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The Impact of Media on the Control of Infectious
Diseases

Jingan Cui,1,2 Yonghong Sun,3 and Huaiping Zhu4,5,6

We develop a three dimensional compartmental model to investigate the
impact of media coverage to the spread and control of infectious diseases
(such as SARS) in a given region/area. Stability analysis of the model shows
that the disease-free equilibrium is globally-asymptotically stable if a certain
threshold quantity, the basic reproduction number (R0), is less than unity.
On the other hand, if R0 >1, it is shown that a unique endemic equilibrium
appears and a Hopf bifurcation can occur which causes oscillatory phenom-
ena. The model may have up to three positive equilibria. Numerical simu-
lations suggest that when R0 > 1 and the media impact is stronger enough,
the model exhibits multiple positive equilibria which poses challenge to the
prediction and control of the outbreaks of infectious diseases.

KEY WORDS: Infectious disease; SEI model; media impact; Hopf bifurca-
tion; multiple outbreaks.

1. INTRODUCTION

In recent years, attempts have been made to develop realistic math-
ematical models for the transmission dynamics of infectious diseases. In
modelling of communicable diseases, the incidence function has been
considered to play a key role in ensuring that the models indeed give
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reasonable qualitative description of the transmission dynamics of the dis-
eases [3,9]. Some factors, such as media coverage, density of population
and life style, may affect the incidence rate directly or indirectly.

In the classical endemic models, the incidence rate is assumed to be
mass action incidence with bilinear interactions given by βSI , where β

is the probability of transmission per contact (a positive constant), and
S and I represent the susceptible and infected populations, respectively.
However, there are several reasons for using non-linear incidence rates
such as saturating and nearly bilinear. For instance, Yorke and London
[20] showed that the incidence rate β(1 − cI)IS with positive C and time
dependent β is consistent with the results of the simulations for measles
outbreaks. In order to avoid the unboundedness of the contact rate, Cap-
asso and Serio [4] used a saturated incidence function of the form βSI

1+βδI
,

δ > 0. To incorporate the effect of the behavioral changes of the suscep-
tible individuals, Liu and coworkers [10,11] used a non-linear incidence
rate given by kI lS

1+αIh with k, l, α, h > 0. Ruan and Wang, [14] showed that
endemic models with such non-linear incidence rates exhibit various bifur-
cations include Hopf, homoclinic, and even Bogdanov-Takens bifurcations.
There have been many models using variety of different non-linear inci-
dence functions to study the disease transmission, we refer the reader to
Levin et al. [9] for a more detailed summarization.

The aim of this paper is to investigate the impact of media cover-
age to the spread and control of infectious diseases in a given region.
In [12], the authors consider a model with the compartments of exposed
(E), infectious (I) and hospitalized (H) individuals to explore the possible
mechanism for multiple outbreaks of emerging infectious diseases due to
the psychological impact of the reported numbers of infectious and hos-
pitalized individuals. The model was simplified by assuming that the total
population size remain a constant. In this paper, we extend the classical
SEI model and the ideas in [12] to consider a new incidence functional
which reflects the impact of the media coverage to the spreading and con-
trol of the disease.

This study was also originated from the observation of the spread
of SARS coronavirus in Asia and some other regions of the world.
SARS [7,15,19] as a new emerging infection disease, it was first appeared
in Guangdong province, China in November, 2002. Then in the follow-
ing year the SARS coronavirus spread rapidly throughout Asia and cer-
tain other part of the world [16,18]. For SARS in the cities of Beijing,
Hongkong and Toronto, the spreading and outbreaks all experienced a
typical process for people to see how the media coverage and the public
alerting plays a role in the whole course of the spreading. For the case
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in Beijing, it was not clear of the existence and type of such disease until
April 21, 2003 [16]. During this period, more susceptible individuals might
have been exposed to and infected with the disease unconsciously due to
the luck of knowledge of the disease. This fact suggests us to consider the
following question: How does the media coverage affect the spreading and
control of the infectious diseases like SARS?

The media coverage is obviously not the most important factor
responsible for the transmission of the infectious disease, but it is a very
important issue which has to be taken care of seriously. In the case of
a large number of infected cases, on one hand, the media coverage may
cause the panic of the society, while on the other hand, it can certainly
reduce the opportunity and probability of contact transmission among the
alerted susceptible populations, which in turn helps to control and prevent
the disease from further spreading.

In this paper, we use a compartmental model to address the impact
of media coverage on the transmission of infectious diseases. In the SEI
model, the incidence rate is assumed to be in the form µe−mI . This paper
is organized as follows. In Section 2 we develop a SEI model to incor-
porate the media impact to the spreading of the infectious diseases such
as SARS. We calculate the reproduction number in Section 3 and prove
the local and global stability of the disease free equilibrium. The model
in general can have up to three positive equilibria, we shall restrict our-
selves to the case when the media impact is small enough that there exists
at most one endemic equilibrium. In Section 5 we shall study the local and
global stability of the unique endemic equilibrium when the reproduction
number R0 >1 and m is small. We also study the Hopf bifurcation of the
endemic equilibrium when the reproduction number is larger enough. The
paper ends with a brief discussion of the results on the impact of media
and related control and prediction issues.

2. A SEI MODEL WITH MEDIA IMPACT

Consider the transmission of certain infectious disease (such as
SARS) in a given region/area. We classify the population into the follow-
ing categories:

• S(t), the number of susceptible individuals;
• E(t), the number of individuals exposed to the infected but not

infectious;
• I (t), the infected who are infectious.

We assume that the infectious individuals I receive medical treatment
in hospital settings as soon as they are identified from the category of
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exposed. Once they are recovered, they no longer impose risk to the sus-
ceptible individuals. In most of the studies, the compartmental models
were built by either assuming the total population to be a constant or sat-
isfy exponential growth [1,2,5,8]. It is more reasonable to assume that the
population of a given region obey the Logistic growth. Then we have the
model

⎧
⎪⎪⎨

⎪⎪⎩

dS
dt

=bS
(
1− S

K

)−µe−mISI,

dE
dt

=µe−mISI − (c+d)E,

dI
dt

= cE −γ I,

(2.1)

where all the parameters are positive, and

• b, the intrinsic growth rate of the human population, K is the car-
rying capacity for the human population of a given region/area.

• β(I)=µe−mI is the contact and transmission term, it measures the
spreading of the virus from the infected to the susceptible indi-
vidual. If m=0, the transmission rate is a constant. Naturally the
contact transmission rate is not only related to the spreading abil-
ity of the virus or disease, but also closely related to the alertness
to the disease of each susceptible individual of the population.
Here we use the parameter m > 0 to reflect the impact of media
coverage to the contact transmission. Since the media coverage
and alertness are not the intrinsic deterministic factor responsible
for the transmission, hence it is reasonable to assume that m > 0
is a small parameter. Also for simplicity, the mass action law is
assumed in the model [8]. As one can see that if m> 0 but com-
paratively small enough, this incidence term β(I) is close to the
constant µ. Also as m>0 increases or the media coverage and the
alertness to the public is comprehensive and in time, the general
public will be more alert and aware of the virus/diseases. Hence
the transmission rate will be decreasing as I increases.

• c is the rate per unit time (day) that infected individuals become
infectious.

• d is natural death rate for the susceptible population.
• γ is the removed rate from the infected compartment, which

include the recovery rate of the hospitalized infectious individuals
and natural death. Hence we have γ >d.

Model (2.1) involves the interaction of both the population dynam-
ics of logistic type and the transmission dynamics of disease epidemiology.
Hence the dynamics of the system (2.1) can be very complicated. In this
paper, we are going to study the impact of the media coverage/alert to the
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spreading of the disease by assuming that m > 0 is small. We will show
that if the media coverage fails to report the real situation of disease to
alert and educate the public, then there will be an outbreak or even mul-
tiple outbreaks of such a disease.

3. DISEASE FREE EQUILIBRIUM (DFE), STABILITY AND
REPRODUCTION NUMBER

Let the right hand side of (2.1) be zero, one can verify that the origin
E0 = (0,0,0) is an equilibrium with eigenvalues b, −(c+d), −γ . Hence E0
is a hyperbolic saddle point.

The model (2.1) has one disease free equilibrium (DFE) at E10 =
(K,0,0). The local stability of E10 can be obtained through a straightfor-
ward calculation for the eigenvalues.

It follows from [17] that for the compartmental models, the local sta-
bility of the disease free equilibrium is governed by the reproduction num-
ber of the model. Using the notations in [17], we have two vectors F

and V to represent the new infection term and remaining transfer terms,
respectively:

F=
⎛

⎝
µe−mISI

0
0

⎞

⎠ , V =
⎛

⎝
(c+d)E

−cE +γ I

−bS(1− S
K

)+µe−mISI

⎞

⎠ . (3.1)

The infected compartments are E and I , hence a straightforward calcula-
tion gives

F =
(

0 µK

0 0

)

, V =
(

(c+d) 0
−c γ

)

, (3.2)

where F is non-negative and V is a non-singular M-matrix, therefore
FV −1 is non-negative, and

FV −1 = 1
γ (c+d)

(
µKc µK(c+d)

0 0

)

. (3.3)

Hence the reproduction number is given by ρ(FV −1), and

R0 = µcK

γ (c+d)
. (3.4)

It follows from [17] that we have

Proposition 3.1. For the model (2.1), the disease free equilibrium E10
is locally asymptotically stable if R0 <1, and unstable if R0 >1.
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Note that for the characteristic equation of (2.1) at E10

(λ+b)[λ2 + (c+d +γ )λ+γ (c+d)−µcK]=0, (3.5)

it follows from the Routh-Hurwitz criteria [13] that all the eigenvalues
have negative real parts if and only if R0 <1.

Theorem 3.2. For the model (2.1), the disease free equilibrium E10 is
globally asymptotically stable whenever R0 <1.

Proof. From (2.1) we have
dS

dt
≤ bS(1 − S

K
). For S =K is the glob-

ally asymptotically stable equilibrium of
dS

dt
=bS(1− S

K
), so for any ε>0,

when t →+∞ we have

S(t)≤K + ε. (3.6)

Then we have
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dE

dt
≤µe−mI (K + ε)I − (c+d)E,

dI

dt
= cE −γ I .

(3.7)

Now we consider
⎧
⎪⎨

⎪⎩

dE

dt
= µe−mI (K + ε)I − (c+d)E =P(E, I),

dI

dt
= cE −γ I =Q(E, I).

(3.8)

System (3.8) has a unique equilibrium (0,0) and the corresponding eigen-
values are determined by

λ2 + (c+d +γ )λ+γ (c+d)−µc(K + ε)=0. (3.9)

For ε > 0 sufficiently small, since R0 < 1, hence γ (c + d) − µc(K + ε) > 0.
Thus all the eigenvalues of (3.9) have negative real parts. Hence (0,0) is

locally asymptotically stable. Since
∂P (E, I)

∂E
+ ∂Q(E, I)

∂I
=−(c + d + γ )<

0, system (3.8) has no close orbit. Let

D =
{

(S,E, I)

∣
∣
∣S,E, I ≥0, S +E + I ≤K,K = bK

l
, l =min{b, d, γ }

}

.

We first prove that D is positively invariant. By (2.1), for (S,E, I)∈D we

have
dS

dt

∣
∣
∣
S=0

=0,
dE

dt

∣
∣
∣
E=0

=µe−mISI ≥0,
dI

dt

∣
∣
∣
I=0

≥0, and
dS

dt
≤bS(1− S

K
).
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For
dS

dt
=bS(1− S

K
) with S <K, we have lim

t→∞S(t)=K, and S(t)≤K.

Note that if we let N(t)=S(t)+E(t)+ I (t), then

dN

dt
|N=K,(S,E,I)∈D = [bS

(
1− S

K

)−dE −γ I
]

S+E+I=K

≤ [bK −bS −dE −γ I ]S+E+I=K

≤ bK − lN |N=K =bK − lK =0.

Hence D is positively invariant. Therefore, (0,0) is globally asymptotically
stable for (3.8). Consequently, for system (3.7) there holds

lim
t→∞E(t)=0, lim

t→∞ I (t)=0.

Then for the above ε>0, there exists T >0 such that for all t >T , I (t)<ε.
By (2.1), we have

dS

dt
>bS

(

1− S

K

)

−µεS.

Note that for ε > 0 sufficiently small, S =K(1 − µε

b
) is a globally asymp-

totically stable equilibrium of

dS

dt
=bS

(

1− µε

b
− S

K

)

,

thus we have

S(t)≥K − ε.(t →∞). (3.10)

It follows from (3.6) and (3.10) that we have

lim
t→∞S(t)=K.

Hence E10 is the globally asymptotically stable equilibrium of (2.1). ��

4. EXISTENCE OF THE ENDEMIC EQUILIBRIUM (EE)

First note that if m = 0, i.e., if the media impact is not considered,
one can verify that when R0 >1, system (2.1) has a unique endemic equi-
librium (EE) (S∗

0 ,E∗
0 , I ∗

0 ) where

S∗
0 = γ (c+d)

µc
= K

R0
, E∗

0 = bγ 2(c+d)

µ2c2K
(R0 −1), I ∗

0 = bγ (c+d)

µ2cK
(R0 −1).

(4.1)
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But if the media and psychological impact are incorporated, system (2.1)
can have up to three equilibria.

Let

g(I)=K
(

1− µ

b
Ie−mI

)
. (4.2)

Then the model (2.1) becomes
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dS

dt
= b

K
S(g(I )−S),

dE

dt
= b

K
(K −g(I))S − (c+d)E,

dI

dt
= cE −γ I.

(4.3)

Let the right hand side of (4.3) be zero. If a positive equilibrium exists, it
is a positive solution of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S = g(I),

S = Kγ (c+d)
bc

I
K−g(I)

=h(I),

cE −γ I =0,

(4.4)

where using the expression of g(I) in (4.2) was used, h(I) can be simpli-
fied to

h(I)= γ (c+d)

µc
emI . (4.5)

Then if a positive equilibrium, an endemic equilibrium exists, its (S, I )

coordinates must satisfy

S =g(I), S =h(I), (4.6)

and the E coordinate is given by E = γ
c
I.

One can verify that if R0 > 1, then g(0) > h(0). Note lim
I→∞

g(I) = K

and lim
I→∞

h(I)=∞. Hence if R0 >1, the two curves S =g(I) and S =h(I)

have at least one positive intersection which gives at least one endemic
equilibrium. As shown in Fig. 1(a)–(c), the two planar curves S =g(I) and
S =h(I) can have up to three intersections in the SI -plane.

Now we develop conditions to decide the tangency of the two curves
in order to determine the number of positive equilibria. If the two curves
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Figure 1. Three possible cases of the intersection of the curves S = g(I) and S = h(I) indi-
cating the existence of up to three positive equilibria. The curves were plotted using Maple.

S = g(I) and S = h(I) are tangent at some positive points, we must have
S =g(I)=h(I), g′(I )=h′(I ). Or equivalently,

⎧
⎪⎨

⎪⎩

K
(

1− µ

b
Ie−mI

)
= γ (c+d)

µc
emI ,

−Kµ

b
(1−mI)e−mI = γ (c+d)m

µc
emI .

(4.7)

Eliminating the exponential terms in (4.7), if the two curves are tangent,
the I coordinate must satisfy the quadratic equation

b

µ
R0m(mI −1)= (2mI −1)2. (4.8)

It follows from (4.7) and (4.8) that if the tangency occurs at some point,
its I coordinate must satisfy mI >1.
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Let

δ := µ

b
, m0 := 8µ

bR0
= 8δ

R0
. (4.9)

A straightforward calculation can verify that (4.8) has two distinct positive
roots satisfying mI >1 if and only if R0 >1 and m>m0. For m>m0, solv-
ing (4.8) in terms of I , we have

I = mR0 +4δ ±√
	

8mδ
, (4.10)

where 	=mR0(mR0 −8δ).
In summary, regarding the existence and the number of the endemic

equilibria, we have:

Proposition 4.1. Consider the model (2.1) with all parameters positive.
Let m0 be defined in (4.9). If R0 >1, then model (2.1) has at least one and
at most three positive equilibrium (endemic equilibria). Furthermore,

• if 0<m<m0, the model has a unique endemic equilibrium;
• if m>m0, the model has three endemic equilibria;
• if m = m0, the model has one endemic equilibria of multiplicity at

least two.

By the above proposition, if m = m0, the model can have a more
degenerate endemic equilibrium with multiplicity three (both the eigen-
values are zero), and model can have a Bogdanov-Takens bifurcation
of codimension two, even codimension three [6,21]. The study of the
Bogdanov-Takens bifurcations is certainly out of the scope of this paper.

5. STABILITY AND HOPF BIFURCATION OF THE ENDEMIC
EQUILIBRIUM (EE)

In this section, we shall study the stability and Hopf bifurcation of
the endemic equilibria and determine how the media impact can influence
the periods of the oscillations of virus/disease transmission.

5.1. m=0

When m=0, model (2.1) has a unique endemic equilibrium (S∗
0 ,E∗

0 , I ∗
0 ).

A straightforward calculation yields the associate characteristic equation:

λ3 +
(

c+d +γ + b

R0

)

λ2 + b

R0
(c+d +γ )λ+bγ (c+d)

(

1− 1
R0

)

=0.

(5.1)
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Let

RH0 = 1
2

[

1+ (c+d +γ )2

γ (c+d)

+
√

1+ 2(c+d +γ )(2b+ c+d +γ )

γ (c+d)
+ (c+d +γ )4

γ 2(c+d)2

⎤

⎦ . (5.2)

Obviously, for any positive parameters we have RH0 >1. Next propo-
sition is about the local stability of the equilibrium (S∗

0 ,E∗
0 , I ∗

0 ).

Proposition 5.1. For the model (2.1) with m= 0, the endemic equilib-
rium (S∗

0 ,E∗
0 , I ∗

0 ) is locally asymptotically stable if 1<R0 <RH0 .

Proof. To prove, we only need to show that all roots of the charac-
teristic equation (5.1) have negative real parts.

Since R0 >1, all the coefficients of the cubic polynomial (5.1) are pos-
itive.

If we also have R0 < RH0 , then we have R
2
0γ (c + d) − R0[γ (c + d) +

(c+d +γ )2]−b(c+d +γ )<0. This is equivalent to
b

R0
(c+d +γ )(c+d +

γ + b

R0
)−bγ (c+d)(1− 1

R0
)>0.

So if 1 < R0 < RH0 , we have c + d + γ + b

R0
> 0, bγ (c + d)(1 − R0) >

0,
b

R0
(c+d +γ )(c+d +γ + b

R0
)−bγ (c+d)(1− 1

R0
)>0.

It follows from the Routh-Hurwitz criteria [13] that all eigenvalues of
(5.1) have negative real parts, hence (S∗

0 ,E∗
0 , I ∗

0 ) is locally asymptotically
stable if 1<R0 <RH0 . ��

From (3.4) one can see that the reproduction number is linearly
dependent on the parameter µ, hence solving R0 =RH0 in terms of µ, one
gets a threshold condition on the parameter µ for the endemic equilibrium
to be locally asymptotically stable:

µH0 = γ (c+d)

cK
RH0 . (5.3)

Hence it follows from Proposition 5.1 that if µ < µH0 , then the endemic
equilibrium is locally asymptotically stable.

Theorem 5.2. For the model (2.1) with m=0, when R0 =RH0 or equiv-
alently when µ=µH0 , (S∗

0 ,E∗
0 , I ∗

0 ) becomes unstable and model (2.1) under-
goes a Hopf bifurcation.
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Proof. First note that if R0 =RH0 or µ=µH0 , we have

b

R0
(c+d +γ )(c+d +γ + b

R0
)=bγ (c+d)(1− 1

R0
),

then one can verify that equation (5.1) has a negative root and a pair of
purely imaginary roots λ=±ω0i, where

ω2
0 = b(c+d +γ )

R0
. (5.4)

For the the characteristic equation (5.1), we consider the characteris-
tic root λ as a function of R0 or a function of µ. Differentiating equation
(5.1) with respect to µ, we get

[

3λ2 +2
(

c+d +γ + b

R0

)

λ+ b

R0
(c+d +γ )

]
dλ

dµ

=
[

b

R
2
0

λ2 + b

R
2
0

(c+d +γ )λ− b

R
2
0

γ (c+d)

]
dR0

dµ
.

This gives
(

dλ

dµ

)−1

=
3λ2 +2(c+d +γ + b

R0
)λ+ b

R0
(c+d +γ )

b

R
2
0
[λ2 + (c+d +γ )λ−γ (c+d)]

· cK

γ (c+d)
.

Thus

sign

{
d(Reλ)

dµ

} ∣
∣
∣
λ=iω0

= sign

{

Re(
dλ

dµ
)−1
} ∣
∣
∣
λ=iω0

= sign

{

Re

(
3λ2 + b

R0
(c+d +γ )+2(c+d +γ + b

R0
)λ

λ2 −γ (c+d)+ (c+d +γ )λ

)}
∣
∣
∣
λ=iω0

= sign

{

Re

(−3ω2
0 + b

R0
(c+d +γ )+2i(c+d +γ + b

R0
)ω0

−ω2
0 −γ (c+d)]+ i(c+d +γ )ω0

)}

= sign

{
2b(c+d +γ )

R0

[
b

R0
(c+d +γ )+γ (c+d)

]

+ 2b

R0
(c+d +γ )2

(

c+d +γ + b

R0

)}

>0.

Therefore, as µ>0 increases, the real part of a pair of characteristic roots
changes from negative to positive through zero, the transversality condi-
tion holds. Hence, the model with m = 0 undergoes an Hopf bifurcation
when R0 =RH0 . This completes the proof. ��
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5.2. m is Sufficiently Small

When R0 > 1 and 0 ≤m<m0, the model (2.1) has a unique endemic
equilibrium (S∗,E∗, I ∗). Evaluating the Jacobian of (2.1) at the equilib-
rium gives

J (S∗,E∗, I ∗)=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− b

K
S∗ 0 −γ (c+d)

c
+mbS∗

(

1− S∗

K

)

b

(

1− S∗

K

)

−(c+d)
γ (c+d)

c
−mbS∗

(

1− S∗

K

)

0 c −γ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The characteristic equation about (S∗,E∗, I ∗) is given by

λ3 +a2λ
2 +a1λ+a0 =0, (5.5)

where

a2 = c+d +γ + b

K
S∗ >0,

a1 = cmbS∗
(

1− S∗

K

)

+ bS∗

K
(c+d +γ ),

a0 = b

(

1− S∗

K

)[

γ (c+d)+ cmbS∗
(

2S∗

K
−1
)]

.

(5.6)

Since we do not have a closed form for the endemic equilibrium, it is not
easy to study the bifurcations analytically for the general case of m. We
are going to use the fact that m>0 is small to study the Hopf bifurcation
of the endemic equilibrium.

The coordinates of the endemic equilibrium (S∗,E∗, I ∗) are smooth
functions of m. When m>0 is sufficiently small, or if 0<m<m0, we can
expand the coordinates for the unique endemic equilibrium (S∗,E∗, I ∗) as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S∗ = S∗
0 +mS∗

1 +O(m2),

E∗ = E∗
0 +mE∗

1 +O(m2),

I ∗ = I ∗
0 +mI ∗

1 +O(m2),

(5.7)

where particularly, by (4.4) we have

S∗
0 = K

R0
, S∗

1 =S∗
0

b

µ

(

1− 1
R0

)

. (5.8)
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Note that the cubic polynomial (5.5) reduces to (5.1) when m = 0.
Similar to the case of m = 0 in the above subsection, we will now study
how the media coverage has an impact on the dynamics of the disease
transmission by the method of perturbation.

It is not difficult to verify that (5.5) has a pair of purely imaginary
roots if and only if a1a2 =a0. Let

H =a1a2 −a0. (5.9)

If H = 0, the endemic equilibrium has a pair of purely imaginary roots.
Using the expressions in (5.6), (5.7) and (5.8), one can verify that H = 0
is equivalent to H(m,R0)=0, where

H(m,R0) = R
3
0

[

γ (c+d)− m

µ
γ (c+d)(b+ c+d +γ )

]

+R
2
0

[(
bm

µ
−1
)

γ (c+d)−
(

1+ bm

µ

)

(c+d +γ )2

+m

µ
γ (c+d)(c+d +γ )

]

+R0

[

−b(c+d +γ )− 2b2m

µ
(c+d +γ )+ bm

µ
(c+d +γ )2

]

+2b2m

µ
(c+d +γ ). (5.10)

Note that when H(m,R0)= 0, the endemic equilibrium has a pair of
purely imaginary eigenvalues λ=±ωi, where

ω2 = cmbS∗
(

1− S∗

K

)

+ bS∗

K
(c+d +γ ). (5.11)

Hence if the parameters m and R0 satisfy H(m,R0)=0, an Hopf bifurca-
tion may occur. Now we develop the function determined by H(m,R0)=0.

Proposition 5.3. Consider H(m,R0)=0 for 0≤m<m0 and R0 >1. In
the neighborhood of (0,RH0), there exists a unique smooth function R0 =
R0(m) such that H(m,R0(m))=0 for 0≤m<m0 sufficiently small. Further-
more, we have

R0(m)=RH0 +mRH1 +O(m2), (5.12)

where RH0 is defined as in (5.2) and

RH1 =
(c+d +γ )2(2b+ c+d +γ )R2

H0
+b2(c+d +γ )(3RH0 −2)

µ[γ (c+d)R2
H0

+b(c+d +γ )]
.

(5.13)
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Proof. Note that H(0,RH0)=0 and in the neighborhood of (0,RH0),
we have

∂H

∂R0

∣
∣
∣
m=0,R0=RH0

= 3R
2
H0

γ (c+d)−2RH0 [γ (c+d)+ (c+d +γ )2]

−b(c+d +γ )=R
2
H0

γ (c+d)+b(c+d +γ ) �=0,

then by the Implicit Function Theorem, there exists a unique function
R0 =R0(m) such that H(m,R0(m))=0 for m≥0 sufficiently small.

If we write the Taylor expansion for R0(m) in terms of m as in (5.12)
and plug it into (5.10), we have

H(m,R0(m)) = H(m,RH0 +mRH1 +O(m2))

= (R3
H0

+3R
2
H0

RH1m)

[

γ (c+d)−m
γ (c+d)

µ
(b+ c+d +γ )

]

+(R2
H0

+2RH0RH1m)

{

−γ (c+d)− (c+d +γ )2

+m

[
γ (c+d)

µ
(b+ c+d +γ )− b

µ
(c+d +γ )2

]}

+(RH0 +mRH1)

{

−b(c+d +γ )

+m

[
b

µ
(c+d +γ )2 − 2b2

µ
(c+d +γ )

]}

+ 2b2

µ
(c+d +γ )m

= 0. (5.14)

Equalizing the terms of same power of m on both sides of the above
equation, from the constant term, we have

R
3
H0

γ (c+d)−R
2
H0

[γ (c+d)+ (c+d +γ )2]−RH0b(c+d +γ )=0,

which is the same as the equation to define RH0 . For the coefficients for
the first term, we have

3R
2
H0

RH1γ (c+d) − R
3
H0

γ (c+d)

µ
(b+ c+d +γ )

+ R
2
H0

[
γ (c+d)

µ
(b+ c+d +γ )− b

µ
(c+d +γ )2

]

+ 2RH0RH1 [−γ (c+d)− (c+d +γ )2]

+ RH0

[
b

µ
(c+d +γ )2

− 2b2

µ
(c+d +γ )

]

−bRH1(c+d +γ )+ 2b2

µ
(c+d +γ )

= 0. (5.15)
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Solving equation (5.15) in terms of RH1 we obtain (5.13). ��
Theorem 5.4. If 1 <R0 <R0(m), where R0(m) is defined in (5.12) for

m≥0 sufficiently small, then the endemic equilibrium (S∗,E∗, I ∗) is locally-
asymptotically stable.

Proof. When R0 > 1, consider the characteristic equation for the
equilibrium (S∗,E∗, I ∗) in (5.5). Obviously, a2 >0. We need to prove a0 >0
and a2a1 −a0 >0 in order to use Routh-Hurwitz criteria [13] to conclude.

By (5.8), we have for m>0 small that

a0 = γ (c+d)+mbcS∗
(

2S∗

K
−1
)

= γ (c+d)+mbc
K

R0

[
2
K

K

R0
−1
]

+O(m2). (5.16)

Since m < m0 = 8γ (c+d)

bcK
, we have γ (c + d) + mbcK

R0
(

2
R0

− 1) > 0, hence

a0 >0.
Next we prove a2a1 − a0 > 0. By (5.8) and R0γ (c + d) = µcK, a

straightforward calculation gives

a2a1 −a0 = (c+d +γ + b

K
S∗)
[

mbcS∗
(

1− S∗

K

)

+ bS∗

K
(c+d +γ )

]

−b

(

1− S∗

K

)[

γ (c+d)+mbcS∗
(

2S∗

K
−1
)]

= b

R
3
0

{

R
2
0

[(

1+ bm

µ

)

(c+d +γ )2 + (b+ c+d +γ )cKm−µcK

]

+R0

[

µcK +b(c+d +γ )+ 2b2m

µ
(c+d +γ )

−bm

µ
(c+d +γ )2 − (b+ c+d +γ )cKm

]

−2b2m

µ
(c+d +γ )}+O(m2)>0. (5.17)

Then it follows from Routh-Hurwitz criteria [13] that all eigenvalues of
(5.5) have negative real parts. Hence E2 is locally-asymptotically stable
when 1<R0 <R0(m) and m>0 is sufficiently small. ��

Theorem 5.5. When 0<m<m0 and R0 =R0(m), the system undergoes
a Hopf bifurcation.
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Proof. It follows from Proposition 5.3 and Theorem 5.4, we only
need to prove the transversality to conclude the existence of the bifurca-
tion.

Differentiating Eq.(5.5) with respect µ, we get

dλ

dµ
= dS∗

dµ
· B1

B2
, (5.18)

where

B1 = − b

K
λ2 −

[

cmb

(

1− 2S∗

K

)

+ b

K
(c+d +γ )

]

λ

+ b

K

[

γ (c+d)+ cmbS∗
(

2S∗

K
−1
)]

−
(

1− S∗

K

)

cmb2
(

4S∗

K
−1
)

,

B2 = 3λ2 +2
(

c+d +γ + bS∗

K

)

λ+
[

cmbS∗
(

1− S∗

K

)

+ b

K
S∗(c+d +γ )

]

.

(5.19)

Recall that when R0 =R0(m), or equivalently when
(

c+d +γ + bS∗

K

)[

cmbS∗(1− S∗

K
)+ bS∗

K
(c+d +γ )

]

=b

(

1− S∗

K

)[

γ (c+d)+ cmbS∗
(

2S∗

K
−1
)]

, (5.20)

Equation (5.5) has a pair of purely imaginary roots λ=±ωi with

ω2 = cmbS∗
(

1− S∗

K

)

+ bS∗

K
(c+d +γ )

= b(c+d +γ )

R0
+m

[
bck

R0

(

1− 1
R0

)

+b2(c+d +γ )

µR0

(

1− 1
R0

)]

+O(m2).

Note that

S∗ = K

R0
e

mc
γ

E∗ = γ (c+d)

µc
e

cmb
γ (c+d)

S∗(1− S∗
K

)
,

so we get

dS∗

dµ
= γ (c+d)

µ
· S∗

cmbS∗(1− 2S∗
K

)−γ (c+d)
.

By (5.20), we have γ (c + d)+ cmbS∗(
2S∗

K
− 1)> 0. Hence we always have

dS∗

dµ
<0.
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Therefore, it follows from (5.18) that we have

sign

{
d(Reλ)

dµ

}

λ=iω

= sign

{

Re

(
dλ

dµ

)}

λ=iω

= sign

{

−Re

(
b
K

[ω2+γ (c+d)+ cmbS∗( 2S∗
K

−1)]−(1−S∗
K

)cmb2( 4S∗
K

−1)

−3ω2+ cmbS∗(1−S∗
K

)+ b
K

S∗(c+d+γ )+2i(c+d+γ+ b
K

S∗)ω

− i[cmb(1− 2S∗
K

)+ b
K

(c+d +γ )]ω

−3ω2 + cmbS∗(1− S∗
K

)+ b
K

S∗(c+d +γ )+2i(c+d +γ + b
K

S∗)ω

)}

= sign

{

cmb2(1− S∗

K
)(1− 3S∗

K
)+ cmb(1− 2S∗

K
)(c+d +γ )

+ b

K
γ (c+d)+ b

K
(c+d +γ )2 + 2b2

K2
S∗(c+d +γ )

}

>0. (5.21)

Therefore, the transversality condition holds and hence a Hopf bifur-
cation occurs when R0 =R0(m) and m is small. ��

5.3. Numerical Simulations

For the purpose of simulations, here we fix some of the parameters in
Table I and shall consider the cases when γ and m are varied.

First we consider the case when the disease transmission is mild with
a lower reproduction number. In the case when γ = 0.05 and all other

Table I. Part of the parameters for the simulations

Parameters Value

Carrying capacity K 5,000,000
Intrinsic growth rate of the population b 0.001
Contact transmission rate µ 1.2×10−8

Time that an exposed becomes infected 1
c

10
Natural death rate of the population d 0.001
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Table II. Endemic equilibrium (S∗,E∗, I ∗) when m>0 is varied. In the table, except for the
parameters given in Table I, here we have γ =0.05. In this case, R0 =1.188 and RH0 =5.52

Parameter m S∗ E∗ I ∗

m=0 4208333 6597 13194
m=1×10−6 4261135 6235 12468
m=6×10−6 4457313 4790 9580

parameters as in Table I, we have R0 = 1.188. As shown in Fig. 2(a),
(b), the transmission of the disease experiences multiple peaks without the
media alert, the thin curve represents the case when m = 0, the applica-
tion of media was not considered. The other two thicker curves represent
the cases when m= 0.000001 and m= 0.000006, respectively. As shown in
Table II, if γ =0.05, we have R0 =1.188 and RH0 =5.52. For all the cases,
the endemic equilibrium is a spiral sink which is local asymptotically sta-
ble. The population in each compartment approaches its equilibrium value.
From the simulation results in Fig. 2, one can see that the effective media
coverage (larger values of m) stabilizes the oscillation, and less number of
the individuals become infected in the course of transmission.

The media impact to the transmission is also simulated in Fig. 3(a),
(b) where γ is reduced to 0.02, with all other parameters are given in
Table I.

6. DISCUSSION

6.1. Multiple Peaks of the Transmission and the Media Impact

We knew that when m=0, the Hopf bifurcation occurs and a periodic
solution appears. When the media impact is not considered, if R0 >1 and
close to RH0 , the disease will be endemic with multiple peaks. The time
between between the two peaks can be approximated by

T0 = 2π

ω
= 2π
√

b

R0
(c+d +γ )

.

But when the media coverage/alert is introduced, or when 0<m<m0
is sufficiently small, if there are multiple peaks, the time between each of
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Figure 2. Simulations for the case when γ = 0.05. Here R0 = 1.188 and RH0 = 5.52. The
thickness of the curves increases when the parameter m=0 changes from 0, 10−6 to 6×10−6.

the two peaks can be approximated by

Tm = 2π
√

b(c+d +γ )

R0
+m[

bck

R0
(1− 1

R0
)+ b2(c+d +γ )

µR0
(1− 1

R0
)]+O(m2)

.

This shows that the media alert shortens the time of the secondary
peak of the disease transmission. This effect is also verified by the simu-
lations in Fig. 3 (a), (b).
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Figure 3. Simulations for the case when γ =0.02. Here R0 =2.97 and RH0 =8.26. The thick-
ness of the curves increases when the parameter m=0 changes from 0, 10−6 to 6×10−6.

6.2. The Media Coverage/Alert and the Endemic State

Note that whenever R0 > 1, an endemic equilibrium appears and its
coordinates (S∗,E∗, I ∗) are given by

bS∗
(

1− S∗

K

)

− (c+d)E∗ =0, S∗ = K

R0
e

mc
γ

E∗
, I ∗ = c

γ
E∗.
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If we consider S∗, E∗ and I ∗ as functions of m>0, then we have

⎧
⎪⎪⎨

⎪⎪⎩

b

(

1− 2S∗

K

)
dS∗
dm

− (c+d)
dE∗

dm
=0,

dS∗

dm
= cK

R0γ
e

mc
γ

E∗ + cmK

R0γ
e

mc
γ

E∗ dE∗

dm
.

(6.1)

Thus, we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS∗

dm
=

cb(S∗)2
(

1− S∗

K

)

γ (c+d)−mcbS∗
(

1− 2S∗

K

) ,

dE∗

dm
= 1

c+d
·
cb(S∗)2

(

1− S∗

K

)(

1− 2S∗

K

)

γ (c+d)−mcbS∗
(

1− 2S∗

K

) ,

dI ∗

dm
= c

γ

dE∗

dm
.

Since the endemic equilibrium is locally-asymptotically stable, we have

γ (c + d) − mcbS∗(1 − 2S∗

K
) > 0. Hence

dS∗

dm
> 0, thus S∗ is always an

increasing function of m, and if 1<R0 <2 one can also verify that
dE∗

dm
<

0 and
dI ∗

dm
<0, therefore, E∗ and I ∗ are decreasing functions of m. This is

verified by the numerical simulationsin Table II and Fig. 3 (a), (b).

6.3. Other Comments and Further Improvement

In this paper, we are trying to explore the impact of media coverage
to the transmission of infection diseases. The model (2.1) is a toy model
for the purpose of analyzing the impact of media on the spreading of the
disease. In the model, we used a contact transmission rate β(I)=µe−mI .
For further study, it would be ideal to consider more realistic contact
transmission rates to reflect the impact of media coverage and alertness.
Yet, the analysis of such a new model can be mathematically more chal-
lenge due to the high dimension of the models and nonlinearity of the
incidence function.
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