of symmetrization
to study dispersive systems.

We start from recalling the definition of the non-cavitation:

Definition 1.1 ([10]) Let d = 1 or 2 and k > d
2 .We say that the initial elevation η0 ∈ Hk(Rd)

satisfies the non-cavitation condition if there exists h0 ∈ (0, 1) such that

1 + η0(x) ≥ h0, x ∈ R
d . (1.7)

We then have similar results to [10] under the non-cavitation assumption:

Theorem 1.2 Let a > 0 and s > 3
2 + a. Assume that (η0, u0) ∈ Hs(R) × Hs+ a

2 (R) satisfy
the non-cavitation condition (1.7). Then there exist a positive number

T = T (‖(η0, u0)‖Hs (R)×Hs+ a
2 (R)

)

and a unique solution

(η, u) ∈ C
([0, T ]; Hs(R) × Hs+ a

2 (R)
)

to (1.1) with (η, u)(0, x) = (η0, u0)(x). In addition, the flow function that maps initial data
to solutions is continuous.

Theorem 1.3 Let a > 0 and s > 2+a. Assume that (η0, v0) ∈ Hs(R2)×Hs+ a
2 (R2)2 satisfy

the non-cavitation condition (1.7) and curlv0 = 0. Then there exist a positive number

T = T (‖(η0, v0)‖Hs (R2)×Hs+ a
2 (R2)2

)

and a unique solution

(η, v) ∈ C
([0, T ]; Hs(R2) × Hs+ a

2 (R2)2
)

to (1.2) with (η, v)(0, x) = (η0, v0)(x). In addition, the flow function that maps initial data
to solutions is continuous.

To end this section, we include some notations frequently used throughout this paper. Let

〈x〉l = (1 + |x |2) l
2 and Ĵ l f (ξ) = 〈ξ 〉l f̂ (ξ), and denote by Hl the L2 based Sobolev space

with the norm ‖ · ‖Hl = ‖J l · ‖L2 . The notation C always denotes a nonnegative universal
constant which may be different from line to line but is independent of the parameters
involved. Otherwise, we will specify it by the notationC(a, b, . . .). We write f � g [ f � g]
when f ≤ Cg [ f ≥ Cg], and f � g when f � g � f .
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2 Proof of Theorem 1.2

2.1 Energy Estimates

Denote

E(η, u)(t) =
∫ (

(J sη)2 + η(J su)2 + (
√
KJ su)2

)
dx . (2.1)

We priorly assume the solution η satisfies the non-cavitation assumption: there exists h1 ∈
(0, 1) such that

1 + η(t, x) ≥ h1, (x, t) ∈ R × [0, T ], (2.2)

and the upper bound assumption: there exists h2 > 0 such that

η(t, x) ≤ h2, (x, t) ∈ R × [0, T ], (2.3)

where the time T will be determined by the energy estimate below, and aim to show that
there exists some appropriately small positive number T such that

E(η, u)(t) ≤ C(T , a, h1, h2)E(η, u)(0), ∀t ∈ [0, T ]. (2.4)

To prove (2.4), we will use the idea of symmetrization of hyperbolic systems, which will
help us to find the modified energy E(η, u)(t) in (2.1) easily. Let

A =
[
1 0
0 η

]
, B =

[
u η

η ηu

]
, U =

[
η

u

]
, G =

[K∂xu
0

]
.

Multiplying (1.1) by the matrix A yields the following system

A∂tU + B∂xU + G = 0. (2.5)

Applying J s to (2.5) and multiplying it by J sU give

1

2

d

dt

∫
J sU · A · J sU dx

= 1

2

∫
J sU · ∂t A · J sU dx︸ ︷︷ ︸

I1

−
∫

J sU · [J s(A∂tU ) − AJs∂tU ] dx︸ ︷︷ ︸
I2

−
∫

J sU · [J s(B∂xU ) − BJs∂xU ] dx︸ ︷︷ ︸
I3

−
∫

J sU · B · ∂x J
sU dx︸ ︷︷ ︸

I4

−
∫

J sU · J sG dx︸ ︷︷ ︸
I5

.

(2.6)

The terms I2, I3 and I4 come from the hyperbolic parts [do not involve the Fourier multiplier
K], and therefore can be handled either by Kato–Ponce’s commutator estimates [11] or by
integration by parts to obtain

|I2| + |I3| + |I4| � (‖η‖Hs + ‖u‖Hs + ‖η‖Hs‖u‖Hs )3. (2.7)
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It remains to treat the terms I1 and I5. In view of (1.1)1, we estimate

|I1| = 1

2

∣∣∣∣
∫

[K∂xu + ∂x (ηu)](J su)2 dx

∣∣∣∣ � ‖K∂xu + ∂x (ηu)‖L∞‖u‖2Hs

� (‖u‖
H

3
2 +a+δ

+ ‖η‖
H

3
2 +δ

‖u‖
H

3
2 +δ

)‖u‖2Hs � (1 + ‖η‖Hs )‖u‖3Hs ,

(2.8)

where we have used (1.3), and the embedding H
1
2+δ(R) ↪→ L∞(R)with δ ∈ (0, s− 3

2 −a).
Using integration by parts, one calculates

I5 = −
∫ √

KJ s∂xη · √
KJ su dx =

∫ √
KJ s(∂t u + u∂xu) · √

KJ su dx

= 1

2

d

dt

∫
(
√
KJ su)2 dx +

∫ √
KJ s(u∂xu) · √

KJ su dx︸ ︷︷ ︸
I6

,
(2.9)

where we have inserted the Eq. (1.1)2 into the second equality. To estimate the term I6, we
commute u out as follows:

I6 =
∫

u
√
KJ s∂xu · √

KJ su dx︸ ︷︷ ︸
I7

+
∫

[√KJ s, u]∂xu · √
KJ su dx︸ ︷︷ ︸

I8

.

The term I7, by integration by parts, can be easily controlled by

|I7| = 1

2

∣∣∣∣
∫

∂xu
(√KJ su

)2 dx∣∣∣∣ � ‖u‖Hs‖u‖2
Hs+ a

2
. (2.10)

We next estimate the term I8. By the Plancherel’s theorem, we rewrite

∥∥∥[√KJ s, u]∂xu
∥∥∥
L2

=
∥∥∥∥
∫ (√

m(ξ)〈ξ 〉s − √
m(η)〈η〉s

)
û(ξ − η)∂̂xu(η) dη

∥∥∥∥
L2

ξ

. (2.11)

Via the mean value theorem, there exists some θ ∈ (0, 1) such that

√
m(ξ)〈ξ 〉s − √

m(η)〈η〉s =
(

m′(ζ )

2
√
m(ζ )

〈ζ 〉s + s
√
m(ζ )〈ζ 〉s−2ζ

)
(ξ − η),

with ζ = θ(ξ − η) + (1− θ)η. Then the above equality and the assumptions (1.3) and (1.4)
imply ∣∣∣√m(ξ)〈ξ 〉s − √

m(η)〈η〉s
∣∣∣ � 〈ζ 〉s+ a

2 −1|ξ − η|
� 〈ξ − η〉s+ a

2 −1|ξ − η| + |ξ − η|〈η〉s+ a
2 −1.

(2.12)

Notice that ∥∥∥∥
∫ ∣∣ f̂ (ξ − η)ĝ(η)

∣∣ dη∥∥∥∥
L2

ξ

≤
∫ (∫ ∣∣ f̂ (ξ − η)

∣∣2 dξ)1/2 ∣∣̂g(η)
∣∣ dη

� ‖ f ‖L2

(∫
(1 + |η|2)b∣∣̂g(η)

∣∣2 dη)1/2 (∫
(1 + |η|2)−b dη

)1/2

� ‖ f ‖L2‖g‖Hb ,
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for any b > 1/2. Substituting (2.12) into (2.11) gives∥∥∥[√KJ s, u]∂xu
∥∥∥
L2

� ‖∂xu‖H1‖J s+ a
2 −1∂xu‖L2 ,

which leads to

|I8| � ‖u‖Hs‖u‖2
Hs+ a

2
. (2.13)

It follows from (2.6)–(2.10) and (2.13) that

d

dt

∫ (
(J sη)2 + η(J su)2 + (

√
KJ su)2

)
dx

� (‖η‖Hs + ‖u‖Hs + ‖η‖Hs‖u‖Hs )3 + ‖u‖Hs‖u‖2
Hs+ a

2
. (2.14)

By the assumption (1.3), we have

c−1‖u‖2
Hs+ a

2
≤

∫
(
√
KJ su)2 dx ≤ c‖u‖2

Hs+ a
2
. (2.15)

We then claim that

E(η, u)(t) �a,h1,h2 ‖η‖2Hs + ‖u‖2
Hs+ a

2
, t ∈ [0, T ]. (2.16)

The upper bound estimate of (2.16) is an easy consequence of (2.3).We now turn to the lower
bound estimate of (2.16). The following observation is due to [10]. By the non-cavitation
assumption (2.2), one may estimate∫ (

η(J su)2 + (
√
KJ su)2

)
dx ≥

∫ (
η(J su)2 + c−1(J s+

a
2 u)2

)
dx

≥ h1

∫
(1 + ξ2)s |û(ξ)|2 dξ +

∫ (
c−1(1 + ξ2)s+

a
2 − (1 + ξ2)s

)
|û(ξ)|2 dξ

≥ h1C(a)

∫
|ξ |≤ξ0

(1 + ξ2)s+
a
2 |û(ξ)|2 dξ + C(a)

∫
|ξ |≥ξ0

(1 + ξ2)s+
a
2 |û(ξ)|2 dξ

≥ C(a, h1)
∫

(J s+
a
2 u)2 dx,

where ξ0 > 0 is a number depending on a and c. This finishes the proof of (2.16). We then
conclude from (2.14)–(2.16) that

E(η, u)(t) �a,h1,h2 E(η, u)(0) +
∫ t

0

(
E(η, u)(τ ) + E3(η, u)(τ )

)
dτ,

which together with the Grönwall’s inequality completes the proof of (2.4).

2.2 Estimates for the Differences of Two Solutions

Assume i = 1, 2. Let (ηi , ui ) be the solutions of (1.1) with the initial data (ηi 0, ui 0) and
satisfy the non-cavitation assumption (2.2) and the upper bound assumption (2.3). This
subsection we instead consider the energy

Ẽ(t) =
∫ (

(η1 − η2)
2 + η1(u1 − u2)

2 + (
J

a
2 (u1 − u2)

)2) dx,
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and aim to show

Ẽ(t) ≤ C Ẽ(0), ∀t ∈ [0, T ], (2.17)

where T is defined in (2.4) and C = C
(
T , a, h1, h2, E(η1, u1)(0), E(η2, u2)(0)

)
.

We let

Ai =
[
1 0
0 ηi

]
, Bi =

[
ui ηi
ηi ηi ui

]
, Ui =

[
ηi
ui

]
, Gi =

[K∂xui
0

]
,

and takeU = U1 andU = U2 in (2.5), and then find that Ũ = U1 −U2 solves the following
system

A1∂t Ũ + B1∂xŨ + (A1 − A2)∂tU2 + (B1 − B2)∂xU2 + (G1 − G2) = 0. (2.18)

Multiplying (2.18) by Ũ yields

1

2

d

dt

∫
Ũ · A1 · Ũ dx = 1

2

∫
Ũ · ∂t A1 · Ũ dx︸ ︷︷ ︸

I I1

−
∫

Ũ · B1 · ∂xŨ dx︸ ︷︷ ︸
I I2

−
∫

Ũ · (A1 − A2) · ∂tU2 dx︸ ︷︷ ︸
I I3

−
∫

Ũ · (B1 − B2) · ∂xU2 dx︸ ︷︷ ︸
I I4

−
∫

Ũ · (G1 − G2) dx︸ ︷︷ ︸
I I5

. (2.19)

Since I I2, I I3 and I I4 are usual hyperbolic terms, standard estimates give

|I I2| + |I I3| + |I I4|
� (‖η1‖Hs + ‖u1‖Hs + ‖η1‖Hs‖u1‖Hs + ‖u1‖2Hs )

× (‖η1 − η2‖2L2 + ‖u1 − u2‖2L2 + ‖η1 − η2‖L2‖u1 − u2‖L2).

(2.20)

In light of the Eqs. (1.1)1 and the assumption (1.3), we have

|I I1| = 1

2

∣∣∣∣
∫

[K∂xu1 + ∂x (η1u1)](u1 − u2)
2 dx

∣∣∣∣
� (‖u1‖Hs + ‖η1‖Hs‖u1‖Hs )‖u1 − u2‖2L2 . (2.21)

We now handle the term I I5 as follows:

I I5 = −
∫ √

K∂x (η1 − η2) · √
K(u1 − u2) dx

=
∫ √

K(
∂t (u1 − u2) + u1∂xu1 − u2∂xu2

) · √
K(u1 − u2) dx

= 1

2

d

dt

∫ (√K(u1 − u2)
)2 dx +

∫ √
K(

u1∂xu1 − u2∂xu2
) · √

K(u1 − u2) dx︸ ︷︷ ︸
I I6

,

(2.22)
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wherewe have inserted the Eq. (1.1)2 into the second equality. The term I I6 can be dominated
by

|I I6| � (‖u1‖2Hs + ‖u2‖2Hs )‖u1 − u2‖H a
2
. (2.23)

It follows from (2.19)–(2.23) that

d

dt

∫ (
(η1 − η2)

2 + η1(u1 − u2)
2 + (√K(u1 − u2)

)2) dx

≤ C
(
E(η1, u1)(t), E(η2, u2)(t)

)(‖η1 − η2‖2L2 + ‖η1 − η2‖L2‖u1 − u2‖L2

+‖u1 − u2‖2L2 + ‖u1 − u2‖H a
2

)
. (2.24)

Since η1 satisfies the non-cavitation assumption (2.2), like (2.16), the following equivalence
holds:

Ẽ(t) �a,h1,h2 ‖η1 − η2‖2L2 + ‖u1 − u2‖2
H

a
2
, t ∈ [0, T ].

We then see from (2.24) that

Ẽ(t) �a,h1,h2 Ẽ(0) +
∫ t

0
C

(
E(η1, u1)(τ ), E(η2, u2)(τ )

)(
Ẽ(τ ) + Ẽ1/2(τ )

)
dτ.

This estimate completes the proof of (2.17).

2.3 Conclusion

To verify the non-cavitation assumption (2.2), one first rewrites

1 + η(t, x) = 1 + η0(x) +
∫ t

0
∂tη(τ, x) dτ ≥ h0 − t sup

τ∈[0,t]
‖∂tη(τ, ·)‖L∞

x
,

and then uses the Eq. (1.1)1 together with the energy estimate (2.4) to control ‖∂tη(τ, ·)‖L∞
x
,

and finally obtains

1 + η(t, x) ≥ h0/2 =: h1, (x, t) ∈ R × [0, T ],
by carefully choosing the time T . The upper bound assumption (2.3) is a consequence of the
energy estimate (2.4) and Sobolev embedding. We refer to [10] for the full details.

Based on the energy estimate (2.4) and the estimate for the differences of two solutions
(2.17), it is a standard process following a compactness argument to construct a solution to
the Cauchy problem of (1.1) and show the uniqueness of solutions in the solution class stated
in Theorem 1.2. Finally one can apply the Bona–Smith argument [2] to verify the continuity
of the flow map.

3 Proof of Theorem 1.3

3.1 Energy Estimates

Taking curl on the equation of v in (1.2) we see that curlv = curlv0 = 0, i.e.,

∂x1v2 = ∂x2v1. (3.1)
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we then use (3.1) to rewrite the system (1.2) into the following form

⎧⎪⎨
⎪⎩

∂tη = −K(∂x1v1 + ∂x2v2) − (v1∂x1η + v2∂x2η) − η(∂x1v1 + ∂x2v2),

∂tv1 = −∂x1η − v1∂x1v1 − v2∂x2v1,

∂tv2 = −∂x2η − v1∂x1v2 − v2∂x2v2.

(3.2)

Now the system (3.2) allows us to perform the idea of symmetrization as the system (1.1).
Let

A =
⎡
⎣1 0 0
0 η 0
0 0 η

⎤
⎦ , B1 =

⎡
⎣v1 η 0

η ηv1 0
0 0 0

⎤
⎦ , B2 =

⎡
⎣v2 0 η

0 ηv2 0
η 0 ηv2

⎤
⎦ ,

U =
⎡
⎣ η

v1
v2

⎤
⎦ , G =

⎡
⎣K(∂x1v1 + ∂x2v2)

0
0

⎤
⎦ .

Multiplying (3.2) by the matrix A yields the following system

A∂tU + B1∂x1U + B2∂x2U + G = 0. (3.3)

Applying J s to (3.3) and multiplying it by J sU show

1

2

d

dt

∫
J sU · A · J sU dx

= 1

2

∫
J sU · ∂tA · J sU dx︸ ︷︷ ︸

I I I1

−
∫

J sU · [J s(A∂tU) − AJ s∂tU] dx︸ ︷︷ ︸
I I I2

−
∫

J sU · [J s(B1∂x1U) − B1 J
s∂x1U] dx︸ ︷︷ ︸

I I I3

−
∫

J sU · B1 · ∂x1 J
sU dx︸ ︷︷ ︸

I I I4

−
∫

J sU · [J s(B2∂x2U) − B2 J
s∂x2U] dx︸ ︷︷ ︸

I I I5

−
∫

J sU · B2 · ∂x2 J
sU dx︸ ︷︷ ︸

I I I6

−
∫

J sU · J sG dx︸ ︷︷ ︸
I I I7

. (3.4)

Notice s > 2 + a and H1+δ(R2) ↪→ L∞(R2) with δ ∈ (0, s − 2 − a). Proceed as Sect. 2.1
by using Kato–Ponce’s commutator estimates or integration by parts, we then can estimate

6∑
j=1

|I I I j | � (‖η‖Hs + ‖v‖Hs + ‖η‖Hs‖v‖Hs )3. (3.5)
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We are left to handle the term I I I7. Using integration by parts and the Eqs. (3.2)2 and (3.2)3,
we calculate

I I I7 = −
∫ √

KJ s∂x1η · √
KJ sv1 dx −

∫ √
KJ s∂x2η · √

KJ sv2 dx

=
∫ √

KJ s(∂tv1 + v1∂x1v1 + v2∂x2v1) · √
KJ sv1 dx

+
∫ √

KJ s(∂tv2 + v2∂x2v2 + v1∂x1v2) · √
KJ sv2 dx

= 1

2

d

dt

∫ (
(
√
KJ sv1)

2 + (
√
KJ sv2)

2
)
dx +

∫ √
KJ s(v1∂x1v1) · √

KJ sv1 dx︸ ︷︷ ︸
I I I8

+
∫ √

KJ s(v2∂x2v1) · √
KJ sv1 dx︸ ︷︷ ︸

I I I9

+
∫ √

KJ s(v2∂x1v2) · √
KJ sv2 dx︸ ︷︷ ︸

I I I10

+
∫ √

KJ s(v1∂x1v2) · √
KJ sv2 dx︸ ︷︷ ︸

I I I11

. (3.6)

To estimate the term I I I8, we commute v1 out as:

I I I8 =
∫

v1
√
KJ s∂x1v1 · √

KJ sv1 dx︸ ︷︷ ︸
I I I12

+
∫

[√KJ s, v1]∂x1v1 · √
KJ sv1 dx︸ ︷︷ ︸

I I I13

.

Integration by parts yields

|I I I12| � ‖v‖Hs‖v1‖2
Hs+ a

2
.

Using the assumptions (1.3) and (1.4), in a similar fashion to (2.13), we obtain

|I I I13| � ‖v‖Hs‖v1‖2
Hs+ a

2
.

One can similarly treat I I I9, I I I10 and I I I11 and finally conclude that

11∑
j=8

|I I I j | � ‖v‖Hs (‖v1‖2
Hs+ a

2
+ ‖v2‖2

Hs+ a
2
). (3.7)

It follows from (3.4)–(3.7) that

d

dt

∫ (
(J sη)2 + η

(
(J sv1)

2 + (J sv2)
2) + (

(
√
KJ sv1)

2 + (
√
KJ sv2)

2)) dx

� (‖η‖Hs + ‖v‖Hs + ‖η‖Hs‖v‖Hs )3 + ‖v‖Hs (‖v1‖2
Hs+ a

2
+ ‖v1‖2

Hs+ a
2
).

We instead consider the functional

H(η, v)(t) =
∫ (

(J sη)2 + η
(
(J sv1)

2 + (J sv2)
2) + (J s+

a
2 v1)

2

+ (
(
√
KJ sv1)

2 + (
√
KJ sv2)

2)) dx,
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and assume the solution η satisfies the non-cavitation assumption: there exists h1 ∈ (0, 1)
such that

1 + η(t, x) ≥ h1, (x, t) ∈ R
2 × [0, T ], (3.8)

and the upper bound assumption: there exists h2 > 0 such that

η(t, x) ≤ h2, (x, t) ∈ R
2 × [0, T ], (3.9)

where the time T will be determined by the energy estimate below. Then, as Sect. 2.1 by
using (3.8) and (3.9), one obtains

H(η, v)(t) �a,h1,h2
H(η, u)(0) +

∫ t

0

(
H(η, v)(τ ) + H(η, v)3(τ )

)
dτ,

which together with the Grönwall’s inequality implies that there exists some appropriately
small positive number T such that

H(η, v)(t) ≤ C(T , a, h1, h2)H(η, v)(0), ∀t ∈ [0, T ]. (3.10)

3.2 Estimates for the Differences of Two Solutions

Assume i = 1, 2. Let (ηi , vi ) be the solutions of (1.2) with the initial data (ηi 0, vi 0) and
satisfy the non-cavitation assumption (3.8) and the upper bound assumption (3.9). Consider
the evolutionary equations of the difference U1 − U2 and proceed as Sect. 2.2, we then can
show the estimate

H̃(t) ≤ C H̃(0), ∀t ∈ [0, T ],
where the functional H̃ is given by

H̃(t) =
∫ (

(η1 − η2)
2 + η1

(
(v11 − v12)

2 + (v21 − v22)
2)

+ (
J

a
2 (v11 − v12)

)2 + (
J

a
2 (v21 − v22)

)2) dx,

and T is determined in (3.10) and C = C
(
T , a, h1, h2, H(η1, v1)(0), H(η2, v2)(0)

)
.
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