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Abstract In this paper, we concentrate on the study of a reaction–diffusion equation with
spatiotemporal delay and homogeneous Dirichlet boundary condition. It is shown that a
positive spatially nonhomogeneous equilibrium can bifurcate from the trivial equilibrium.
Moreover, the stability of the bifurcated positive equilibrium is investigated. And we prove
that, for the given spatiotemporal delay, the bifurcated equilibrium is stable under some
conditions, and Hopf bifurcation cannot occur.
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1 Introduction

For single population models, a prototypical delayed reaction–diffusion equation is the fol-
lowing diffusive Hutchinson equation:

⎧
⎨

⎩

∂u(x, t)

∂t
= d

∂2u(x, t)

∂x2
+ λu(x, t) (1 − u(x, t − τ)) , x ∈ (0, π), t > 0,

u(x, t) = 0, x = 0, π, t > 0
(1.1)

Busenberg and Huang [4] showed that for λ > d but close to d , a large delay τ can make the
unique spatially nonhomogeneous positive equilibrium of Eq. (1.1) unstable through a Hopf
bifurcation. Related work can also be found in References [11,12,18,19,22].
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It has been pointed out that the diffusion and time delay are always not independent of each
other for a delayed reaction–diffusion model, (see References [2,3,8–10,23]). For example,
Britton [3] introduced the following model:

∂u(x, t)

∂t
= d�u(x, t) + λu(x, t) (1 + αu − (1 + α)g ∗ ∗u) , (1.2)

where

g ∗ ∗u =
∫ t

−∞

∫

�

g(x, y, t − s)u(y, s)dyds, (1.3)

and analyzed the traveling waves on unbounded domain. Then Gourley and Britton [8]
proposed apredator–prey systemwith spatiotemporal delay. In [9],Gourley andSo introduced
a food-limited population model as follows:

∂u(x, t)

∂t
= d

∂2u

∂x2
+ λu(x, t)

(
1 − au(x, t) − b( f ∗ u)(x, t)

1 + acu(x, t) + bc( f ∗ u)(x, t)

)

, x ∈ (0, π), (1.4)

where

( f ∗ u)(x, t) =
∫ ∞

0

∫ π

0
G(x, y, s) f (s)u(y, t − s)dyds. (1.5)

Here for Neumann boundary condition, G(x, y, t) is the solution of the following equation:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂G

∂t
= d

∂2G

∂y2
, y ∈ (0, π),

∂G

∂y
= 0, y = 0, π,

G(x, y, 0) = δ(x − y),

(1.6)

and hence

G(x, y, t) = 1

π
+ 2

π

∞∑

k=1

e−dk2t cos kx cos ky.

Similarly, for Dirichlet boundary condition,

G(x, y, t) = 2

π

∞∑

k=1

e−dk2t sin kx sin ky. (1.7)

For Neumann boundary condition, Gourley and So [9] analyzed the stability and the Hopf
bifurcation of the spatially homogeneous positive equilibrium, and for Dirichlet boundary
condition, they proved the existence of the positive spatially nonhomogeneous equilibrium,
which bifurcates from the trivial equilibrium. However the stability of the bifurcated nonho-
mogeneous equilibrium has not been investigated. And it remains open that whether Hopf
bifurcation could occur for Dirichlet boundary condition.We also remark that there are many
results on the traveling wave solutions of reaction–diffusion models with nonlocal delay, (see
References [1,7,14–17,20] and the references therein).
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Motivated by the above work of [9], we analyze the following reaction–diffusion equation
with spatiotemporal delay and homogeneous Dirichlet boundary condition:

⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
= d

∂2u

∂x2
+ λuF

(
u,

∫ ∞
0

∫ π

0 G(x, y, s) f (s)u(y, t − s)dyds
)
, x ∈ (0, π), t > 0,

u(x, t) = 0, x = 0, π, t > 0,

(1.8)

where G(x, y, t) is defined as in Eq. (1.7), and f (t) is the delay kernel, satisfing f (t) ≥ 0
for t ≥ 0, and

∫ ∞
0 f (t)dt = 1. Here we choose

f (t) = 1


(m)βm
tm−1e−t/β, (1.9)

or

f (t) = δ(t − τ), (1.10)

for simplicity, where β, τ > 0, and m is a positive integer. The first one is the Gamma distri-
bution delay kernel, and when m = 1, 2, it is referred to as the “weak ”and “strong ”generic
delay kernels respectively. The second one is the Dirac distribution delay kernel. We recall
that the Laplace transform of f (t) is:

L(λ) =
∫ ∞

0
e−λs f (s)ds,

and denote

Mk = L(dk2), for k = 1, 2, . . . . (1.11)

In this paper, we prove that a positive spatially nonhomogeneous equilibrium can bifur-
cate from the trivial equilibrium and then focus on the stability of this bifurcated positive
equilibrium. Actually, in Sect. 2, we prove that, for the given spatiotemporal delay, the
bifurcated “small” positive spatially nonhomogeneous equilibrium is stable, and the Hopf
bifurcation cannot occur. Due to the difficulties for Dirichlet boundary problem, we prove
the above result when λ is near the bifurcation point d . The existence and stability of the
positive equilibrium remain open when λ is large.

Throughout the paper, we suppose that the function F(x, y) is smooth, F(0, 0) = 1,
denote

r1 = ∂F

∂x
(0, 0), r2 = ∂F

∂y
(0, 0). (1.12)

Moreover, we denote the spaces X = H2(0, π) ∩ H1
0 (0, π), Y = L2(0, π), and define the

complexification of a space Z to be ZC := Z ⊕ i Z = {x1 + i x2| x1, x2 ∈ Z}, the domain
of a linear operator L by D(L) and the range of L byR(L). For the complex-valued Hilbert

space YC, we use the standard inner product 〈u, v〉 =
∫

�

u(x)v(x)dx .
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2 Main Results and Proofs

We first study the existence of the positive steady state solutions of Eq. (1.8), which is a
solution of the following elliptic equation:

⎧
⎨

⎩

d
∂2u(x)

∂x2
+ λu(x)F

(

u(x),
∫ ∞

0

∫ π

0
G(x, y, s) f (s)u(y)dyds

)

= 0, x ∈ (0, π),

u(x) = 0, x = 0, π.

(2.1)

It is well-known that the following decompositions are satisfied:

X = N

(

d
∂2

∂x2
+ d

)

⊕ X1, Y = N

(

d
∂2

∂x2
+ d

)

⊕ Y1,

where

N

(

d
∂2

∂x2
+ d

)

= span{sin x}, X1 =
{

y ∈ X :
∫ π

0
y(x) sin xdx = 0

}

,

and

Y1 = R

(

d
∂2

∂x2
+ d

)

=
{

y ∈ Y :
∫ π

0
y(x) sin xdx = 0

}

.

Similar to[4,18], we also use the implicit function theorem to prove the existence of the
positive equilibrium near λ = d .

Theorem 2.1 Suppose that r1, r2, and M1 satisfy

r1 + r2M1 < 0, (2.2)

where r1, r2 and M1 are defined as in Eqs. (1.11), (1.12). Then there exists λ∗ > d, and
a continuously differentiable mapping λ 
→ (ξλ, αλ) from [d, λ∗] to X1 × R

+ such that
Eq. (1.8) has a positive equilibrium solution

uλ = αλ(λ − d)[sin x + (λ − d)ξλ] (2.3)

for λ ∈ (d, λ∗]. Moreover

αd = −

∫ π

0
sin2 xdx

d (r1 + r2M1)

∫ π

0
sin3 xdx

, (2.4)

and ξd ∈ X1 is the unique solution of the equation
(

d
∂2

∂x2
+ d

)

ξ + sin x [1 + αdd (r1 + r2M1) sin x] = 0. (2.5)

Proof Since r1, r2 and M1 satisfy Eq. (2.2), we obtain that αd is well defined and positive.

Because d ∂2

∂x2
+ d is bijective from X1 to Y1, ξd is uniquely defined. Since X1 is compactly

imbedded into Cα([0, π ]) for 0 < α < 1, we can define a mapping m : X1 × R
3 → Y by

m(ξ, α, λ) =
(

d
∂2

∂x2
+ d

)

ξ + sin x + (λ − d)ξ + λ[sin x + (λ − d)ξ ]m1(ξ, α, λ),
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where

m1(ξ, α, λ) =

⎧
⎪⎨

⎪⎩

F
(
u(x),

∫ ∞
0

∫ π

0 G(x, y, s) f (s)u(y)dyds
) − 1

λ − d
, λ �= d,

αr1 sin x + αr2
∫ ∞
0

∫ π

0 G(x, y, s) f (s) sin ydyds, λ = d,

(2.6)

for u(x) = α(λ − d) [sin x + (λ − d)ξ ].
Noticing that G(x, y, t) and f (t) are defined as in Eq. (1.7) and Eqs. (1.9), (1.10) respec-

tively, we have

m(ξ, α, d) =
(

d
∂2

∂x2
+ d

)

ξ + sin x + αd (r1 + r2M1) sin
2 x .

From Eqs. (2.4) and (2.5), we have that m(ξd , αd , d) = 0. And the Fréchet derivative of m
with respect to (ξ, α) at (ξd , αd , d) is:

D(ξ,α)m(ξd , αd , d)[η, ε] =
(
d ∂2

∂x2
+ d

)
η + εd (r1 + r2M1) sin2 x .

Since r1, r2 and M1 satisfy Eq. (2.2), we see that D(ξ,α)m(ξd , αd , d) is bijective from X1 ×R

to Y . And the implicit function theorem implies that there exists a λ∗ > d , and a continuously
differentiable mapping λ 
→ (ξλ, αλ) ∈ X1 × R

+ such that

m(ξλ, αλ, λ) = 0, for λ ∈ [d, λ∗].
Substituting uλ(x) = αλ(λ−d)[sin x+ (λ−d)ξλ] ∈ X into Eq. (2.1), we find that it satisfies
Eq. (2.1). And so the proof is complete. �

It is shown above that the positive spatially nonhomogeneous equilibrium uλ can bifurcate
from the trivial equilibrium, and the equilibrium uλ depends on the delay kernel f (t), which
was firstly found in [9] for the food-limited population model. This is different from the case
without spatiotemporal kernel G(x, y, t), where the steady state solution is independent of
the delay kernel f (t).

In the following, we will analyze the linear stability of uλ and always assume that r1, r2
and M1 satisfy Eq. (2.2). Moreover, we assume that λ ∈ (d, λ∗] unless otherwise specified.
Firstly we linearize Eq. (1.8) at uλ(x):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂v(x, t)

∂t
= A(λ)v + λuλ p

λ
1 (x)v(x, t)

+λuλ(x)p
λ
2 (x)

∫ ∞

0

∫ π

0
G(x, y, s) f (s)v(y, t − s)dyds, x ∈ (0, π), t > 0,

v(x, t) = 0, x = 0, π, t > 0.

(2.7)

Here A(λ) : D(A(λ)) → Y is a linear operator defined by

A(λ) = d� + λF

(

uλ,

∫ ∞

0

∫ π

0
G(x, y, s) f (s)uλ(y)dyds

)

,

with domain D(A(λ)) = X , and

pλ
1 (x) = ∂F

∂x

(

uλ,

∫ ∞

0

∫ π

0
G(x, y, s) f (s)uλ(y)dyds

)

, (2.8)

pλ
2 (x) = ∂F

∂y

(

uλ,

∫ ∞

0

∫ π

0
G(x, y, s) f (s)uλ(y)dyds

)

.

123



862 J Dyn Diff Equat (2016) 28:857–866

From [9,21], we see that μ is an eigenvalue of system (2.7) if and only if μ ∈ S(λ). Here the
set S(λ) is defined by

S(λ) = {μ ∈ C : �(λ,μ)ψ = 0, for some ψ ∈ XC \ {0}} ,

where

�(λ,μ)ψ := A(λ)ψ + λuλ p
λ
1 (x)ψ

+ λuλ p
λ
2 (x)

∫ ∞

0

∫ π

0
G(x, y, s) f (s)ψ(y)e−μsdyds − μψ.

In the following we will give a profile of the set S(λ) to determine the stability of the steady
state solution uλ. In Proposition 2.9 of [6], the authors delt with the stability of a positive
equilibrium in a reaction–diffusion equation with a nonlocal reaction term. And we find that
the method can also be used here to deal with the stability of a positive equilibrium in a
reaction–diffusion equation with spatiotemporal delay.

Theorem 2.2 Suppose that r1, r2 and M1 satisfy Eq. (2.2). Then there exists λ̄ > d, where
λ̄ ≤ λ∗, such that for any λ ∈ (d, λ̄],

S(λ) ⊂ {x + iy : x, y ∈ R, x < 0}.
Proof To the contrary, there exists a sequence {λn}∞n=1, such thatλ

n > d forn ≥ 1, lim
n→∞ λn =

d , and for any n ≥ 1, the corresponding eigenvalue problem
⎧
⎪⎨

⎪⎩

A(λn)ψ + λnuλn p
λn

1 (x)ψ

+λnuλn pλn

2 (x)
∫ ∞
0

∫ π

0 G(x, y, s) f (s)ψ(y)e−μsdyds = μψ, x ∈ (0, π),

ψ(x) = 0, x = 0, π,

(2.9)

has an eigenvalue μλn with nonnegative real part. And without loss of generality, we assume
the associated eigenfunction ψλn with respect to μλn satisfies ‖ψλn‖YC = 1. For each n ≥ 1,
ψλn can be decomposed as ψλn = cλn uλn + φλn , where cλn ∈ C, uλn is the positive solution
of Eq. (1.8) for λ = λn and satisfies Eq. (2.3), and φλn ∈ XC satisfies 〈φλn , uλn 〉 = 0. Since

A(λn)uλn = 0, and 〈A(λn)φλn , uλn 〉 = 〈φλn , A(λn)uλn 〉,
substituting μ = μλn and ψ = ψλn = cλn uλn + φλn into the first equation of Eq. (2.9),
multiplying ψλn = cλn uλn + φλn and integrating, we obtain that

〈A(λn)φλn , φλn 〉 = −Tλn + μλn , (2.10)

where

Tλn = λn
〈
ψλn , uλn p

λn

1 (x)ψλn

〉

+ λn
〈

ψλn , uλn p
λn

2 (x)
∫ ∞

0

∫ π

0
G(x, y, s) f (s)ψλn (y)e

−μλn sdyds

〉

.

For λ ∈ (d, λ∗], uλ(x) is bounded which implies that ‖pλ
i (x)‖∞ < E(i = 1, 2) for some

E > 0. Noticing that μλn has nonnegative real part, we have that

|Tλn | ≤ E‖uλn‖∞ max
n

λn + 2E maxn λn

π
‖uλn‖∞‖ψ‖2L1

∞∑

k=1

∫ ∞

0
e−dk2s f (s)ds

≤ E‖uλn‖∞ max
n

λn + 2E max
n

λn‖uλn‖∞
∞∑

k=1

Mk . (2.11)
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Since f (t) is defined as in Eqs. (1.9), (1.10), we have
∑∞

k=1 Mk < ∞, which implies that
lim
n→∞ |Tλn | = 0. Since uλn is the principal eigenfunction of A(λn) with principal eigenvalue

0, we see that 〈A(λn)φλn , φλn 〉 ≤ 0, which implies

0 ≤ Re(μλn ) ≤ ReTλn ≤ |Tλn |, (2.12)

and hence lim
n→∞Re(μλn ) = 0. Similarly, we have

|Im(μλn )| = |ImTλn | ≤ |Tλn |, (2.13)

which implies lim
n→∞ Im(μλn ) = 0. Since

|〈A(λn)φλn , φλn 〉| ≥ |λ2(λn)| · ‖φλn‖2YC ,

where λ2(λ
n) is the second eigenvalue of A(λn), we have

|λ2(λn)| · ‖φλn‖2YC ≤ |Tλn | + |μλn |. (2.14)

And the continuity of the eigenvalues of A(λ) with respect to λ implies that

lim
n→∞ λ2(λ

n) = −λ2 + d < 0,

where λ2 = −4d is the second eigenvalue of −d
∂2

∂x2
. Noticing that limn→∞ |Tλn | =

limn→∞ |μλn | = 0, from Eq. (2.14) we have that limn→∞ ‖φλn‖YC = 0. Because of
ψλn = cλn uλn + φλn and ‖ψλn‖L2 = 1, we see that

lim
n→∞ |cλn |(λn − d) lim

n→∞

∥
∥
∥
∥

uλn

λn − d

∥
∥
∥
∥
YC

= 1,

which implies limn→∞ |cλn |(λn − d) > 0. We denote

T 1
λn = λn

〈
ψλn , uλn p

λn

1 (x)ψλn

〉
, and

T 2
λn = λn

〈

ψλn , uλn p
λn

2 (x)
∫ ∞

0

∫ π

0
G(x, y, s) f (s)ψλn (y)e

−μλn sdyds

〉

,

and then Tλn = T 1
λn + T 2

λn . We first calculate that:

T 2
λn

λn − d
= |cλn |2(λn − d)2λnγ n

1 + cλn (λ
n − d)λnγ n

2 (2.15)

+ cλn (λ
n − d)λnγ n

3 + λnγ n
4 ,

where

γ n
1 =

∫ π

0

∫ ∞

0

∫ π

0
G(x, y, s) f (s)e−μλn s pλn

2 (x)
u2λn (x)uλn (y)

(λn − d)3
dydsdx,

γ n
2 =

∫ π

0

∫ ∞

0

∫ π

0
G(x, y, s) f (s)e−μλn s pλn

2 (x)
φλn (x)uλn (x)uλn (y)

(λn − d)2
dydsdx,

γ n
3 =

∫ π

0

∫ ∞

0

∫ π

0
G(x, y, s) f (s)e−μλn s pλn

2 (x)
φλn (y)u2λn (x)

(λn − d)2
dydsdx, (2.16)

γ n
4 =

∫ π

0

∫ ∞

0

∫ π

0
G(x, y, s) f (s)e−μλn s pλn

2 (x)
φλn (x)φλn (y)uλn (x)

λn − d
dydsdx .

123



864 J Dyn Diff Equat (2016) 28:857–866

Since lim
n→∞ ‖φλn‖YC = 0, we have lim

n→∞ ‖φλn‖L1 = 0, which implies that each of γ n
i (i =

2, 3, 4) goes to zero as n → ∞. Since G(x, y, t) and f (t) are defined as in Eq. (1.7) and
Eqs. (1.9), (1.10) respectively, μλn has nonnegative real parts with limn→∞ |μλn | = 0, and
limn→∞ pλn

2 (x) = r1 uniformly, we have

lim
n→∞ γ n

1 = r2α
3
dM1

∫ π

0
sin3 xdx .

Then we have

T 1
λn

λn − d
= |cλn |2(λn − d)2λn

∫ π

0

pλn

1 (x)u3λn (x)

(λn − d)3
dx

+ cλn (λ
n − d)λn

∫ π

0

φλn (x)u2λn (x)p
λn

1 (x)

(λn − d)2
dx

+ cλn (λ
n − d)λn

∫ π

0

pλn

1 (x)φλn (x)u2λn (x)

(λn − d)2
dx (2.17)

+ λn
∫ π

0

pλn

1 (x)|φλn (x)|2uλn (x)

λn − d
dx .

Similarly, since lim
n→∞ ‖φλn‖YC = 0, we have that each of the last three terms of Eq. (2.17)

goes to zero, and

lim
n→∞

∫ π

0

pλn

1 (x)u3λn (x)

(λn − d)3
dx = r1α

3
d

∫ π

0
sin3 xdx .

So

lim
n→∞

Tλn

λn − d
= α3

d (dr1 + dr2M1)

∫ π

0
sin3 xdx lim

n→∞ |cλn |2(λn − d)2 < 0.

Therefore, for sufficiently large n, Re(Tλn ) < 0, and consequently,

Re(μλn ) = 〈A(λn)φλn , φλn 〉 + Re(Tλn ) < 0, (2.18)

which is a contradiction with Re(μλn ) ≥ 0 for n ≥ 1. Hence we have

S(λ) ⊂ {x + iy : x, y ∈ R, x < 0}.
And the proof is complete. �

From Theorem 2.2, we can easily have the local stability of the positive steady state uλ:

Theorem 2.3 Suppose that r1, r2 and M1 satisfy Eq. (2.2). Then there exists λ̄ > d, where
λ̄ ≤ λ∗, such that for any λ ∈ (d, λ̄], the positive steady state uλ of Eq. (1.8) is locally
asymptotically stable.

We remark that for the Gamma distribution delay kernel, from Theorem 2.3, we have that:

Proposition 2.4 Assume that f (t) is given by Eq. (1.9). Then for any fixedβ andm satisfying

r1 + r2
(dβ + 1)m

< 0,

there exists λ̄ > d such that for any λ ∈ (d, λ̄], Eq. (3.1) has a positive steady state uλ.
Moreover, uλ is locally asymptotically stable for λ ∈ (d, λ̄].
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And for the Dirac distribution delay kernel, we have that:

Proposition 2.5 Assume that f (t) is given by Eq. (1.10). Then for any fixed τ > 0 satisfying

r1 + e−dτ r2 < 0,

there exists λ̄ > d such that for any λ ∈ (d, λ̄], Eq. (3.1) has a positive steady state uλ.
Moreover, uλ is locally asymptotically stable for λ ∈ (d, λ̄].

3 Applications and Discussions

In this section, we apply Theorem 2.3 tomodel (1.2) andmodel (1.4).We first consider model
(1.4). In this case we see that r1 = −a−ac < 0, r2 = −b−bc < 0, and Eq. (2.2) is satisfied.
From the simulation in [9, see Figs. 4, 5], we see that the bifurcated positive steady state may
be stable in some conditions. Actually, from Theorem 2.3, we have that the bifurcated steady
state solution is stable near λ = d , and this result supplements the work of Gourley and So
[9] for Dirichlet boundary problem.

Theorem 3.1 Assume that f (t) is given by Eq. (1.9) or Eq. (1.10). Then there exists λ̄ > d
such that for any λ ∈ (d, λ̄], Eq. (1.4) has a positive steady state uλ. Moreover, uλ is locally
asymptotically stable for λ ∈ (d, λ̄].
Then we consider model (1.2) for one dimensional domain� = (0, π) and α = 0. Following
[9], we choose g(x, y, s) = G(x, y, s) f (s), where G is defined as in Eq. (1.7). Then for the
homogeneous Dirichlet boundary condition, Eq. (1.2) has the following form:

⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
= d

∂2u

∂x2
+ λu

(
1 − ∫ ∞

0

∫ π

0 G(x, y, s) f (s)u(y, t − s)dyds
)
, x ∈ (0, π), t > 0,

u(x, t) = 0, x = 0, π, t > 0.

(3.1)

In this case r1 = 0, r2 = −1 and Eq. (2.2) is also satisfied. Then we have:

Theorem 3.2 Assume that f (t) is given by Eq. (1.9) or Eq. (1.10). Then there exists λ̄ > d
such that for any λ ∈ (d, λ̄], Eq. (3.1) has a positive steady state uλ. Moreover, uλ is locally
asymptotically stable for λ ∈ (d, λ̄].
We remark that if the delay kernel f (t) is given by Eq. (1.9), then for any fixed β and m, the
bifurcated positive equilibrium of Eq. (1.4) is stable near λ = d and Hopf bifurcation cannot
occur. For a delayed differential equations with a Gamma distribution delay kernel, the effect
of β and m on the stability and bifurcations of the equilibrium has been investigated [5,13].
However, when f (s) is given by Eq. (1.9), we see that from Theorem 2.1, the bifurcated
equilibrium of Eq. (1.4) depends on β and m. Hence it is difficult to study the effect of β and
m on the stability of the bifurcated equilibrium.Moreover, if the delay kernel f (t) is given by
Eq. (1.10), then for any fixed τ > 0, the bifurcated positive equilibrium of Eq. (1.1) is stable
near λ = d and Hopf bifurcation cannot occur. We remark that for local delay effect, where
G(x, y, s) = δ(x − y) and f (s) = δ(s − τ), Busenberg and Huang [4] have showed that,
when λ > d but close to d , a large delay τ can make the unique spatially nonhomogeneous
positive equilibrium of Eq. (1.1) unstable through a Hopf bifurcation. However, if G(x, y, t)
is defined as in Eq. (1.7) and f (t) = δ(t − τ), the bifurcated steady state solution of Eq.
(1.1) depends on τ , and hence it is also difficult to study the effect of τ on the stability of the
bifurcated equilibrium. These all await future investigation.
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