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Abstract
We show that a linear Young differential equation generates a topological two-parameter
flow, thus the notions of Lyapunov exponents and Lyapunov spectrum are well-defined. The
spectrum can be computed using the discretized flow and is independent of the driving path
for triangular systemswhich are regular in the sense of Lyapunov. In the stochastic setting, the
system generates a stochastic two-parameter flow which satisfies the integrability condition,
hence the Lyapunov exponents are random variables of finite moments. Finally, we prove a
Millionshchikov theorem stating that almost all, in a sense of an invariant measure, linear
nonautonomous Young differential equations are Lyapunov regular.

Keywords Young differential equation · Two parameter flow · Lyapunov exponent ·
Lyapunov spectrum · Lyapunov regularity · Multiplicative ergodic theorem · Bebutov flow

1 Introduction

In this article we study the Lyapunov spectrum of the nonautonomous linear Young differ-
ential equation (abbreviated by YDE)

dx(t) = A(t)x(t)dt + C(t)x(t)dω(t), x(t0) = x0 ∈ R
d , t ≥ t0, (1.1)

where A,C are continuous matrix valued functions on [0,∞), and ω is a continuous path on
[0,∞) having finite p-th variation on each compact interval of [0,∞), for some p ∈ (1, 2).
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Such system (1.1) appears, for instance,when considering the linearization of the autonomous
Young differential equation

dy(t) = f (y(t))dt + g(y(t))dω(t) (1.2)

along any reference solution y(t, y0, ω). An example is when we would like to solve in
the pathwise sense stochastic differential equations driven by fractional Brownian motions
with Hurst index H ∈ ( 12 , 1) defined on a complete probability space (�,F,P) [24]. In
fact it follows from [5] that (1.2) under the stochastic setting also satisfies the integrability
condition.

The Eq. (1.1) can be rewritten in the integral form

x(t) = x0 +
∫ t

t0
A(s)x(s)ds +

∫ t

t0
C(s)x(s)dω(s), t ≥ t0, (1.3)

where the second integral is understood in the Young sense [28], which can also be presented
in terms of fractional derivatives [29]. Under some mild conditions, the unique solution of
(1.1) generates a two-parameter flow �ω(t0, t), as seen in [9]. Under a certain stochastic
setting, (1.1) actually generates a stochastic two-parameter flow in the sense of Kunita [16].

Our aim is to study the Lyapunov exponents and Lyapunov spectrum of the linear two-
parameter flow generated from Young Eq. (1.1). Notice that Lyapunov spectrums and its
splitting are the main content of the celebrated multiplicative ergodic theorem (MET) by
Oseledets [25]. It was also investigated by Millionshchikov in [18–21] for linear nonau-
tonomous differential equations. In the stochastic setting, the MET is also formulated for
random dynamical systems in [1, Chapter 3]. Further investigations can be found in [6–8,10]
for stochastic flows generated by nonautonomous linear stochastic differential equations
driven by standard Brownian motion.
For Young equations, we show that Lyapunov exponents can be computed based on the dis-
cretization scheme. Moreover, if the driving pathω satisfies certain conditions, the Lyapunov
spectrum can be computed independently of ω for triangular systems (i.e. both A,C are
upper triangular matrices) which are Lyapunov regular.

One important issue is the non-randomness of Lyapunov exponents when the system is
considered under a certain stochastic setting, namely if the driving path ω is a realization
of a certain stochastic noise. In case the system is driven by standard Brownian noises, a
filtration of independent σ− algebras can be constructed and the argument of Kolmogorov’s
zero-one law can be applied to prove the non-randomness of Lyapunov exponents, which are
measurable to tail events, see [7].
In general, the stochastic noise might be a fractional Brownian motion which is not Markov,
hence it is difficult to construct such a filtration and to apply the Kolmogorov’s zero-one law.
The question of non-randomness of Lyapunov spectrum is therefore still open. However, the
answer is affirmative for some special cases. For example, autonomous and periodic systems
can generate random dynamical systems satisfying the integrability condition, thus the Lya-
punov spectrum is non-random by the multiplicative ergodic theorem [1]. Our investigation
shows that the Lyapunov spectrum of triangular systems that are Lyapunov regular are also
non-random. In general, we expect that the statement of non-randomness of Lyapunov spec-
trum is still true for any Lyapunov regular system, although finding a counter-example of a
nonautonomous system with random Lyapunov spectrum also attracts our interest.

The paper is organized as follow. In Sect. 2, we prove in Proposition 2.4 the generation of
a two-parameter flow from the unique solution of (1.1). The concepts of Lyapunov exponents
and Lyapunov spectrum of system (1.1) are then defined in Sect. 3. Under the assumptions on
the driving path ω and on the coefficient functions, we prove in Theorem 3.3 that Lyapunov
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spectrum can be computed using the discretized flow and give an explicit formula of the
spectrum in Theorem 3.7 in case of triangular systems which are regular in the sense of
Lyapunov. Theorem 3.11 provides a criterion for a triangular system of YDE to be Lyapunov
regular. In Sect. 4, we consider the system under random perspectives in which the driving
path acts as a realization of a stochastic stationary process in a function space equipped with
a probabilistic framework. The system is then proved to generate a stochastic two-parameter
flow which satisfies the integrability condition, hence the Lyapunov exponents are proved in
Theorem 4.3 to be random variables of finite moments. Section 4.2 is devoted to study the
regularity of the system, where we prove a Millionshchikov Theorem 4.6 stating that almost
all, in a sense of an invariant measure, nonautonomous linear Young differential equations
are Lyapunov regular. We end up with a discussion on the non-randomness of Lyapunov
spectrum in some special cases, and raise this interesting question in general.

2 Preliminary

In this section we present some well-known facts of Young differential equations and two
parameter flows. Let 0 ≤ T1 < T2 < ∞. Denote by C([T1, T2],Rd×d) the Banach space of
continuous matrix-valued functions on [T1, T2] equipped with the sup norm ‖ · ‖∞,[T1,T2],
by Cr−var([T1, T2],Rd) the Banach space of bounded r−variation continuous functions on
[T1, T2] having values in Rd with the norm

‖u‖r−var,[T1,T2] = |u(T1)| + |||u|||r−var,[T1,T2] < ∞,

in which | · | is the Euclidean norm and |||·|||r−var,[T1,T2] is the seminorm defined by

|||u|||r−var,[T1,T2] =
(

sup
�(T1,T2)

n−1∑
i=0

|u(ti+1) − u(ti )|r
)1/r

, u ∈ Cr−var([T1, T2],Rd),

where the supremum is taken over thewhole class of finite partitions�(T1, T2) = {T1 = t0 <

t1 < · · · < tn = T2} of [T1, T2]. For each 0 < α < 1, we denote by Cα−Hol([T1, T2],Rd)

the space of α−Hölder continuous functions on [T1, T2] equipped with the norm

‖u‖α,[T1,T2] := ‖u‖∞,[T1,T2] + |||u|||α−Hol,[T1,T2] ,

in which ‖u‖∞,[T1,T2] := supt∈[T1,T2] |u(t)| and |||u|||α−Hol,[T1,T2] = supT1≤s<t≤T2
|u(t)−u(s)|

(t−s)α .

It is obvious that for all u ∈ Cα−Hol([T1, T2],Rd),

|||u|||r−var,[T1,T2] ≤ (T2 − T1)
α |||u|||α−Hol,[T1,T2] ,

with α = 1/r . Moreover, we have the following estimate, whose proof follows directly from
the definitions of the p−var seminorm and the sup norm and will be omitted here.

Lemma 2.1 Let t0 ≥ 0 and T > 0 be arbitrary. If C ∈ Cq−var([t0, t0 + T ],Rd×d), x ∈
Cq−var([t0, t0 + T ],Rd), then for all s < t in [t0, t0 + T ],

|||Cx |||q−var,[s,t] ≤ ‖C‖∞,[s,t] |||x |||q−var,[s,t] + ‖x‖∞,[s,t] |||C |||q−var,[s,t] .

Now, consider x ∈ Cq−var([T1, T2],Rd×m) and ω ∈ C p−var([T1, T2],Rm), p, q ≥ 1 and
1
p + 1

q > 1, the Young integral
∫ b
a x(t)dω(t) can be defined as

∫ b

a
x(t)dω(t) := lim|�|→0

∑
ti∈�

x(ti )(ω(ti+1) − ω(ti )),
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where the limit is taken on all finite partitions � = {T1 = t0 < t1 < . . . < tn = T2} with
|�| := max0≤i≤n−1 |ti+1− ti | (see [28, p. 264–265]). This integral satisfies additive property
by the construction, and the so-called Young–Loeve estimate [12, Theorem 6.8, p. 116]

∣∣∣
∫ t

s
x(u)dω(u) − x(s)[ω(t) − ω(s)]

∣∣∣ ≤ K |||x |||q−var,[s,t] |||ω|||p−var,[s,t] , (2.1)

where

K := (1 − 21−θ )−1, θ := 1

p
+ 1

q
> 1. (2.2)

Now for any ω ∈ C p−var([t0, t0 + T ],R) with some 1 < p < 2, we consider the
deterministic Young equation

x(t) = x0 +
∫ t

t0
A(s)x(s)ds +

∫ t

t0
C(s)x(s)dω(s), (2.3)

in which A ∈ C([t0, t0 + T ],Rd×d),C ∈ Cq−var([t0, t0 + T ],Rd×d) with q > p and
1
q + 1

p > 1. We first show that under mild conditions on coefficient functions A,C , (2.3) has

a unique solution in Cq−var([t0, t0 + T ],Rd).

Proposition 2.2 Fix [t0, t0 + T ] and consider ω varying as an element of the Banach space
C p−var([t0, t0 +T ]). Assume that A ∈ C([t0, t0 +T ],Rd×d),C ∈ Cq−var([t0, t0 +T ],Rd×d)

with q > p and 1
q + 1

p > 1. Then Eq. (2.3) has a unique solution x(·, t0, x0, ω) in the space

C p−var([t0, t0 + T ],Rd) which satisfies

(i) ‖x(·, t0, x0, ω)‖∞,[t0,t0+T ]

≤ |x0| exp
{
η
[
2 +

(2M∗

μ

)p(
T p + |||ω|||pp−var,[t0,t0+T ]

)]}
, (2.4)

(i i) |||x(·, t0, x0, ω)|||p−var,[t0,t0+T ]

≤ |x0| exp
{
(1 + η)

[
3 +

(2M∗

μ

)p(
T p + |||ω|||pp−var,[t0,t0+T ]

)]}
(2.5)

where

M∗ = M∗(t0, T ) := max{‖A‖∞,[t0,t0+T ], 2K‖C‖q−var,[t0,t0+T ]} < ∞, (2.6)

K is defined in (2.2), μ is a constant such that 0 < μ < min{1, M∗} and η = − log(1−μ).
In addition, the solution mapping

X : Rd × C p−var([t0, t0 + T ],R) −→ C p−var([t0, t0 + T ],Rd)

(x0, ω) 	→ x(·, t0, x0, ω).

is continuous w.r.t (x0, ω).

Proof See the “Appendix”. 
�
Remark 2.3 (i) Fix [t0, t0 + T ], by considering the backward equation similar to that of [9],

we can draw the same conclusions on the existence and uniqueness of the solution for
the backward equation at an arbitrary point a ∈ [t0, t0 + T ]. Moreover, it can be proved
that the solution mapping X is continuous with respect to (a, x0, ω) ∈ [t0, t0 + T ] ×
R
d × C p−var([t0, t0 + T ],R).
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(ii) If ω ∈ C1/p−Hol([t0, t0 + T ],R) ⊂ C p−var([t0, t0 + T ],R) then similar arguments prove
that the solution is 1/p−Hölder continuous and the solution mapping X is continuous
with respect to (a, x0, ω) ∈ [t0, t0 + T ] × R

d × C1/p−Hol([t0, t0 + T ],R).

For any t0 ≤ t1 ≤ t2 ≤ t0 + T the Cauchy operator �ω(t1, t2) : Rd → R
d of the YDE

(1.1) is defined as �ω(t1, t2)xt1 := x(t2, t1, xt1 , ω) for any vector xt1 ∈ R
d .

Following [1, p. 551], a family of mappings Xs,t : R
d → R

d depending on two real
variables s, t ∈ [a, b] ⊂ R is called a two-parameter flow of homeomorphisms of Rd on
[a, b] if the mapping Xs,t is a homeomorphism on R

d ; Xs,s = id; X−1
s,t = Xt,s and Xs,t =

Xu,t ◦ Xs,u for any s, t, u ∈ [a, b]. If in addition, Xs,t is a linear operator for all s, t ∈ [a, b],
then the family Xs,t is called a two-parameter flow of linear operators of Rd on [a, b].
Proposition 2.4 Suppose that the assumptions of Proposition 2.2 are satisfied. Then the
Eq. (1.1) generates a two-parameter flow of linear operators of Rd by means of its Cauchy
operators.

Proof First note that the same method in the proof of Theorem 2.2 can be applied to prove
the existence and uniqueness of solution�ω(t0, t) of the matrix-valued differential equation

�(t) = I +
∫ t

t0
A(s)�(s)ds +

∫ t

t0
C(s)�(s)dω(s), t ∈ [t0, t0 + T ]. (2.7)

It is easy to show that the solution �ω(·, ·) : 
2 → R
d×d , with 
2 := {(s, t) ∈ [t0, t0 +

T ] × [t0, t0 + T ] : s ≤ t}, has properties that �ω(s, s) = Id×d for all s ≥ 0 and

�ω(s, t) ◦ �ω(τ, s) = �ω(τ, t), ∀t0 ≤ τ ≤ s ≤ t ≤ t0 + T . (2.8)

The solution �ω(·, ·) is the mapping along trajectories of (2.3) in forward time since YDE is
directed. Like the ODE case, in our setting, the solution of the matrix Eq. (2.7) is the Cauchy
operator of the vector Eq. (2.3).

Next, consider the adjoint matrix-valued pathwise differential equation

d�(t0, t) = − AT (t)�(t0, t)dt − CT (t)�(t0, t)dω(t) (2.9)

with initial value�(t0, t0) = I , and AT (·),CT (·) are the transposematrices of A(·) andC(·),
respectively. By similar arguments we can prove that there exists a unique solution �ω(t0, t)
of (2.9). Introduce the transformation u(t) = �ω(t0, t)T x(t). By the formula of integration
by parts (see [12, Proposition 6.12 and Exercise 6.13] or a fractional version in Zähle [29]),
we conclude that

du(t) = [d�ω(t0, t)
T ]x(t) + �ω(t0, t)

T dx(t)

= [−�ω(t0, t)
T A(t)dt − �ω(t0, t)

T C(t)dω(t)]x(t)
+�ω(t0, t)

T [A(t)x(t)dt + C(t)x(t)dω(t)]
= 0.

In other words, u(t) = u(t0) = x(t0) = x0 or equivalently �ω(t0, t)T x(t) = x0. Combining
with � in Eq. (2.7) we conclude that �ω(t0, t)T�ω(t0, t)x0 = x0 for all x0 ∈ R

d , hence
there exists �ω(t0, t)−1 and �ω(t0, t)−1 = �ω(t0, t)T . As a result, for any x0 �= 0 we have
�ω(t0, t)x0 �= 0 for all t ≥ t0. Thus we showed that the linear operator �ω(t0, t), t ≥ t0, is
nondegenerate. Similarly, for all t0 ≤ s ≤ t ≤ t0 + T the operator �ω(s, t) is nondegenerate
and �ω(s, t)−1 = �ω(s, t)T . Putting �ω(t, s) := �ω(s, t)T for t0 ≤ s ≤ t ≤ t0 + T we
have defined the family �ω(t, s) for all s, t ∈ [t0, t0 + T ], and it is clearly a continuous
two-parameter flow generated by (2.3). 
�
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Remark 2.5 Using the solution formula for one dimensional system as in Sect. 3, one derives
a Liouville–like formula as follow

det�ω(t0, t) = exp

{∫ t

t0
trace A(s)ds +

∫ t

t0
trace C(s)dω(s)

}
,

which also proves the invertibility of �ω(t0, t).

3 Lyapunov Spectrum for Nonautonomous Linear System of YDEs

The classical Lyapunov spectrum of linear system of ordinary differential equations (hence-
forth abbreviated by ODEs) is a powerful tool in investigation of qualitative behavior of the
system, see e.g. [4,23]. Since (1.3) generates a two-parameter flow of homeomorphisms, we
can instead study Lyapunov spectrum of the flow generated by the equation.

3.1 Exponents and Spectrum

We aim to follow the technique in [7,18,19]. From now on, let us consider the following
assumptions on the coefficients of (1.3).

(H1) Â := ‖A‖∞,R+ < ∞.

(H2) For some δ > 0, Ĉ := ‖C‖q−var,δ,R+ := sup0≤t−s≤δ ‖C‖q−var,[s,t] < ∞.
In (H2) we can assume, without loss of generality that δ = 1. Put

M0 := max{ Â, 2KĈ} (3.1)

where K given by (2.2). It is obvious from (2.6) that, for any t0 ∈ R
+,

M∗(t0, 1) ≤ M0.

Note that conditions (H1), (H2) and Proposition 2.2 assure the existence and uniqueness
of solution of (1.3) on R

+. Moreover, Proposition 2.4 asserts that (1.3) generates a two-
parameter flow on Rd by means of its Cauchy operators �ω(·, ·), and �ω(s, t)x0 represents
the value at time t ∈ R

+ of the solution of (1.3) started at x0 ∈ R
d at time s ∈ R

+.
Following [7], we introduce the notion of Lyapunov exponents of two-parameter flow of
linear operators first, and then use it to define the Lyapunov exponents. We shall denote by
Gk the Grassmannian manifold of all linear k-dimensional subspaces of Rd .

Recall that for a real function h : R+ → R
d the Lyapunov exponent of h is the number

(which could be ∞ or −∞)

χ(h(t)) := lim sup
t→∞

1

t
log |h(t)|.

(We make the convention that log is the logarithm of natural base and log 0 := −∞.)

Definition 3.1 (i) Given a two-parameter flow �ω(s, t) of linear operators of Rd on the
time interval [t0,∞), the extended-real numbers (real numbers or symbol ∞ or −∞)

λk(ω) := inf
V∈Gd−k+1

sup
y∈V

lim sup
t→∞

1

t
log |�ω(t0, t)y|, k = 1, . . . , d, (3.2)

are called Lyapunov exponents of the flow�ω(s, t). The collection {λ1(ω), . . . , λd(ω)}
is called Lyapunov spectrum of the flow �ω(s, t).
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(ii) For any u ∈ [t0,∞) the linear subspaces of Rd

Eu
k (ω) := {

y ∈ R
d
∣∣ lim sup

t→∞
1

t
log |�ω(u, t)y| ≤ λk(ω)

}
, k = 1, . . . , d, (3.3)

are called Lyapunov subspaces at time u of the flow�ω(s, t). The flag of nonincreasing
linear subspaces of Rd

R
d = Eu

1 (ω) ⊃ Eu
2 (ω) ⊃ · · · ⊃ Eu

d (ω) ⊃ {0}
is called Lyapunov flag at time u of the flow �ω(s, t).

(iii) The Lyapunov spectrum, Lyapunov exponents and Lyapunov subspaces of the linear
YDE (1.3) are those of the two-parameter flow �ω(s, t) generated by (1.3).

It is easily seen that the Lyapunov exponents in Definition 3.1 are independent of t0, and are
ordered:

λ1(ω) ≥ λ2(ω) ≥ · · · ≥ λd(ω), ω ∈ �.

Moreover, due to [7, Theorems 2.5, 2.7, 2.8], for any u ∈ [t0,∞) and k = 1, . . . , d , the
Lyapunov subspaces Eu

k (ω) are invariant with respect to the flow in the following sense

�ω(s, t)Es
k(ω) = Et

k(ω), for all s, t ∈ [t0,∞), k = 1, . . . , d.

The classical definition of Lyapunov spectrum of a linear system of ODE is based on the
normal basis of the solution of the system (see [11]). Millionshchikov [18] pointed out that
these definitions are equivalent. In the following remark we restate some facts in [11].

Remark 3.2 (i) For every invertible matrix B(ω), the matrix �ω(t0, t)B(ω) satisfies

d∑
i=1

αi (ω) ≥
d∑

i=1

λi (ω)

where αi (ω) is the Lyapunov exponent of its i th column.
(ii) Furthermore, we have Lyapunov inequality

d∑
i=1

λi ≥ lim sup
t→∞

1

t
log | det�ω(t0, t)|.

Note that if Lyapunov exponents {αi (ω), i = 1, . . . , d} of the columns of the matrix
�ω(t0, t)B(ω) satisfy the equality

∑d
i=1 α(ω) = lim supt→∞ 1

t log | det�ω(t0, t)| then
{α1(ω), . . . , αd(ω)} is the spectrum of the flow �ω(s, t), i.e

{αi (ω), i = 1, . . . , d} = {λi (ω), i = 1, . . . , d},
(but the inverse is not true).

Now let us consider the following assumptions on the driving path ω.
(H3) limn→∞

n∈N
1
n |||ω|||pp−var,[n,n+1] = 0.

(H′
3) limn→∞

n∈N
1
n

∑n−1
k=0 |||ω|||pp−var,[k,k+1] = �p(ω) < ∞.

It is easy to see that assumption (H′
3) implies (H3). We formulate below the first main result

of this paper on the Lyapunov spectrum of Eq. (1.3).
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Theorem 3.3 Let �ω(s, t) be the two-parameter flow generated by (1.3) and
{λ1(ω), . . . , λd(ω)} be the Lyapunov spectrum of the flow �ω(s, t), hence of Eq. (1.3). Then
under assumptions (H1), (H2), (H3), the Lyapunov exponents λk(ω), k = 1, . . . , d, can be
computed via a discrete-time interpolation of the flow, i.e.

λk(ω) := inf
V∈Gd−k+1

sup
y∈V

lim supN�t→∞
1

t
log |�ω(t0, t)y|, k = 1, . . . , d. (3.4)

In addition, if condition (H′
3) is satisfied, then

|λk(ω)| ≤ η
[
2 +

(2M0

μ

)p
(1 + �p(ω))

]
, ∀k = 1, . . . , d, (3.5)

where M0 is determined by (3.1), 0 < μ < min{1, M0} and η = − log(1 − μ).

Proof Recall from (2.4) that for each s ∈ R
+

sup
t∈[s,s+1]

log ‖�ω(s, t)‖ ≤ η
[
2 + (

2M0

μ
)p(1 + |||ω|||pp−var,[s,s+1])

]
. (3.6)

Fix k ∈ {1, . . . , d} and y ∈ R
d . Suppose 0 ≤ t0 < t1 < t2 < t3 · · · is an increasing

sequence of positive real numbers on which the upper limit

lim sup
t→∞

1

t
log |�ω(t0, t)y| =: z ∈ R̄

is realized, i.e.,

lim
m→∞

1

tm
log |�ω(t0, tm)y| = z.

Let nm denotes the largest natural number which is smaller than or equal to tm . Using the
flow property of �ω(s, t) and assumption (H3) we have

z = lim
m→∞

1

tm
log |�ω(t0, tm)y|

= lim
m→∞

1

tm
log(|�ω(nm, tm)�ω(t0, nm)y|)

≤ lim
m→∞

1

tm

(
log ‖�ω(nm, tm)‖ + log(|�ω(t0, nm)y|)

)

≤ lim sup
m→∞

1

nm
log |�ω(t0, nm)y| + lim sup

m→∞
1

nm
η
[
2 +

(2M0

μ

)p
(1 + |||ω|||pp−var,[nm ,nm+1])

]

= lim sup
m→∞

1

nm
log |�ω(t0, nm)y|

≤ lim sup
t→∞
t∈N

1

t
log |�ω(t0, t)y|.

On the other hand,

lim sup
t→∞
t∈N

1

t
log |�ω(t0, t)y| ≤ lim sup

t→∞
1

t
log |�ω(t0, t)y| = z.

123



Journal of Dynamics and Differential Equations (2020) 32:1749–1777 1757

Consequently, for all k ∈ {1, . . . , d} and y ∈ R
d , we have the equality

lim sup
t→∞
t∈N

1

t
log |�ω(t0, t)y| = lim sup

t→∞
1

t
log |�ω(t0, t)y|,

which proves (3.4).
Next, assume condition (H′

3) is satisfied. Then

lim sup
n→∞

1

n
log |�ω(t0, n)y| ≤ lim sup

n→∞
1

n

⎛
⎝log ‖�ω(t0, �t0�)‖ +

n−1∑
j=�t0�

log ‖�ω( j, j + 1)‖
⎞
⎠

≤ lim sup
n→∞

1

n

n−1∑
j=0

η
[
2 +

(2M0

μ

)p(
1 + |||ω|||pp−var,[ j, j+1]

)]

≤ η
[
2 +

(2M0

μ

)p
(1 + �p(ω))

]
. (3.7)

Since �ω(s, t) = (�ω(s, t)T )−1 where � is the solution matrix of the adjoint Eq. (2.9), it
follows that

lim sup
n→∞

1

n
log |�ω(t0, n)y| ≥ lim sup

n→∞
−1

n
log ‖�ω(t0, n)‖ = − lim inf

n→∞
1

n
log ‖�ω(t0, n)‖.

Hence, either

0 ≤ lim sup
n→∞

1

n
log |�ω(t0, n)y| ≤ η

[
2 +

(2M0

μ

)p
(1 + �p(ω))

]

or

0 ≥ lim sup
n→∞

1

n
log |�ω(t0, n)y| ≥ − lim inf

n→∞
1

n
log ‖�ω(t0, n)‖,

which yields

0 ≤ lim inf
n→∞

1

n
log ‖�ω(t0, n)‖ ≤ lim sup

n→∞
1

n
log ‖�ω(t0, n)‖

≤ η
[
2 +

(2M0

μ

)p
(1 + �p(ω))

]

where the last inequality can be proved similarly to the one in (3.7). Hence (3.5) holds. 
�
Remark 3.4 The discretization scheme in Theorem 3.3 can be formulated for any step size
h > 0.

3.2 Lyapunov Spectrum of Triangular Systems

It iswell known in the theory ofODE that a linear triangular systemcan be solved successively
and itsLyapunov spectrum is easily computedvia its coefficients. In this subsectionwepresent
our similar result for linear triangular systems of YDE, under additional assumptions. Let us
consider the system

dX(t) = A(t)X(t)dt + C(t)X(t)dω(t) (3.8)
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in which, X = (x1, x2, . . . , xd), A = (ai j (t)),C = (ci j (t)) are d dimensional upper trian-
gular matrices of coefficient functions satisfying conditions (H1), (H2), the driving path ω

satisfies (H3) and also the additional assumption

(H4) limn→∞
n∈N

∣∣∣ ∫ n0 cii (s)dω(s)
∣∣∣

n
= 0 for any elements cii (t), i = 1, . . . , d in the diagonal

of C .
As a motivation of our ideas, (H4) is satisfied for almost all realization ω of a fractional

Brownian motion (see Lemma 5.3 in Sect. 5 for the proof and [22] for details on fractional
Brownian motions). Another situation satisfying (H4) is the case in which ω(t) = tα with
0 < α < 1 and C(·) is continuous and bounded.
To see how assumption (H4) is applied, we first consider Eq. (3.8) in the one dimensional
case

dz(t) = a(t)z(t)dt + c(t)z(t)dω(t), z(0) = z0. (3.9)

Thanks to the integration by part formula (see Zähle [29, Theorem 3.1]), (3.9) can be solved
explicitly as

z(t) = z0e
∫ t
0 a(s)ds+∫ t0 c(s)dω(s). (3.10)

Moreover, we have the following lemma.

Lemma 3.5 The following estimates hold for any nontrivial solution z �≡ 0 of (3.9)

(i) χ(z(t)) = a,
(ii) χ(|||z|||q−var,[t,t+1]) ≤ a,

where a := lim sup
n→∞
n∈N

1

n

∫ n

0
a(s)ds.

Proof (i) The statement is evident under the assumption (H4). Namely,

χ(z(t)) = lim sup
n→∞
n∈N

(
log |z0|

n
+
∫ n
0 a(s)ds

n
+
∫ n
0 c(s)dω(s)

n

)
= lim sup

n→∞
n∈N

∫ n
0 a(s)ds

n
= a.

(i i) Due to linearity it suffices to prove for z0 = 1. Introduce the notations f (t) =∫ t
0 a(s)ds, g(t) = ∫ t

0 c(s)dω(s), then z(t) = e f (t)+g(t). We have

||| f |||q−var,[s,t] ≤ (t − s)‖a‖∞,[s,t], |||g|||q−var,[s,t]
≤ K‖c‖q−var,[s,t] |||ω|||p−var,[s,t] , for all 0 ≤ s < t;

and

χ(e f (t)) = a, χ(eg(t)) = 0.

For given ε > 0, there exists D1 such that

e f (s) < D1e
(a+ε/3)s, eg(s) < D1e

εs/3, ∀s ≥ 0.

Hence, for any t0 ≥ 0, the estimates

‖e f ‖∞,[t0,t0+1] ≤ D2e
(a+ε/3)t0 ; ‖eg‖∞,[t0,t0+1] ≤ D2e

εt0/3

hold for D2 = max{D1, D1ea+ε/3}. On the other hand, due to the inequality |ea − eb| ≤
|a − b|emax{a,b} for all a, b ∈ R we have

|e f (t) − e f (s)| ≤ ‖e f ‖∞,[s,t]| f (t) − f (s)| ≤ ‖e f ‖∞,[s,t] ||| f |||q−var,[s,t] ,
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which yields ∣∣∣
∣∣∣
∣∣∣e f
∣∣∣
∣∣∣
∣∣∣
q−var,[s,t] ≤ ‖e f ‖∞,[s,t] ||| f |||q−var,[s,t] .

Similarly, ∣∣∣∣∣∣eg∣∣∣∣∣∣q−var,[s,t] ≤ ‖eg‖∞,[s,t] |||g|||q−var,[s,t] .

For s, t ∈ [t0, t0 + 1],
|z(t) − z(s)| = |e f (t)+g(t) − e f (s)+g(s)|

≤ e f (t)|eg(t) − eg(s)| + eg(s)|e f (t) − e f (s)|
≤ ‖e f ‖∞,[t0,t0+1]‖eg‖∞,[t0,t0+1]

(||| f |||q−var,[s,t] + |||g|||q−var,[s,t]
)
,

hence by using Minkowski inequality we get

|||z|||q−var,[t0,t0+1] ≤ ‖e f ‖∞,[t0,t0+1]‖eg‖∞,[t0,t0+1]
(||| f |||q−var,[t0,t0+1] + |||g|||q−var,[t0,t0+1]

)
≤ D2

2e
(a+2ε/3)t0(‖a‖∞,R+ + K‖c‖q−var,1,R+ |||ω|||p−var,[t0,t0+1]).

Note that condition (H3) implies the boundedness of
|||ω|||p−var,[t0,t0+1]

t0
, t0 ∈ R

+. Therefore,
there exists a constant D3 such that

|||z|||q−var,[t0,t0+1] ≤ D3e
(a+ε)t0 ,

which proves (ii). 
�
Next we will show by induction that the Lyapunov spectrum of system (3.8) is {akk, 1 ≤

k ≤ d} with akk := limt→∞
∫ t
0 akk (s)ds

t , provided that the limit is well-defined and exact.
The following lemma is a modified version of Demidovich [11, Theorem 1, p. 127].

Lemma 3.6 Assume that gi : R
+ → R, i = 1, . . . , n, are continuous functions of finite

q-variation norm on any compact interval of R+, which satisfy

χ(gi (t)), χ

(∣∣∣
∣∣∣
∣∣∣gi
∣∣∣
∣∣∣
∣∣∣
q−var,[t,t+1]

)
≤ λi ∈ R, i = 1, . . . , n.

Then

(i) χ
(∑n

i=1 g
i (t)
)
, χ

(∣∣∣∣∣∣∑n
i=1 g

i
∣∣∣∣∣∣
q−var,[t,t+1]

)
≤ max1≤i≤n λi ,

(ii) χ
(∏n

i=1 g
i (t)
)
, χ

(∣∣∣∣∣∣∏n
i=1 g

i
∣∣∣∣∣∣
q−var,[t,t+1]

)
≤ ∑n

i=1 λi .

Proof (i) The proof is similar to [11, Theorem 1, p. 127] with note that∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

gi
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
q−var,[t,t+1]

≤
n∑

i=1

∣∣∣
∣∣∣
∣∣∣gi
∣∣∣
∣∣∣
∣∣∣
q−var,[t,t+1] .

(i i) The first inequality is known due to [11, Theorem 2, p. 19]. For the second one, it suffices
to show for k = 2, since the general case is obtained by induction.
It follows from Lemma 2.1 that∣∣∣∣∣∣g1g2∣∣∣∣∣∣q−var,[t,t+1] ≤

(
‖g1‖∞,[t,t+1] + ∣∣∣∣∣∣g1∣∣∣∣∣∣q−var,[t,t+1]

) (‖g2‖∞,[t,t+1]

+ ∣∣∣∣∣∣g2∣∣∣∣∣∣q−var,[t,t+1]
)

≤ 4
(
‖g1(t)‖ + ∣∣∣∣∣∣g1∣∣∣∣∣∣q−var,[t,t+1]

) (
‖g2(t)‖ + ∣∣∣∣∣∣g2∣∣∣∣∣∣q−var,[t,t+1]

)
.
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Therefore the the second inequality followed from the first one and (i). 
�
By similar arguments using the integration by part formula, the non-homogeneous one

dimensional linear equation

dx(t) = [a(t)x(t) + h1(t)]dt + [c(t)x(t) + h2(t)]dω(t) (3.11)

can be solved explicitly as

x(t) = e
∫ t
0 a(s)ds+∫ t0 c(s)dω(s)

(
x0 +

∫ t

0
e− ∫ t0 a(s)ds−∫ t0 c(s)dω(s)h1(s)ds

+
∫ t

0
e− ∫ t0 a(s)ds−∫ t0 c(s)dω(s)h2(s)dω(s)

)
,

provided that h1, h2 are in Cq−var([0, t],R) for all t > 0. This allow us to solve triangular
systems by substitution as seen in the following theorem.

Theorem 3.7 Under assumptions (H1) – (H4), if there exist the exact limits

akk := lim
t→∞

1

t

∫ t

0
akk(s)ds, k = 1, . . . , d, (3.12)

then the spectrum of system (3.8) is given by

{a11, a22, . . . , add}.
Proof For all k = 1, 2, . . . , d , put Yk(t) = e

∫ t
0 akk (s)ds+

∫ t
0 ckk (s)dω(s). Then due to Lemma 3.5

χ(Yk(t)) = akk, χ(|||Yk |||q−var,[t,t+1]) ≤ akk,

χ(Y−1
k (t)) = −akk, χ

(∣∣∣
∣∣∣
∣∣∣Y−1

k

∣∣∣
∣∣∣
∣∣∣
q−var,[t,t+1]

)
≤ −akk .

We construct a fundamental solution matrix X(t) = (
xi j (t)

)
d×d of (3.8) as follows.

xik(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if i > k,

Yk(t) if i = k,

Yi (t)

⎡
⎣
∫ t

tik
Y−1
i (s)

k∑
j=i+1

ai j (s)x jk(s)ds +
∫ t

tik
Y−1
i (s)

k∑
j=i+1

ci j (s)x jk(s)dω(s)

⎤
⎦ if i < k,

in which, tik =
{
0, if akk − aii ≥ 0

+∞, if akk − aii < 0.
Now we consider the dth collumn of X and prove by induction that

χ(x jd(t)), χ(
∣∣∣∣∣∣x jd ∣∣∣∣∣∣q−var,[t,t+1]) ≤ add , j = 1, 2, . . . , d.

First, by Lemma 3.5 the statement is true for j = d . Assume that
χ(x jd(t)), χ(

∣∣∣∣∣∣x jd ∣∣∣∣∣∣q−var,[t,t+1]) ≤ add for all i + 1 ≤ j ≤ d , we will prove that

χ(xid(t)), χ(|||xid |||q−var,[t,t+1]) ≤ add .

Put

I (t) :=
∫ t

tid
Y−1
i (s)

d∑
j=i+1

ai j (s)x jd(s)ds and J (t) :=
∫ t

tid
Y−1
i (t)

d∑
j=i+1

ci j (s)x jd(s)dω(s),
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then

xid(t) = Yi (t)[I (t) + J (t)].
Since A is bounded, we apply [11, Corollary of Theorem 2, p. 129] to get

χ

⎛
⎝ d∑

j=i+1

ai j (s)x jd(s)

⎞
⎠ ≤ add . (3.13)

Therefore, χ
(
Y−1
i (s)

∑d
j=i+1 ai j (s)x jd(s)

)
≤ add − aii . Due to [11, Theorem 4,p. 131]

we obtain

χ(I (t)) ≤ add − aii .

On the other hand, the following estimate holds

χ(|||I |||q−var,[t,t+1]) ≤ add − aii .

Indeed, with I (t) = ∫ t
0 k(s)ds and χ(k(s)) ≤ λ, we have for u, v ∈ [t, t + 1],

|I (u) − I (v)| ≤ |u − v|‖k‖∞,[u,v]
≤ |u − v|D(ε)e(λ+ε)t , for each ε > 0.

This implies |||I |||q−var,[t,t+1] ≤ D(ε)e(λ+ε)t . The proof for the case I (t) = ∫∞
t k(s)ds is

similar.
Next, χ(Y−1

i (t)), χ(

∣∣∣
∣∣∣
∣∣∣Y−1

i

∣∣∣
∣∣∣
∣∣∣
q−var,[t,t+1]) ≤ −aii and C satisfies (H2), i.e

χ(C(t)), χ(|||C |||q−var,[t,t+1]) ≤ 0. Together with the induction hypothesis that

χ(x jd(t)), χ(
∣∣∣∣∣∣x jd ∣∣∣∣∣∣q−var,[t,t+1]) ≤ add , ∀i + 1 ≤ j ≤ d

and Lemma 3.6 we obtain

χ

⎛
⎝Y−1

i (t)
d∑

j=i+1

ci j (t)x jd(t)

⎞
⎠ , χ

⎛
⎝
∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣Y
−1
i

d∑
j=i+1

ci j x jd

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
q−var,[t,t+1]

⎞
⎠ ≤ add − aii .

Due to Lemmas 5.1 and 5.2,

χ(J (t)) ≤ add − aii , χ(|||J |||q−var,[t,t+1]) ≤ add − aii .

Again, we apply Lemma 3.6 for Yi , I and J to get

χ(xid(t)), χ(|||xid |||q−var,[t,t+1]) ≤ aii + add − aii = add .

Hence, the Lyapunov exponent of the column dth, Xd , of matrix X does not exceed add ,
meanwhile χ(xdd(t)) = add . This proves χ(Xd(t)) = add .

Similarly, χ(Xi (t)) = aii for i = 1, 2, . . . , d , in which Xi is the column i th of X . Finally,
since

∑d
i=1 aii = limt→∞ 1

t log | det X(t)|, X(t) is a normal matrix solution to (3.8) and the
Lyapunov spectrum of (3.8) is {a11, a22, . . . , add}. 
�
Remark 3.8 In the theory of ODEs, Theorem Perron states that a linear equation can be
reduced to a linear triangular system (see [11, p. 180]). However, we do not know if it is
true for linear Young differential equations. That is because for a linear YDE, besides the
drift term A corresponding to dt we do have also the diffusion term C corresponding to dω.
Hence it is difficult to tranform the original system to a triangular form whose coefficient
matrices only depend on t .
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3.3 Lyapunov Regularity

The concept regularity has been introduced by Lyapunov for linear ODEs, and since then
has attracted lots of interests (see e.g. [1, Chapter 3, p. 115], [8,20], or [3, Section 1.2]). For
a linear YDE, we define the concept of Lyapunov regularity via the generated two-parameter
flow.

Definition 3.9 Let �ω(s, t) be a two-parameter flow of linear operators of R
d and

{λ1(ω), . . . , λd(ω)} be the Lyapunov spectrum of �ω(s, t). Then the non-negative R̄-valued
random variable

σ(ω) :=
d∑

k=1

λk − lim inf
t→∞

1

t
log | det�ω(0, t)|

is called coefficient of nonregularity of the two-parameter flow �ω(s, t).
The coefficient of nonregularity of the linear YDE (1.3) is, by definition, the coefficient of
nonregularity of the two-parameter flow generated by (1.3).
A two-parameter flow is called Lyapunov regular if its coefficient of nonregularity equals 0
identically. A linear YDE is called Lyapunov regular if its coefficient of nonregularity equals
0.

It follows from [7] that if a two-parameter linear flow �ω(s, t) is Lyapunov regular then its
determinant det�ω(s, t) as well as any trajectory have exact Lyapunov exponents, i.e. the
limit in (3.2) is exact.
We define the adjoint equation of (1.1) [and also of the equivalent integral Eq. (1.3)] by

dy(t) = − AT (t)y(t)dt − CT (t)y(t)dω(t). (3.14)

The following lemma is a version of Perron Theorem from the classical ODE case.

Lemma 3.10 (Perron Theorem) Let α1 ≥ · · · ≥ αd and β1 ≤ · · · ≤ βd be the Lyapunov
spectrum of (1.3) and (3.14) respectively. Then (1.3) is Lyapunov regular if and only if
αi + βi = 0 for all i = 1, . . . , d.

Proof The proof goes line by line with the ODE version in Demidovich [11, p. 170–173]. 
�
Theorem 3.11 (Lyapunov theoremon regularity of triangular system) Suppose that thematri-
ces A(t),C(t) are upper triangular and satisfy (H1) – (H4). Then system (3.8) is Lyapunov
regular if and only if there exists limt→∞ 1

t

∫ t
t0
akk(s)ds, k = 1, d.

Proof The only if part is proved in Theorem 3.7. For the if part, the proof is similar to the [11,
p. 174]. Indeed, based on the normal basis of Rd which forms the unit matrix we construct
a fundamental basis X̃ of the system which is an upper triangular matrix and the diagonal
entry is

Y1(t), Y2(t), . . . , Yd(t),

where Yk are defined in Theorem 3.7.
We choose an upper triangular matrix D = D(ω) of which diagonal elements are 1, such that
X := X̃ D is an normal basis of (1.3) with xi to be the column vectors (see also Remark 3.2).
Put Y = (yi j ) = (X−1)T and repeat the arguments in Lemma 3.10 under the regularity
assumption, it follows that Y is a normal basis of (3.14). Moreover, ykk = Y−1

k and

χ(xk(t)) + χ(yk(t)) = 0,∀k = 1, . . . , d.
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Hence

χ(xk(t)) ≥ χ(Yk(t)) = lim sup
t→∞

1

t

∫ t

t0
akk(s)ds

and similarly,

χ(yk(t)) ≥ χ(Y−1
k (t)) = − lim inf

t→∞
1

t

∫ t

t0
akk(s)ds.

Therefore,

0 ≥ lim sup
t→∞

1

t

∫ t

t0
akk(s)ds − lim inf

t→∞
1

t

∫ t

t0
akk(s)ds ≥ 0

which implies that there exists the limit limt→∞ 1
t

∫ t
t0
akk(s)ds, k = 1, . . . , d . 
�

4 Lyapunov Spectrum for Linear Stochastic Differential Equations

In this section, we would like to investigate the same question in the random perspective, i.e.
the driving pathω is a realization of a stochastic process Z with stationary increments. System
(1.1) can then be embedded into a stochastic differential equation, or precisely a random
differential equation which can be solved in the pathwise sense. Such a system generates a
stochastic two-parameter flow, hence it makes sense to study its Lyapunov spectrum and also
to raise the question on the non-randomness of the spectrum.

4.1 Generation of Stochastic Two-Parameter Flows

More precisely, recall that C0,p−var([a, b],Rd) is the closure of smooth paths from [a, b]
to R

d in p− variation norm. It is well known (see e.g. [12, Proposition 5.36, p. 98]) that
C0,p−var([a, b],Rd) is a separable Banach space and moreover

Cα−Hol([a, b],Rd) ⊂ C0,p−var([a, b],Rd)

for all α > 1/p. Denote by C0,p−var(R,Rd) the space of all x : R → R
d such that

x |I ∈ C0,p−var(I ,Rd) for each compact interval I ⊂ R. Then equip C0,p−var(R,Rd) with
the compact open topology given by the p−variation norm, i.e the topology generated by
the metric:

dp(x, y) :=
∑
m≥1

1

2m
(‖x − y‖p−var,[−m,m] ∧ 1).

Assign

C0,p−var
0 (R,Rd) := {x ∈ C0,p−var(R,Rd)| x(0) = 0}.

Note that for x ∈ C0,p−var
0 (R,Rd), |||x |||p−var,I and ‖x‖p−var,I are equivalent norms for every

compact interval I containing 0.
Let us consider a stochastic process Z̄ defined on a probability space (�̄, F̄, P̄) with realiza-
tions in (C0,p−var

0 (R,R),B), where B is Borel σ−algebra. Denote by θ the Wiener shift on

(C0,p−var
0 (R,R),B)

θtm(·) = m(t + ·) − m(t), ∀t ∈ R, m ∈ C0,p−var
0 (R,Rd).
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Due to [2,Theorem5], θ forms ameasurable dynamical system (θt )t∈R on (C0,p−var
0 (R,R),B)

(see also [9]).Moreover, because of its definition theYoung integral satisfies the shift property
with respect to θ , i.e.

∫ b

a
x(u)dω(u) =

∫ b−r

a−r
x(u + r)dθrω(u). (4.1)

Namely,
∫ b

a
x(u)dω(u) := lim|�|→0

∑
ti∈�[a,b]

x(ti )(ω(ti+1) − ω(ti ))

= lim|�|→0

∑
ti∈�[a−r ,b−r ]

x(r + ti )(ω(r + ti+1) − ω(r + ti ))

= lim|�|→0

∑
ti∈�[a−r ,b−r ]

x(r + ti )(θrω(ti+1) − θrω(ti )). (4.2)

Assume further that Z̄ has stationary increments. It follows, as the simplest version for
rough cocycle in [2, Theorem 5] w.r.t. Young integrals that, there exists a probability P on
(�,F) = (C0,p−var

0 (R,R),B) that is invariant under θ , and the so-called diagonal process
Z : R× � → R, Z(t, ω̃) = ω̃(t) for all t ∈ R, ω̃ ∈ �, such that Z has the same law with Z̄
and satisfies the helix property:

Zt+s(ω) = Zs(ω) + Zt (θsω),∀ω ∈ �, t, s ∈ R.

Such stochastic process Z has also stationary increments and almost all of its realization
belongs to C0,p−var

0 (R,R). It is important to note that the existence of Z̄ is necessary to
construct the diagonal process Z . For example if Z̄ is a fractional Brownian motion then the
corresponding probability space (�̄, F̄, P̄) can be constructed explicitly as in [13]. The fact
that almost all realizations of a fractional Brownian motion are Hölder continuous is a direct
consequence of Kolmogorov theorem.

Next, we consider the stochastic differential equation

dx(t) = A(t)x(t)dt + C(t)x(t)dZ(t, ω), x(t0) = x0 ∈ R
d , t ≥ t0, (4.3)

where the second differential is understood in the path-wise sense as Young differential.
Under the assumptions in Proposition 2.2, there exists, for almost sure all ω ∈ �, a unique
solution to (4.3) in the pathwise sense with the initial value x0 ∈ R

d . Moreover, the solution
X : [t0, t0+T ]×[t0, t0+T ]×R

d ×� → R
d satisfies: (i) for a.s. allω ∈ �, X(·, a, x0, ω) ∈

C0,q−var([t0, t0 + T ],Rd), and (ii) X(t, ·, ·, ·) is measurable w.r.t (a, x0, ω). As a result, the
generated two parameter flow �ω(s, t) : Rd → R

d in Proposition 2.4 in the pathwise sense
is also a stochastic two-parameter flow (see definition in [16, p. 114]).

Proposition 4.1 (i) The Lyapunov exponents λk(ω), k = 1, . . . , d, of �ω(s, t) are measur-
able functions of ω ∈ �.

(ii) For any u ∈ [t0,∞), the Lyapunov subspaces Eu
k (ω), k = 1, . . . , d, of �ω(s, t) are

measurable with respect to ω ∈ �, and invariant with respect to the flow in the following
sense

�ω(s, t)Es
k(ω) = Et

k(ω), for all s, t ∈ [t0,∞), ω ∈ �, k = 1, . . . , d.

Proof The proof of Theorem 4.1 is similar to the one in [7, Theorems 2.5, 2.7, 2.8]. 
�
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Lemma 4.2 (Integrability condition) Assume that there exists a function H(·, ·) which is
increasing in the second variable, such that for any r ≥ 0

E |||Z |||rp−var,[s,t] ≤ H(r , t − s), ∀0 ≤ s ≤ t ≤ 1. (4.4)

Then under assumptions (H1) and (H2),�ω satisfies the following integrability condition for
any t0 ≥ 0

E sup
t0≤s≤t≤t0+1

log+ ‖�ω(s, t)±1‖ ≤ η
[
2 +

(2M0

μ

)p(
1 + H(p, 1)

)]
, (4.5)

where M0 is determined by (3.1), 0 < μ < min{1, M0} and η = − log(1 − μ), and we use
the notation

log+ ‖�ω(s, t)‖ := max{log ‖�ω(s, t)‖, 0}.

Proof The proof follows directly from (3.6) for � and �, and from (4.4), with note that for
the inverse flow �ω(s, t)T = �ω(s, t)−1

sup
t0≤s≤t≤t0+1

log+ ‖�ω(s, t)−1‖ = sup
t0≤s≤t≤t0+1

log+ ‖�ω(s, t)‖

and that (4.4) is still satisfied for all s, t ∈ [t0, t0+1] due to the increment stationary property
of Z . 
�

Notice that condition (4.4) derives (H′
3) for almost all driving paths ω due to Birkhorff

ergodic theorem. Moreover, �p(ω) is a random variable in Lr (�,F,P) for all r > 0.
If the metric dynamical system (�,F,P, (θt )t∈R) is ergodic, it is known that �p(ω) =
E |||Z |||pp−var,[0,1] almost surely. As a result, the estimate (3.5) implies the following theorem.

Theorem 4.3 Under assumptions (H1) and (H2) and condition (4.4), for each k = 1, . . . , d
the Lyapunov exponent λk(ω) is of finite moments of any order r > 0. More precisely,

E |λk(ω)|r ≤ ηr E
[
2 +

(2M0

μ

)p
(1 + �p(ω))

]r
, ∀k = 1, . . . , d.

In particular, if the metric dynamical system (�,F,P, (θt )t∈R) is ergodic, the Lyapunov
spectrum is bounded a.s. by non-random constants as follow,

|λk(ω)| ≤ η
[
2 +

(2M0

μ

)p
(1 + E |||Z |||pp−var,[0,1])

]
, ∀k = 1, . . . , d.

Remark 4.4 Assumption (4.4) is satisfied in case Z is a fractional Brownian motion, see [22,
Corollary 1.9.2] with H > 1

2 . Indeed, applying Garsia–Rademich–Rumsey inequality, see
[24, Lemma 7.3, Lemma 7.4] we see that for any fixed r ≥ 1 and 1

2 < ν < H

E |||Z |||rp−var,[s,t] ≤ |t − s|νr E( |||Z |||ν−Hol,[s,t]
)r ≤ Cν,H ,q,m |t − s|νr |t − s|(H−ν)r

= Cν,H ,q,m |t − s|Hr .

Moreover, it is known in [13] that Z can be defined on a metric dynamical system
(�,F,P, (θt )t∈R) which is ergodic.
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4.2 Almost Sure Lyapunov Regularity

In this subsection, for simplicity of presentation we consider all the equations on the whole
time line R. The half-line case R+ can be easily treated in a similar manner.

We start the subsection with a very special situation in which the coefficient functions
are autonomous, i.e. A(·) ≡ A,C(·) ≡ C . In this case, the stochastic two-parameter flow
�ω(s, t) of (4.3) generates a linear random dynamical system�′ (see e.g. Arnold [1, Chapter
1] for the definition of random dynamical systems). Indeed, from (4.1) and the fact that

x(t) = x0 +
∫ s

0
Ax(u)du +

∫ s

0
Cx(u)dω(u) +

∫ t

s
Ax(u)du +

∫ t

s
Cx(u)dω(u)

= x(s) +
∫ t−s

0
Ax(u + s)du +

∫ t−s

0
Cx(u + s)dθsω(u),

it follows due to the autonomy that �ω(s, t) = �(t − s, θsω). Hence �′(t, ω) := �ω(0, t)
satisfies the cocycle property

�′(t + s, ω) = �′(t, θsω) ◦ �′(s, ω).

Assign t0 = 0, if follows from (4.5) that

sup
t∈[0,1]

log ‖�′(t, ω)±1‖ ∈ L1(�,P).

By applying the multiplicative ergodic theorem (see Oseledets [25] and Arnold [1, Chap-
ter 3]) for �′ generated from (4.3), there exists a Lyapunov spectrum consisting of exact
Lyapunov exponents provided by the multiplicative ergodic theorem and it coincides with
the Lyapunov spectrum defined inDefinition 3.1. In addition, the flag of Oseledets’ subspaces
coincides with the flag of Lyapunov spaces.

The same conclusions hold if the system is periodic with period r , i.e. A(· + r) =
A(·),C(· + r) = C(·). In fact, we can prove that �ω(s, t) = �θrω(s − r , t − r) and

�(nr , ω) = �(r , θ(n−1)rω) ◦ �((n − 1)r , ω), ∀n ∈ Z.

In this case, (4.3) generates a discrete random dynamical system {�(nr , ω)}n∈Z which satis-
fies the integrability condition (4.5). Hence all the conclusions of the MET hold and almost
all the path-wise system is Lyapunov regular.

In general, it might not be true that system (4.3) is regular for almost sure ω. However,
under the further assumptions of A,C , we can construct a linear random dynamical system
such that almost sure all the pathwise systems are Lyapunov regular. The construction uses
the so-called Bebutov flow, as investigated by Millionshchikov [20,21] (see also [14,26,27]).
Specifically, assume that A satisfies a stronger condition that

(H′
1) Â := ‖A‖∞,[0,∞) < ∞ and lim

δ→0
sup

|t−s|<δ

|A(t) − A(s)| = 0.

Consider the shift dynamical system SA
t (A)(·) := A(· + t) in the space Cb = Cb(R,Rd×d)

of bounded and uniformly continuous matrix-valued continuous function on R with the
supremum norm. The closed hull HA := ∪t St (A) in Cb is then compact, hence we can
construct on HA a probability structure such that (HA,F A, μA, SA) is a probability space
where μA is a S-invariant probability measure, see e.g. [15, Theorem 4.9, p. 63].

When applying Millionshchikov’s approach of using Bebutov flows to our system (4.3),
we need to construct not only (HA,F A, μA, SA), but also (HC ,FC , μC , SC ), with a little
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more regularity condition for C . Recall that C0,α−Hol([a, b],Rd×d) is the closure of smooth
paths from [a, b] to R

d×d in α-Hölder norm and C0,α−Hol(R,Rd×d) is the space of all
x : R → R

d×d such that x |I ∈ C0,α−Hol(I ,Rd×d) for each compact interval I ⊂ R, equipped
with the compact open topology given by the Hölder norm, i.e the topology generated by
metric

d(x, y) :=
∑
m≥1

1

2m
(‖x − y‖α,[−m,m] ∧ 1).

Following [15, Chapter 2, p. 62], for any c ∈ C0,α−Hol(R,Rd×d), any interval [a, b] and
δ > 0, we define the module of α-Hölder on [a, b]:

m[a,b](c, δ) := |||c|||α,δ,[a,b] = sup
a≤s<t≤b,t−s≤δ

|c(t) − c(s)|
|t − s|α .

By the same arguments as in [15, Theorems 4.9, 4.10, pp. 62–64] we get the following result,
of which the proof is given in the “Appendix”.

Lemma 4.5 A set H ⊂ C0,α−Hol(R,Rk) has a compact closure if and only if the following
conditions hold:

sup
c∈H

|c(0)| < ∞, (4.6)

lim
δ→0

sup
c∈H

m[a,b](c, δ) = 0, ∀[a, b]. (4.7)

To construct a Bebutov flow for C , assume that there exists α > 1
q such that C ∈

C0,α−Hol(R,Rd×d) satisfies a condition stronger than (H2):

(H′
2) ‖C‖∞,R = sup

t∈R
|C(t)| < ∞ and lim

δ→0
sup

−∞<s<t<∞,|t−s|≤δ

|C(t) − C(s)|
|t − s|α = 0.

(4.8)

Consider the set of translations Cr (·) := C(r + ·) ∈ C0,α−Hol(R,Rd×d). Under conditions
(4.8), Lemma 4.5 concludes that the closure set HC := {Cr : r ∈ R} is compact on the
separable completely metrizable topological space C0,α−Hol(R,Rd×d) (the separability of
C0,α−Hol(R,Rd×d) comes from the separability of C0,α−Hol([−m,m],Rd×d) [12, Proposi-
tion 5.36, p. 98] and the characteristics ofmetric d(x, y), see also [2, Proposition 1]), in fact θt
also preserves the norm on C0,α−Hol(R,Rd×d). The shift dynamical system SCt c(·) = c(t+·)
mapsHC into itself, hence by Krylov-Bogoliubov theorem [23, Chapter VI, §9], there exists
at least one probability measure μC onHC that is invariant under SC , i.e. μC (SCt ·) = μC (·),
for all t ∈ R.

It makes sense then to construct the product probability space B = HA × HC × � with
the product sigma field F A × FC × F , the product measure μB := μA × μC × P and the
product dynamical system � = SA × SC × θ given by

�t ( Ã, C̃, ω) := (SA
t ( Ã), SCt (C̃), θtω).

Now for each point b = ( Ã, C̃, ω) ∈ B, the fundamental (matrix) solution �∗(t, b) of the
equation

dx(t) = Ã(t)x(t)dt + C̃(t)x(t)dω(t), x(0) = x0 ∈ Rd , (4.9)
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defined by�∗(t, b)x0 := x(t), satisfies the cocycle property due to the existence and unique-
ness theorem and the fact that

x(t + s) = x0 +
∫ s

0
Ã(u)x(u)du +

∫ s

0
C̃(u)x(u)dω(u)

+
∫ t+s

s
Ã(u)x(u)du +

∫ t+s

s
C̃(u)x(u)dω(u)

= x(s) +
∫ t

0
SA
s ( Ã)(u)x(u + s)du +

∫ t

0
SCs (C̃)(u)x(u + s)dθsω(u).

Therefore the nonautonomous linear YDE (4.9) generates a cocycle (random dynamical
system) �∗ : R × B × R

d → R
d over the metric dynamical system (B, μB). Thus, starting

from investigation of one linear stochastic nonautonomous YDE (4.3) we consider itsω-wise
and embed to a Bebutov flow using Millionshchikov’s approach [21], henceforth construct
a random dynamical system over the product probability space for which the following
statement holds.

Theorem 4.6 (Millionshchikov theorem) Under assumptions (H′
1), (H′

2) and (4.4), the
nonautonomous linear stochastic (ω-wise) Young Eq. (4.9) is Lyapunov regular for almost
all b ∈ B in the sense of the probability measure μB.

Proof The integrability condition for the product probability measure μB is a direct conse-
quence of (4.5). Hence all the conclusions of the multiplicative ergodic theorem hold for
almost all b ∈ B, which implies the Lyapunov regularity of (4.9) for almost all b ∈ B in the
sense of the probability measure μB. 
�
Remark 4.7 (i) In [20,21], Millionshchikov proved the Lyapunov regularity (almost surely

with respect to an arbitrary invariant measure of the Bebutov flow on HA generated
by the ordinary differential equation ẋ = A(t)x), using the triangularization scheme
provided by the Perron theorem for ordinary differential equations. In other words,
Millionshchikov obtained an alternative proof of the multiplicative ergodic theorem
(see also Arnold [1, p. 112], Johnson et al. [14]). In fact, Millionshchikov proved a bit
stronger property than Lyapunov regularity that, almost all such systems are statistically
regular.

(ii) Theorem 4.6 can be viewed as a version of multiplicative ergodic theorem for a nonau-
tonomous linear stochastic Young differential equation which uses combination of
Millionshchikov [21] approach (topological setting using Bebutov flow for differen-
tial equation) and Oseledets [25] approach (measurable setting with probability space
(�,F,P)).

(iii) It is important to note that, although for almost all b ∈ B the nonautonomous linear
stochastic (ω-wise) Young Eq. (4.9) is Lyapunov regular, it does not follow that the
original system (4.3) is Lyapunov regular.

Discussions on the Non-randomness of Lyapunov Exponents

Since we are dealing with stochastic equation YDE (4.3) it is important and interesting to
know whether its Lyapunov spectrum is nonrandom. We give here a brief discussion on this
problem.

We remind the readers of the non-randomness of Lyapunov exponents λ1(ω), . . . , λd(ω)

for systems driven by standard Brownian noises (see e.g. [7,10]). Since Theorem 3.3 still
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holds in that situation and the definition of Lyapunov exponent does not depend on the initial
time t0, it follows that λk(ω) is measurable with respect to the sigma algebra generate by
{W (n + 1) − W (n) : n ≥ m} for any m ≥ 0, thus measurable w.r.t. the tail sigma field
∩mσ({W (n + 1) − W (n) : n ≥ m}). Due to pairwise independence of all variables of the
form W (n + 1) − W (n), one can apply Kolmogorov’s zero-one law [15] to conclude that
Lyapunov exponents are in fact non-random constants. Thus we have nonrandomness of the
Lyapunov spectrum in the case of nonautonomous linear stochastic differential equations
driven by standard Brownian motions. Note that here the Lyapunov exponents of the systems
can be nonexact.

In general, a stochastic process Z does not have independent increments, thus it is difficult
to construct such a filtration and to apply the Kolmogorov’s zero-one law. However, the
second case of nonrandom Lyapunov spectrum is the case of autonomous or periodic linear
stochastic Young equations discussed at the beginning of this subsection where wemay apply
the classical Oseledets MET by exploiting autonomy or periodicity of the system. Note that
in this case the probability measure is the probability measure of the process Z and the
Lyapunov exponents of the systems are exact.

The third case is triangular nonautonomous linear stochastic Young differential equations
treated in Sect. 3. In this case, due to the triangular form of the system we may solve it
successively and use explicit formula of the solution to derive Theorem 3.7 showing that the
Lyapunov spectrum consists of exact Lyapunov exponents and is nonrandom. Note that in
this case the system in nonautonomous, the measure is the probability measure of the process
Z and the Lyapunov exponents of the systems are exact.

For a general system (4.3) which satisfies assumptions (H′
1), (H

′
2) and (4.4), the statement

on the non-randomness of Lyapunov spectrum depends on whether the product dynamical
system� is ergodic on the product probabilitymeasureμB, as a consequence of the Birkhorff
ergodic theorem. The answer is then affirmative in case SA and SC are weakly mixing and θ

is ergodic, i.e. SA (respectively SC ) satisfies the condition

lim
n→∞

1

n

n−1∑
j=0

∣∣∣μA
(
SA
j (Q1) ∩ Q2

)
− μA(Q1)μ

A(Q2)

∣∣∣ = 0, ∀Q1 �= Q2 ∈ F A

(respectively for SC ). It is well known (see e.g. Mañé [17, p. 147]) that the weak mixing
of SA and SC implies the weak mixing of the product dynamical system SA × SC which,
together with the ergodicity of θ , implies the ergodicity of the product flow �. The problem
on non-randomness of Lyapunov spectrum can therefore be translated into the question on
the weak-mixing of dynamical systems SA and SC .
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5 Appendix

Proof of Proposition 2.2 The proof follows the same techniques in [24] and in [9] with some
modifications. First, consider x ∈ Cq−var([a, b],Rd) with some [a, b] ⊂ [t0, t0 + T ]. Define

123

http://creativecommons.org/licenses/by/4.0/


1770 Journal of Dynamics and Differential Equations (2020) 32:1749–1777

the mapping given by

F(x)(t) = x(a) + I (x)(t) + J (x)(t)

:= x(a) +
∫ t

a
A(s)x(s)ds +

∫ t

a
C(s)x(s)dω(s), ∀t ∈ [a, b]. (5.1)

Then F(x) ∈ C p−var([a, b],Rd) and direct computations show that for every [s, t] ⊂ [a, b]
|||Fx |||p−var,[s,t] ≤ P‖x‖q−var,[s,t] (5.2)

|||Fx − Fy|||p−var,[s,t] ≤ P‖x − y‖q−var,[s,t], (5.3)

where

P := ‖A‖∞,[t0,t0+T ](t − s) + 2K‖C‖q−var,[t0,t0+T ] |||ω|||p−var,[s,t] , K is defined in (2.2).

Similar to [9], for a given 0 < μ < min{1, M∗}, where M∗ is defined by (2.6), we construct
the sequence of strictly increase greedy times τn with τ0 = 0 satisfying

(τk − τk−1) + |||ω|||p−var,[τk−1,τk ] = μ/M∗. (5.4)

Then τk → ∞ as k → ∞ (see the proof in [9]). Denote by N (a, b, ω) the number of τk in
the finite interval (a, b], then from [9]

N (t0, t0 + T , ω) − 1 ≤
(
2M∗

μ

)p

(T p + |||ω|||pp−var,[t0,t0+T ]). (5.5)

Without loss of generality assume that t0 = 0. Define the set

B = {x ∈ Cq−var([τ0, τ1],Rd)| x(τ0) = x0, ‖x‖q−var,[τ0,τ1] ≤ 1

1 − μ
|x0|}.

It is easy to check that B is a closed ball in Banach space Cq−var([τ0, τ1],Rd). Using (5.2),
(5.4) and the fact that p < q , we have

‖F(x)‖q−var,[τ0,τ1] ≤ |x0| + M∗(τ1 − τ0 + |||ω|||p−var,[τ0,τ1])‖x‖q−var,[τ0,τ1]
≤ |x0| + μ‖x‖q−var,[τ0,τ1]

≤ 1

1 − μ
|x0|, for each x ∈ B.

Hence, F : B → B. On the other hand, by (5.3) and (5.4), for any x, y ∈ B

‖F(x) − F(y)‖q−var,[τ0,τ1] ≤ μ‖x − y‖q−var,[τ0,τ1].

Since μ < 1, F is a contraction mapping on B. We conclude that there exists a unique fixed
point of F in B or there exists local solution of (2.3) on [τ0, τ1]. By induction we obtain
the solution on [τi , τi+1] for i = 1, .., N (0, T , ω) − 1 and finally on [τN (0,T ,ω)−1, T ]. The
global solution of (2.3) then exists uniquely. From (5.2) it is obvious that the solution is in
C p−var([t0, t0 + T ],Rd). Estimate (2.4) can then be derived using similar arguments to [9,
Remark 3.4iii]. In fact,

‖x‖∞,[τ0,τ1] ≤ ‖x‖q−var,[τ0,τ1] ≤ 1

1 − μ
|x0|,

thus by induction, it is evident that

‖x‖∞,[t0,t0+T ] ≤ |x0|
(

1

1 − μ

)N (t0,t0+T ,ω)+1

≤ |x0|eη[N (t0,t0+T ,ω)+1].
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Combining to (5.5), we obtain (2.4).
Since

|||x |||q−var,[s,t] = |||F(x)|||q−var,[s,t] ≤ M∗(t − s + |||ω|||p−var,[s,t])‖x‖q−var,[s,t]

for all s < t ∈ [t0, t0 + T ], by proving similarly to [9, Corollary 3.5] we obtain

|||x |||q−var,[t0,t0+T ] ≤ |x0|e(1+η)[3+( 2M
∗

μ
)p(T p+|||ω|||pp−var,[t0,t0+T ])].

Next, fix (x0, ω) and consider (x ′
0, ω

′) in the ball centered at (x0, ω) with radius 1.
Put x(·) = x(·, t0, x0, ω), x ′(·) = x(·, t0, x ′

0, ω
′) and y(·) = x(·) − x ′(·). By (2.4) and (2.5),

we can choose a positive number D1 (depending on M∗, x0, ω) such that

‖x‖p−var,[t0,t0+T ], ‖x ′‖p−var,[t0,t0+T ] ≤ D1.

We have

|y(t) − y(s)| ≤
∣∣∣
∫ t

s
A(u)y(u)du

∣∣∣+
∣∣∣
∫ t

s
C(u)y(u)dω(u)

∣∣∣
+
∣∣∣
∫ t

s
C(u)x ′(u)d(ω(u) − ω′(u))

∣∣∣
≤ ‖A‖∞,[t0,t0+T ]‖y‖∞,[s,t](t − s)

+ 2K‖C‖q−var,[t0,t0+T ]‖y‖p−var,[s,t] |||ω|||p−var,[s,t]
+ 2K‖C‖q−var,[t0,t0+T ]‖x ′‖p−var,[s,t]

∣∣∣∣∣∣ω − ω′∣∣∣∣∣∣
p−var,[s,t]

≤ M∗(t − s + |||ω|||p−var,[s,t])‖y‖p−var,[s,t]
+ M∗‖x ′‖p−var,[s,t]

∣∣∣∣∣∣ω − ω′∣∣∣∣∣∣
p−var,[s,t] ,

which yields

|||y|||p−var,[s,t] ≤ M∗(t − s + |||ω|||p−var,[s,t])‖y‖p−var,[s,t]
+ M∗‖x ′‖p−var,[t0,t0+T ]

∣∣∣∣∣∣ω − ω′∣∣∣∣∣∣
p−var,[s,t]

By applying [9, Corollary 3.5], we obtain

|||y|||p−var,[t0,t0+T ]

≤ (|y(t0)| + M∗‖x ′‖p−var,[t0,t0+T ]
∣∣∣∣∣∣ω − ω′∣∣∣∣∣∣

p−var,[t0,t0+T ])e
D2(T p+|||ω|||pp−var,[t0,t0+T ])

≤
(
|y(t0)| + D1M

∗ ∣∣∣∣∣∣ω − ω′∣∣∣∣∣∣
p−var,[t0,t0+T ]

)
e
D2(T p+|||ω|||pp−var,[t0,t0+T ])

≤ D3(|x0 − x ′
0| + |||ω|||p−var,[a,a′] + ∣∣∣∣∣∣ω − ω′∣∣∣∣∣∣

p−var,[t0,t0+T ]),

where D2, D3 are constant depending on x and M∗. Therefore

‖y‖p−var,[t0,t0+T ] ≤ |y(t0)| + |||y|||p−var,[t0,t0+T ]
≤ D4(|x0 − x ′

0| + |||ω|||p−var,[a,a′] + ∣∣∣∣∣∣ω − ω′∣∣∣∣∣∣
p−var,[t0,t0+T ]),

with some constant D4, which proves the continuity of X . 
�
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Young Integral on Infinite Domain

Consider f : R+ → R such that
∫ b
a f (s)dω(s) exists for all a < b ∈ R

+. Fix t0 ≥ 0, we

define
∫∞
t0

f (s)dω(s) as the limit lim
t→∞

∫ t

t0
f (s)dω(s) if the limit exists and is finite. In this

case,
∫ t0

0
f (s)dω(s) =

∫ ∞

0
f (s)dω(s) −

∫ ∞

t0
f (s)dω(s)

By assumption (H3) the sequence
{ |||ω|||p−var,[k,k+1]

k , k ≥ 1
}
is bounded.

Lemma 5.1 Consider G(t) = ∫ t
0 g(s)dω(s), where g is of bounded q−variation function on

every compact interval. If χ(g(t)), χ(|||g|||q−var,[t,t+1]) ≤ λ ∈ [0,+∞) then

χ(G(t)), χ(|||G|||q−var,[t,t+1]) ≤ λ.

Proof Since χ(g(t)), χ(|||g|||q−var,[t,t+1]) ≤ λ, for any ε > 0, there exists D1 = D1(ε) such
that |g(s)| ≤ D1e(λ+ε/2)s , |||g|||q−var,[s,s+1] ≤ D1e(λ+ε/2)s for all s > 0. Then

|G(t)| ≤
�t�−1∑
k=0

∣∣∣
∫ k+1

k
g(s)dω(s)

∣∣∣+
∣∣∣
∫ t

�t�
g(s)dω(s)

∣∣∣

≤ K
�t�−1∑
k=0

|||ω|||p−var,[k,k+1] (|g(k)| + |||g|||q−var,[k,k+1])

≤ 2K D1

�t�−1∑
k=0

|||ω|||p−var,[k,k+1]
k

ke(λ+ε/2)k

≤ 2K D1 sup
k≥1

|||ω|||p−var,[k,k+1]
k

(t + 1)2et(λ+ε/2)

≤ D2e
(λ+ε)t ,

where D2 is a generic constant depends on ε. This yields χ(G(t)) ≤ λ.
Next, fix t0 > 0 then [t0, t0+1] ⊂ [n0, n0+2]with somen0 ∈ N. For each s, t ∈ [t0, t0+1]

we have

|G(t) − G(s)| ≤ K |||ω|||p−var,[s,t] (‖g‖∞,[s,t] + |||g|||q−var,[s,t])
≤ 2K D1 |||ω|||p−var,[s,t] e(λ+ε/2)(t0+1).

Hence

|||G|||q−var,[t0,t0+1]
≤ 2K D1 |||ω|||p−var,[t0,t0+1] e(λ+ε/2)(t0+1)

≤ 2.2
p−1
p K D1

(|||ω|||p−var,[n0,n0+1] + |||ω|||p−var,[n0+1,n0+2])
t0 + 1

(t0 + 1)e(λ+ε/2)(t0+1)

≤ D2e
(λ+ε)t0 ,

which implies χ(|||G|||q−var,[t,t+1]) ≤ λ. 
�
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Lemma 5.2 Let g be of bounded q−variation function on every compact interval, satisfying
χ(g(t)), χ(|||g|||q−var,[t,t+1]) ≤ −λ ∈ (−∞, 0). Then the integral G(t) := ∫∞

t g(s)dω(s)
exists for all t ∈ R

+ and

χ(G(t)), χ(|||G|||q−var,[t,t+1]) ≤ −λ.

Proof For each ε > 0 such that 2ε < λ, there exists a constant D1 such that

|g(s)| ≤ D1e
(−λ+ε)s, |||g|||q−var,[s,s+1] ≤ D1e

(−λ+ε)s .

Now fix t0 ≥ 0 we first prove the existence and finiteness of lim n∈N
n→∞

∫ n
t0
g(s)dω(s). For all

n < m ∈ N we have

∣∣∣
∫ m

n
g(s)dω(s)

∣∣∣ ≤
m−1∑
k=n

∣∣∣
∫ k+1

k
g(s)dω(s)

∣∣∣

≤ K
m−1∑
k=n

|||ω|||p−var,[k,k+1] (|g(k)| + |||g|||q−var,[k,k+1])

≤ 2K D1

m−1∑
k=n

|||ω|||p−var,[k,k+1] e(−λ+ε)k

≤ 2K D1e
(−λ+2ε)n sup

k

|||ω|||p−var,[k,k+1]
k

∞∑
k=0

ke−εk

≤ D2e
(−λ+2ε)n

which converges to zero as n,m → ∞ since
|||ω|||p−var,[k,k+1]

k are bounded and the series∑∞
k=0 ke

−kε/2 converges. Therefore lim n∈N
n→∞

∫ n
t0
g(s)dω(s) < ∞. Moreover, for t > t0 by

a similar estimate we have
∣∣∣
∫ t

t0
g(s)dω(s) −

∫ �t�

t0
g(s)dω(s)

∣∣∣ =
∣∣∣
∫ t

�t�
g(s)dω(s)

∣∣∣ → 0

as t → ∞. This implies the existence of
∫∞
t0

g(s)dω(s). Moreover, |G(t)| ≤ C(ε)e(−λ+2ε)t

which yields χ(G(t)) ≤ −λ.
The second conclusion can be proved similarly to Lemma 5.1. 
�

The following lemma shows that the condition (H4) is satisfied for almost all realization
ω of a fractional Brownian motion BH

t (ω) (see [22] for definition and details on fractional
Brownian motions).

Lemma 5.3 Assume that c0 := ‖c‖∞,R+ < ∞ and the integral

X(t, ω) =
∫ t

0
c(s)dBH

s (ω)

exists for all t ∈ R
+. Then limn→∞

n∈N
X(n,·)
n = lim

n→∞
n∈N

∫ n
0 c(s)dBH

s
n = 0, a.s.

Proof Fix T > 0, and assume that πn is a sequence of partition of [0, T ] such that
mesh(πn) → 0 as n → ∞. Denote

Xn(t, ω) =
∑

c(ti )(B
H
ti+1

(ω) − BH
ti (ω)).
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Then Xn(t, ω) → X(t, ω) as n → ∞. It is evident that Xn is a Gaussian random variable
with mean zero. Since

E(BH
t − BH

s )2 = |t − s|2H = H(2H − 1)
∫ t

s

∫ t

s
|a − b|2H−2dadb

E(BH
t − BH

s )(BH
u − BH

v ) = 1

2

[
|s − u|2H + |t − v|2H − |t − u|2H − |s − v|2H

]

= (2H − 1)H
∫ u

v

∫ t

s
|a − b|2H−2dadb (5.6)

for all v < u ≤ s < t (see [22, pp. 7–8]), we have

V (Xn) = EX2
n =

n∑
i, j=1

c(ti )c(t j )E(
BH
ti 
BH

t j )

= (2H − 1)H
∑
i

c2(ti )
∫ ti+1

ti

∫ ti+1

ti
|u − v|2H−2dudv

+ 2(2H − 1)H
∑
i< j

c2(ti )
∫ ti+1

ti

∫ t j+1

t j
|u − v|2H−2dudv

= D(H)

∫ t

0

∫ t

0
c(u)c(v)|u − v|2H−2dudv ≤ D(H)c20t

2H ,

where D(H) is a generic constant depending on H .
Since Xn → X , a.s, X(t, .) is a centered normal random variable with V (X(t, ·)) ≤

D(H)c20t
2H . It follows that EX(t, .)2k ≤ D(H , k, c0)t2kH with D(H , k, c0) is a constant

depending on H , k, c0. Fix 0 < ε < 1−H and choose k large enough so that k(1−ε−H) ≥ 1
we then have

∞∑
n=1

P

(
| X(n, ·)

n
| >

1

nε

)
≤

∞∑
n=1

EX(n, ·)2k
n2k(1−ε)

≤ D(H , k, c0)
∞∑
n=1

1

n2k(1−ε−H)

≤ D(H , k, c0)
∞∑
n=1

1

n2
< ∞.

Using Borel–Caltelli lemma, we conclude that X(n,·)
n → 0 as n → ∞ almost surely. 
�

Proof of Lemma 4.5 The if part is obvious since it can be proved that

lim
δ→0

m[a,b](c, δ) = 0, (5.7)

|m[a,b](c, δ) − m[a,b](c′, δ)| ≤ ∣∣∣∣∣∣c − c′∣∣∣∣∣∣
α,[a,b] , (5.8)

which shows the continuity of m on C0,α−Hol(R,Rk). Hence m is uniformly continuous on
a compact set, which shows (4.6) and (4.7).
To be more precise, denote by C̃ the space C0,α−Hol(R,Rk). Assume that H is compact in
C̃ , we prove that (4.6) and (4.7) are fulfilled. For each n ∈ N

∗, put

Gn = {c ∈ C̃ | |c(n)| < n}.
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Then Gn is open in C̃ .
SinceH ⊂ ⋃∞

n=1 Gn and Gn is an increasing sequence of open sets, there exists n0 such that
H ⊂ Gn0 , which proves (4.6).
To prove (4.7), first note that for each c ∈ C̃ and [a, b] ⊂ R, limδ→0 m[a,b](c, δ) = 0 (see
[12, Theorem 5.31, p. 96]). Secondly

|m[a,b](c, δ) − m[a,b](c′, δ)| ≤ ∣∣∣∣∣∣c − c′∣∣∣∣∣∣
α−Hol,[a,b] .

Indeed, due to the definition of m[a,b](c, δ), there exists for any ε > 0 two points s0, t0 ∈
[a, b], 0 < |s0 − t0| ≤ δ such that

m[a,b](c, δ) ≤ |c(t0) − c(s0)|
|t0 − s0|α + ε.

On the other hand, m[a,b](c′, δ) ≥ |c′(t0)−c′(s0)||t0−s0|α , which yields

m[a,b](c, δ) − m[a,b](c′, δ) ≤ |c(t0) − c(s0)| − |c′(t0) − c′(s0)|
|t0 − s0|α + ε

≤ |c(t0) − c(s0) − c′(t0) + c′(s0)|
|t0 − s0|α + ε

≤ ∣∣∣∣∣∣c − c′∣∣∣∣∣∣
α−Hol,[a,b] + ε

Exchanging the role of c and c′ we obtain

|m[a,b](c, δ) − m[a,b](c′, δ)| ≤ ∣∣∣∣∣∣c − c′∣∣∣∣∣∣
α−Hol,[a,b]

since ε is arbitrary.
We now prove the continuity of the map

m[a,b](· , δ) : (C̃, d) → R.

In fact, fix [−n, n] contains [a, b]. For each c0 ∈ C̃ and ε ∈ (0, 1) choose η = ε/2n . If
d(c, c0) < η we have ‖c − c0‖α,[−n,n] ∧ 1 ≤ 2nd(c, c0) < ε. Therefore

|m[a,b](c, δ) − m[a,b](c′, δ)| ≤ ∣∣∣∣∣∣c − c′∣∣∣∣∣∣
α,[−n,n] ≤ ε.

Next, fix ε > 0 and define the set

Kδ := {c ∈ Ā | m[a,b](c, δ) ≥ ε}.
Then Kδ is closed for all δ. Due to the fact that limδ→0 m[a,b](c, δ) = 0 for all c ∈ C̃ , we
have

⋂
δ>0

Kδ = ∅. Then there exists δ = δ(ε) > 0 such that Kδ = ∅, which proves (4.7).

For the ”only if” part, assume that (4.6) and (4.7) hold, we are going to prove the com-
pactness of H̄. Since C̃ is a complete metric space, it suffices to prove that every sequence
{cn}∞n=1 ⊂ H has a convergent subsequence. Following the arguments of [15, Theorem 4.9,
p. 63] line by line, we can construct a convergent subsequence {c̃n}∞n=1 by the ”diagonal
sequence” such that c̃n(r) → c(r) as n → ∞ for any rational number r ∈ Q. With (4.6) and
(4.7), H satisfies the condition in [15, Theorem 4.9, p. 63], hence c̃n converge uniformly to
a continuous function c in every [a, b] ⊂ R.
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Fix [a, b], by (4.7) for each ε > 0 there exist δ0 > 0 such that if δ ≤ δ0,
sups,t∈[a,b]

|s−t |≤δ

|c̃n(t)−c̃n(s)||t−s|α ≤ ε for all n. Hence

sup
s,t∈[a,b]
|s−t |≤δ

|c(t) − c(s)|
|t − s|α ≤ ε,

thus c ∈ C̃ . Finally, we prove that c̃n converge to c in the Hölder seminorm on every
compact interval [a, b]. Namely, with ε, δ0 given, there exist n0 such that for all n ≥ n0,
‖c̃n − c‖∞,[a,b] ≤ δα

0 ε. Then for n ≥ n0

sup
s,t∈[a,b]

|(c̃n − c)(t) − (c̃n − c)(s)|
|t − s|α ≤ sup

s,t∈[a,b]
|t−s|≤δ0

|(c̃n − c)(t) − (c̃n − c)(s)|
|t − s|α

+ sup
s,t∈[a,b]
|t−s|≥δ0

|(c̃n − c)(t) − (c̃n − c)(s)|
|t − s|α

≤ m[a,b](c̃n, δ0) + m[a,b](c, δ0) + 2

δα
0

‖c̃n − c‖∞,[a,b]

≤ 4ε,

which implies that |||c̃n − c|||α−Hol,[a,b] converges to 0 as n → ∞. This completes the proof.

�
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