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Abstract
In this work, the null controllability problem for a linear system in 2 is considered, where
the matrix of a linear operator describing the system is an infinite matrix with R on the
main diagonal and 1s above it. We show that the system is asymptotically stable if and only
if 1, which shows the fine difference between the finite and the infinite-dimensional
systems. When 1 we also show that the system is null controllable in large. Further
we show a dependence of the stability on the norm, i.e. the same system considered is
not asymptotically stable if 1.
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1 Statement of the Problem

Control problems in Banach or Hilbert spaces arise naturally in processes described by par-
tial differential equations (see for example [1, 3, 7, 8, 11, 13, 15, 16, 19, 22] and references
therein). Sometimes it is useful to reduce the control problem for partial differential equa-
tions to infinite systems of ODEs [4, 5, 9, 10]. Also, it is of independent interest to consider
control systems governed by infinite system as models in Banach spaces. For example in
[20, 21] control problems for infinite systems are considered.

A considerable amount of work devoted to differential game problems for infinite sys-
tems in Hilbert spaces (see for example [2, 17] and references therein). Optimal strategies
for players in suitable classes of strategies have been constructed in [18].

Often it is useful to study finite dimensional approximations of the infinite system, such
an approach is taken in [4, 5]. The main difficulty is then to prove that the approximate solu-
tions converge to a solution of the initial control problem. In the above works the authors
obtain infinite linear ODEs, where the right hand has a diagonal form. Hence it is not diffi-
cult to show that finite dimensional approximations converge to the solutions of the original
system in a suitable sense. The proofs suggest that similar results maybe proven for linear
systems with block diagonal form under certain mild assumptions.

In fact, as it is shown in [23] for certain linear systems with quadratic cost there are
approximation schemes that converge, but the approximating controls do not even stabilize
the original system and also the costs does not converge.

In this work we consider a simple infinite linear controllable system in 2. The main
feature of the system is that it is an infinite Jordan block, with R on the main diago-
nal. Therefore, any finite dimensional approximation of the system is asymptotically stable
whenever 0, but the infinite system is stable if and only if 1 and when 1
solutions in certain directions grow exponentially fast. This shows fine difference between
finite dimensional and infinite systems. Another main feature of this notes is that using
Gramian operators, we give explicit form of control functions that stabilize the system.

In the rest of this section we formulate the problem and state the main results. In Section 2
we prove global asymptotic stability. In Section 3 we show global null-controllability and
in Section 4 we discuss the results and further generalizations.

Let 2 y 1 2 R 1
2 . We consider 2 with it’s natural

norm: y 2
2 1

2, which turns it into a Hilbert space.
Given an infinite system of ODEs:

1 0 0 (1)

where R is a fixed number and y0 0 N
2. We can rewrite the system in an

operator form
y y y 0 y0 (2)

where y0 0 N and 2 2 is a linear operator defined by

y 1 N.

This is an example of an ODE in a Banach space, which is a well studied topic (see for exam-
ple [13, 14]), here we study the stability and control problems. In particular, we construct
controls function explicitly.

Observe that is a bounded linear operator, in fact we have

y 2
2

1

1
2 1 2 y 2

2.
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Hence, sup y 2 1 y 2 1 .

Now, it is standard to define as

0

which is bounded on 2 for every R. Further, admits all the properties of analogues
operator for matrices. In particular, defines a group of operators. The solution of (2) can
be written in the form

y y0.

We also consider the Cauchy problem for non-homogeneous equation

y y f y 0 y0 (3)

for f R 2, f 2 0 2 , i.e. f 2
2 0 f 2

2 .1

A function y 0 2 defined as

y y0
0

f

is called a mild solution of (3) if y 0 2 . Here the integration is understood
componentwise. For completeness we start with the following.

Proposition 1.1 For every f 2 0 2 and y0 2 we have y 0 2 .

The next result is about stability. In this simple setting we can characterize the system
completely. We have the following.

Proposition 1.2 Let y be the solution of (1) with an initial condition y0 2. System (1)
is asymptotically stable if and only if 1. Moreover for every y0 2 and for every

R holds y0 2
1 y0 2 .

Let 0 be fixed. A control function f R 2 is called admissible if

f 2
2

0
f 2

2
2.

We say that the system (3) is null-controllable from y0 2 an admissible control f R
2 and R such that the solution of (3) satisfies y 0.
We say that the system (3) is locally null-controllable if there exists 0 such

that (3) is null-controllable from any y0 2 with y0 .
We say that the system (3) is globally null-controllable if it is null-controllable from any

y0 2.
The main result of this notes is the following

Theorem 1.1 (i) The system (3) is locally null-controllable for every R.
(ii) If 1, then system (3) is globally null-controllable.
(iii) If 1 the systems can be transferred from an initial point y0 2 into the origin

for time y0 4
2

4, where is a constant independent of 0.

1We note that this norm coincides with f 2
2 1 0

2 thanks to Beppo-Levi’s theorem.
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Notice that we didn’t aim to state the results in the most general form. Also, in Propo-
sition 1.2 for 1 0 we construct solutions going to as , i.e. 0 is not
Lyapunov stable. Thus jump when passing from 1 somewhat unusual. But apparently
it is due to the structure of 2 and very special structure of I , i.e. the shift oper-
ator 2 2 is weakly contracting ( y 0 as for all y 2) in this case.
The proofs show that analogues results are true for all spaces with 1 . How-
ever, in the trivial solution 0 is Lyapunov stable, but it is not asymptotically stable when

1 (see Section 2.1).

2 Asymptotic Stability

We start this section with the proof of Proposition 1.1.

Proof of Proposition 1.1 For any R, 0 0 and 0
2 we have

0
2

0
2

0 I 2 0 2
2 2 (4)

where in the last inequality we have used the definition of and 2 2 . For
any f 2 0 2 and 0 0 we have

0

f
2 0

2 f 2

0

2 2

1 2

0

f 2
2

1 2

0
1 2 2 f 2

(5)

where in the second inequality the Cauchy-Schwarz inequality is used. We have

y y 0 2
0

2 y0 2

0
f 0

0

0
f 2.

(6)

The first term on the right-hand side of the inequality tends to 0 when 0 by (4). We
will show that the second term also tends to 0 as approaches 0. Without loss of generality,
assume 0 then the second term of (6) is bounded by

2
0

f 2
0

2

0

0
f 2

which tends to 0 by (5). The proof is finished.

2.1 Stability of the System

Here we give necessary and sufficient condition for the asymptotic stability of the system in
2. Recall that the system (1) is called globally asymptotically stable if lim y 0
for the solution y of (1) with any initial condition y0 2.

Proof of Proposition 1.2 We write I , where I is the identity map, and 2

2 is the shift map, i.e. 1. Then we have . Now, we obtain item (i)
directly:

y 2 y0 2 y0 2
1 y0 2.

If 1 the latter inequality implies lim y 0.
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If 1 then the above argument doesn’t imply the desired conclusion. Thus we
proceed as follows. Observe that

1
2

2

0 1
1

1

0 0 1
2

2
...
...

...
. . .

...
. . .

. (7)

Then for any z 2 with z 2 1 and for the solution y started from y0
10 20

2 we obtain

y zz
0

y0 z
0

y0 z . (8)

From the definition of we have y0 2 y0 2 for all N0 and y0 2 0 as
. Thus for any 0 there exists y0 N0 such that y0 2 2 for

all . Fixing such an and using y0 z y0 2 y0 2 for N from (8)
we obtain

y z
0

y0 2

1

y0 2

y0 2

0
2

0

y0 2
2

2
.

(9)

Notice that the choice of and hence is independent of . Therefore, (9) implies that
there exists 0 such that y0 2

2 2 for all . Finally, taking
z y y 2 in (9) results to

y 2 for all .

This finishes the proof of item (ii).
Now we show item (iii). Suppose that 1. Since for 0 the system (1) is not sta-

ble, it suffices to consider the case 1 0. Let 0 1 and 1 2 3 .
Obviously, 2 and . Since 1 0 if we let 1

2 0 1
then as one gets

2 2
1 2

2 . (10)

This implies that if 1 then (1) is not stable. This completes the proof.

Remark 1 Consider the system y y y 0 y0 , where

y 1 2 sup
N

.

Then e 1 1 1 is an eigenvector of corresponding to the eigenvalue .
Thus 0 is Lyapunov stable but it is not asymptotically stable.

3 Null-Controllability

Here we show that system (3) is null controllable.
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We start with a standard lemma from operator theory, which will be useful below.

Lemma 3.1 Let be a self adjoint operator defined on a Hilbert space .
Assume that there exists 0 such that for all . Then is invertible
and 1 1.

To prove controllability we use Gramian operators and prove an observability inequality.
For R define

0

where and is the adjoint of in 2. The following lemma is the main technical tool

Lemma 3.2 For every R the operator is bounded, self adjoint, positive defi-
nite and invertible. Moreover, there exists 0 such that y 2 y 2 for any
y 2.

Proof One can easily verify that f 0 f 0 1 2 . Then 2

. Further,

y z
0

2 y 2 z 2

0

2 1 y 2 z 2 y 2 z 2

(11)

where the constant depends only on .
Let , N, denote an element of . For y z 2 we have

y z
1 1 0

2 . (12)

By (11) the right-hand side of (12) is absolutely convergent. Thus,

y z
1 1 0

2 y z .

This implies that is self adjoint for every R.
Notice that is just the transpose of . Therefore, by (7) for N we have

which implies that both of the series

1

and
1 1
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converge uniformly in 0 , hence

y z
1 1 0

2

0 1 1

2

0

2 y z .

(13)

The above equation immediately implies that y y 0 for every y 0, i.e.
is positive definite. In (13) we have showed that we can take integration out of the scalar
product y z . We will use this property several times below.

For every 0

y y
0

2 y y .

Now we look at the operator . Note that I, we have

0

2

2
I

0 1

. (14)

It follows that for sufficiently small 0 and 0 we have

I

where is a linear operator whose 2 norm is in the usual sense. Finally,

0

2 y y
0

2 I

1 3 2
2

0

2 1 3

2
2 1 2

2

(15)

where we used y y 2
2. This proves

y 2 y 2 with 2 1 3

2
2 1 0. (16)

Thus Lemma 3.1 is applicable and implies that is invertible for every 0 and
1 2 2 is a bounded linear operator with the norm 1 1, where

is independent of .

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 Below we assume that 0 and the set of admissible control is
defined as in Section 1. Recall that y y0 0 f is the unique solution
of system (3) with an initial state y 0 y0.

We look for a solution of the control problem in the form

f0 1 y0 for every y0 2 R . (17)

We show that 0 f0 y0 for every fixed R . Indeed, by (13) we have

0
f0

0

1 y0 y0. (18)

It remains to show that f0 is admissible, i.e. there exists 0 such that f0 2 .
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By definition of and (13) we have

0
f0 2

2
0

1 y0 2

0

1 y0 1 y0

y0 1 y0 y0 2
1 y0 2.

(19)

To prove item (i) we look for the set of y0 2 with y0 2
2

2. Then by (18) we have
that y 0 for the solution started from y0. Also, by (19) and the choice of y0 the function
f0 defined by (17) is admissible.

To prove item (ii) we consider cases 1 and 1 separately.

Global null-controllability for 1. We will prove that 1 y0 2 0 as
. To this end we refine the inequality in (15) as follows.

Since is invertible,

y 2 y 2 y .

Thus, by Proposition 1.2 we have

y 2
1 y 2.

Consequently, for any y 2 holds

y y
0

y 2
2

0

2 1 y 2
2 y 2

2

2 1 1

2 1
.

Recalling 1 1 and letting z 1y0 2 by the above inequality we
have

1 y0 2
2 y0 1 y0 z z z 2

2

2 1 1

2 1
.

Hence,

z 2
2 1
2 1 1

1 2

y0 2. (20)

Since 1 the right-hand side of the above inequality converges to 0 exponentially fast
as and so does z 2. Thus, by (19) there exists 0 such that

0
f0 2

2
2 for all 0.

This finishes the proof of global controllability for 1.

Global null-controllability for 1. This case needs a slightly different argument.
Recall that in this case the system is locally null controllable, i.e. the control function
defined in (17) remains admissible in the neighbourhood of the origin: if y0 2 ,
where is the constant defined in (16), we set

f1 1 1 y0 for every y0 2. (21)

Then by (19) we get

0
f1 2

2 y0 2
2

1 1 2
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and

y 1 y0
1

0
f 0.

Further, by stability of the system (1) for any y0 2 there exists 0 y0 such that
y0 2 for any 0. Therefore, we set

f0
0 if 0

f1 0 0 1.
(22)

One can easily check that f0 is admissible and y 0 1 0 for the corresponding solution
of (3), which finishes the proof. This finishes the proof of item (ii)

Observe that to prove the item (iii) it is sufficient to obtain estimates on satisfying

y0 2 z 2
2

where is given by (20), which is equivalent to

2 1
2 1 1

1 2

y0 2
2

2

which is satisfied if

y0 4
2

4

1

2 1
log 1

2 1 y0 4
2

4
.

This completes the proof of the Theorem.

4 Discussion of the Results and Further Questions

In this paper we addressed an infinite system of linear ODEs with a special operator
I on the right-hand side. We obtained stability and controllability of the system when

1. Initially, the main motivation for this choice was to construct an example whose
finite dimensional projections having qualitatively different behaviour than the system itself.
In the proofs we used Gramian operators, which raised a natural question whether or not the
constructed control functions are optimal, since in the finite dimensional setting this method
is known to produce optimal control. In the setting of the current paper, when 1 we
expect to obtain optimal control. But we were unable to find an analogue of a general result
in the spirit of (for example, [18, Propostion 2.]), in the infinite dimensional setting; when

1 we don’t control the system until it gets closer to the origin. Therefore, we don’t
expect to obtain optimal control. Notice that, in the proofs we used the special form of . It
would be interesting to obtain similar results for more general system

y y f y 0 y0 (23)

where 2 2 is a bounded operator, and is an operator from (pos-
sible finite dimensional) subspace of 2. The proofs suggest that if is identity and
the spectrum of lies on the left-hand side of the imaginary axes, then (23) is globally
asymptotically stable. Invertibility of the Gramians seems also to work since it is a pertur-
bative argument. But for the global null controllability, one needs different estimates to the
inverses of the Gramians, or another approach is needed. However, for general the situa-
tion is unclear, it would be nice to obtain a similar conditions to the classical Kalman (See
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for example, [12, Theorem 1.16]) or an analog of Fattorini-Hautus but in both situations, it
isn’t clear what should be the exact conditions. Since for Kalman condition injectivity of
an operator isn’t sufficient for invertibility, and for Fattorini-Hautus usually one assumes
countable spectrum with certain properties (see for example [6] and references therein).
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