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Abstract Due to the results of Lewowicz and Tolosa expansivity can be characterized with
the aid of Lyapunov function. In this paper we study a similar problem for uniform expansivity
and show that it can be described using generalized cone-fields on metric spaces. We say
that a function f : X → X is uniformly expansive on a set Λ ⊂ X if there exist ε > 0 and
α ∈ (0, 1) such that for any two orbits x : {−N , . . . , N } → Λ, v : {−N , . . . , N } → X of f
we have

sup
−N≤n≤N

d(xn, vn) ≤ ε �⇒ d(x0, v0) ≤ α sup
−N≤n≤N

d(xn, vn).

It occurs that a function is uniformly expansive iff there exists a generalized cone-field on X
such that f is cone-hyperbolic.
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1 Introduction

In 1892 Lyapunov [9] introduced the idea of Lyapunov functions to study stability of equilibria
of differential equations. The Lyapunov approach allows to assess the stability of equilibrium
points of a system without solving the differential equations that describe the system. This
theory is widely used in qualitative theory of dynamical systems.

In Lewowicz [7,8]proposed to use Lyapunov functions of two variables to study structural
stability and similar concepts, such as topological stability and persistence. The method has
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been applied in particular to study hyperbolic diffeomorphisms on manifolds. For the survey
of the results, methods and possible generalizations see [12].

Let us quote one of the most interesting results from [12]. Let f : M → M be a homeo-
morphism of a compact manifold M . For U : M × M → R we define

Δ f U (x, y) := U ( f (x), f (y)) − U (x, y) for x, y ∈ M.

We say that U is a Lyapunov function for f if it is continuous, vanishes on the diagonal, and
Δ f U (x, y) is positive for (x, y) on a neighborhood of the diagonal, x �= y.

The following result characterizes expansive homeomorphisms in terms of Lyapunov
functions.

Theorem [12, Theorem 3.2]. Let f be a homeomorphism of a compact manifold M. The
following conditions are equivalent:

i) f is expansive;
ii) there exists a Lyapunov function for f .

The proof of this result for diffeomorphisms f can be found in [7]; see Sect. 4 and
Lemma 3.3 of that paper. Additional arguments required for the case of a homeomorphism
are discussed in [6, Sect. 1]. See also [12], where Tolosa, basing on the results of Lewowicz,
characterized the expansivity on metric spaces with the using Lyapunov functions.

In this paper we use a generalized notion of cone-fields on metric space to describe uniform
expansivity. The notions of cone-fields and cone condition [4,10] originally appeared in the
late 60’s in the works of Alekseev, Anosov, Moser and Sinai. Recently, Sheldon Newhouse
[10] obtained new conditions for dominated and hyperbolic splittings on compact invariant
sets with the use of cone-fields. It is also worth mentioning that the notion of cone-field can
be very useful in the study of hyperbolicity [1,3,4,10].

Let us briefly describe the contents of this paper. In Sect. 2 we discuss the notion of uniform
expansivity. We show that if f is uniformly expansive then it is also expansive. In Sect. 3
we recall our generalization of cone-fields to metric spaces which we presented in paper
[11] and show that the existence of hyperbolic cone fields guarantees uniform expansivity.
In Sect. 4 we show how to construct functions cs , cu for a uniformly expansive f such that
f is cone-hyperbolic with respect to the cone-field (cs, cu). The main result of the section
can be summarized as follows:

Main Result [see Theorem 3]. Let X be a metric space and let f : X⇀X be an L-bilipschitz
map. Assume that Λ ⊂ X is an invariant set for f such that f is uniformly expansive on Λ.

Then there exists a cone-field on Λ such that f is cone-hyperbolic on Λ.

2 Uniform Expansivity

First we define uniform expansivity of f and show that this notion is stronger than the
classical expansivity.

By a partial map from X to Y (written as f : X⇀Y ) we denote a function which domain
is subset of X [2, Chapter 2]. By dom( f ) we denote the domain of a partial map f : X⇀Y ,
and by im( f ) we denote its inverse image. For a given f : X⇀X we say that a sequence
x : I → X defined on a subinterval1 I of Z is an orbit of f if

xn ∈ dom( f ) and xn+1 = f (xn) for n ∈ I such that n + 1 ∈ I.

1 We say the I is a subinterval of Z if [k, l] ∩ Z ⊂ I for any k, l ∈ I .
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We recall the classical definition of expansivity. We say that f : X⇀X is expansive on
Λ ⊂ X if there exists an ε > 0 such that for any two orbits x : Z → Λ, v : Z → X if
sup
n∈Z

d(xn, vn) ≤ ε then x = v.

Definition 1 Let N ∈ N, ε > 0 and α ∈ (0, 1) be given. We say that f : X⇀X is
(N , ε, α)-uniformly expansive on a set Λ ⊂ X if for any two orbits x : {−N , . . . , N } → Λ,
v : {−N , . . . , N } → X we have

dsup(x, v) ≤ ε �⇒ d(x0, v0) ≤ αdsup(x, v),

where

dsup(x, v) := sup
−N≤n≤N

d(xn, vn).

This notion is more useful because it does not need an infinite trajectory.

Example 1 Consider a rotation of f : S1 → S1 by an angle α. Then f is an isometry, and
therefore is not expansive, and consequently not (N , ε, α)-uniformly expansive on Λ = S1.

Example 2 Let us consider the function f : R+ 
 x �→ x +√
x ∈ R+. One can easily check

that this function is expansive because its derivative at each point is strongly greater than 1.
On the other hand, f is not uniformly expansive because for sufficiently large x the derivative
of the function at x can become as close to 1 as we want.

One can easily verify that uniform expansivity implies classical expansivity (this result can
also be easily deduced from Theorem 1 below).

Observation 1 [11, Observation 4.1] Let N ∈ N, ε > 0, α ∈ (0, 1), Λ ⊂ X and f : X⇀X
be given. If f is (N , ε, α)-uniformly expansive on Λ, then it is also expansive on Λ.

Given L ≥ 1 and f : X⇀Y we call f L-bilipschitz if

L−1d(x, y) ≤ d( f (x), f (y)) ≤ Ld(x, y) for x, y ∈ dom( f ). (2.1)

Note that if a function f is L-bilipschitz then it is injective.
For δ > 0 and a set A ⊂ X we define the δ-neighbourhood of A as

Aδ :=
⋃

x∈A

B(x, δ).

Let an injective map f : X⇀X be given. We call A ⊂ dom( f ) an invariant set for f if
f (x) and f −1(x) ∈ A for every x ∈ A.

Now we show how to change the metric so that the function f which is (N , ·, ·)-uniformly
expansive becomes (1, ·, ·)-uniformly expansive.

Theorem 1 Let f : X⇀X be an L-bilipschitz map for some L > 1 and α ∈ (0, 1). Let
Λ ⊂ X and δ > 0 be such that Λδ ⊂ dom( f ) ∩ im( f ). We assume that Λ is an invariant set
for f and that f is (N , δ, α)-uniformly expansive on Λ.

Then there exists a metric ρ on ΛδL−N+1 such that

d(x, v) ≤ ρ(x, v) ≤ L N−1d(x, v) for x, v ∈ ΛδL−N+1 , (2.2)

that f is (1, δL−N+1, N
√

α)-uniformly expansive on ΛδL−N+1 and max{α−1/N , L}-bilipschitz
map with respect to the metric ρ.
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Proof Let β = N
√

α. We put

ρ(x, v) := max
k∈{−N+1,...,N−1} β

|k|d( f k(x), f k(v)) for x, v ∈ ΛδL−N+1 .

Inequalities (2.2) follow from the definition and (2.1). Note that for k ∈ {−N +1, . . . , N −1}
we have

x, v ∈ ΛδL−N+1 �⇒ f k(x), f k(v) ∈ ΛδL−N+1+|k| .

This means that ρ is well defined on ΛδL−N+1 .
First we show that f is max{β−1, L}-bilipschitz map with respect to the metric ρ. Since f

is L-bilipschitz in the metric d , we know that d( f N (x), f N (v)) ≤ Ld( f N−1(x), f N−1(v))

and finally we get

ρ( f (x), f (v)) = max
k∈{−N+1,...,N−1} β

|k|d( f k( f (x)), f k( f (v)))

= max{β |−N+1|d( f −N+2(x), f −N+2(v)), . . . , βN−1d( f N (x), f N (v))}
= max{β |−N+1|β−1βd( f −N+2(x), f −N+2(v)), . . . , β1β−1βd(x, v),

β0ββ−1d( f (x), f (v)), . . . , βN−2ββ−1d( f N−1(x), f N−1(v)),

βN−1d( f N (x), f N (v))}
= max{ββ |−N+2|d( f −N+2(x), f −N+2(v)), . . . , ββ0d(x, v),

β−1β1d( f (x), f (v)), . . . , β−1βN−1d( f N−1(x), f N−1(v)),

βN−1d( f N (x), f N (v))}
≤ max{ββ |−N+2|d( f −N+2(x), f −N+2(v)), . . . , ββ0d(x, v),

β−1β1d( f (x), f (v)), . . . , β−1βN−1d( f N−1(x), f N−1(v)),

βN−1Ld( f N−1(x), f N−1(v))}
≤ max{β, β−1, L} · ρ(x, v) = max{β−1, L} · ρ(x, v).

Similarly, as for the opposite inequality, we know that L−1d( f N−1(x), f N−1(v)) ≤
d( f N (x), f N (v)) and L−1d( f −N+1(x), f −N+1(v)) ≤ d( f −N+2(x), f −N+2(v)). Hence

ρ( f (x), f (v)) = max{ββ |−N+2|d( f −N+2(x), f −N+2(v)), . . . , ββ0d(x, v),

β−1β1d( f (x), f (v)), . . . , β−1βN−1d( f N−1(x), f N−1(v)),

βN−1d( f N (x), f N (v))}
≥ max{ββ |−N+2|d( f −N+2(x), f −N+2(v)), . . . , ββ0d(x, v),

β−1β1d( f (x), f (v)), . . . , β−1βN−1d( f N−1(x), f N−1(v)),

βN−1L−1d( f N−1(x), f N−1(v))}
≥ min{β, L−1} · ρ(x, v).

Now we show that for x ∈ Λ and v ∈ ΛδL−N+1 such that

max
{
ρ( f −1(x), f −1(v)), ρ(x, v), ρ( f (x), f (v))

} ≤ δL−N+1 (2.3)

the following inequality holds:

ρ(x, v) ≤ β max(ρ( f (x), f (v)), ρ( f −1(x), f −1(v))).
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We have to show that for k = −N + 1, . . . , N − 1

β |k|d( f k(x), f k(v)) ≤ β max

×
(

max
k=−N+1,...,N−1

β |k|d( f k+1(x), f k+1(v)), max
k=−N+1,...,N−1

β |k|d( f k−1(x), f k−1(v))

)
.

For k < 0 or k > 0 it is straightforward. Consider the case k = 0. From (2.2) and (2.3) we
get

max
{
d( f −1(x), f −1(v)), d(x, v), d( f (x), f (v))

} ≤ δL−N+1,

which together with (2.1) implies that d( f k(x), f k(v)) ≤ δ for k = −N , . . . , N . By the
uniform expansivity and the fact that β < 1 we get

d(x, v) ≤ α max|k|≤N
d( f k(x), f k(v)) ≤ β max|k|≤N

(βN−1d( f k(x), f k(v)))

≤ β max

(
max|k|≤N−1

β |k|d( f k+1(x), f k+1(v)), max|k|≤N−1
β |k|d( f k−1(x), f k−1(v))

)
.

3 Cone-fields and Cone-hyperbolic Maps

In this section, for the convenience of the reader, we recall basic definitions concerning
generalization of cone-fields to metric spaces (for more information and motivation see
[5,11]).

Definition 2 [11, Definition 3.1] Let δ > 0 and Λ ⊂ X be nonempty. We say that a pair of
functions cs, cu : U → R+ for some U ⊂ X × X forms a δ-cone-field on Λ if

{x} × B(x, δ) ⊂ U for x ∈ Λ.

We put c(x, v) := max{cs(x, v), cu(x, v)}. If there exists K > 0 such that:

1

K
d(x, v) ≤ c(x, v) ≤ K d(x, v) for (x, v) ∈ U

then we call it (K , δ)-cone-field on Λ or uniform δ-cone-field on Λ.

For each point x ∈ Λ we introduce unstable and stable cones by the formula

Cu
x (δ) := {v ∈ B(x, δ) : cs(x, v) ≤ cu(x, v)},

Cs
x (δ) := {v ∈ B(x, δ) : cs(x, v) ≥ cu(x, v)}.

We consider a partial map f : X ⇀ Y between metric spaces X and Y and Λ ⊂ dom( f ).
Assume that X is equipped with a uniform δ-cone-field on Λ and Y is equipped with a
uniform δ-cone-field on a subset Z of Y such that f (Λ) ⊂ Z .

For every x ∈ dom( f ) we put

B f (x, δ) := {v ∈ B(x, δ) ∩ dom( f ) : f (v) ∈ B( f (x), δ)}.
Now we define ux ( f ; δ) and sx ( f ; δ), the expansion and the contraction rates of f , respec-
tively. These rates are a modification of the classical definition from [10], but we do not
assume that the function f is invertible (for more information see [11]).
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Definition 3 [11, Definition 3.2] Let x ∈ dom( f ) and δ > 0 be given. We define

ux ( f ; δ) := sup{R ∈ [0,∞] | c( f (x), f (v)) ≥ Rc(x, v), v ∈ B f (x, δ); v ∈ Cu
x (δ)},

sx ( f ; δ) := inf {R ∈ [0,∞] | c( f (x), f (v)) ≤ Rc(x, v), v ∈ B f (x, δ); f (v) ∈ Cs
f (x)(δ)}.

Let uΛ( f ; δ) := inf
x∈Λ

{ux ( f ; δ)} and sΛ( f ; δ) := sup
x∈Λ

{sx ( f ; δ)}.

Definition 4 We say that f is δ-cone-hyperbolic on Λ if

sΛ( f ; δ) < 1 < uΛ( f ; δ).

The next proposition is a simple analogue of [10, Lemma 1.1].

Proposition 1 [11, Proposition 3.1] Every δ-cone-hyperbolic is δ-cone-invariant, i.e. for
x ∈ Λ and v ∈ B f (x, δ) we have

v ∈ Cu
x (δ) �⇒ f (v) ∈ Cu

f (x)(δ),

and

f (v) ∈ Cs
f (x)(δ) �⇒ v ∈ Cs

x (δ).

Theorem 2 [11, Theorem 4.1] Suppose that for K > 0 and δ > 0 we are given a (K , δ)-
cone-field on Λ ⊂ X. Let f : Λδ⇀X be δ-cone-hyperbolic on Λ and let λ > 1 be chosen
such that

sΛ( f ; δ) ≤ λ−1, uΛ( f ; δ) ≥ λ.

Then f is (N , δ, K 2/λN )-uniformly expansive on Λ for every N ∈ N, N > 2 logλ K .

Example 3 Let f : T 2 → T 2 be defined by f (x, y) = (2x + y, x + y), where T 2 = R
2/Z

2.
We know that f is expansive (see [4, Sect. 1.8]). It is easy to show that

sT 2( f ; δ) ≤ 3 − √
5

2
< 1, uT 2( f ; δ) ≥ 3 + √

5

2
> 1.

From Theorem 2 we conclude that f is uniformly expansive on Λ = T 2.

4 Expansivity and Cone-fields

In this section we show that uniform expansiveness of f on an invariant set Λ lets us construct
a cone-field on Λ such that f is cone-hyperbolic on Λ. In our reasoning we will need the
notion of ε-quasiconvexity.

Definition 5 Let I be a subinterval of Z, and let ε ≥ 0 be fixed. We call a sequence α : I →
R ε-quasiconvex if

αn ≤ max{αn−1, αn+1} − ε for n ∈ I : n − 1, n + 1 ∈ I.

Now we show some properties of ε-quasiconvex sequences, which will be used later.

Observation 2 Let ε ≥ 0 and α : I → R be an ε-quasiconvex sequence.
Then
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i) if m, m + 2 ∈ I and αm+1 > αm − ε then

αn+1 ≥ αn + ε for n ≥ m + 1 such that n, n + 1 ∈ I. (4.1)

ii) if m − 1, m + 1 ∈ I and αm+1 < αm + ε then

αn+1 ≤ αn − ε for n < m such that n, n + 1 ∈ I. (4.2)

Proof The above statements are similar so we show the first one. The proof proceeds on
induction. Suppose that m, m + 2 ∈ I and αm+1 > αm − ε. Since α is ε-quasiconvex,

αm+1 ≤ max{αm, αm+2} − ε = max{αm − ε, αm+2 − ε}.
But αm+1 > αm − ε, so we get

αm+1 ≤ αm+2 − ε,

and hence

αm+2 ≥ αm+1 + ε.

It implies that (4.1) is valid for n = m +1. Suppose now that (4.1) holds for some n ≥ m +1,
i.e. that n; n + 1 ∈ I and αn+1 ≥ αn + ε. Assume additionally that n + 2 ∈ I . Then we get

αn+1 ≤ αn+2 − ε,

thus

αn+2 ≥ αn+1 + ε,

which completes the proof.

The following proposition will be a basic tool in the proof of our main result, Theorem 3.

Proposition 2 Let ε > 0, L > 1, β ∈ (0, 1) and let (Y, ρ) be a metric space. Let Λ ⊂ Y be
given and f : Y⇀Y be an L-bilipschitz map such that Λε ⊂ dom( f ) ∩ im( f ). Assume that
Λ is an invariant set for f and that f is (1, ε, β)-uniformly expansive on Λ.

Then

cs(x, v) := inf{ρ( f k(x), f k(v)) | k ∈ (−∞, 0) ∩ Z : f l(v) ∈ B( f l(x), ε)

for l ∈ [k, 0] ∩ Z},
cu(x, v) := inf{ρ( f k(x), f k(v)) | k ∈ [0,∞) ∩ Z : f l(v) ∈ B( f l(x), ε)

for l ∈ [0, k] ∩ Z},
(4.3)

define an (L , ε/L) cone-field on Λ. Moreover, f is cone-hyperbolic on Λ and

sΛ( f ; ε/L) ≤ β <
1

β
≤ uΛ( f ; ε/L). (4.4)

Proof First we show that cs(x, v) and cu(x, v) defined above are (L , ε/L) cone-field on Λ,
i.e.

1

L
ρ(x, v) ≤ c(x, v) ≤ Lρ(x, v) for (x, v) ∈ {

(x, v) : x ∈ Λ, v ∈ B(x, ε/L)
}
,

where c(x, v) := max{cs(x, v), cu(x, v)}.
Choose an arbitrary point x ∈ Λ and v ∈ B(x, ε/L). We can assume that x �= v, because

the case x = v is trivial (cs(x, v) = cu(x, v) = 0 = ρ(x, v)).
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Let I be the biggest subinterval of Z containing 0 such that

sup{ρ( f n(x), f n(v)) : n ∈ I } ≤ ε. (4.5)

Since f is L-bilipschitz, we know that f −1(v) ∈ B( f −1(x), ε), and therefore {−1, 0} ⊂ I .
This yields c(x, v) < ∞.

Now we define a sequence {an}n∈I ⊂ R by the formula

an := ln ρ( f n(x), f n(v)) for n ∈ I. (4.6)

Observe that an is well-defined because ρ( f n(x), f n(v)) > 0 for all n ∈ I .
Let

I− := {n ∈ I : n < 0} and I+ := {n ∈ I : n ≥ 0}.
We have the following relations:

cs(x, v) = exp

(
inf

n∈I−
{an}

)
and cu(x, v) = exp

(
inf

n∈I+
{an}

)
,

where we use the convention exp(−∞) = 0.
We show that the sequence {an} is ln(1/β)-quasiconvex. Let n ∈ I be such that n − 1,

n + 1 ∈ I . By (4.5) we observe that

max{ρ( f n−1(x), f n−1(v)), ρ( f n(x), f n(v)), ρ( f n+1(x), f n+1(v))} ≤ ε.

Consequently, by (1, ε, β)-uniform expansivity of f we get

ρ( f n(x), f n(v)) ≤ β max{ρ( f n−1(x), f n−1(v)), ρ( f n+1(x), f n+1(v))},
which implies that an ≤ max{an−1, an+1} − ln(1/β).

Now we consider two cases. If a−1 ≤ a0 then by Observation 2 i) we get

an+1 ≥ an + ln
1

β
for n ≥ 0, n ∈ I,

which yields

inf
n∈I−

{an} ≤ a−1 ≤ a0 = inf
n∈I+

{an},

Hence

cs(x, v) ≤ cu(x, v) = c(x, v) = ea0 = ρ(x, v).

On the other hand if a−1 ≥ a0 then by Observation 2 ii) we get

an+1 ≤ an − ln
1

β
for n < −1, n ∈ I.

Therefore

inf
n∈I−

{an} = a−1 ≥ a0 ≥ inf
n∈I+

{an},

and consequently

cu(x, v) ≤ cs(x, v) = c(x, v) = ea−1 = ρ( f −1(x), f −1(v)).

Since f is L-bilipschitz, we get that cs, cu define an (L , ε/L) cone-field on Λ.
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Now we check that f is cone-hyperbolic on Λ. Let us take x ∈ Λ and v ∈ B f (x, ε/L)

such that f (v) ∈ Cs
f (x)(ε/L). We define the sequence {an}n∈I as in (4.6).

We show that a0 ≥ a1. Suppose that, on the contrary, a0 < a1. By Observation 2 i) we get

an+1 ≥ an for n ≥ 1, n ∈ I.

Hence

ln(cu( f (x), f (v))) = inf
n≥1,n∈I

{an} = a1 > a0 ≥ inf
n<1,n∈I

{an} = ln(cs( f (x), f (v))),

which is a contradiction with f (v) ∈ Cs
f (x)(ε/L). So we have a1 ≤ a0. By the Observation

2 ii) we get

an+1 ≤ an − ln(1/β) for n < 0 such that n, n + 1 ∈ I.

In particular,
a0 ≤ a−1 − ln(1/β). (4.7)

Consequently,

cu( f (x), f (v)) = exp

(
inf

n≥1,n∈I
{an}

)
≤ exp(a1) ≤ exp(a0)

= exp

(
inf

n<1,n∈I
{an}

)
= cs( f (x), f (v)) = c( f (x), f (v))

(4.7)≤ β exp(a−1) = β exp

(
inf

n∈I−
{an}

)
≤ βc(x, v).

Therefore

sΛ( f ; ε/L) = sup
x∈Λ

{sx ( f ; ε/L)} ≤ β < 1.

Now we consider an x ∈ Λ and v ∈ B f (x, ε/L) such that v ∈ Cu
x (ε/L). We show that

a0 ≥ a−1. Suppose the contrary, a0 < a−1. By Observation 2 ii) we get

an+1 ≥ an for n < −1, n ∈ I.

Hence

inf
n∈I−

{an} = a−1 > a0 ≥ inf
n∈I+

{an},

which is contradiction with v ∈ Cu
x (ε/L). So we have a0 ≥ a−1. By the Observation 2 i) we

get

an+1 ≥ an + ln(1/β) for n ≥ 0 such that n, n + 1 ∈ I.

In particular,
a1 ≥ a0 + ln(1/β). (4.8)

Finally

cs( f (x), f (v)) = exp

(
inf

n<1,n∈I
{an}

)
≤ exp(a0) ≤ exp(a1)

= exp

(
inf

n≥1,n∈I
{an}

)
= cu( f (x), f (v)) = c( f (x), f (v)),
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which yields

exp(a1) = c( f (x), f (v))
4.8≥ 1

β
exp(a0) = 1

β
exp

(
inf

n∈I+
{an}

)
= 1

β
c(x, v).

This shows that

uΛ( f ; ε/L) = inf
x∈Λ

{ux ( f ; ε/L)} ≥ 1

β
> 1.

Therefore f is cone-hyperbolic on Λ.

As a consequence of earlier results we obtain the following theorem.

Theorem 3 Let ε > 0, L > 1, N ∈ N, α ∈ (0, 1) be fixed. Let (X, d) be a metric space and
Λ ⊂ X be given. Let f : X⇀X be an L-bilipschitz map such that Λε ⊂ dom( f ) ∩ im( f ).
Assume that Λ is an invariant set for f and that f is (N , ε, α)-uniformly expansive on Λ.

Then there exists an (max{α−1/N L N−1, L N }, min{εL−2N+1 N
√

α, εL−2N }) cone-field on
Λ such that f is cone-hyperbolic on Λ and

sΛ( f, min{εL−2N+1 N
√

α, εL−2N ) ≤ N
√

α <
1

N
√

α
≤ uΛ( f, min{εL−2N+1 N

√
α, εL−2N ).

Proof We will apply Proposition 2. By applying Theorem 1 (for δ = ε) we obtain the metric
ρ which is equivalent to d on U = {x : d(x,Λ) < εL−N+1} and such that

i) d(x, v) ≤ ρ(x, v) ≤ L N−1d(x, v) for x, v ∈ U ,
ii) f is (1, εL−N+1, N

√
α)-uniformly expansive on U with respect to the metric ρ,

iii) f is max{α−1/N , L}-bilipschitz map on U with respect to the metric ρ.

Let Ỹ = {y : d(y,Λ) < L−N+1ε} and L̃ = max{α−1/N , L}. We use Proposition 2 (for
ε̃ = εL−N , L̃ , β̃ = N

√
α, f̃ = f |{x : d(x,Λ)<εL−N }) and construct functions c̃s , c̃u which

define an (L̃, δ̃) cone-field on U such that f̃ is δ̃-cone-hyperbolic with respect to the metric
ρ, where δ̃ = εL−N /L̃ .

Now we need to “translate” the results from the metric ρ to the original metric d . For
clarity of notation we use the subscript (.)d to denote objects with respect to the metric d and
(.)ρ to denote objects with respect to the metric ρ.

By the definition of (L̃, δ̃) cone-field on U and i) we get

1

L̃ L N−1
d(x, v) ≤ 1

L̃
d(x, v) ≤ 1

L̃
ρ(x, v) ≤ c(x, v) ≤ L̃ρ(x, y)

≤ L̃ L N−1d(x, y) for (x, v) ∈ {
x ∈ U, v ∈ B(x, δ̃)ρ}.

From i) we have

B(x, δ̃/L N−1)d ⊂ B(x, δ̃)ρ, B f (x, δ̃/L N−1)d ⊂ B f (x, δ̃)ρ,

and

Cu
x (̃δ/L N−1)d ⊂ Cu

x (̃δ)ρ, Cs
x (̃δ/L N−1)d ⊂ Cs

x (̃δ)ρ .

Consequently, from Definition 3 for an arbitrary x ∈ U we get

ux ( f ; δ̃)ρ ≤ ux ( f ; δ̃/L N−1)d , sx ( f ; δ̃)ρ ≥ sx ( f ; δ̃/L N−1)d .

Hence

uU ( f ; δ̃)ρ ≤ uU ( f ; δ̃/L N−1)d , sU ( f ; δ̃)ρ ≥ sU ( f ; δ̃/L N−1)d .
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From the above inequalities and (4.4)

sU ( f ; δ̃)ρ ≤ β̃ < 1 <
1

β̃
≤ uU ( f ; δ̃)ρ,

we obtain that f is (̃δ/L N−1)-cone-hyperbolic in metric d and

sU ( f ; δ̃/L N−1)d ≤ β̃ < 1 <
1

β̃
≤ uU ( f ; δ̃/L N−1)d .

Finally we conclude that c̃s and c̃u are (max{α−1/N L N−1, L N }, δ̃/L N−1)-cone-field on Λ

such that f is (̃δ/L N−1)-cone-hyperbolic on Λ with respect to metric d .

Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source
are credited.
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