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Abstract
This paper studies the summability of the transseries solution of a nonintegrable Hamiltonian
system. Since our system has a resonance and is not integrable a general transseries theory
does not work well as far as the author knows. In order to construct a formal transseries
solution and prove its summability our main idea is to use the superintegrability of a Hamil-
tonian system in a class of transseries. More precisely we first show the superintegrability of
a Hamiltonian system in the category of transseries via the key Lemmas 1 and 4which follow.
By virtue of the superintegrability we show the existence of a formal transseries solution.
Then its summability is proved via the superintegrability. We note that the argument based
on the superintegrability is elementary.

Keywords Nonintegrability · Hamiltonian system · Transseries · Superintegrability
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1 Introduction

Let (q1, q2, q3, · · · , qn), (p1, p2, p3, · · · , pn) be the variables in some neighborhood of the
origin of R

2n or C
2n (n ≥ 1)with respect to a standard symplectic form. Let Z+ be the set of

nonnegative integers. In this paper we study the summability of the transseries solution of the
C∞-integrable and Cω-nonintegrable Hamiltonian system studied by Bolsinov, Taimanov,
Gorni and Zampieri. (cf. [3] and [6]). Consider the Hamitonian system with n degrees of
freedom

q̇ j = ∇p j H , ṗ j = −∇q j H , j = 1, 2, . . . , n, (1)

for the Hamiltonian H whose precise definition is given in the next section.
Starting from the pioneering work of Ecalle, [5] a transseries attracts more attention in

mathematical physics and dynamical systems. (See also [7, 8] and the references therein). It
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is also noted in [4] that a transseries solution gives a general solution. In order to construct
a transseries solution we first construct a formal transseries solution. Then the summability
theory gives the solution of the equation via the sum of a formal transseries.

In this paperwe give the rigorous proof of the above assertion by using a superintegrability.
More preciselywefirst showa superintegrability in the category of transseries.Byvirtue of the
superintegrability one can construct a formal transseries solution and show its summability.
We consider a transserial first integral since the nonintegrability in the analytic category
implies that Eq. 1 does not have n Cω-first integrals. On the other hand, a superintegrability
holds in the category of transseries. Namely,we can construct 2n−1 functionally independent
first integrals of Eq. 1 containing transseries. The idea of a transserial superintegrability for
a nonintegrable Hamiltonian system seems natural although no rigorous proof seems to be
known.

This paper is organized as follows. In Section 2 we formulate the existence of a formal
transseries solution as Theorem 1. In Section 3 we prove a superintegrability in the category
of formal transseries. In Section 4 we prove Theorem 1 by virtue of the superintegrability. In
Section 5we state the summability of the formal transseries solution constructed inTheorem1
as Theorem 5. In Section 6 we prove the summability of formal first integrals and show the
superintegrability. We prove Theorem 5 in Section 7.

2 Formal Transseries Solution

We set q = (q2, . . . , qn) and write (q1, q2, . . . , qn) = (q1, q). Similarly, we write
(p1, p2, . . . , pn) = (p1, p), where p = (p2, . . . , pn). Let H = H(q1, p1, q, p) be a
smooth function. Define the Hamiltonian vector field χH by

χH := {H , ·} =
n∑

j=1

(
∂H

∂ p j

∂

∂q j
− ∂H

∂q j

∂

∂ p j

)
, (2)

where {·, ·} denotes the Poisson bracket. We say that φ is the first integral of χH if χHφ = 0.
Let Ω ⊂ R

2n or Ω ⊂ C
2n be an open set. Let Cω ≡ Cω(Ω) be the set of functions analytic

inΩ .We say thatχH isCω-Liouville integrable inΩ if there exist first integrals φ j ∈ Cω(Ω)

( j = 1, 2, . . . , n) which are Poisson commuting, i.e., {φ j , φk} = 0, {H , φk} = 0, and that
are functionally independent on an open set Ω ′ ⊂ Ω with Ω ′ being dense in Ω . If φ j ∈ C∞
( j = 1, 2, . . . , n), then we say C∞-Liouville integrable. We say that χH is superintegrable
if χH has 2n − 1 functionally independent first integrals on an open set. We say that v is the
formal first integral of χH if χHv = 0 as a formal power series.

Let H0 and H1 be given, respectively, by

H0 = q2σ1 p1 +
n∑

j=2

λ j q j p j , (3)

H1 =
n∑

j=2

q2j B j (q1, q
2σ
1 p1, q), (4)

where Bj (q1, s, q)’s are holomorphic in some neighborhood of the origin and σ ≥ 1 is an
integer. Define H := H0 + H1. Assume

Bν ≡ Bν(q1, q
2σ
1 p1, q) = Bν,0(q1, q) + q2σ1 p1Bν,1(q1, q), ν = 2, . . . , n, (5)
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where Bν,0 and Bν,1 are analytic at (q1, q) = (0, 0). Suppose that the Poincaré condition
holds

Re λ j > 0, j = 2, 3, . . . , n. (6)

Assume the nonresonance condition
n∑

ν=2

λνkν − λ j 	= 0, ∀ kν ∈ Z+, ν = 2, . . . , n, j = 2, . . . , n. (7)

Set λ = (λ2, . . . , λn). Consider the formal power series solution
(q1(t), . . . , qn(t), p1(t), . . . , pn(t)) whose component has the following form

∑

k≥k0, 
≥
0

ck,
t
− 


2σ−1 eλkt , (8)

where k = (k2, . . . , kn), λk = λ2k2 + · · · + λnkn , and where ck,
’s are complex constants
and k0 is a multiinteger and 
0 ≥ 0 is an integer. The series Eq. 8 is called a transseries. As
for the general definition of a transseries and its property we refer to Ecalle [5], Costin, [4]
and Kuik, [7] and the references therein.

Our first aim is to construct the formal transseries solution of Eq. 1. In [1] a formal
transseries solution similar to Eq. 8 is constructed for the first order system of ordinary
differential equations under the nonresonance condition. See also the related works [4] and
[7]. Now, we have

Theorem 1 Suppose that Eqs. 5, 6 and 7 are satisfied. Then there exists a neighborhood of t =
∞,Ω1 such that there exists a formal transseries solution (q1(t), . . . , qn(t), p1(t), . . . , pn(t))
of Eq. 1 at every point of {t |Re(λ j t) < 0, j = 2, . . . , n} ∩ Ω1.

Example 1 The following Hamiltonian is the local counterpart of the Hamiltonian studied
by Taimanov related with the nonintegrability of a geodesic flow (cf. [3, 6])

H1 := cq4σ1 p21 +
n∑

j=2

Bj (q1)p
2
j , (9)

where c is a constant and Bj (q1) is an analytic function in some neighborhood of q1 = 0.
For H0 in Eq. 3, we define H := H0 + H1. χH is C∞-Liouville integrable at the origin. (cf.
[10]). We know that it is not Cω-Liouville integrable under a certain condition. (cf. [9]).

In this paper we study the superintegrability and the solvability of a Hamiltonian system
including H in the category of transseries. In the next section we show that the system
is superintegrable in the class of transseries. By virtue of the superintegrability we prove
the solvability of a Hamiltonian system in the class of transseries. As for the property of
the solution we see from Theorem 1 that the solution has a formal transseries expansion.
Moreover, the formal transseries is a true solution in a certain sector since it is summable
by Theorem 5 which follows. The study of the global behavior of the summed transseries
solution is left as a future problem.

3 Superintegrability in the Category of Transseries

3.1 Formal First Integral and Superintegrability

In order to prove Theorem 1 we first show the superintegrability of Eq. 1 in the category of
formal transseries. For this purpose, we first construct 2n − 1 functionally independent first
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integrals. We recall that the formal power series v is said to be the formal first integral of
the Hamiltonian vector field χH if χHv = 0 as a formal power series. As for the precise
definition of functionally independent first integrals in a formal series we need to introduce
some notation. For c ∈ C and α = (α2, . . . , αn) ∈ Z

n−1, define

Ec ≡ Ec(q1) = exp

(
cq−2σ+1

1

2σ − 1

)
, Eα = Eα2

λ2
· · · Eαn

λn
. (10)

We denote by e j the j-th unit vector, e j = (0, · · · , 1, · · · 0), j = 2, 3, . . . , n.
We construct the first integral v of χH given by

v = φ(α)(q1, p1, q, p)Eα, (11)

where φ(α)(q1, p1, q, p) is a formal power series in q1, q , p1 and p of the following form.

i) Case α = 0. We have

φ(0) ≡ φ
(0)
j = p jq j +U0, j + q2σ1 p1U1, j , j = 2, . . . , n, (12)

where

U0, j = U0, j (q1, q) =
∞∑

ν=0

U0, j,ν(q)qν
1 , (13)

U1, j = U1, j (q1, q) =
∞∑

ν=0

U1, j,ν(q)qν
1 , (14)

are formal power series in q1 with coefficients analytic in q .
ii) Case α = e j , (2 ≤ j ≤ n). We have

φ(e j ) = p jq
2
j (1 +U2, j ) +U0, j + q2σ1 p1U1, j , j = 2, . . . , n, (15)

where U0, j , U1, j and U2, j are formal power series in q1 with coefficients analytic in q .
Here the formal power seriesU0, j andU1, j may not coincide with the power series in i),
respectively.

iii) Case α = −e j , (2 ≤ j ≤ n). We have

φ(−e j ) = p j (1 +U2, j ) +U0, j + q2σ1 p1U1, j , j = 2, . . . , n, (16)

where U0, j , U1, j and U2, j are formal power series in q1 with coefficients analytic in q .
HereU0, j ,U1, j andU2, j may not coincide with the power series in ii), respectively. And
U0, j and U1, j may not coincide with the ones in i), respectively.

Definition 1 We say that v in Eq. 11 is the formal first integral of χH if the following
conditions are satisfied.

(i) χHv = 0 as a formal power series.

(ii) If α = 0, then φ(0) ≡ φ
(0)
j , ( j = 2, . . . , n) satisfies Eqs. 12, 13 and 14 with U0, j,ν(q)’s

andU1, j,ν(q)’s analytic in some neighborhood of the origin q = 0 independent of ν and
j . If α = e j (resp. α = −e j ), ( j = 2, . . . , n), then φ(α) has the form Eq. 15 (resp. Eq.
16), with U0, j ’s, U1, j ’s and U2, j ’s satisfying the same conditions as the case α = 0.
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We say that the formal series U0, j in Eq. 13 is Gevrey of order s (in short, s- Gevrey),
for some s ≥ 0, if there exist a neighborhood of the origin q = 0, Ω0 and constants C > 0,
K > 0 for which

sup
q∈Ω0

|U0, j,ν(q)| ≤ CK ν�(1 + sν),

hold for all ν ≥ 0, where � denotes the Gamma function. If bothU0, j andU1, j are s-Gevrey,

then we say that φ(0)
j is s-Gevrey. We say that φ(e j ) ( resp. φ(−e j )) is s-Gevrey if U0, j , U1, j

and U2, j are s-Gevrey.

Then we have

Theorem 2 Assume Eqs. 5, 6 and 7. Then χH has the formal first integrals, φ
(0)
j , φ(e j )Ee j

and φ(−e j )E−e j , ( j = 2, . . . , n), which are (2σ − 1)- Gevrey. If α = 0, then we have
U0, j = O(|q|2) and U1, j = O(|q|2) as q → 0 . If α = e j , then we have U0, j = O(|q|3),
U1, j = O(|q|3) and U2, j = O(|q|2) as q → 0. If α = −e j , then we have U0, j = O(|q|2),
U1, j = O(|q|2) and U2, j = O(|q|) as q → 0.

Consider the systemof formal first integrals v
(α)
j = v

(α)
j,0E

α+ ˜
v

(α)
j Eα , H (α = 0,−e j ; j =

2, . . . , n − 1) with v
(α)
j,0 being analytic and independent of q1 and

˜
v

(α)
j = O(q1). We say that

the system of functions H , v(α)
j (α = 0,−e j ; j = 2, . . . , n − 1) is functionally independent

if the Jacobian of the functions v
(α)
j,0E

α (α = 0,−e j ; j = 2, . . . , n − 1), H |q1=0 does not
vanish.

In order to prove Theorem 2 we introduce some notation. By definition we have, for
L := {H0, ·} and R := {H1, ·},

L = q2σ1
∂

∂q1
− 2σq2σ−1

1 p1
∂

∂ p1
+

n∑

j=2

λ j

(
q j

∂

∂q j
− p j

∂

∂ p j

)
, (17)

R =
n∑

j=2

(
−2q j B j

∂

∂ p j
+ q2j (∂p1Bj )

∂

∂q1
− q2j (∂q1Bj )

∂

∂ p1
− q2j∇q B j · ∂

∂ p

)
. (18)

By using the formula

∂p1Bj = Bj,1q
2σ
1 , q2σ1 (∂/∂q1)E

α = −(

n∑

j=2

λ jα j )E
α = −〈λ, α〉Eα,

we have

L(φ(α)Eα) = Eα

(
q2σ1

∂

∂q1
− 2σq2σ−1

1 p1
∂

∂ p1
(19)

+
n∑

j=2

λ j

(
q j

∂

∂q j
− p j

∂

∂ p j
− α j

)⎞

⎠φ(α),

and

R(φ(α)Eα) = Eα

⎛

⎝−〈λ, α〉
n∑

j=2

q2j B j,1 + R

⎞

⎠ φ(α). (20)
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It follows that if v = Eαφ(α) is the first integral of χH , then φ(α) satisfies
⎛

⎝q2σ1
∂

∂q1
− 2σq2σ−1

1 p1
∂

∂ p1
+

n∑

j=2

λ j

(
q j

∂

∂q j
− p j

∂

∂ p j
− α j

)⎞

⎠ φ(α)

+
⎛

⎝−
n∑

j=2

〈λ, α〉q2j B j,1 + R

⎞

⎠ φ(α) = 0. (21)

Let α = 0. We look for the equations which U0, j and U1, j in Eq. 12 satisfy. Substitute
Eqs. 12 and 5 into Eq. 21. For the sake of simplicity, we setU0 := U0, j andU1 := U1, j . We
consider the terms which appear from p jq j in φ(α). The nonvanishing terms appearing from
R(p jq j ) are given by

−2q2j B j −
n∑

ν=2

q2ν (∂q j Bν)q j = −2q2j (Bj,0+q2σ1 p1Bj,1)−
n∑

ν=2

q2νq j∂q j (Bν,0+q2σ1 p1Bν,1).

(22)
Consider the terms which contain p1. The terms containing p1 which appear from the dif-
ferentiation L in Eq. 21 are given by

q2σ1 p1

(
q2σ1

∂U1

∂q1
+ 2σq2σ−1

1 U1 − 2σq2σ−1
1 U1 +

n∑

ν=2

λνqν

∂U1

∂qν

)
. (23)

Next, the terms containing p1 that appear from R are given by the second and the third terms
of R:

− q2σ1 p1

(
n∑

ν=2

q2νq
2σ
1 (∂q1Bν,1)U1 +

n∑

ν=2

q2ν2σq
2σ−1
1 Bν,1U1

)

+ q2σ1 p1

(
n∑

ν=2

q2ν2σq
2σ−1
1 Bν,1U1 +

∑

ν

q2ν Bν,1q
2σ
1

∂U1

∂q1

)

= q2σ1 p1

(
−

n∑

ν=2

q2νq
2σ
1 (∂q1Bν,1)U1 +

∑

ν

q2ν Bν,1q
2σ
1

∂U1

∂q1

)
. (24)

These expressions give the terms which contain p1.
Next, we calculate the terms which do not contain p1 in Eq. 21 in a similar way. By

substituting Eq. 12 and 5 into Eq. 21 we have

q2σ1 p1

(
q2σ1

∂U1

∂q1
+

n∑

ν=2

λνqν

∂U1

∂qν

−
n∑

ν=2

q2νq
2σ
1 (∂q1Bν,1)U1

+
∑

ν

q2ν Bν,1q
2σ
1

∂U1

∂q1
− 2q2j B j,1 −

∑

ν

q2νq j∂q j Bν,1

)

+ q2σ1
∂U0

∂q1
+

n∑

ν=2

λνqν

∂U0

∂qν

−
∑

ν

q2ν (∂q1Bν,0)q
2σ
1 U1

+
∑

ν

q2νq
2σ
1 Bν,1

∂U0

∂q1
− 2q2j B j,0 −

∑

ν

q2ν (q j∂q j Bν,0) = 0. (25)
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Hence we have

q2σ1
∂U1

∂q1
+

n∑

ν=2

λνqν

∂U1

∂qν

−
n∑

ν=2

q2νq
2σ
1 (∂q1Bν,1)U1

+
∑

ν

q2ν Bν,1q
2σ
1

∂U1

∂q1
− 2q2j B j,1 −

∑

ν

q2νq j∂q j Bν,1 = 0. (26)

q2σ1
∂U0

∂q1
+

n∑

ν=2

λνqν

∂U0

∂qν

+
∑

ν

q2νq
2σ
1 Bν,1

∂U0

∂q1

− 2q2j B j,0 −
∑

ν

q2ν (q j∂q j Bν,0) −
∑

ν

q2ν (∂q1Bν,0)q
2σ
1 U1 = 0. (27)

We next consider the case α = −e j . The calculation is the same as for the case α = 0. Set
U0 := U0, j , U1 := U1, j and U2 := U2, j . Then we have

q2σ1
∂U2

∂q1
+

n∑

ν=2

λνqν

∂U2

∂qν

+ λ j q
2
j B j,1U2

+
∑

ν

q2ν Bν,1q
2σ
1

∂U2

∂q1
+ λ j q

2
j B j,1 = 0. (28)

q2σ1
∂U1

∂q1
+

n∑

ν=2

λνqν

∂U1

∂qν

+ λ jU1 −
n∑

ν=2

q2νq
2σ
1 (∂q1Bν,1)U1 + λ j q

2
j B j,1U1

− 2q j B j,1U2 − q2j (∂q j B j,1)U2 −
∑

ν

q2νq
2
j (∂q j Bν,1) − 2q2j B j,1 = 0. (29)

q2σ1
∂U0

∂q1
+

n∑

ν=2

λνqν

∂U0

∂qν

+ λ jU0 +
n∑

ν=2

q2νq
2σ
1 Bν,1

∂U0

∂q1
+ λ j q

2
j B j,1U0

−
n∑

ν=2

q2νq
2σ
1 (∂q1Bν,0)U1 − 2q j B j,0U2

−
n∑

ν=2

q2ν (∂q j Bν,0)U2 −
n∑

ν=2

q2νq j (∂q j Bν,0) − 2q2j B j,0 = 0. (30)

Nextwe consider the caseα = e j . SetU0 := U0, j ,U1 := U1, j andU2 := U2, j . Thenwe have

q2σ1
∂U2

∂q1
+

n∑

ν=2

λνqν

∂U2

∂qν

− λ j q
2
j B j,1U2 − λ j q

2
j B j,1 +

n∑

ν=2

q2νq
2σ
1 Bν,1

∂U2

∂q1
= 0. (31)

q2σ1
∂U1

∂q1
+

n∑

ν=2

λνqν

∂U1

∂qν

− λ jU1 +
n∑

ν=2

q2νq
2σ
1 Bν,1

∂U1

∂q1
− λ j q

2
j B j,1U1

−
n∑

ν=2

q2νq
2σ
1 (∂q1Bν,1)U1 − 2q3j B j,1U2

−
n∑

ν=2

q2νq
2
j (∂q j Bν,1)U2 −

n∑

ν=2

q2νq
2
j (∂q j Bν,1) − 2q3j B j,1 = 0. (32)
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q2σ1
∂U0

∂q1
+

n∑

ν=2

λνqν

∂U0

∂qν

− λ jU0 +
n∑

ν=2

q2νq
2σ
1 Bν,1

∂U0

∂q1
− λ j q

2
j B j,1U0

− 2q3j B j,0U2 −
n∑

ν=2

q2νq
2σ
1 (∂q1Bν,0)U1

−
n∑

ν=2

q2νq
2
j (∂q j Bν,0)U2 −

n∑

ν=2

q2νq
2
j (∂q j Bν,0) − 2q3j B j,0 = 0. (33)

In order to prove Theorem 2 we prepare a lemma. Let R j > 0 ( j = 2, . . . , n) be given.
Define V0 := ∏n

j=2{z j | |z j | < R j }. Let O(V0) be the set of holomorphic functions in V0
continuous up to the boundary. Define M0(q) := ∏n

j=2(R j − |q j |). For f ∈ O(V0) we
define the norm ‖ f ‖ and the weighted norm ‖| f |‖ by ‖ f ‖ := supq∈V0 | f (q)| and ‖| f |‖ :=
supq∈V0 | f (q)M0(q)|, respectively. Equipped with the norm ‖| · |‖, the space O(V0) is a
Banach space.

Let λ := (λ2, . . . , λn) and α = (α2, . . . , αn). We consider the equation

Lu ≡
(

n∑

ν=2

λνqν

∂

∂qν

− λ · α

)
u = f ∈ O(V0), f = O(|q|). (34)

Then we have

Lemma 1 Let α = 0,±e j , j = 2, . . . , n. Assume Eqs. 6 and 7. Then there exists a constant
K > 0 such that, for every f ∈ O(V0) with f = O(|q|) there exist a unique holomorphic
solution u of Eq. 34 in O(V0) such that ‖|u|‖ ≤ K‖ f ‖.

Proof Expand f (q) = ∑
η 	=0 fηqη. Then the unique analytic solution of Eq. 34 is given by

u(q) = ∑
η 	=0 fηqη(λ·(η−α))−1. Take 0 < R′

j < R j for j = 2, . . . , n. Let |q j | < R′
j < R j .

By Cauchy’s theorem we have

u(q) =
∑

η 	=0

qη(λ · (η − α))−1(2π i)−n+1
∫

|z j |=R′
j

f (z)

zη+e
dz, (35)

where e = (1, . . . , 1). By Eqs. 6 and 7 there exists K1 > 0 independent of η such that
|λ · (η − α)|−1 ≤ K1 for all η. Hence |u(q)| is estimated by

K1(2π)−n+1‖ f ‖
∑

η 	=0

∏

j

(
(|q j |/R′

j )
η j 2π

)

≤ K1‖ f ‖
∏

j

1

1 − |q j |/R′
j

≤ K1‖ f ‖
∏

j

R′
j

R′
j − |q j | ≤ K1‖ f ‖(

∏

j

R j )
∏

j

1

R′
j − |q j | . (36)

We let R′
j with R′

j < R j tend to R j . Then |u(q)|M0(q) is estimated by K1‖ f ‖(∏ j R j ).
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3.2 Proof of Theorem 2

Proof (Proof of Theorem 2) Let κ = 2σ − 1. We show that φ(α) with α = 0 is a formal first
integral having the κ−1-Gevrey estimate. Consider

∑
ν qν∂qνu = g. By Lemma 1 we have

‖u‖ ≤ ‖M−1
0 M0u‖ ≤ C2‖|u|‖ ≤ C2K‖g‖,

where C2 = supq |M0(q)−1|.
Consider Eq. 12. For simplicity we denote U0, j and U1, j by U0 and U1, respectively.

Determine U1 by Eq. 26 and define

f (q1, q) := −2q2j B j,1 −
∑

ν

q2νq j∂q j Bν,1.

Expand the functions f (q1, q), U1, q2σ1
∑

q2ν (∂q1Bν,1) and q2σ−1
1

∑
q2ν Bν,1 in the power

series of q1

f (q1, q) =
∞∑


=0

f
(q)q

1, U1 =

∑




u
(q)q

1, (37)

q2σ1

n∑

ν=2

q2ν (∂q1Bν,1) =
∑


≥2σ

a
(q)q

1, (38)

q2σ−1
1

n∑

ν=2

q2ν Bν,1 =
∑


≥2σ−1

b
(q)q

1 . (39)

By substituting the expansions Eqs. 37, 38, 39 into 26 and by comparing the power of q

1 we

have

(
 − κ)u
−κ +
n∑

ν=2

λνqν

∂u


∂qν

+
∑

m+k=
,m≥2σ

amuk +
∑

m+k=
,m≥κ

kbmuk = f
. (40)

Hence, we can easily show that U1 has the κ−1-Gevrey estimate. We can similarly show
that U0 has the κ−1-Gevrey estimate. Hence φ(α) with α = 0 is a formal first integral with
the κ−1-Gevrey estimate. We can similarly show that φ(α)’s with α = ±e j ( j = 2, . . . , n)

have the same property.

4 Proof of Theorem 1

4.1 Preparatory Lemma

Define
C := {

z ∈ C| Re (λ j z
2σ−1) > 0 j = 2, . . . , n

}
. (41)

Let φ
(0)
j and φ(−e j )E−e j ( j = 2, . . . , n) be the formal first integrals given by Theorem 2

with q1 = z.
Let C j , C̃ j and C0 be constants. For z ∈ C, we solve the system of equations for q , p, p1

φ
(0)
j = C j , φ(−e j )E−e j = C̃ j , H = C0, j = 2, . . . , n, (42)
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where H = H0 + H1 is given by

H = z2σ p1 +
n∑

j=2

λ j q j p j +
n∑

j=2

q2j B j (z, z
2σ p1, q). (43)

Here the unknown quantities are

q = q(z, T ), p = p(z, T ), p1 = p1(z, T ), (44)

where

q =
∞∑

n=0

cnz
n, cn = cn(T

−1), T = (Tj ) j , Tj = C̃ j E
e j , (45)

is a formal series in z with cn(T−1) convergent in T in some neighborhood of T = ∞. The
Taylor series of p has the same form as q . (cf. Eq. 54 which follows). Concerning p1 we
have

p1z
2σ =

∞∑

n=0

ρnz
n, ρn = ρn(T

−1), (46)

with ρn(T−1) convergent in T in some neighborhood of T = ∞. By Eqs. 12 and 16 we have

p jq j + Ã j (z, z
2σ p1, q) = C j , j = 2, . . . , n, (47)

p j (1 + Dj (z, q)) + D̃ j (z, z
2σ p1, q) = Tj , j = 2, . . . , n, (48)

H = C0. (49)

Then we have

Lemma 2 Assume Eq. 6. Then Eqs. 47, 48 and 49 has the formal solution (q, p, p1) for z ∈ C
given by Eqs. 44, 45 and 46.

Proof Weprove the proposition in two steps.ByTheorem2wehave Ã j = Ã j (z, z2σ p1, q) =
O(|q|2), D̃ j = D̃ j (z, z2σ p1, q) = O(|q|) and Dj (z, q) = O(|q|2). Moreover, Ã j and D̃ j

are the polynomials of p1z2σ of degree 1 whose coefficients are independent of p.

Step 1. Since Eλ(z) = exp( λz−2σ+1

2σ−1 ) and

Re (λz−2σ+1) = Re (λz−2σ+1) = Re (λz2σ−1/|z|2(2σ−1)),

we see that z ∈ C if and only if Re (λ j z−2σ+1) > 0 for j = 2, . . . , n. Hence, we have
T → ∞ when z → 0 in z ∈ C. Set

Dj =
∑

k

qk D j,0,k(q) + z D̃ j,1(z, q), (50)

where Dj,0,k(q) is analytic at q = 0 and where D̃ j,1(z, q) is a formal power series in z with
coefficients analytic in q . Then (1 + z D̃ j,1)

−1 exists as a formal power series.
By Eq. 48 we have

p j

∑

k

qk D j,0,k(q) + p j (1 + z D̃ j,1) + D̃ j = Tj . (51)

Since (1 + z D̃ j,1)
−1 exists as a formal power series, we have

p j

∑

k

qk D j,0,k(q)(1 + z D̃ j,1)
−1 + p j = Tj (1 + z D̃ j,1)

−1 − D̃ j (1 + z D̃ j,1)
−1. (52)
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We decompose
p j

∑

k

qk D j,0,k(q)(1 + z D̃ j,1)
−1 = E j,0 + E j,1, (53)

where E j,0 either vanishes identically or is unbounded when Tj → ∞ and E j,1 = O(1)
when Tj → ∞. Indeed, by Eqs. 45 and 46 we have q j = O(1) and z2σ p1 = O(1). Hence
p jq j = O(1) by Eq. 47. By Eq. 48 we have p j → ∞. It follows that q j → 0. Hence we
have Eq. 53. Define

p j = p̃ j + T̃ j , T̃ j := Tj (1 + z D̃ j,1)
−1 − E j,0. (54)

Then Eq. 52 is written in

p̃ j = −E j,1 − D̃ j (1 + z D̃ j,1)
−1 =: Fj,0. (55)

Next, let Ã j (z, z2σ p1, q) = Ã j,0(z, q) + z2σ p1 Ã j,1(z, q). Substitute Eqs. 47 into 49.
Then we have

C0 −
∑

λνCν +
∑

λν Ãν,0(z, q) + z2σ p1
∑

λν Ãν,1(z, q)

= z2σ p1 +
∑

ν

q2ν (Bν,0 + z2σ p1Bν,1). (56)

Hence we have

z2σ p1(1 +
∑

q2ν Bν,1 −
∑

λν Ãν,1) =
∑

λν Ãν,0 −
∑

q2ν Bν,0 + C0 −
∑

λνCν . (57)

If c0 = q(0) is sufficiently small, then (1+∑
q2ν B1−∑

λν Ãν,1)
−1 exists as a formal series.

Hence we have

z2σ p1 =
(∑

λν Ãν,0 −
∑

q2ν Bν,0 + C0 −
∑

λνCν

) (
1 +

∑
q2ν B1 −

∑
λν Ãν,1

)−1
. (58)

The right-hand side of Eq. 58 is a formal power series in z whose coefficients are analytic
in q at q = 0. Note that, if q is a formal power series in z with a sufficiently small constant
term c0, then the right-hand side of Eq. 58 is a formal power series in z as well. We also note
that, by substituting z2σ p1 in Fj,0, Eq. 55, Fj,0 is a formal power series in z with coefficients
analytic in q . If q is a formal power series in z whose constant term c0 is sufficiently small,
then Fj,0 is also a formal power series in z.

We look for the equation of q . By Eq. 55 we have p j = T̃ j + p̃ j = T̃ j + Fj,0(z, q).
(T̃ j + Fj,0)

−1 exists as a formal series in z with coefficients analytic in q at q = 0. By Eq.
47 we have

q j = (T̃ j + Fj,0)
−1C j − (T̃ j + Fj,0)

−1 Ã j (z, z
2 p1, q) =: G j . (59)

Substitute z2 p1 in Eq. 58 into G j . Then G j is a formal power series in z whose coefficients
are analytic in q and ξ = (ξ j ) j , ξ j := T−1

j at q = 0 and ξ = 0, respectively. Indeed, by the

form of G j in Eq. 59 we consider (T̃ j + Fj,0)
−1. Since z D̃ j,1 = zO(|q|2) is small, we have

1 + z D̃ j,1 	= 0. Hence we have

(T̃ j + Fj,0)
−1 = T−1

j

(
(1 + z D̃ j,1)

−1 − T−1
j E j,0 + T−1

j Fj,0

)−1
(60)

= ξ j

(
(1 + z D̃ j,1)

−1 − ξ j E j,0 + ξ j Fj,0

)−1
.
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The right-hand side of Eq. 60 is holomorphic in ξ j in some neighborhood of ξ j = 0. On the
other hand, the second term of G j , −(T̃ j + Fj,0)

−1 Ã j (z, z2σ p1, q) is holomorphic in ξ j .
Hence G j is holomorphic in ξ j at ξ j = 0. Similarly, we see that G j is holomorphic in q at
q = 0.

Note that, if we substitute q with a formal power series in z whose constant term c0 is
sufficiently small, then G j is a formal power series in z. Therefore we consider

q j = G j (z, q, ξ), j = 2, . . . , n. (61)

Step 2. Let q j = ∑∞
n=0 c j,nz

n , c j,n = c j,n(ξ) be the Taylor series of q j . Compare the
constant term of both sides of Eq. 61. We have

c j,0 = G j (0, c0, ξ). (62)

In order to estimate G j (0, c0, ξ) by Eq. 59 we consider Fj,0. By Eqs. 55, 43 and 58 and
Dj,0(q2) = O(1) we see that Fj,0 = O(1). On the other hand, the constant part of Ã j is
O(c20). The second term of G j (0, c0, ξ) in the expression Eq. 59 is O(c20ξ). Hence, by Eq.
59 we have G j (0, c0, ξ) = O(ξ) + O(c20ξ). By the implicit function theorem there exists a
solution c0 being arbitrarily small if Tj is sufficiently large.

Suppose that the coefficient cν(ξ)’s are determined for ν = 0, . . . , n − 1. Then the
coefficient of cn(ξ) of the Taylor series of q is determined by the relation

cn = (G j )q2(0, c0, ξ)cn + R̃ j , (63)

where R̃ j is the function of cν with ν ≤ n − 1. Since (G j )q2(0, c0, ξ) is arbitrarily small
if c0 and ξ are sufficiently small, we determine cn if c0 is sufficiently small. The κ- Gevrey
estimate of q is shown by differentiating Eq. 61 and by recalling that G j is κ- Gevrey series
with respect to z. This ends the proof.

Remark 1 In Eq. 62 the value c0, j depends on T . We can verify that c0, j Tj does not vanish
for some j as Tj tends to infinity.

4.2 Construction of Formal Transseries Solution

Let z satisfy ż = z2σ . Namely

t = − z1−2σ

2σ − 1
. (64)

Let q ≡ q(z), p1 ≡ p1(z) and p ≡ p(z) be the formal series given by Lemma 2. From Eq.
64 one can deduce the transseries representations of q = q(z), p1 = p1(z) and p = p(z) in
the t-variable, by changing the variable in a transseries given by Lemma 2. The exponential
part is given by eλkt for k ≥ −1. For the sake of simplicity, we write the transseries with the
same letter q ≡ q(t), p1 ≡ p1(t) and p ≡ p(t). Then we have

Theorem 3 Suppose that Eqs. 5, 6 and 7 are satisfied. Then there exists a neighborhood of
t = ∞, Ω1 such that there exists a formal transseries solution q1(t) of q̇1 = Hp1 at every
point of {t |Re(λ j t) < 0, j = 2, . . . , n} ∩ Ω1 for which (q1(t), q(t), p1(t), p(t)) is the
formal transseries solution of Eq. 1.

Theorem 1 follows from Theorem 3. Set λ = (λ2, . . . , λn) and
Re λ = (Re λ2, . . . , Re λn). Then we have
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Lemma 3 Assume Eq. 6. Then there exists a real number θ such that

Re (eiθλ j ) > 0, j = 2, . . . , n, (65)

and, for every pair α, β ∈ Z
n−1+ \ 0 we have α 	= β if and only if

α · Re (eiθλ) 	= β · Re (eiθλ). (66)

Moreover, α · Re (eiθλ) does not accumulate on a finite value when |α| → ∞, α ∈ Z
n−1+ \ 0.

Proof The last statement follows from Eq. 65 easily. We prove Eq. 66. Set m = α − β and
consider m · Re (eiθλ) 	= 0, namely Re (eiθm · λ) 	= 0. The last condition is equivalent
to θ 	= − arg(m · λ) ± π/2 for m ∈ Z

n−1 \ 0 and m 	= 0. The condition holds for some
sufficiently small real number θ .

Multiplying the equation with eiθ , if necessary, we assume that Eq. 66 with θ = 0 holds in
the following.

Proof (Proof of Theorem 3) The proof is done in four steps.
Step 1. By definition we have

Hp1 = q2σ1 + q2σ1

n∑

ν=2

q2ν Bν,1(q1, q). (67)

We construct the solution q1 of q̇1 = Hp1 in the form

q1 =
∑

m≥0,n≥0

am,nt
−n/(2σ−1)eλmt =

∑

m≥0

Am(t)eλmt . (68)

We note
d

dt

(
Am(t)eλmt ) = eλmt

(
d

dt
Am + λmAm

)
. (69)

Insert Eq. 68 into q̇1 = Hp1 and compare the terms withm = 0. Note also that the expansion
of q does not contain the terms with m = 0. Hence we have

d

dt
A0 = A2σ

0 . (70)

By Eq. 70 we have
A0 = (1 − 2σ)−1/(2σ−1)t−1/(2σ−1). (71)

By Lemma 3 we line up all multiindicesm ∈ Z
n−1+ \ 0 in the ascending seriesm1,m2, . . .

such that 0 < m j · Reλ < m j+1 · Reλ ( j = 1, 2, . . .). Next we determine A1 for m = m1.
By considering the terms of the order O(eλm1t ) in q̇1 = Hp1 we obtain

d

dt
A1 + λ · m1A1 = 2σ A2σ−1

0 A1 = 2σ

(1 − 2σ)t
A1. (72)

First we see that the constant term of A1 vanishes. Then, by the inductive arguments we see
that A1 vanishes.

Next we consider A2 for m = m2. We compare the terms of order eλm2t of both sides of
q̇1 = Hp1 . The term of order eλm2t in q̇1 − q2σ1 is given by

d

dt
A2 + λ · m2A2 − 2σ A2σ−1

0 A2 = d

dt
A2 + λ · m2A2 − 2σ

(1 − 2σ)t
A2. (73)
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We write q j = ∑∞
m=1 α j,m(t)eλmt . Since q j = O(eλ j t ) and

A2σ
0 = (1 − 2σ)−1− 1

2σ−1 t−1− 1
2σ−1 ,

the terms of order eλm2t appearing from q2σ1
∑

ν q
2
ν Bν,1(q1, q) are written as

A2σ
0 F2(t) = (1 − 2σ)−1−1/(2σ−1)t−1−1/(2σ−1)F2(t), (74)

with F2(t) being determined by A0(t) and has the nonpositive power of t . Note that A2 does
not appear in Eq. 74. By Eqs. 73 and 74 A2 satisfies

d

dt
A2 + λ · m2A2 − 2σ

(1 − 2σ)t
A2 = (1 − 2σ)−1−1/(2σ−1)t−1−1/(2σ−1)F2(t). (75)

One can determine A2 from Eq. 75 by the same argument as the case of A1. One also sees
that A2 = O(t−1−1/(2σ−1)).

The general casemν can be shown by the same argument. The term containing Aν is given
by

d Aν

dt
+ mν · λAν + 2σ

2σ − 1

Aν

t
. (76)

On the other hand, by substituting the expansion of q1 into q2σ1 there appears the polynomial
of A0, . . . , Aν−1 in the inhomogeneous term. These terms are O(t−1−1/(2σ−1)). Similarly,
the polynomial of A0, . . . , Aν−1 appears from Hp1 − q2σ1 since the term q2ν exists. By the
definition of H these terms are O(t−1−1/(2σ−1)). By constructing the formal series of the
negative power of t inductively like in the case A2, we can determine the formal expansion
of Aν inductively. We easily see that Aν = O(t−1−1/(2σ−1)) for ν ≥ 0.

Step 2. Let q = q(t), p1 = p1(t) and p = p(t) be the formal solution of Eqs. 47, 48 and
49, where we use Eq. 64. Let q1 = q1(t) be the solution of q̇1 = Hp1 given in Step 1. Let

φ
(0)
j and φ(−e j )E (−e j ) ( j = 2, . . . , n) be the formal first integral given by Theorem 2.
We shall verify that the substitution of the transseries q1(t), q(t), p1(t) and p(t) into the

formal first integral is well defined. Since the first integral is the linear function of p1 and p,
the assertion is trivial. Next, consider the formal expansions of q1 and q = ∑∞

n=0 q
n
1 an(q).

We recall that an(q)’s are analytic in some neighborhood of the origin q = 0 independent of
n. Let

q = q(0) +
∞∑

ν=0

bmν (t)E
−mν

λ ≡ q(0) + q̃, (77)

where m0 = 0 and b0(t) does not contain the constant term and consists of negative powers
of t . On the other hand, bmν (t) consists of nonnegative powers of t . Note also that the constant
term q(0) can be taken sufficiently small. By Step 1, q1(t) also has an expansion like Eq. 77
without a constant term.

Since an(q) is analytic in some neighborhood of the origin independent of n and q̃(t) does
not have a constant term, an(q(0) + q̃) is well defined and is analytic at q̃ = 0. Similarly,
by noting that q1(t) does not have a constant term, the substitution q1 = q1(t), q = q(t) in∑∞

n=0 q
n
1 an(q) is also well defined.

Step 3. Substitute z = q1(t) in Eq. 49 and differentiate it with respect to t . Then we have

q̇1Hq1 + q̇ Hq + ṗ1Hp1 + ṗHp = 0. (78)

Substitute the formal series q1 = q1(t), q = q(t), p1 = p1(t) and p = p(t) into Eq. 78.
Since H is the first integral of the Hamiltonian vector field we get the trivial relation

Hp1Hq1 + HpHq − Hq1Hp1 − HqHp = 0. (79)
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By subtracting Eqs. 79 from 78 and by using q̇1 = Hp1 we obtain

(q̇ − Hp)Hq + ( ṗ1 + Hq1)Hp1 + ( ṗ + Hq)Hp = 0. (80)

Let G( j) and G̃( j)E−e j ( j = 2, . . . , n) be the formal first integrals given by Theorem 2;
G( j) = φ

(0)
j , G̃( j) = φ(−e j ) ( j = 2, . . . , n), respectively. By applying the same argument to

G( j) we have

q̇1(G
( j))q1 + q̇(G( j))q + ṗ1(G

( j))p1 + ṗ(G( j))p = 0, j = 2, . . . , n. (81)

On the other hand, since G( j) is the first integral of the Hamiltonian vector field of H we
have

Hp1(G
( j))q1 + Hp(G

( j))q − Hq1(G
( j))p1 − Hq(G

( j))p = 0, j = 2, . . . , n. (82)

By subtracting Eqs. 82 from 54 and by using q̇1 = Hp1 we have

(q̇ − Hp)(G
( j))q + ( ṗ1 + Hq1)(G

( j))p1 + ( ṗ + Hq)(G
( j))p = 0, (83)

where j = 2, . . . , n. Similarly, we have

(q̇ − Hp)(G̃
( j))q + ( ṗ1 + Hq1)(G̃

( j))p1 + ( ṗ + Hq)(G̃
( j))p = 0, (84)

where j = 2, . . . , n.
Step 4. We prove

ṗ1 + Hq1 = 0, ṗ + Hq = 0, q̇ − Hp = 0, (85)

where the equalities are understood in the sense of transseries. By definition we expand

ṗ1 + Hq1 =
∞∑

k=0

( ṗ1 + Hq1)k(t)e
λmkt , (86)

q̇ − Hp =
∞∑

k=1

(q̇ − Hp)k(t)e
λmkt , (87)

ṗ j + Hqj =
∞∑

k=0

( ṗ j + Hqj )k(t)e
(−λ j+λmk )t , j = 2, . . . , n, (88)

where m0 = 0 and ( ṗ1 + Hq1)k(t) denotes the coefficients of eλmkt in the expansion of
ṗ1 + Hq1 . The expansion Eqs. 87 follows from 59. The relation Eqs. 88 follows from 53 and
54.

We show

( ṗ1 + Hq1)k(t) = 0, k = 0, 1, 2, . . . , (89)

( ṗ j + Hqj )k(t) = 0, k = 0, 1, 2, . . . , j = 2, . . . , n, (90)

(q̇ − Hp)k(t) = 0, k = 1, 2, . . . (91)

Clearly, Eqs. 89, 90 and 91 imply 85.
Let G( j) and G̃( j)E−e j be the formal first integrals given in Step 3. Then, by the result of

Step 3 we have Eqs. 80, 83 and 84. On the other hand, we have, by definition,

G( j) = q j p j +U0, j + q2σ1 p1U1, j , j = 2, . . . , n, (92)

G̃( j) = p j (1 + Ũ2, j ) + Ũ0, j + q2σ1 p1Ũ1, j , j = 2, . . . , n. (93)
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By Eqs. 3, 92 and 93 we have

(Hq , Hp1 , Hp) =
(

λ2 p2 + ∂q2(
∑

ν

q2ν Bν), . . . , λn pn + ∂qn (
∑

ν

q2ν Bν), (94)

q2σ1 + q2σ1
∑

ν

Bν,1q
2
ν , λ2q2, . . . , λnqn

)
,

((G( j))q , (G
( j))p1 , (G

( j))p) =
(
∂q(q j p j + Ũ0, j ) + q2σ1 p1∂qŨ1, j , q

2σ
1 Ũ1, j , ∂p(q j p j )

)
,

(95)

((G̃( j))q , (G̃
( j))p1 , (G̃

( j))p) (96)

=
(
p j∂qŨ2, j + ∂qŨ0, j + q2σ1 p1∂qŨ1, j , q

2σ
1 Ũ1, j , ∂p(p j (1 + Ũ2, j ))

)
,

where j = 2, . . . , n. By Theorem 2 we have

U0, j = O(|q|2), U1, j = O(|q|2), Ũ0, j = O(|q|2),
Ũ1, j = O(|q|2), Ũ2, j = O(|q|). (97)

We compare the terms with the order O(e−λ j t ) of both sides of Eq. 84. By the proof of
Theorem 2 we have

q j = O(eλ j t ), p j = O(e−λ j t ), p1 = O(1), Re (λ j t) → −∞. (98)

We have

(G̃( j))q(q̇ − Hp) = O(1), (G̃( j))p1( ṗ1 + Hq1) = O(1),

(G̃( j))p j ( ṗ j + Hqj ) = O(e−λ j t ).

Thus the term with the order e−λ j t of both sides of Eq. 84 is given by ( ṗ j +Hqj )0. Therefore
we have ( ṗ j + Hqj )0 = 0 for j = 2, . . . , n.

Next, compare terms with the order O(1) of both sides of Eq. 83. We have (G( j))q(q̇ −
Hp) = O(1) and the term (q̇ j − Hpj )
(p j )0 appears for some 
 ≥ 1 with λm
 = λ j .
The second term has the order (G( j))p1( ṗ1 + Hq1) = o(1). The third term has the order
(G( j))p( ṗ+Hq) = O(1) and the term ( ṗ j +Hqj )0(q j )ν appears for some ν, which vanishes
by induction. Hence, we obtain (q̇ j − Hpj )
(p j )0 = 0. Since (p j )0 	= 0 by Theorem 2 we
have (q̇ j − Hpj )
 = 0 for j = 2, . . . , n. We note that 
 satisfies λm
 = λ j and there appears
no lower order term than eλ j t in q̇ j − Hpj by definition.

Next we compare terms with the order O(1) of both sides of Eq. 80. The term
(q̇ j − Hpj )
(p j )0 appears from (q̇ − Hp)Hq . It vanishes by induction. Next the term
( ṗ1 + Hq1)0(q

2σ
1 )0 appears from ( ṗ1 + Hq1)Hp1 .On the other hand, the term ( ṗ j +

Hqj )0(q j )ν appears from ( ṗ + Hq)Hp , which vanishes by induction. Hence we obtain
( ṗ1 + Hq1)0(q

2σ
1 )0 = 0. Since (q2σ1 )0 	= 0 by Step 1 we have ( ṗ1 + Hq1)0 = 0.

We proceed in the same way. Namely, we compare the terms with the order O(1) of both
sides of Eq. 84. Then we obtain ( ṗ j + Hqj )1 = 0 for j = 2, . . . , n. Next we compare
terms with the order O(eλm1t ) of both sides of Eq. 83. Then we obtain (q̇ − Hp)2 = 0 and
so on. Next we consider terms with the order O(eλm1t ) of both sides of Eq. 80. We have
( ṗ1 + Hq1)1 = 0. By induction we have Eqs. 89, 90 and 91.
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4.3 Analytic Solution of Eq. 1

By the method of the proof of Theorem 3 we have the analogue of Theorem 3 in the analytic
or in the class of formal series. Given analytic first integrals of Eq. 1, G( j), G̃( j) ( j =
2, . . . , n). We say that H , G( j)’s and G̃( j)’s are functionally independent if the vectors
(Hq1 , Hq , Hp1 , Hp), (G( j)

q1 ,G( j)
q ,G( j)

p1 ,G( j)
p ), (G̃( j)

q1 , G̃( j)
q , G̃( j)

p1 , G̃( j)
p ) ( j = 2, . . . , n) are

linearly independent in some domain, where Hq1 = ∂H/∂q1, Hq = ∇q H and so on. Here
∇q denotes the nabla with respect to q . Then we have

Theorem 4 Suppose that H, G( j) and G̃( j) ( j = 2, . . . , n) are functionally independent
in some neighborhood of (q(0)

1 , p(0)
1 , q(0), p(0)) with q(0)

1 	= 0. Let q(z), p(z) and p1(z) be
the formal transseries solution given by Lemma 2. Suppose that q(z), p(z) and p1(z) are
analytic at z = q(0)

1 ∈ C such that q(q(0)
1 ) = q(0), p(q(0)

1 ) = p(0), p1(q
(0)
1 ) = p(0)

1 . Assume
that there exists an analytic solution q1 = q1(t) of q̇1 = Hp1 for q = q(q1), p = p(q1)
and p1 = p1(q1). Then (q1, q, p, p1) ( q = q(q1(t)), p1 = p1(q1(t)), p = p(q1(t))) is an
analytic solution of Eq. 1 in some neighborhood of t0 with q

(0)
1 = q1(t0).

Proof For simplicity we assume that q(0)
1 = 0. First we show that

q̇(0) = Hp(0), ṗ(0) = −Hq(0), ṗ1(0) = −Hq1(0), (99)

where the dot denotes the derivative with respect to t and Hp2(0) = Hp2 |t=0.
Substitute z = q1 in Eq. 49 and differentiate the equation with respect to t . We obtain Eq.

78. Since H is the first integral of the Hamiltonian vector field we have the trivial relation
Eq. 79. By subtracting Eqs. 79 from 78 and by using q̇1 = Hp1 we obtain Eq. 80.

Next, by applying the same argument to G( j) we have Eq. 81. On the other hand, since
G( j) is the first integral of the Hamiltonian vector field of H we have Eq. 82. By subtracting
Eqs. 82 from 81 and by using q̇1 = Hp1 we have Eq. 83. Similarly, we have Eq. 84. By Eqs.
80, 83 and 84 and the assumption on the functional independency of H , G( j)’s and G̃( j)’s
we obtain Eq. 99.

Next, we differentiate Eqs. 80, 83 and 84 with respect to t . Then the functional indepen-
dency of H , G( j)’s and G̃( j)’s and the inductive argument we see that q̇2 − Hp2 vanishes up
to first derivative. The same assertion holds for ṗ2 + Hq2 and ṗ1 + Hq1 . By induction we see
that all derivatives of q̇2 − Hp2 , ṗ2 + Hq2 and ṗ1 + Hq1 vanish.

5 Summability of the Formal Transseries Solution

5.1 Borel Summability

In order to state the result we begin with the definitions of the Borel summability of a formal
first integral and a transseries.

Summability of FormalFirst Integral Consider thefirst integrals constructed inTheorem2.
We consider the formal series

ψ(q1, q) = qκ
1

∞∑

n=0

vn(q)qn1 , (100)
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where κ ≥ 1 is an integer and vn(q)’s are holomorphic in q ∈ V0 for some open sets V0
independent of n. The formal κ- Borel transform B̂κ is defined by

B̂κ (ψ)(ζ, q) :=
∞∑

n=0

vn(q)
ζ n

�( n+κ
κ

)
, (101)

where ζ is the dual variable of q1 and �(z) is the Gamma function. For φ in Eq. 100 we have

B̂κ (qκ+1
1

d

dq1
ψ)(ζ, q) = κζ κ B̂κ (ψ)(ζ, q). (102)

For the bisecting direction d ∈ R and the opening η > 0, define S(d, η) := {z ∈
C; | arg z − d| < η/2}. For the neighborhood Ω0 ⊂ C of the origin, define

�0 := Ω0 ∪ S(d, η). (103)

We say that the formal power seriesψ(q1, q) is κ-summablewith respect to q1 in the direction
d if there exist θ > 0 and a neighborhoodΩ1 of ζ = 0 such that B̂κ (ψ)(ζ, q) converges when
(ζ, q) ∈ Ω1 × V0 and B̂κ (ψ)(ζ, q) can be analytically continued to (ζ, q) ∈ S(d, η) × V0
and is of exponential type of order κ in ζ ∈ S(d, η). Namely, there exist K0 > 0 and K2 > 0
such that

|B̂κ (ψ)(ζ, q)| ≤ K0e
K2|ζ |κ , ζ ∈ S(d, η), q ∈ V0.

For simplicity, we denote the analytic continuation with the same notation. Then the κ- sum
of the formal series ψ(q1, q), �(q1, q) is defined by the Laplace transform

�(q1, q) :=
∫ ∞eid

0
e−(ζ/q1)κ B̂κ (ψ)(ζ, q)dζ κ . (104)

Summability of Transseries We give the definition of the Borel summability of the
transseries Eq. 8. As for a general definition and properties we refer to [4] and the refer-
ences therein.

Consider the transseries u given by Eq. 8. We write

u =
∑

k≥k0,
≥0

ck,
t
−
/(2σ−1)eλkt =

∑

k≥k0

eλkt uk(t), (105)

where

uk(t) =
2σ−2∑

j=0

t− j/(2σ−1)uk, j (t), uk, j (t) =
∞∑

m=0

ck,m(2σ−1)+ j t
−m . (106)

We say that u is κ- Borel summable in the direction d if there exist �0 in Eq. 103 and the
constant K0 such that, for every j , j = 0, . . . , 2σ − 1 and every integer k ≥ 0 the formal κ-
Borel transform of fk, j (t) := eλkt uk, j (t),Bκ ( fk, j )(τ ) is extended to a holomorphic function
on �0 of order κ uniformly in k, namely there exist ∃Ck > 0 satisfying

∑
k Ck < ∞ such

that
|B( fk, j )(τ )| ≤ Cke

K0|τ |κ , ∀τ ∈ �0, (107)

where τ is the dual variable of t .

5.2 Statement of the Result

Let (q1(t), p1(t), q(t), p(t)) be the formal transseries solution given by Theorem 2. Then
we have

123



Summability of Transseries... Page 19 of 27     0 

Theorem 5 Suppose that Eqs. 5, 6 and 7 are satisfied. Then the formal transseries solution
(q1(t), p1(t), q(t), p(t)) is (2σ − 1)-Borel summable in every direction in {t |Re(λ j t) <

0, j = 2, . . . , n}. There exists a neighborhood of t = ∞, Ω1 such that the Borel sum is the
analytic transseries solution of Eq. 1 in the set {t |Re(λ j t) < 0, j = 2, . . . , n} ∩ Ω1.

In order to prove Theorem 5 we show a superintegrability by virtue of the Borel sum of
formal first integrals.

5.3 Function Space

Let c > 0. Let A(κ)
c (�0 × V0) be the set of all f holomorphic and of exponential growth of

order κ in �0 such that

‖ f ‖c := sup
z∈�0,q∈V0

| f (z, q)e−cRe (z/d)κ (1 + |zκ |)2| < ∞. (108)

Equipped with the norm Eq. 108 the space A(κ)
c (�0 × V0) is a Banach space.

For f , g ∈ A(κ)
c (�0 × V0) we define the κ-convolution by

( f ∗κ g)(ζ, q) :=
∫ ζ κ

0
f (τ, q)g((ζ κ − τκ)1/κ , q)dτκ . (109)

We can easily verify that there exists a constant K0 > 0 independent of f and g such that
‖ f ∗κ g‖c ≤ K0‖ f ‖c‖g‖c for every f , g ∈ A(κ)

c (�0 × V0).

6 Summability of First Integral

6.1 Statement of Result

Set κ = 2σ −1 andλ := (λ2, . . . , λn). Letα = (α2, . . . , αn) ∈ Z
n−1+ and k = (k2, . . . , kn) ∈

Z
n−1+ . Define

S0(α) :=
{
z ∈ C | κzκ + λ · (k − α) = 0,∀k ∈ Z

n−1+ \ {0}
}

. (110)

Let Bν,0 and Bν,1 be given by Eq. 5. Assume

Bν,0(q1, q) = O(qκ
1 ), Bν,1(q1, q) = O(qκ

1 ), ν = 2, . . . , n. (111)

Then we have

Theorem 6 Assume Eqs. 5, 6, 7 and 111. Let v = Eαφ(α) (α = 0,±e j , j = 2, . . . , n) be
the formal first integrals given by Theorem 2. Then φ(α) is κ-summable with respect to q1 in
every direction d such that d /∈ S0(α).

Remark We can drop Eq. 111 if we use Lemma 2 of [2].
We give the corollary of Theorem 6. Assume Eq. 6. Let 0 ≤ θ0 ≤ θ1 < 2π be such that

the closure of {−λ · k | k ∈ Z
n−1+ \ {0}} is contained in the sector {z | θ0 ≤ arg z ≤ θ1}. Then

we have

Corollary 1 Assume Eqs. 5, 6, 7 and 111. Suppose σ = 1. Then there exist neighborhoods
Ω1, Ω̃1,Ω0, Ω̃0 of q1 = 0, p1 = 0, q = 0 and p = 0, respectively such that the Hamiltonian
system for H is Liouville-integrable in the domain (q1, p1, q, p) ∈ Ω1 × Ω̃1 × Ω0 × Ω̃0

with q1 ∈ {z | θ1 − π/2 < arg z < θ0 + 5π/2}.
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Proof By Eq. 6 we have θ1 − θ0 < π . We show that the first integrals φ(−e j )E−e j ( j =
2, . . . , n) and H are functionally independent first integrals. By the definition of S0(−e j )
and by Theorem 6 together with κ = 2σ − 1 = 1, the summability of the formal first
integrals holds for the directions θ1 ≤ arg z ≤ θ0 + 2π . Hence the Borel sums of formal first
integrals exist in the sector given in the theorem. Elementary calculations show that ∇φ(−e j )

( j = 2, . . . , n) and ∇H are linearly independent when |q| is sufficiently small.

6.2 Estimate of a Linearized Operator

In order to prove Theorem 6 we prepare a lemma. Let R j > 0 ( j = 2, . . . , n) be given.

Define V0 := ∏n
j=2{z j ||z j | < R j }. Let f̂ ∈ A(κ)

c (�0 × V0) be given. Consider the equation

of û ∈ A(κ)
c (�0 × V0)

Lû :=
(

κζ κ +
n∑

ν=2

λνqν

∂

∂qν

)
û = f̂ , ζ ∈ �0. (112)

For f̂ ∈ A(κ)
c (�0 ×V0)we define the weighted norm |‖ f̂ |‖c by |‖ f̂ |‖c := ‖M0(q) f̂ ‖c, where

M0(q) is given in Lemma 1. Then we have

Lemma 4 Let α = 0,±e j , j = 2, . . . , n. Suppose that Eqs. 6 and 7 and �0 ∩ S0(α) = ∅
are satisfied. Assume that f̂ = O(|q|) when q → 0. Then Eq. 112 has a unique solution û
in A(κ)

c (�0 × V0). Moreover, there exists K > 0 independent of ζ ∈ �0 such that |‖û|‖c ≤
K‖ f̂ ‖c and |‖ζ κ û|‖c ≤ K‖ f̂ ‖c hold for every f̂ ∈ A(κ)

c (�0 × V0).

The proof of Lemma 4 is almost identical with that of Lemma 1.

6.3 Proof of Theorem 6

Proof The proof is done in three steps.
Step 1. Let d be the direction not contained in S0(α). Define �0 by Eq. 103. By Eqs. 6

and 7 we have �0 ∩ S0(α) = ∅ if we take η > 0 and Ω ≡ Ω0 in Eq. 103 sufficiently small.
We prove the case α = 0. The proof of other cases α = ±e j ( j = 2, . . . , n) is similar to

the case α = 0. By Eq. 12 it is sufficient to prove the κ-summability ofU0 andU1. Since the
proof is similar we consider U1. Let

∑∞
ν=0U1, j,νqν

1 be the formal series solution of Eq. 26.
Define

U1 = V + u0, u0 :=
κ−1∑

ν=0

U1, j,νq
ν
1 . (113)

Thenwe haveV = O(qκ
1 ). Substitute Eqs. 113 into 26. Then, by denoting the inhomogeneous

term by f = O(qκ
1 ) we have

q2σ1
∂V

∂q1
+

n∑

ν=2

λνqν

∂V

∂qν

−
n∑

ν=2

q2νq
2σ
1 (∂q1Bν,1)V (114)

+
∑

ν

q2ν Bν,1q
2σ
1

∂V

∂q1
+ f (q1, q) = 0.
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Step 2. Recalling Eq. 111 we apply the κ-Borel transform to Eq. 114. Let ζ be the dual
variable of q1. Let V̂ and f̂ be the κ-Borel transform of V and f , respectively. Then we have

LV̂ −
n∑

ν=2

q2ν B̂2 ∗ V̂ +
∑

ν

q2ν κ B̂1 ∗ ζ κ V̂ + f̂ (ζ, q) = 0, (115)

where

LV̂ :=
(

κζ κ +
n∑

ν=2

λνqν

∂

∂qν

)
V̂ , (116)

and B̂1 := B̂ν,1 and B̂2 := ̂q2σ1 ∂q1Bν,1 are the κ-Borel transform of Bν,1 and q2σ1 ∂q1Bν,1,
respectively.

Define LV̂ =: Ŵ . Since L−1 exists, by Lemma 4 we have

Ŵ −
∑

ν

q2ν B̂2 ∗ L−1Ŵ +
∑

ν

q2ν κ B̂1 ∗ ζ κ L−1Ŵ + f̂ (ζ, q) = 0. (117)

Define
L1Ŵ := κ B̂1 ∗ ζ κ L−1Ŵ , L2Ŵ := B̂2 ∗ L−1Ŵ . (118)

Then, by Eq. 117 we obtain

Ŵ +
∑

ν

q2ν (L1 − L2)Ŵ + f̂ (ζ, q) = 0. (119)

Step 3. We construct the approximate sequence

Ŵ0 := − f̂ (ζ, q), Ŵ j := −
∑

ν

q2ν (L1 − L2)Ŵ j−1, j = 1, 2, . . . (120)

If the limit Ŵ := ∑∞
j=0 Ŵ j exists in A(κ)

c with R j replaced by R′
j < R j , r j − R′

j small,

then Ŵ is the desired solution.
We show the convergence. By the estimate of a convolution and Eq. 118 we have

‖L1Ŵ‖c = ‖M−1
0 M0L1Ŵ‖c ≤ K1‖M0L1Ŵ‖c = K1‖|L1Ŵ |‖c (121)

≤ K1K2‖|ζ κ L−1Ŵ |‖c ≤ K1K2K‖Ŵ‖c,
where K1 = supq |M0(q)−1|, K2 = ‖κ B̂1‖c. Similarly, we have ‖L2Ŵ‖c ≤ K1K2K‖Ŵ‖c.
Let ε > 0 be given. By taking R j > 0 sufficiently small we have

‖Ŵ j‖c ≤ K1K2K ε‖Ŵ j−1‖c, j = 1, 2, . . . (122)

The estimate Eq. 122 implies the desired convergence of the sequence.

7 Proof of Theorem 5

Proof (Proof of Theorem 5)We prove the theorem by five steps.
Step 1. Consider Eqs. 47, 48 and 49. These equations are equivalent to Eqs. 55, 58 and

61. Hence, if we show the summability of q we have the summability of p and p1 as well.
Set κ = 2σ − 1. Let t and z satisfy t = −κ−1z−κ . Let z0 be such that Re(λ j z

−κ
0 ) > 0.

Define �0 by Eq. 103 with d = arg z0. We show that there exist constants C0 > 0, C1 > 0
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and η > 0 such that, for �0 given by Eq. 103 with d = arg z0 we have
∣∣κzκ + λ j k

∣∣ ≥ C0|z|κ , ∀z, |z| > C1, z ∈ �0, (123)
∣∣κzκ + λ j k

∣∣ > C0, ∀z, |z| ≤ C1, z ∈ �0, (124)

for j = 2, . . . , n and k = 1, 2, . . .. Indeed, we have
∣∣∣κzκλ−1

j + k
∣∣∣ =

∣∣∣∣
κ

λ j z−κ
+ k

∣∣∣∣ =
∣∣∣∣−

1

λ j t
+ k

∣∣∣∣ > C0/|λ j |, (125)

for some C0 > 0 and all t , Re(λ j t) < 0, j = 2, . . . , n, k = 1, 2, . . . Eqs. 124 follows from
125.

We show Eq. 123. We have
∣∣∣κzκλ−1

j + k
∣∣∣ ≥

∣∣∣Re
(
κzκλ−1

j

)
+ k

∣∣∣

≥ Re
(
κzκλ−1

j

)
≥ ε1|z|κ , (126)

for some ε1 > 0 and all z ∈ �0 and all k = 1, 2, . . ., j = 2, . . . , n.
Step 2. We solve Eq. 61. Let ζ be the dual variable of z. Let

q0 =
∞∑

n=0

cn(ξ)zn (127)

be the formal series solution of Eq. 61. Define q̃ by

q = q̃ + ρ, ρ =
κ−1∑

n=0

cn(ξ)zn . (128)

Clearly we have q̃ = O(zκ ). Let G = (G j ) be given by Eq. 59. Next, consider

G(z, q, ξ) =
∞∑

n=0

znsn(q, ξ) =
∑

n,


sn,
(ξ)znq
,

where the Taylor expansions of sn(q, ξ)’s with respect to q converge in some neighborhood
of the origin q = 0 and ξ = 0 independent of n. Then we consider

∑

n

znsn(q̃ + ρ, ξ) −
κ−1∑

n=0

cn(ξ)zn =
∑

n,


sn,
(ξ)zn(q̃ + ρ)
 −
κ−1∑

n=0

cn(ξ)zn . (129)

We note that Eq. 129 is O(zκ ) by the definition of formal series. By the formula (q̃ + ρ)
 =∑
β q̃βρ
−β
!/(β!(
 − β)!) the formal κ-Borel transform of the left-hand side of Eq. 129

converges. Denoting the right-hand side of Eq. 129 by G(z, q̃, ξ) for the sake of simplicity
and rewriting q̃ as q we consider

q = G(z, q, ξ). (130)

We note that the κ- Borel transform of ∂G
∂q (z, 0, ξ) in A(κ)

c is sufficiently small for sufficiently
small ξ by the definition of G.

Step 3. G(z, q, ξ) is a formal power series in z with coefficients being holomorphic in
ξ and q in some neighborhood of the origin ξ = 0, q = 0 which is uniform among the
coefficients. By expanding the coefficients in the power series of ξ and q and rearranging
them we obtain the series of ξ and q whose coefficients are formal series in z. We show
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that the coefficients of the series of G with respect to ξ and q are summable in z which are
uniform among the coefficients. We denote the uniform summability property by (P).

By the definition of G = (G j ) it is sufficient to show that (P) holds for the first integrals
constructed in Theorem 2. Indeed, since G j is given by Eq. 59, it is sufficient to show that
(T̃ j + Fj,0)

−1 and Ã j (z, z2 p1, q) satisfy (P). The latter term satisfies (P) if the first integral
satisfies (P). As for the former one, consider Fj,0 in Eq. 55. The terms D̃ j and D̃ j,1 satisfy
(P) by the assumption on the first integral. By Eq. 53 we see that E j,1 satisfies (P). Next, by
Eq. 54 T̃ j satisfies (P). It follows that (T̃ j + Fj,0)

−1 satisfies (P). Hence G j satisfies (P).
Let C(z, q, ξ) be any formal first integral constructed in Theorem 2. For every pair of

multiintegers m ≥ 0, n ≥ 0 we consider the coefficient of qmξn of the Taylor series of
C(z, q, ξ)

Cm,n(z) = 1

(2π i)2

∫ ∫

|w j |=ε1,|sν |=ε2

C(z, w, s)

wm+1sn+1 dwds, (131)

where ε1 > 0 and ε2 > 0 are small constants. Let Ĉ(ζ, w, ξ) be the formal Borel transform
ofC(z, w, ξ)with respect to z, where ζ is the dual variable of z. By the formalBorel transform
of Eq. 131 we have

Ĉm,n(ζ ) = 1

(2π i)2

∫ ∫

|w j |=ε1,|sν |=ε2

Ĉ(ζ, w, s)

wm+1sn+1 dwds. (132)

Since C(z, w, s) is Borel summable, there exist �0 in Eq. 103 and the neighborhoods V0
and V1 of q = 0 and ξ = 0, respectively, such that Ĉ(ζ, w, s) is holomorphic in (ζ, w, s) ∈
�0 × V0 × V1. Moreover, Ĉ(ζ, w, s) is of exponential order of one in ζ ∈ �0 for every
(w, s) ∈ V0 × V1. By the scale change of variables q �→ εq and ξ �→ εξ we may assume
that V0 and V1 contain a disk with sufficiently large radius. Therefore, by Eq. 132 we have
the summability of Cm,n(z) uniformly inm and n. In the following we assume the condition.

Step 4. We prove the summability of q as a transseries. It is sufficient to show the summa-
bility with respect to the variable z instead of t . Expand cn(ξ) in Eq. 127 in the power series
of ξ and consider

q(z) =
∑

j≥0

ξ j q j (z). (133)

By Eq. 128 it is sufficient to show the summability of q in Eq. 130. Note that, by the definition
of the summability of a transseries it is sufficient to show the uniform summability of q j ’s
and the convergence of the sum Eq. 133 with q j replaced by its Borel sum.

If j = 0, then the summability of q0 ≡ 0 is trivial. Suppose that the uniform summability
of q j for j = 0, . . . , k−1 holds. Namely, the formal Borel transform of q j , q̂ j is holomorphic
in �0 and has the same exponential order for j = 0, . . . , k − 1. Consider qk . Substitute Eqs.
133 into 130.

Since G is analytic at q = 0 we consider the term

C
(ξ, z)(
∑

j,| j |>0

q jξ
j )
, (134)

where 
 ≥ 0 is a multiinteger and C
(ξ, z) is analytic in ξ and is a formal power series
in z. Expand C
(ξ, z) in a power series in ξ , C
(ξ, z) = ∑

|ν|≥1 K
,ν(z)ξν . We introduce

the weight ε
j
0 in front of q j by the scale change ξ �→ ε0ξ (cf. step 4), where ε0 > 0 is a
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sufficiently small number. Then the coefficient of ξ k appearing from G(z, q, ξ) is given by

∑ K
,ν(z)
!ε|k|
0

m1! · · ·mμ! q
m1
j1
qm2
j2

· · · qmμ

jμ
, (135)

where the summation is taken over the pair of multiintegers, m1, . . . ,mμ satisfying

m1 + · · · + mμ = 
, j1|m1| + j2|m2| + · · · + jμ|mμ| = k − ν, (136)

where μ is an integer and j1, . . . , jμ ≥ 0 are multiintegers. By the result of Step 3 K
,ν(z) is
uniformly summable in 
 and ν and

∑

,ν ‖K
,ν‖ < ∞. By Eqs. 135 and 130 we see that the

formal Borel transform of qk(z), q̂k(ζ ) is holomorphic in �0 and has the same exponential
order as q̂ j ’s.

It remains to estimate ‖qk‖, where ‖qk‖ is a certain maximal norm. Suppose that

‖q j‖ ≤ K1ε
| j |
2 , | j | < |k|, (137)

for some positive constants K1 and ε2, where ε2 is chosen sufficiently small. Take ε0 ≤ 1
and 2ε0 < ε2. We have

∑ 
!
m1! · · ·mμ! (‖q j1‖)m1(‖q j2‖)m2 · · · (‖q jμ‖)mμ (138)

≤
∑ 
!

m1! · · ·mμ! (K1ε
| j1|
2 )|m1|(K1ε

| j2|
2 )|m2| · · · (K1ε

| jμ|
2 )|mμ|

≤ (K1

∑

j,| j |>0

ε
| j |
2 )|
| ≤ (CK1ε2)

|
|,

where the summation is taken over all combinations satisfying Eq. 136 and where C satisfies∑
j,| j |>0 ε

| j |
2 ≤ Cε2.

Then the term Eq. 135 is estimated by

εk2

∑


,ν

(CK1ε2)
|
|‖K
,ν‖. (139)

By taking ε2 sufficiently small we have

∑


	=0,ν

(CK1ε2)
|
|‖K
,ν‖ ≤ K1

2
. (140)

On the other hand, we may assume ‖K0,ν‖ ≤ K1/2 since ν ≥ 1. Hence Eq. 139 is estimated
by K1ε

n
2 , which proves the convergence of the sum.

Step 5. We prove the summability of q1. If we prove the summability of q1 and q , then
we have the summability of p1 and p as well by Eqs. 58 and 55, respectively. Let q(z) be
given by Eq. 133. Consider

dq1
dt

= Hp1 = q2σ1

(
1 +

∑
q2ν B1,ν(q1, q)

)
. (141)

Introduce z by Eq. 64.
Let q be given by Eq. 133. Set

q = q(0) + q̃, q(0) =
∑

|k|>0

q(0)
k (z)ξ k, (142)
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where q(0) is the polynomial of z with degree κ − 1 and analytic in ξ at ξ = 0. Expand

q̃ =
∑

|k|>0

q̃k(z)ξ
k . (143)

By what we have proved in the above, the κ- Borel transform of q̃k(z) exists for every k.
Substitute Eq. 142 into the right-hand side of Eq. 141. Since B1 is the polynomial in q
by assumption we see that the right-hand side of Eq. 141 is the polynomial of q̃ whose
coefficients are the polynomials of z and analytic in q1 and ξ .

Substitute the Taylor series of q1

q1(z) =
∑

| j |≥0

ξ j q1, j (z), (144)

into Eq. 141 and compare the coefficients of the power ξ k with k = 0 of both sides of Eq.
141. We have q1,0 = A0, where A0 is given by Eq. 71. One can easily verify that A0 = z by
the definition of z. By Eq. 72 we have q1,1 = A1 = 0. Let k ≥ 2. By Eq. 76 and Ak = q1,k
we see that the left-hand side of Eq. 141 yields q1,k

dt + kλq1,k . It is equal to

zκ+1 q1,k
dz

+ kλq1,k .

Therefore q1,k’s satisfy the recurrence relation

zκ+1 d

dz
q1,k + kλq1,k = c0z

κq1,k + f
(
z, ξ, q1, j , q̃
; j < k, 
 < k

)
, (145)

where f is the polynomial of q1, j ’s, q̃
’s and z and analytic in ξ at ξ = 0, and where c0 is a
constant. By the scale change of z we may assume that c0 is sufficiently small.

In order to see the form of f , note that the partial Taylor expansion of the right-hand side
of Eq. 141 has the form

C
,ν(z, ξ)(
∑

| j |>0

q1, jξ
j )2σ+
(

∑

|k|>0

q̃kξ
k)ν, (146)

for some non-negative integer 
 and a multiinteger ν with |ν| ≥ 2. Expand

C
,ν(z, ξ) =
∑

s≥0

C
,ν,s(z)ξ
s . (147)

Then, by comparing the coefficients of the power ξ k in Eq. 146 we have

∑
C
,ν,s(z)

ν!
α1! · · · αi !

(2σ + 
)!
μ1! · · · μm ! (q1, j1)

μ1 · · · (q1, jm )μm (q̃k1)
α1 · · · (q̃ki )αi , (148)

where the summation is taken over the combinations

μ1 + μ2 + · · · + μm = 2σ + 
, α1 + α2 + · · · + αi = ν (149)

j1μ1 + j2μ2 + · · · + jmμm + k1|α1| + k2|α2| + · · · + ki |αi | = k − s, 0 ≤ s ≤ k.

By Step 1 of the proof of Theorem 3 we have q1, j = O(t−1−1/κ ) = O(zκ+1). Hence the
formal κ-Borel transform of q1, j is well defined. By the formal κ-Borel transform of Eq. 145
we have

(κζ κ + kλ)̂q1,k = c0
(
1 ∗ q̂1,k

) + f ∗ (
ζ, ξ, q̂1, j , ̂̃q
; j < k, 
 < k

)
, (150)
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where q̂1,k is the formal κ- Borel transform of q1,k and ∗ denotes the convolution. f ∗ denotes
the formal κ- Borel transform of f , where the product is understood as the convolution
product. Define v := q̂1,k and denote the second term of the right-hand side of Eq. 150 by
gk , for simplicity. Then Eq. 150 is written as

(κζ κ + kλ)v = c0 (1 ∗ v) + gk . (151)

We define the sequence v0, v1, · · · by
(κζ κ + kλ)v0 = gk (152)

(κζ κ + kλ)v j = c0(1 ∗ v j−1), j = 1, 2, . . . (153)

If the limit v := v0 + v1 + · · · exists, then v gives the solution of Eq. 150. By definition we
have the summability of q1,k . It is easy to see the convergence of v.

In order to see the summability of q1 as a transseries we need to show the uniform sum-
mmability of q1,k’s in k. Since we have the uniform summability of qk’s, we can inductively
show that gk is holomorphic in the domain uniform in k with exponential growth order being
uniform in k. In view of the definition of the approximate sequence of v in Eqs. 152 and 153
the same property holds for v = q̂1,k .

Next we show the convergence of q1 = ∑
k q1,kξ

k . In order to have the estimate of ‖q1,k‖
it is sufficient to estimate ‖gk‖ in view of the definition of the approximate sequence of q1,k .
The estimate of gk follows from the expression Eq. 148. Since the expression Eq. 148 has the
same form as Eq. 135, we can estimate Eq. 148 by the same argument as the estimate of Eq.
135 in the step 4. Hence we can show the estimate of q1,k by the same calculation in proving
Eq. 137. Therefore we have the summability of q1 as a transseries. This ends the proof.
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