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Abstract In this paper we define the index at infinity of an asymptotically linear autonomous
Hamiltonian system. We use this index to prove the existence and bifurcation from infinity
of periodic solutions of the system. We apply the degree for G-invariant strongly indefinite
functionals defined by Gołȩbiewska and Rybicki in (Nonlinear Anal 74:1823–1834, 2011).
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1 Introduction

Consider the problem of existence of periodic solutions of the system

ẋ = J H ′(x), (1.1)

where H ∈ C2(R2N ,R) is such that H ′ is asymptotically linear at infinity, i.e. H ′(x) =
H ′′(∞)x + o(|x |) for |x | → ∞, where H ′′(∞) is a symmetric matrix.

One of the ideas of studying such a system is to consider an associated functional defined
on an appropriateHilbert space. Using this functional one can define an index of the stationary
solution and of the infinity. Comparing these indices we can prove the existence of solutions.
Such an idea has been used by many authors, see for example [1,10,15,16,21]. The methods
used to define the indices include theories of Morse index and the Conley index.
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In the paper [12] we have defined the indices, using the degree of S1-invariant strongly
indefinite functionals. Namely, we have considered the system (1.1) with assumptions

(1) (H ′)−1(0) = {p1, . . . , pq},
(2) σ(J H ′′(∞)) ∩ iZ = ∅.

Assumption (2) implies the system is nonresonant at the infinity. On the other hand, the
stationary solutions can be resonant. For p being such a solution and for the infinity we have
defined indices (or almost all their coordinates) IH (p) and IH (∞) being elements of the
Euler ringU (S1). Comparing the sum of the indices IH (p)with the index IH (∞)we proved
the existence of solutions, see Theorems 3.1, 3.2 of [12].

The main aim of our paper is to define the index IH (∞) in the resonant case. To this end,
following the method of Su (see [20], also [4,17]), we introduce the additional assumptions,
see conditions (H4) and (H5) of Sect. 3, and obtain the so called strong angle conditions on
the associated functional.

Note that the index IH (∞) can be also used for studying other problems, for instance the
bifurcation from infinity, i.e. the problem of the existence of unbounded closed connected
sets of periodic solutions of the family of systems:

ẋ = J H ′(x, λ),

where H ∈ C2(R2N × R,R) is such that H ′(x, λ) is asymptotically linear at infinity. It is
known that if the difference of the indices computed on some levels λ−, λ+ is nontrivial,
then there exists an unbounded continuum of solutions. The proof of this fact in the case of
the operator being completely continous perturbation of the identity can be found in [8], the
proof in the general case is analogous.

After this introduction this paper is organized in the following way: in Sect. 2 we fix
notation and remind the definitions of degrees used in the next part of the paper. Moreover
we compute the index at the infinity for the asymptotically linear operator. To this end we
introduce the so called strong angle conditions.

In Sect. 3 we study periodic solutions of autonomous Hamiltonian systems. We formulate
main results of this paper, namely Theorems 3.1 and 3.3. In the former one we prove the
existence of solutions in the resonant case, while in the latter one we prove the existence of
a connected set of solutions bifurcating from the infinity.

2 Preliminaries

In this section we collect basic facts from the S1-equivariant degree theory. We remind, for
G = S1, the properties of the degree for G-equivariant gradient maps defined by Gȩba in
[9]. We also recall for G = S1 the generalisation of this degree defined in [13], namely the
degree for S1-invariant strongly indefinite functionals.

The degrees mentioned above are elements of the Euler ring U (S1). The definition and
the properties of this ring in the general case of any compact Lie group G one can find for

example in [6,11]. It is known thatU (S1) can be identified with the ring Z ⊕
( ∞⊕

k=1

Z

)
with

actions +, � : U (S1) ×U (S1) → U (S1) and · : Z ×U (S1) → U (S1) defined as follows:

α + β = (α0 + β0, α1 + β1, . . . , αk + βk, . . .),

α � β = (α0 · β0, α0 · β1 + β0 · α1, . . . , α0 · βk + β0 · αk, . . .),

γ · α = (γ · α0, γ · α1, . . . , γ · αk, . . .),

(2.1)

123



J Dyn Diff Equat (2018) 30:1509–1524 1511

for α = (α0, α1, . . . , αk, . . .), β = (β0, β1, . . . , βk, . . .) ∈ U (S1), γ ∈ Z. We set
� = (0, 0, . . . , 0, . . .) and I = (1, 0, . . . , 0, . . .). Note that we can index the coordi-
nates of elements of U (S1) by the conjugacy classes of closed subgroups of S1, writing
α = (αS1 , αZ1 , . . . , αZk , . . .).

LetV be a real, orthogonal S1-representation. PutCk
S1

(V,R) = { f ∈ Ck(V,R); f is S1−
invariant}. Since V is an orthogonal representation, for f ∈ Ck

S1
(V,R) the gradient ∇ f :

V → V is an S1-equivariant Ck−1-map.
For δ > 0 and p ∈ V we denote by Bδ(V, p) an open ball centered in p with radius δ.

We also write Bδ(V) instead of Bδ(V, 0) and B(V) instead of B1(V).

2.1 Degree for S1-Equivariant Gradient Maps

LetV be a finite-dimensional, orthogonal S1-representation and
 ⊂ V an open, bounded and
S1-invariant subset. For f ∈ C1

S1
(V,R) such that (∇ f )−1(0)∩∂
 = ∅ one can consider the

degree ∇S1 -deg(∇ f,
) ∈ U (S1), as a special case of the degree for G-equivariant gradient
maps defined by Gȩba in [9]. The coordinates of the degree can be written in the following
way:

∇S1 -deg(∇ f,
) = (∇S1 -degS1(∇ f,
),∇S1 -degZ1
(∇ f,
), . . . ,∇S1 -degZk

(∇ f,
), . . .).

Remark 2.1 Note that the definition of the degree for S1-equivariant, orthogonal maps has
been given also in [19]. Since every gradient map is an orthogonal one, we can use this
definition instead of the one mentioned above. However, formulas defining degree in those
two approaches differ by sign. The general summary of the equivariant degree theory can be
found in [2,3].

The properties of the degree are formulated in the following theorem (see [9]):

Theorem 2.1 (1) Let 
 and f satisfy the above assumptions. Then:

(a) (Existence) If ∇S1 -deg(∇ f,
) �= � ∈ U (S1), then (∇ f )−1(0) ∩ 
 �= ∅.

(b) (Additivity) If
 = 
0∪
1, where
0,
1 are open, disjoint, S1-invariant sets, then
∇S1 -deg(∇ f,
) = ∇S1 -deg(∇ f,
0) + ∇S1 -deg(∇ f,
1).

(c) (Excision) If
0 ⊂ 
 is an open, S1-invariant subset and (∇ f )−1(0)∩
 ⊂ 
0, then
∇S1 -deg(∇ f,
) = ∇S1 -deg(∇ f,
0).

(d) (Linearisation) If f ∈ C2
S1

(V,R) is such that ∇ f (0) = 0 and ∇2 f (0) is an S1-
equivariant linear isomorphism, then there exists α0 > 0 such that for every α < α0

we have ∇S1 -deg(∇ f, Bα(V)) = ∇S1 -deg(∇2 f (0), B(V)).

(2) (Homotopy invariance) Let h ∈ C1
G(V × [0, 1],R) be such that (∇vh)−1(0) ∩ (∂
 ×

[0, 1]) = ∅. Then ∇G-deg(∇vh(·, 0),
) = ∇G-deg(∇vh(·, 1),
).

To compute the degree of a product map we use for G = S1 the following fact, proven in
the general case in [14].

Fact 2.1 (Product formula) Let
i ⊂ Vi be an open, bounded, S1-invariant subset of a finite-
dimensional, orthogonal S1-representation and fi ∈ C1

S1
(Vi ,R) be such that (∇ fi )−1(0) ∩

∂
i = ∅ for i = 1, 2. Then

∇S1 -deg((∇ f1,∇ f2),
1 × 
2) = ∇S1 -deg(∇ f1,
1) � ∇S1 -deg(∇ f2,
2).
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Let us now remind the classification of the equivalence classes of finite-dimensional
S1-representations. Recall that two representations V,V′ are equivalent (briefly V ≈ V

′)
if there exists an equivariant linear isomorphism L : V → V

′. For k ∈ N define an S1-
action on R

2 by γt · (x, y) = (x cos(kt) − y sin(kt), x sin(kt) + y cos(kt)) where γt =
cos t + i sin t ∈ S1, (x, y) ∈ R

2. Denote by R[1, k] the two-dimensional S1-representation

with this action and put R[ j, k] =
j⊕

i=1

R[1, k] for j ∈ N. Moreover denote by R[ j, 0] the

trivial j-dimensional S1-representation.

It is known that any finite-dimensional S1-representation is equivalent to
r⊕

i=1

R[ ji , ki ]
for some r ∈ N, ji ∈ N, ki ∈ N ∪ {0}. Using this fact and the definition of the degree, we
obtain the following computational formulas for the degree of a self-adjoint, S1-equivariant
linear isomorphism (see [9]). By m−(L) we denote the Morse index of L , i.e. the sum of
multiplicities of negative eigenvalues of L .

Fact 2.2 Let V ≈ R[ j0, 0] ⊕ R[ j1, k1] ⊕ . . . ⊕ R[ jr , kr ], where j0 ∈ N ∪ {0}, j1, . . . , jr ,
k1, . . . , kr ∈ N and let L : V → V be a self-adjoint, S1-equivariant linear isomorphism.
Then

(1) L = diag (L0, L1, . . . , Lr ), where Li : R[ ji , ki ] → R[ ji , ki ] for i = 0, . . . , r,

(2) ∇S1 -degH (L , B(V)) =

⎧⎪⎪⎨
⎪⎪⎩

(−1)m
−(L0) for H = S1,

(−1)m
−(L0)+1 · m

−(Li )

2
for H = Zki ,

0 for H /∈ {S1,Zk1 , . . . ,Zkr }.
(3) In particular, if L = −I d, then

∇S1 -degH (−I d, B(V)) =

⎧⎪⎨
⎪⎩

(−1) j0 for H = S1,

(−1) j0+1 · ji for H = Zki ,

0 for H /∈ {S1,Zk1 , . . . ,Zkr }.
Remark 2.2 Note that if L : V → V is an S1-equivariant linear isomorphism, then the degree
∇S1 -deg(L , B(V)) is invertible. Moreover

(±1, α1, . . . , αk, . . .)
−1 = (±1,−α1, . . . ,−αk, . . .).

2.2 Degree for S1-Invariant Strongly Indefinite Functional

We briefly recall, in the special case G = S1, the definition of the degree for G-invariant
strongly indefinite functionals given in [13].

Let (H, 〈·, ·〉H) be an infinite-dimensional, separable Hilbert space, which is an orthogonal
S1-representation. Denote by � = {πn : H → H : n ∈ N ∪ {0}} an S1-equivariant approxi-
mation scheme on H, i.e. a sequence of S1-equivariant orthogonal projections satisfying

(1) H
n = πn(H) is a finite-dimensional subrepresentation, for all n ∈ N,

(2) there exists a subrepresentation Hn of Hn+1 such that Hn+1 = H
n ⊕ Hn and Hn ⊥ Hn

for all n ∈ N,
(3) lim

n→∞ πn(u) = u for all u ∈ H.

Assume that:

(a1) 
 ⊂ H is an open, bounded, S1-invariant set,
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(a2) L : H → H is a linear, bounded, self-adjoint, S1-equivariant Fredholm operator of
index 0, such that ker L = H

0 and πn ◦ L = L ◦ πn for all n ∈ N ∪ {0},
(a3) K ∈ C1

S1
(cl(
),R) is such that ∇K : cl(
) → H is an S1-equivariant completely

continuous operator,
(a4) � ∈ C1

S1
(cl(
),R) is of the form �(u) = 1

2 〈Lu, u〉H − K(u),

(a5) (∇�)−1(0) ∩ ∂
 = ∅.

Put Z = (∇�)−1(0), r0 = dist (Z, ∂
) and 
ε = Z + Bε(H), for ε ≤ r0
3 .

Definition 2.1 Let � ∈ C1
S1

(cl(
),R) satisfy assumptions (a1)–(a5). The degree for S1-

invariant strongly indefinite functionals, denoted by ∇S1 -deg(∇�,
) ∈ U (S1) is defined by
formula

∇S1 -deg(∇�,
) = ∇S1 -deg(L , B(Hn � H
0))−1 � ∇S1 -deg(L − πn ◦ ∇K,
ε ∩ H

n),

where n is sufficiently large and ε sufficiently small.

It was shown in [13] that such the degree is well-defined and it has the same properties
as the degree for S1-equivariant gradient mappings, i.e. properties of existence, additivity,
excision, linearisation and homotopy invariance. In the fact below we formulate the slightly
different version of the last of those properties, the so called generalized homotopy invariance
property. The proof of this fact carries over from the Leray-Schauder degree case, see [5].
We put an assumption:

(a6) � ∈ C1
S1

(H × R,R) is such that �(u, λ) = 1
2 〈Lu, u〉H − K(u, λ), where L satisfies

(a2) and ∇uK is an S1-equivariant completely continuous operator.

Fact 2.3 Let � : H × R → R satisfy condition (a6) and 
̃ ⊂ H × [λ−, λ+] be an open,
bounded and S1-invariant subset. Moreover assume that there exist open, bounded, S1-
invariant sets 
̃+, 
̃− ⊂ H such that

(1) 
̃ ∩ (H × {λ±}) = 
̃± × {λ±},
(2) (∇u�)−1(0) ∩ ∂
̃ ⊂ (
̃− × {λ−}) ∪ (
̃+ × {λ+}).
Then ∇S1 -deg(∇u�(·, λ−), 
̃−) = ∇S1 -deg(∇u�(·, λ+), 
̃+).

Using this property we can study the bifurcation from infinity of solutions of the equation
∇u�(u, λ) = 0. Assume that there exist λ−, λ+ ∈ R satisfying λ− < λ+ and γ > 0 such
that

(∇u�(·, λ±))−1(0) ⊂ Bγ (H). (2.2)

Define the bifurcation index at ∞ for [λ−, λ+] by
BIF(∞, [λ−, λ+]) = ∇S1 -deg(∇u�(·, λ+), Bγ (H)) − ∇S1 -deg(∇u�(·, λ−), Bγ (H)).

Theorem 2.2 Let � satisfy condition (a6) and let λ± ∈ R, γ > 0 be such that assumption
(2.2) is fulfilled. If BIF(∞, [λ−, λ+]) �= � ∈ U (S1), then there exists an unbounded closed
connected componentC of (∇u�)−1(0)∩(H×[λ−, λ+]) such thatC∩(Bγ (H)×{λ−, λ+}) �=
∅.

The proof of this theorem in the case of the SO(2)-equivariant operators of the form
compact perturbation of identity can be found in [8]. The authors use the properties of the
SO(2)-degree, especially the generalized homotopy invariance property and the fact that the
set ∇u�

−1(0) is compact in H × R. Using the counterparts of these facts in the case of the
degree for G-invariant strongly indefinite functionals, we obtain our result.
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2.3 Index at the Infinity

In this section, under some additional assumptions, we compute the degree of an asymptot-
ically linear operator, which is a gradient of a strongly indefinite, S1-invariant functional at
the sufficiently large disc centered at the origin. Let (H, 〈·, ·〉H) be an infinite dimensional
Hilbert space, which is an orthogonal S1-representation. Let � ∈ C2

S1
(H,R) be such that

�(u) = 1

2
〈(L + L∞)u, u〉H + η(u), (2.3)

where L satisfies condition (a2) of Sect. 2.2 and moreover

(b1) L∞ : H → H is a linear, S1-equivariant, self-adjoint, completely continuous operator,
satisfying L∞ ◦ πn = πn ◦ L∞,

(b2) ∇η : H → H is an S1-equivariant, completely continuous operator,
(b3) ∇η(u) = o(‖u‖H) as ‖u‖H → ∞.

Denote by ∇2�(∞) = L + L∞ the linearization of ∇� at the infinity. In the case when
∇2�(∞) is an isomorphism, analogously to the linearization property at the origin, one can
prove the property of the linearization at the infinity.

Fact 2.4 Let� ∈ C2
S1

(H,R) be a functional given by (2.3) and let conditions (a2), (b1)–(b3)

be satisfied. Assume that∇2�(∞) : H → H is an S1-equivariant, self-adjoint isomorphism.
Then there exists α∞ > 0 such that for all α > α∞

∇S1 -deg(∇�, Bα(H)) = ∇S1 -deg(∇2�(∞), B(H)).

In the rest of this section we will assume ∇2�(∞) is not an isomorphism, i.e.

(b4) 0 ∈ σ(∇2�(∞)).

Denote by V∞ and W∞ the kernel and the image of ∇2�(∞), respectively and put
A∞ = (∇2�(∞))|W∞ : W∞ → W∞. Moreover, denote by W

+∞ and W
−∞ subspaces of

W∞ such that (A∞)|W+∞ is positive definite and (A∞)|W−∞ is negative definite.
To compute the degree of � at the sufficiently large disc centered at the origin we put

additional assumptions, so called strong angle conditions.

(SAC+∞) There exists M > 0, β > 0 and α ∈ (0, π
2 ) such that 〈∇�(u), v

‖v‖H 〉H ≥ β > 0
for any u = (v,w) ∈ H = V∞ ⊕W∞ with ‖u‖H ≥ M and ‖w‖H ≤ ‖u‖H sin α.

(SAC−∞) There exists M > 0, β > 0 and α ∈ (0, π
2 ) such that 〈∇�(u), v

‖v‖H 〉H ≤ −β < 0
for any u = (v,w) ∈ H = V∞ ⊕W∞ with ‖u‖H ≥ M and ‖w‖H ≤ ‖u‖H sin α.

The above conditions has been introduced by Li and Su in [17], see also [20]. Using
the method introduced by Bartsch and Li in [4] for a similar type of assumptions (namely
the angle conditions (AC±∞) they have computed the critical groups of the functional at the
infinity. Combining some arguments from [4] and the degree theory for S1-invariant strongly
indefinite functionals, we can compute the degree ∇S1 -deg(∇�, Bγ (H)).

Theorem 2.3 Let � ∈ C2
S1

(H,R) be a functional given by (2.3) and let conditions (a2),
(b1)–(b4) be satisfied. Then

(a) If � satisfies the condition (SAC+∞) then for γ and n sufficiently large

∇S1 -deg(∇�, Bγ (H)) = ∇S1 -deg(L , B(Hn � H
0))−1 � ∇S1 -deg(A∞, Bγ (Hn � V∞)).
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(b) If � satisfies the condition (SAC−∞) then for γ and n sufficiently large

∇S1 -deg(∇�, Bγ (H)) = ∇S1 -deg(−I d, Bγ (V∞)) � ∇S1 -deg(L , B(Hn � H
0))−1�

∇S1 -deg(A∞, Bγ (Hn � V∞)).

Proof (a) We first prove that if � satisfies conditions (a2), (b1)–(b4) and (SAC+∞), the
conditions (a1)–(a5) of Sect. 2.2 are satisfied for 
 = Bγ (H), where γ is sufficiently large.
Therefore the degree∇S1 -deg(∇�, Bγ (H)) is well-defined. Indeed, the conditions (a1)–(a4)
follows immediately from (a2), (b1)–(b4) and the definition of
. To show (a5) we will prove
that for M sufficiently large if ‖u‖H > M then ∇�(u) �= 0.

ChooseM > 0 andα ∈ (0, π
2 ) as in (SAC+∞) and note that for u = (v,w) ∈ V∞⊕W∞ =

H satisfying ‖u‖H > M and ‖w‖H ≤ ‖u‖H sin α, from (SAC+∞) we obtain 〈∇�(u), v〉H >

0. In the case ‖u‖H > M and ‖w‖H > ‖u‖H sin α, choose ε > 0 such that ε
sin α

< ‖A−1∞ ‖−1

and note that from (b3) without loss of generality we can assume that for ‖u‖H > M
we have ‖∇η(u)‖H < ε‖u‖H. We obtain ‖∇�(u)‖H ≥ ‖A−1∞ ‖−1‖w‖H − ‖∇η(u)‖H ≥
(‖A−1∞ ‖−1 − ε 1

sin α
)‖w‖H > 0.

To compute the degree define the homotopy H∞ ∈ C2(H × [0, 1],R) by the formula
H∞((v,w), t) = �(v,w)+ 1

2 t‖v‖2
H
.Wewill show that this homotopy satisfies assumptions

of Fact 2.3. Using arguments as in the proof of Proposition 2.5 in [4], one can show that for
γ sufficiently large and u ∈ H satisfying ‖u‖H > γ :

1) if ‖w‖H ≤ ‖u‖H sin α then from (SAC+∞) follows ‖∇u H∞(u, t)‖2
H

> 0
2) if ‖w‖H > ‖u‖H sin α,wherew = (w+, w−) ∈ W

+∞ ⊕W
−∞ satisfies ‖w+‖H ≥ ‖w−‖H

then using (b1) and (b3) we obtain 〈∇u H∞(u, t), w+〉H > 0,
3) if ‖w‖H > ‖u‖H sin α,wherew = (w+, w−) ∈ W

+∞ ⊕W
−∞ satisfies ‖w+‖H ≤ ‖w−‖H

then using (b1) and (b3) we obtain 〈∇u H∞(u, t), w−〉H < 0.

Hence we obtain that ∇u H∞(u, t) �= 0 for every u ∈ H satisfying ‖u‖H > γ and
t ∈ [0, 1]. Moreover, ∇u H∞(u, t) = L(u) − ∇ψ(u, t), where ψ(u, t) = 1

2 〈L∞u, u〉H +
1
2 t‖v‖2

H
−η(u). From assumptions (b1), (b2) and the fact that t · I dV∞ is a finite dimensional

mapping for every t ∈ [0, 1], we obtain that∇ψ is S1-equivariant and completely continuous.
Therefore assumptions of the homotopy invariance property (see Fact 2.3) are satisfied.
Hence:

∇S1 -deg(∇�, Bγ (H)) = ∇S1 -deg(∇u H
∞(·, 0), Bγ (H)) = ∇S1 -deg(∇u H

∞(·, 1), Bγ (H))

= ∇S1 -deg(∇� + I dV∞ , Bγ (H)).

(2.4)
Note that functional � : H → R defined by �(v,w) = �(v,w) + 1

2‖v‖2
H
satisfies assump-

tions of the property of linearization at the infinity (Fact 2.4). Using this fact andDefinition 2.1
we have

∇S1 -deg(∇� + I dV∞ , Bγ (H)) = ∇S1 -deg(L + L∞ + I dV∞ , Bγ (H))

= ∇S1 -deg(L , B(Hn � H
0))−1 � ∇S1 -deg(L + πn ◦ (L∞ + I dV∞), (Bγ (H))ε ∩ H

n),

(2.5)
where, according to the definition of the degree, (Bγ (H))ε is an ε-neighbourhood of the set
(L+L∞+ I dV∞)−1(0)∩Bγ (H).Since L+L∞+ I dV∞ is an isomorphism, (Bγ (H))ε∩H

n =
Bε(H

n).
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For n sufficiently large, from (a2) and (b1), V∞ ⊂ H
n . Therefore, using the product

formula,
∇S1 -deg(L + πn ◦ (L∞ + I dV∞), (Bγ (H))ε ∩ H

n)

= ∇S1 -deg((I dV∞ , (A∞)|Hn�V∞), Bε(H
n))

= ∇S1 -deg(I dV∞ , Bε(V∞)) � ∇S1 -deg(A∞, Bε(H
n � V∞)).

(2.6)

From (2.4)–(2.6), we obtain the assertion.
To prove (b) it is enough to consider the homotopy H∞ ∈ C2(H × [0, 1],R) defined by

the formula H∞((v,w), t) = �(v,w) − 1
2 t‖v‖2

H
. The rest of the proof is analogous to the

proof of (a). ��
Remark 2.3 Note that if L(V∞) ⊂ V∞, from the excision property of the degree and the
product formula we have

∇S1 -deg(L , B(Hn � H
0))−1

= ∇S1 -deg(L , B(Hn � (V∞ ⊕ H
0)))−1 � ∇S1 -deg(L , B(V∞ � H

0))−1.

Therefore, using again the definition of the degree, we have

∇S1 -deg(∇�, Bγ (H)) = ∇S1 -deg(L , Bγ (V∞ � H
0))−1 � ∇S1 -deg(A∞, Bγ (W∞)).

3 Periodic Solutions of Autonomous Hamiltonian Systems

Throughout this section we study the existence of periodic solutions of autonomous Hamil-
tonian systems of the form:

ẋ = J H ′(x), (3.1)

where J :=
(

0 −I d
Id 0

)
and H ∈ C2(R2N ,R) satisfies

(H1) H ′(x) = H ′′(∞)x + g′(x) = H ′′(∞)x + o(|x |) for |x | → ∞, where H ′′(∞) is a
symmetric matrix,

(H2) (H ′)−1(0) = {p1, . . . , pq}.
We also study the problem of existence of closed connected sets of periodic solutions

bifurcating from infinity for the family of autonomous Hamiltonian systems:

ẋ = J H ′(x, λ), (3.2)

where H ∈ C2(R2N × R,R) satisfies

(H3) H ′(x, λ) = H ′′(∞, λ)x + g′(x, λ) = H ′′(∞, λ)x + o(|x |) for |x | → ∞ uniformly
on bounded λ-intervals, where H ′′(∞, λ) is a real, symmetric matrix for all λ ∈ R.

Remark 3.1 Note that if H ∈ C2(R2N ×R,R) satisfies (H3), then for a fixed λ the potential
Hλ ∈ C2(R2N ,R) defined by Hλ(x) = H(x, λ) satisfies condition (H1) with H ′′(∞) =
H ′′(∞, λ).

We start with recalling the definitions of the appropriate Hilbert space and the functional
corresponding to this system. Put E := H

1/2(S1,R2N ), the Sobolev space of functions
u(t) = a0 + ∑∞

k=1(ak cos kt + bk sin kt), satisfying
∑∞

k=1 k(|ak |2 + |bk |2) < ∞, where
a0, ak, bk ∈ R

2N .
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It is known thatE is a separable Hilbert spacewith an inner product defined by the formula

〈u, u′〉E := 2πa0 · a′
0 + π

∞∑
k=1

k(ak · a′
k + bk · b′

k). (3.3)

Moreover, ifwe consider an S1-action given by γ ·u(t) = u(t+ϕ) for γ = cosϕ+i sin ϕ ∈
S1, u ∈ E, it is easy to show that E is an orthogonal representation of the group S1.

Define a sequence of projections � = {πn : E → E; n ∈ N ∪ {0}} by πn(a0 +∑∞
k=1(ak cos kt +bk sin kt)) = a0 +∑n

k=1(ak cos kt +bk sin kt) and put En = πn(E). Then
� is an S1-equivariant approximation scheme.

Under the assumption (H1) (or (H3) respectively) one can prove (see [18]) that u(t) ∈
C2(R,R2N ) is a 2π-periodic solution of (3.1) ((3.2) respectively) if and only if u is a critical
point with respect to u of the functional

�H (u) = 1

2

∫ 2π

0
J u̇(t) · u(t) +

∫ 2π

0
H(u(t))dt, (3.4)

or respectively

�̃H (u, λ) = 1

2

∫ 2π

0
J u̇(t) · u(t) +

∫ 2π

0
H(u(t), λ)dt. (3.5)

Moreover�H ∈ C2
S1

(E,R), �̃H ∈ C2
S1

(E×R,R). Let us summarize the properties of these
functionals.

Define L : E × E → R by L(u, v) = ∫ 2π
0 J u̇(t) · v(t)dt . From the Riesz Theorem we

obtain the existence of a unique, bounded, S1-equivariant, self-adjoint Fredholm operator of
index 0, L : E → E such that 〈Lu, v〉E = L(u, v).

Using the definition of L and the inner product formula (3.3) we obtain an explicit formula
for this operator. Namely for u = a0 + ∑∞

k=1(ak cos kt + bk sin kt) we have:

Lu =
∞∑
k=1

(Jbk cos kt − Jak sin kt). (3.6)

From the above we obtain

(1) ker L = π0(E),

(2) πn ◦ L = L ◦ πn for all n ∈ N ∪ {0}.
Define S1-representations E+

k ,E−
k ,Ek by E

±
k := {a cos kt ∓ Ja sin kt; a ∈ R

2N } and
Ek = E

+
k ⊕ E

−
k . Moreover let E0 = R

2N ≈ R[2N , 0]. It is easy to show that E±
k ≈

R[N , k],Ek ≈ R[2N , k] and L |E+
k

= I d, L |E−
k

= −I d. Moreover, En = ⊕n
k=0 Ek .

Note that using (H1) and (H3) we can rewrite �H and �̃H as

�H (u) = 1

2
〈Lu, u〉E + 1

2

∫ 2π

0
H ′′(∞)u(t) · u(t)dt +

∫ 2π

0
g(u(t))dt,

�̃H (u, λ) = 1

2
〈Lu, u〉E + 1

2

∫ 2π

0
H ′′(∞, λ)u(t) · u(t)dt +

∫ 2π

0
g(u(t), λ)dt.

From the Riesz theorem it follows that there exists a unique, bounded linear operator
L∞ : E → E defined by

〈L∞u, v〉E =
∫ 2π

0
H ′′(∞)u(t) · v(t)dt. (3.7)
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Additionally we put η(u) = ∫ 2π
0 g(u(t))dt. It is easy to check that L∞ and ∇η are S1-

equivariant and, since H ′′(∞) is symmetric, L∞ is self-adjoint. Moreover, it is known (see
[18]) that L∞ and ∇η are completely continuous and that condition g′(x) = o(|x |) for
|x | → ∞ implies ∇η(u) = o(‖u‖E) as ‖u‖E → ∞ (see [16]).

Let A be a real, symmetric, (2N × 2N )-matrix. Consider the functional associated to a
linear system

ẋ = J Ax . (3.8)

According to (3.4) we obtain the functional �A : E → R given by

�A(u) = 1

2
〈Lu, u〉E + 1

2
〈Bu, u〉E, where 〈Bu, v〉E =

∫ 2π

0
Au(t) · v(t)dt.

From the above definition and (3.3) we can compute the explicit formula for B. Namely,
for u = a0 + ∑∞

k=1(ak cos kt + bk sin kt) ∈ E we have

Bu = Aa0 +
∞∑
k=1

(
1

k
(Aak) cos kt + 1

k
(Abk) sin kt

)
. (3.9)

Remark 3.2 Note that from (3.9) it follows that πn ◦ B = B ◦ πn for n ∈ N ∪ {0}.
Corollary 3.1 From the above considerations, taking A = H ′′(∞), we obtain that the
functional�H is of the form (2.3)with conditions (a2),(b1)–(b3) satisfied. The same statement
is valid if we consider �̃H (·, λ) with λ fixed.

For k ∈ N put Tk(A) :=
[ 1

k A J
−J 1

k A

]
. Note that from (3.6) and (3.9) it follows that the

restriction of ∇�A to Ek can be represented by the matrix Tk(A) for k ≥ 1 and by A for
k = 0.

From the above considerations we obtain the following properties of the operator ∇�A.

Lemma 3.1 (1) ∇�A is an isomorphism if and only if σ(J A) ∩ iZ = ∅.

(2) ker∇�A = ker A ⊕
∞⊕
k=1

ker(Tk(A))

= {u ≡ a; a ∈ ker A} ⊕
∞⊕
k=1

{uk = ak cos kt + bk sin kt; ak + ibk ∈ VJ A(−ik)}.

(3) ker∇�A ≈
∞⊕
k=0

R[mk, k], where mk is a geometric multiplicity of an eigenvalue ik of

the matrix J A.

(4)
⊕
λi<0

V∇�A (λi ) ≈ R[m−(A), 0] ⊕
∞⊕
k=1

R[m−(Tk(A)), k].

In the case of an isomorphism, we have the following formula for the degree of ∇�A, see
[12].

Lemma 3.2 If σ(J A) ∩ iZ = ∅, then

∇S1 -deg(∇�A, B(E))

=
(

(−1)m
−(A), (−1)m

−(A) ·
(
N − m−(T1(A))

2

)
, . . . , (−1)m

−(A) ·
(
N − m−(Tk(A))

2

)
, . . .

)
.
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For a nonlinear Hamiltonian system with potential H satisfying (H1) we define an index
IH (∞) ∈ U (S1) depending on the matrix H ′′(∞). We start with a nonresonant case.

Definition 3.1 Let H be such that σ(J H ′′(∞)) ∩ iZ = ∅. Define IH (∞) ∈ U (S1) by

IH (∞)K =
{

(−1)m
−(H ′′(∞)) for K = S1,

(−1)m
−(H ′′(∞))

(
N − m−(Tk (H ′′(∞)))

2

)
for K = Zk .

Remark 3.3 Note that for k ∈ N sufficiently large, m−(Tk(H ′′(∞))) = 2N , hence IH (∞)

is a well-defined element of U (S1).

Lemma 3.3 Let H satisfy condition (H1) and σ(J H ′′(∞))∩iZ = ∅. Then, for γ sufficiently
large, IH (∞) = ∇S1 -deg(∇�H , Bγ (E)).

Proof The proof follows from the linearization property at the infinity and Lemma 3.2. ��
Remark 3.4 Note that for p ∈ (H ′)−1(0) satisfying σ(J H ′′(p)) ∩ iZ = ∅ one can define
the index IH (p) ∈ U (S1) analogously as IH (∞), see Definition 3.1 of [12]. Moreover, in
this case ∇S1 -deg(∇�H , Bα(E, p)) = IH (p) for α > 0 sufficiently small, see Lemma 3.3
of [12]. If σ(J H ′′(p)) ∩ iZ = {±ik1, . . . ,±ikm}, we can define IH (p), or almost all its
coordinates, by

IH (p)K

=

⎧⎪⎨
⎪⎩

lim
α→0

degB (J H ′, Bα(R2N , p), 0), for K = S1,

lim
α→0

degB (J H ′, Bα(R2N , p), 0) ·
(
N − m−(Tk (H

′′(p)))
2

)
, for K = Zk , k /∈ K(m)

where K(m) = ⋃
{i1,...,is }⊂{1,...,m}{gcd(ki1 , . . . , kis )}, see Definition 3.2 of [12]. Moreover,

for K such that IH (p)K is defined, IH (p)K = ∇S1 -degK (∇�H , Bα(E, p)) for α sufficiently
small, see Theorem 3.2 of [12].

In the following we define an index IH (∞) in the case when σ(J H ′′(∞)) ∩ iZ �= ∅. We
assume that one of the following additional conditions on potential H is satisfied. Remind
that H ′(x) = H ′′(∞)x + g′(x).
(H4) There exist R, c1, c2 > 0, and 0 < s < 1 such that for all x ∈ R

2N (g′(x), x) ≤ 0
and moreover for all x ∈ R

2N with |x | ≥ R we have

|(g′(x), x)| ≥ c1|x |s+1, |g′(x)| ≤ c2|x |s .
(H5) There exist R, c1, c2 > 0 and 0 < s < 1 such that for all x ∈ R

2N with |x | ≥ R we
have

(g′(x), x) ≥ c1|x |s+1, |g′(x)| ≤ c2|x |s .
Remark 3.5 The above conditions have been introduced by Su, see [20]. Moreover, if H
satisfies (H4) then the functional �H satisfies (SAC+∞), and if H satisfies (H5) then �H

satisfies (SAC−∞), see Lemma 3.1 of [20].

Definition 3.2 Let H satisfy (H1), σ(J H ′′(∞)) ∩ iZ �= ∅ and condition (H4) be satisfied.
Define IH (∞) ∈ U (S1) by

IH (∞)K =
{

(−1)m
−(H ′′(∞)) for K = S1,

(−1)m
−(H ′′(∞))

(
N − m−(Tk (H ′′(∞)))

2

)
for K = Zk .
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Note that IH (∞) is a well-defined element of U (S1).

Lemma 3.4 Let H satisfy condition (H1) and σ(J H ′′(∞)) ∩ iZ �= ∅. Moreover assume
that (H4) is satisfied. Then, for γ sufficiently large, IH (∞) = ∇S1 -deg(∇�H , Bγ (E)).

Proof FromCorollary 3.1, Lemma 3.1 andRemark 3.5we obtain that�H satisfies conditions
(a2), (b1)-(b4) and (SAC+∞). Therefore, using Theorem 2.3, we have, for γ and n sufficiently
large,

∇S1 -deg(∇�H , Bγ (E))=∇S1 -deg(L , B(En�E
0))−1�∇S1 -deg(∇2�H (∞), Bγ (En�V∞)),

(3.10)
where V∞ is the kernel of the operator ∇2�H (∞).

From the product formula and the definition of representations E+
k ,E−

k , we have

∇S1 -deg(L , B(En � E
0))−1 = ∇S1 -deg(−I d, B(E−

1 ))−1 � . . . � ∇S1 -deg(−I d, B(E−
n ))−1.

Theorefore, since representations E−
k are equivalent to R[N , k], from Fact 2.2 and Remark

2.2 it follows that

∇S1 -degK (L , B(En � E
0))−1 =

⎧⎪⎨
⎪⎩
1 for K = S1,

N for K = Zi , i ≤ n,

0 for K = Zi , i > n.

To compute the latter factor of (3.10), note that the operator ∇2�H (∞) is associated
to the linear equation ẋ = J H ′′(∞)x . Therefore, from Lemma 3.1 we conclude that
V∞ = ker(H ′′(∞)) ⊕ ⊕∞

k=1 ker(Tk(H
′′(∞))). Moreover m−((∇2�H (∞))|Ek∩W∞) =

m−(Tk(H ′′(∞))), where W∞ = H � V∞. Hence, Fact 2.2 yields:

∇S1 -degK (∇2�H (∞), Bγ (En � V∞))

=

⎧⎪⎨
⎪⎩

(−1)m
−(H ′′(∞)) for K = S1,

(−1)m
−(H ′′(∞))+1 · m−(Tk (H ′′(∞)))

2 for K = Zk, k ≤ n,

0 for K = Zk, k > n.

Using formulae (2.1) we obtain the assertion. ��
Denote by m̃−(A) the sum of multiplicities of nonpositive eigenvalues of the symmetric

matrix A.

Definition 3.3 Let H satisfy (H1), σ(J H ′′(∞)) ∩ iZ �= ∅ and condition (H5) be satisfied.
Define IH (∞) ∈ U (S1) by

IH (∞)K =
{

(−1)m̃
−(H ′′(∞)) for K = S1,

(−1)m̃
−(H ′′(∞))

(
N − m̃−(Tk (H ′′(∞)))

2

)
for K = Zk .

Lemma 3.5 Let H satisfy (H1) and σ(J H ′′(∞))∩ iZ �= ∅. Moreover assume that condition
(H5) is satisfied. Then, for γ sufficiently large, IH (∞) = ∇S1 -deg(∇�H , Bγ (E)).

Proof FromCorollary 3.1, Lemma 3.1 andRemark 3.5we obtain that�H satisfies conditions
(a2), (b1)-(b4) and (SAC−∞). Therefore, using Theorem 2.3, we have, for γ and n sufficiently
large,

∇S1 -deg(∇�H , Bγ (E)) = ∇S1 -deg(−I d, Bγ (V∞))

� ∇S1 -deg(L , B(En � E
0))−1 � ∇S1 -deg(∇�H (∞), Bγ (En � V∞)),
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where V∞ is the kernel of the operator ∇2�H (∞) associated to the linear equation
ẋ = J H ′′(∞)x . Observe that from Lemma 3.1(3) V∞ ≈ ⊕∞

k=0 R[mk, k], where mk is
a geometric multiplicity of an eigenvalue ik of the matrix J H ′′(∞). Therefore, from Fact
2.2,

∇S1 -deg(−I d, Bγ (V∞)) = ((−1)m0 , (−1)m0+1 · m1, . . . , (−1)m0+1 · mk, . . .).

Reasoning as in the proof of the previous lemma, we obtain

∇S1 -deg(∇�H , Bγ (E))

=
(

(−1)m0+m−(H ′′(∞)), . . . , (−1)m0+m−(H ′′(∞))

(
N−m−(Tk(H ′′(∞)))

2
− mk

)
, . . .

)
.

To end the proofwe use the fact that the pair of the eigenvalues ik,−ik of thematrix J H ′′(∞)

corresponds to an eigenvalue 0 of matrix Tk(H ′′(∞)). Therefore 2mk is the multiplicity of
the eigenvalue 0 and m−(Tk(H ′′(∞))) + 2mk = m̃−(Tk(H ′′(∞))). ��
3.1 Existence of Solutions

In the following we use the definition of the index IH (∞) to formulate conditions sufficient
to the existence of solutions of (3.1).

Theorem 3.1 Let H ∈ C2(R2N ,R) satisfy assumptions (H1), (H2) and σ(J H ′′(p))∩ iZ =
∅ for all p ∈ (H ′)−1(0). Moreover, let σ(J H ′′(∞)) ∩ iZ �= ∅ and one of the conditions
(H4), (H5) be satisfied. If IH (∞) �= ∑q

i=1 IH (pi ) then there exists at least one non-stationary
2π-periodic solution of (3.1).

Proof Consider the functional �H given by (3.4). From Lemma 3.1 follows that if p is
a critical point of H satisfying σ(J H ′′(p)) ∩ iZ = ∅, then the solution u ≡ p is an
isolated critical point of �H . Moreover, since H satisfy (H4) or (H5), and therefore �H

satisfies (SAC+∞) or (SAC−∞), the set (∇�H )−1(0) is bounded, see the proof of Theorem 2.3.
Therefore, we can choose αpi , α∞ > 0 for i = 1, . . . , q, such that Bαpi

(E, pi ) are disjoint
neighborhoods of pi ∈ E satisfying cl(Bαpi

(E, pi )) ⊂ Bα∞(E) for i = 1, . . . , q. Suppose,
contrary to our claim, that p1, . . . , pq are the only 2π -periodic solutions of (3.1). From the
additivity and the excision properties of the degree, we have

∇S1 -deg(∇�H , Bα∞(E)) =
q∑

i=1

∇S1 -deg(∇�H , Bαpi
(E, pi )).

Taking into consideration Remark 3.4, Lemmas 3.4 and 3.5, we obtain

IH (∞) =
q∑

i=1

IH (pi ),

a contradiction. ��
In the following corollaries, using the definition of IH (∞), we formulate the assertion of

the Theorem 3.1 in terms of Morse indices of matrices H ′′(∞), Tk(H ′′(∞)).

Corollary 3.2 Let H ∈ C2(R2N ,R) satisfy assumptions (H1), (H2) and σ(J H ′′(p))∩iZ =
∅ for all p ∈ (H ′)−1(0). Moreover, let σ(J H ′′(∞)) ∩ iZ �= ∅ and the condition (H4) be
satisfied. Assume that one of the following conditions is fulfilled:
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(1) (−1)m
−(H ′′(∞)) �= ∑q

i=1(−1)m
−(H ′′(pi )),

(2) (−1)m
−(H ′′(∞))

(
N − m−(Tk (H ′′(∞)))

2

)
�= ∑q

i=1(−1)m
−(H ′′(pi ))

(
N − m−(Tk (H ′′(pi )))

2

)
for some k ∈ N.

Then there exists at least one non-stationary 2π -periodic solution of (3.1).

Corollary 3.3 The above corollary remains valid if we replace (H4) by (H5) and conditions
(1), (2) by:

(1) (−1)m̃
−(H ′′(∞)) �= ∑q

i=1(−1)m
−(H ′′(pi )),

(2) (−1)m̃
−(H ′′(∞))

(
N − m̃−(Tk (H ′′(∞)))

2

)
�= ∑q

i=1(−1)m
−(H ′′(pi ))

(
N − m−(Tk (H ′′(pi )))

2

)
for some k ∈ N.

Note that we can omit the assumption σ(J H ′′(p)) ∩ iZ = ∅ for p ∈ (H ′)−1(0) by
defining the index IH (p) (or almost all its coordinates) as in Remark 3.4. In such a situation
we obtain the following theorem:

Theorem 3.2 Let H ∈ C2(R2N ,R) satisfy assumptions (H1), (H2), σ(J H ′′(∞)) ∩ iZ �= ∅
and one of the conditions (H4), (H5) is fulfilled. Let k ∈ Z be such that for every p ∈
{p1, . . . , pq} the number IH (p)Zk is defined. If IH (∞)Zk �= ∑q

k=1 IH (pi )Zk then there
exists at least one non-stationary 2π -periodic solution of (3.1).

Proof Observe, that we can assume p1, . . . , pq are isolated critical points of the functional
�H . If not, we obtain an infinite sequence of 2π -periodic solutions of (3.1) and hence the
assertion of the theorem.

Therefore the degrees ∇S1 -deg(∇�H , Bα∞(E)),∇S1 -deg(∇�H , Bαpi
(E, pi )) are well-

defined. Moreover, for k ∈ Z such that IH (p)Zk is defined, IH (p)Zk = ∇S1 -degZk
(∇�H ,

Bα(E, p)). The rest of the proof is analogous to the proof of Theorem 3.1. ��
3.2 Bifurcation from Infinity

Let us now study the problem of bifurcation from infinity of solutions of the family (3.2).
Assume that λ− < λ+ are such that for λ ∈ {λ−, λ+} one of the following conditions is
satisfied:

(Aλ) σ(J H ′′(∞, λ)) ∩ iZ = ∅,
(Bλ) σ(J H ′′(∞, λ)) ∩ iZ �= ∅ and for H = H(·, λ) the condition (H4) is satisfied,
(Cλ) σ(J H ′′(∞, λ)) ∩ iZ �= ∅ and for H = H(·, λ) the condition (H5) is satisfied.

Theorem 3.3 Consider the family (3.2), where H ∈ C2(R2N ×R,R) is such that condition
(H3) is satisfied. Let λ− < λ+. Assume that one of the following conditions is satisfied:

(BIF1) For λ ∈ {λ−, λ+} one of the conditions (Aλ), (Bλ) is satisfied and
moreover (−1)m

−(H ′′(∞,λ−)) �= (−1)m
−(H ′′(∞,λ+)) or there exists k ∈ Z such that

(−1)m
−(H ′′(∞,λ−))

(
N − m−(Tk (H ′′(∞,λ−)))

2

)
�= (−1)m

−(H ′′(∞,λ+))(
N − m−(Tk (H ′′(∞,λ+)))

2

)
.

(BIF2) For λ = λ− one of the conditions (Aλ), (Bλ) is satisfied and for λ = λ+
the condition (Cλ) is satisfied. Moreover (−1)m

−(H ′′(∞,λ−)) �= (−1)m̃
−(H ′′(∞,λ+))

or there exists k ∈ Z such that (−1)m
−(H ′′(∞,λ−))

(
N − m−(Tk (H ′′(∞,λ−)))

2

)
�=

(−1)m̃
−(H ′′(∞,λ+))

(
N − m̃−(Tk (H ′′(∞,λ+)))

2

)
.
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(BIF3) For λ = λ− the condition (Cλ) is satisfied and for λ = λ+ one of the
conditions (Aλ), (Bλ) is satisfied. Moreover (−1)m̃

−(H ′′(∞,λ−)) �= (−1)m
−(H ′′(∞,λ+))

or there exists k ∈ Z such that (−1)m̃
−(H ′′(∞,λ−))

(
N − m̃−(Tk (H ′′(∞,λ−)))

2

)
�=

(−1)m
−(H ′′(∞,λ+))

(
N − m−(Tk (H ′′(∞,λ+)))

2

)
.

(BIF4) For λ ∈ {λ−, λ+} the condition (Cλ) is satisfied and moreover (−1)m̃
−(H ′′(∞,λ−))

�= (−1)m̃
−(H ′′(∞,λ+)) or there exists k ∈ Z such that (−1)m̃

−(H ′′(∞,λ−))(
N − m̃−(Tk (H ′′(∞,λ−)))

2

)
�= (−1)m̃

−(H ′′(∞,λ+))
(
N − m̃−(Tk (H ′′(∞,λ+)))

2

)
.

Then there exist γ > 0 and an unbounded, closed, connected set C ⊂ E × [λ−, λ+] of
solutions of the family (3.2) such that C ∩ (Bγ (E) × {λ−, λ+}) �= ∅.

Proof Consider the functional �̃H given by (3.5). Since H satisfies condition (H3), following
the idea given in [16] we can prove that �̃H satisfies (a6) of Sect. 2.2. Moreover, if the condi-
tion (Aλ) is fulfilled then ∇u�̃H (·, λ) is an isomorphism satisfying (b1)–(b3) of Sect. 2.3. In
the case of condition (Bλ) (respectively (Cλ)), from Corollary 3.1, Lemma 3.1 and Remark
3.5 follows that �̃H (·, λ) satisfies (b1)–(b4) and (SAC−∞) (respectively (SAC+∞)). Hence if
one of the conditions (Aλ), (Bλ), (Cλ) holds, then

(∇u�̃H (·, λ))−1(0) ⊂ Bγ (H).

For the proof in the case (Bλ), (Cλ), see the proof of Theorem 2.3. Therefore using the
arguments as in the proofs of Lemmas 3.3–3.5 we can show that if one of the conditions
(BIF1)–(BIF4) is satisfied then BI F(∞, [λ−, λ+]) �= �. Using Theorem 2.2 we obtain the
assertion. ��

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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