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Russell A. Johnson was born in Fairmont, Minnesota on January 27, 1947. He obtained his
B.S. degree in Mathematics from the University of Minnesota, Magna cum Laude, in 1969,
and his Ph.D. degree in Mathematics from the University of Minnesota in 1975. His early
academic career consisted of assistant professorships: one year at the University of Wiscon-
sin-Parkside and 5 years in the Department of Mathematics, University of Southern California
(USC). In 1981 he was promoted at USC, first to the rank of associate professor and then to
a full professorship in 1988. At USC he served as the Vice-Director of Applied Mathematics
(1986–1988) and as the Director of Graduate Programs in Mathematics (1988–1989). In 1991
he accepted a position of full professor at Universitá di Firenze in the Dipartimento di Sistemi
e Informatica, which is his current academic home. While at Firenze, he also served as the
Director of the Department (1995–1997). He has had visiting positions at the University of
Minnesota (1980 and 1989–1990) and the Universität Heidelberg (1983–1985).

He has delivered numerous invited lectures at professional conferences and at universi-
ties/institutes worldwide. For example, he was a main lecturer at the C.I.M.E. School held in
Cetraro, Italy in 2000, the DANCE Winter School held in Granada, Spain in 2007, and he has
presented several mini-courses at Peking University (1990), University of Valladolid (2005),
and East China Normal University (2010). In 2007 he was honored on his 60th birthday when
the University of Valladolid in Spain hosted there an International Conference on Dynamical
Methods and Mathematical Modelling.

Russell has made extensive services to the international mathematical community.
Besides being on numerous professional committees, he is (or has been) a member of the
editorial boards of the Journal of Dynamics and Differential Equations, Topological Methods
in Nonlinear Analysis, Annali di Matematica Pura ed Applicata and six other professional
journals. He has organized more than twenty international conferences, workshops, and
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graduate summer schools including “Southern California Differential Equations Meeting”
(Los Angeles 1978), “Differentialgleichungen und Dynamische Systeme” (Heidelberg 1983),
“Differential and Dynamical Systems” (Los Angeles 1988), “Integrable Evolution Sys-
tems” (Los Angeles 1989), “C.I.M.E. Schools” (Montecatini Terme 1994 and Cetraro 2011),
“Metodi Topologici ed Equazioni Differenziali” (Firenze 1996), “Comportamento Asintoti-
co delle Soluzioni delle Equazioni Differenziali” (Bressanone 1999), “Qualitative Behavior
of Differential Equations” (Certosa di Pontignano 2000), “Dynamical Methods for Differ-
ential Equations” (Medina del Campo 2002), “Dynamics of Cocycles and One-Dimensional
Spectral Theory” (Oberwolfach 2005), and “Topological Methods, Differential Equations,
Dynamical Systems” (Firenze 2007).

Russell is widely regarded as a world leader and pioneer in the dynamics of nonautono-
mous differential equations and skew-product flows. He has made widespread contributions,
and his papers on topological dynamics and ergodic theory to differential equations are espe-
cially noteworthy. His mathematical works include contributions to the spectral theory of
linear skew-product flows, recurrent Floquet theory, almost automorphic dynamics, spec-
tral properties of almost periodic Schrödinger operators, and nonautonomous control theory.
These areas are now widely studied and are among the most active areas of modern dynamics.
Below is a brief summary of some of his important works in these and related areas.

Russell’s early works after his Ph.D. concern topological dynamics and its measure-
theoretic analogues. In [19], he constructed an example of minimal distal flow on the 3-torus
which admits uncountably many invariant measures with nonisomorphic structure groups.
He proved a disintegration result for invariant ergodic measures in a bitransformation group
in [18], and in [17], he gave a generalization to the Peter-Weyl theory for the representation of
a compact group acting on a locally convex topological vector space. In [21], he showed the
existence of strong linear lifting of a compact flow when the acting group is either Abelian
or a Lie group.

In the late 1970s, Russell began to work on the application of topological dynamics and
ergodic theory to linear skew-product flows, especially to those arising in linear nonautono-
mous ordinary differential equations. With the introduction of the skew-product framework
and the dynamical spectrum (now commonly referred to as the Sacker–Sell spectrum), this
period marked an important development of the theory of nonautonomous dynamical sys-
tems, and Russell was among the major pioneers of this theory.

In [20], he gave a classification of the Sacker–Sell spectrum for a two-dimensional, linear
differential system over a compact ergodic flow, where the spectrum is shown to be a single
point in the elliptic case, two points in the hyperbolic case, and a nondegenerate interval
otherwise. In the same work, the complementary ergodic bundles associated with a non-
degenerate spectral interval is shown to be only measurable. In [22], Russell showed the
smoothness of stable and unstable fibers associated with a resolvant point of the Sacker–
Sell spectrum for a nonlinear and nonautonomous system near the zero section. He adopted
an operator-theoretic approach in [24] by considering a one-parameter group of differential
operators generated by a nonautonomous linear system. He showed that the Sacker–Sell
spectrum coincides with the real parts of the spectrum for the group, and, the spectral sub-
bundles are analytic when the system depends analytically on the parameters. In the case that
all solutions of a linear system are bounded and the coefficient space is distal and strictly
ergodic, he showed in [24] and also in a joint work with Ellis [4] that the system is kinemat-
ically similar to a system with skew-Hermitian coefficients. In a joint work [51] of Russell
with Palmer and Sell, deep connection among the Sacker–Sell spectrum, the multiplica-
tive ergodic theorem, and Lyapunov exponents was established for a linear nonautonomous
system.
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In [35], Russell discovered a generic property of exponential dichotomy for trace-free,
quasiperiodic linear systems parametrized by both continuously varying coefficients and
varying frequencies. Later Russell with Fabbri [6] showed that this property is in fact both
open and dense. Such a generic property was shown by Russell with Yi [48] to play an
important role in studying generic, intermittent Hopf bifurcations from invariant tori when a
family of spectral intervals cross zero as the parameters vary. This study was later extended by
Russell [38] and also by Russell with Kloeden and Pavani [61] to random, two-step bifurca-
tions. In two recent works [5,13] of Russell with Fabbri and Zampogni, the generic property
of exponential dichotomy for trace-free, quasiperiodic linear systems is shown to be closely
related to the density of positive Lyapunov exponents.

The existence of nondegenerate intervals in the Sacker–Sell spectrum for a linear almost
periodic system suggests that there is a significant difference from a linear periodic system.
While noting this, Russell went further to investigate the oscillatory behavior of solutions by
measuring their rotational effects in order to capture the information lacking in the Sacker–
Sell spectral theory. In two-dimensions and in connection with the study on Floquet theory in
almost periodic cases, he introduced a useful technique by relating such oscillatory behavior
to the dynamics of the projective flow induced by the system. Using this technique, he made
a systematic investigation of the mechanism that leads to the failure of a full almost periodic
Floquet theory in two-dimensional almost periodic linear systems, by constructing various
examples concerning the existence of an almost automorphic (but not almost periodic) set in
the projective flow. These examples include various cases with respect to either degenerate
or nondegenerate Sacker–Sell spectra, unique or nonunique minimal sets in the associated
projective flows, and either resonant or nonresonant rotation numbers [26,30,33].

In [23], he showed that the projective flow associated with a linear quasiperiodic system in
two-dimension with rotational coefficients matrices can be foliated into measurable, noncon-
tinuous, invariant one-dimensional subbundles. In [28], he constructed an example of almost
periodic linear system in two-dimension in which the associated projective flow is a minimal
proximal extension of the base flow. With this example, as later discovered by Russell with
Bjerklov [1] and Huang and Yi, one has the only known example of a continuous flow with
Li-Yorke chaos.

In 1980, Russell wrote an important paper [25] on Floquet theory of an almost periodic
linear system in two-dimension by relating Floquet property to the almost automorphic min-
imal dynamics of the projective flow induced by the system. With the advantage of hindsight,
one can now see that the resulting insights developed by Russell and others and using the
knowledge of [25], which in itself is concerned with a very simple model (2D and linear), has
played a profound role in many of the subsequent developments in the study of the dynam-
ics and applications of general linear nonautonomous systems. A remarkable finding in this
paper is the general unavailability of an almost periodic strong Perron transformation which
transforms an almost periodic linear differential system into a canonical form. However,
there do exist almost automorphic transformations instead. The paper [25] has proven to be
a techtonic shift in the dynamical landscape.

With Sell, he also studied in [47] some valid cases of quasiperiodic Floquet theory in
quasiperiodic linear systems with Diophantine frequencies when the spectral subbundles are
sufficiently smooth and a full Sacker–Sell spectrum condition is satisfied. This is in fact the
first work in the literature towards the study of quasiperiodic Floquet theory or reducibility.

Almost automorphy is a notion generalizing almost periodic functions introduced by
S. Bochner in 1955 in a differential geometry context which had been mainly studied in a
pure topological dynamics context. Besides his work in almost automorphic Floquet the-
ory, Russell in several other original works in the early 1980s demonstrated the usefulness
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of this notion in characterizing oscillatory dynamics of almost periodic differential equa-
tions. Since the 1950s, accompanied by the development of topological dynamics and theory
of skew-product flows, there has been a vast number of papers on finding almost periodic
solutions and studying their stability, for differential equations with almost periodic time
dependence. It was noticed that almost periodic systems differ significantly from either the
autonomous or the periodic systems because of the lack of existence of almost periodic solu-
tions in many almost periodic systems. This results in a question: What is the fundamental
nature of oscillatory solutions of those almost periodic systems that have no almost periodic
solutions?

To answer this question, one needs to examine the nature of recurrent solutions that
respond to the harmonics of the almost periodic time dependence. In [29], Russell constructed
an example of scalar, almost periodic, linear nonhomogeneous equation in which there is a
unique bounded solution and that this solution is almost automorphic but not almost periodic.
Later in [27], he showed that the coefficients of such equations not only form a residual set
in the hull of the coefficient space, but also they have full Haar measure. Stimulated by these
findings and other related works of Russell, later studies by Shen and Yi and many others have
shown that almost automorphic phenomenon is a fundamental property occurring in almost
periodically forced differential equations. In [40], Russell and Mantellini also showed that
almost automorphic dynamics plays an important role in transcritical bifurcation problems
of quasiperiodic systems.

The spectral theory of Schrödinger operators with almost periodic (or recurrent) poten-
tials is another important area in which Russell was a pioneer with major contributions. In
contrast to the case of a periodic potential, in which the spectrum is known to be a union
of nondegenerate intervals, it had been conjectured that Schrödinger operators with almost
periodic potentials should typically admit singular continuous spectra with Cantor structures.
By using dynamical characteristics such as Sacker–Sell spectrum, Lyapunov exponents and
rotation numbers, Russell introduced a novel dynamical systems approach to the study of
these spectral problems.

In 1982, Russell wrote a beautiful and seminal paper [41] with Moser on almost periodic
Schrödinger operators in which the rotation number is defined and shown to be continuous,
and monotonically increasing precisely on the spectrum. This result, now widely recognized
as the Gap Labeling Theorem, plays a central role in the study of spectral problems for
Schrödinger operators, especially when studying problems with nonsmooth recurrent poten-
tials. The work [41] also introduces a useful notion of Floquet exponent by combining the
Lyapunov exponents with complex rotation numbers. In [32], Russell further explored the
property of Lyapunov exponents for an almost periodic Schrödinger operator by showing its
harmonicity in the resolvent of the spectrum and its one-sided continuity at an endpoint of a
spectral gap.

With Giachetti in [16], he extended the notions and properties of rotation numbers and
Floquet exponents to general Schrödinger-like operators by making use of Titchmarsh-Weyl
m-functions. In [34], he introduced a higher dimensional geometric theory of rotation num-
bers and Floquet exponents and also proved a spectral gap labeling theorem. In [37], he
generalized the notion of rotation numbers to Schrödinger operators in higher spatial dimen-
sion to obtain a Maslov-like index. With Nerurkar in [44], he extended the concept of rotation
number in higher dimension defined in [37] to linear nonautonomous Hamiltonian systems.
With Fabbri and Núnẽz in [8,9] and Novo and Obaya in [59,60], he developed a general
spectral theory in particular gap-labelling theory for nonautonomous linear Hamiltonian sys-
tems by introducing a notion of Floquet exponents and studying properties of Lyapunov
exponents, exponential dichotomy, and Weyl m-functions.
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In [31], he made a deep connection between the spectrum of a Schrödinger operator
with an ergodic, recurrent potential and the Sacker–Sell spectrum of the corresponding lin-
ear system and showed that the Schrödinger spectrum admits no isolated point. Positiv-
ity of Lyapunov exponents over a spectral interval was also shown and an inverse prob-
lem describing the algebraic-geometric Sturm-Liouville coefficients was treated when the
spectrum is a finite union of nondegenerate intervals. Such inverse problems were general-
ized to random ergodic AKNS operators by Russell with De Concini in [3] and to higher
dimensions in a recent work [49] of Russell with Zampogni in which it is shown that the
ergodic coefficients triples can be described using a generalized Jacobian variety when
the spectrum is a finite union of nondegenerate intervals with vanishing Lyapunov expo-
nent. In a succeeding work [50] of Russell with Zampogni, the inverse spectral problem is
studied for the Camassa-Holm equation where the spectral problem is the so-called acoustic
equation.

In [36], Russell proved a generic property of an exponential dichotomy for linear sys-
tems associated with quasiperiodic Schrödinger operators. As a consequence, he showed the
genericity of Cantor spectrum of quasiperiodic Schrödinger operators when both potential
functions and their frequencies are varying.

In the early 1990s, Russell began to work on control problems involving time-varying
coefficients. With Nerurkar in [43], Russell showed that for a linear nonautonomous control
system local null controllability implies global null controllability under some conditions
on the Sacker–Sell spectrum. In [45], they used the spectral theory of linear nonautonomous
Hamiltonian systems and the theory of exponential dichotomies to characterize feedback sta-
bilization for linear nonautonomous control processes. Some improvements of these results
were made by Russell with Colonius in [2]. A more systematic study of the nonautonomous
control problems was made by Russell and Nerurkar in [46] in which it is shown that a
nonautonomous system having positive Lyapunov exponents can still be globally null-con-
trollable. The theory of nonautonomous control, which Russell developed with collaborators,
was later applied by Russell with Fabbri and Kloeden in [7] to digitization or discretization
problems for linear, nonautonomous control. In several recent works of Russell with Fabbri,
Impram, Novo, and Núnẽz [14,10,11], the general spectral theory of linear nonautonomous
Hamiltonian systems which Russell developed with collaborators is applied to nonauton-
omous control problems, for instance to the generalization of the Yakubovich frequency
theorem to nonautonomous control systems.

Russell has other broad mathematical interests. For example, he has worked on the exis-
tence and asymptotics of grand states for semilinear elliptic equations in unbounded domains
[15,52–55], periodic solutions of damped wave equations and Navier-Stokes equations in
thin domains [56–58], Sharkovskii ordering for almost periodically forced interval maps
[12], and the nature of nonautonomous global attractors [39,42].

In closing, we make some personal comments about our experiences in working with
Russell.

(GRS): Our mathematical saga began when Russell was writing his Ph.D. thesis at the
University of Minnesota. He was attending my lectures on nonautonomous dynamics, and
he became very interested in my evolving theory on dynamics with Robert Sacker (at USC).
Russell and I formed a small seminar-of-two, where Russell became an unofficial “pre-
doctoral fellow.” Our collaborations continued after Russell received his Ph.D. in 1975.

That year, like today, was a difficult time for finding an academic job. Fortunately, Russell
found a teaching position at a small college in southern Wisconsin. This location was not far
from the home of my parents. During my many visits to southern Wisconsin, Russell and I
continued our seminar, while frequenting various coffee shops in the Milwaukee area!
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During our collaborations, we became interested in studying the mathematical connec-
tions between the spectral theory based on the Sacker–Sell spectrum and Lyapunov spectrum,
which arises in the Multiplicative Ergodic Theorem (MET). The results of this study, writ-
ten in our joint work with Palmer [51], include: (1) a new proof of the MET that is based
on the Perron Triangularization Theorem; (2) that the measurable foliation in the MET is
a refinement of the continuous foliation given by the Sacker–Sell theory; (3) that the end-
points of the Sacker–Sell spectral intervals are in the Lyapunov spectrum; and (4) that one
can calculate the Lyapunov spectrum, including the multiplicities of repeated growth rates,
without the need of an eigen-basis of Lyapunov vectors. It is noteworthy that the paper [51],
which was published over 30 years ago, is of current use in many places today, includ-
ing, for example, a recent preprint by GRS (and others) on “Ensemble dynamics and bred
vectors.”

(YY): The year 1987 marked the beginning of my career as a researcher in mathematics
when I became a Ph.D. student of Russell at USC. At the time, due to an insufficient number
of students enrolled, there was neither a graduate ODE course nor a dynamical systems course
offered at USC. This caused great difficulty for a foreign student with a non-mathematical
background like me who wished to study dynamics. In Fall 1987, Russell organized a student
ODE seminar which, in particular, included a minicourse on classical ODE theory taught by
Russell himself. It was through this seminar that I was attracted to the world of dynamics
and differential equations.

I began to work on my Ph.D. thesis in 1988 under the guidance of Russell. At the time,
Russell was interested in nonlinear dynamical behaviors of differential equations especially
those involving either nonautonomous forcing or internal multifrequencies. Motivated by
his discovery of generic property of exponential dichotomy for trace-free, quasiperiodic
linear systems, he conjectured that higher dimensional Hopf bifurcation in a generic sense
should behave very differently than that in the traditional sense. The investigation of this
problem later became a part of my Ph.D. thesis topics. It was through working on this the-
sis that I learned so much in dynamical systems theory, ranging from invariant manifolds,
perturbations and bifurcations, to nonautonomous dynamics, as well as to small divisor
problem.

In 1989, Russell was invited, as a visiting professor of the Institute for Mathematics and its
Applications (IMA) at the University of Minnesota, to participate in the 1989–1990 annual
dynamical systems program held at the IMA. He supported me with a research assistant-
ship and made arrangements with the IMA for me to also participate in the annual program.
Participating in this program turned out to be the best experience I have ever had in my
career. Not only was I exposed to diversified areas of modern dynamical systems, but also
I benefited tremendously from participating in conferences and workshops contained in the
program. In addition, participating in the program provided me with a unique opportunity to
learn from and interact with top researchers working in various areas of dynamics.

I have had many fruitful collaborations with Russell, both before and after I obtained my
Ph.D. degree in 1990. In our first joint work [48], we showed that Hopf bifurcation from higher
dimensional tori enjoys an intermittency property in which bifurcation to equal dimensional
tori occurs generically. Later, Russell and I collaborated extensively with Xingbin Pan on
the existence and asymptotics of grand states of semilinear elliptic equations in unbounded
domains [52–55]. In these works, we introduced some dynamical systems techniques into the
study of radially symmetric positive solutions of semilinear elliptic equations in unbounded
domains.

I am indebted to Russell for his constant support and inspiration over the years to my
career development.
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