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Abstract
Deep learning of the artificial neural networks (ANN) can be treated as a particular class
of interpolation problems. The goal is to find a neural network whose input-output map
approximates well the desired map on a finite or an infinite training set. Our idea consists of
taking as an approximant the input-output map, which arises from a nonlinear continuous-
time control system. In the limit such control system can be seen as a network with a
continuum of layers, each one labelled by the time variable. The values of the controls at
each instant of time are the parameters of the layer.

Keywords Ensemble controllability · Optimal control · Controllability on manifolds
of mappings · Deep learning

Mathematics Subject Classification (2010) 93B05 · 93B27 · 58D15

1 Introduction and Problem Setting

The name deep learning stands for a set of the methods and the tools which study the
problems of classification such as image recognition and speech recognition. These methods
involve multilayered artificial neural networks (ANN) and one of the key moments is the
training of the networks on a set of classified objects. For a simple mathematical model of
the multilayered ANN and of the process of its training we refer to [10].

The functioning of the ANN results from a composition of the actions of separate neu-
rons. Each neuron realizes an activation function σ : R → R with parameters. There
are plenty of choices for the activation function, that is normally nonlinear monotone
sigmoid-like function.
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The vector functions can be assembled from the scalar activation functions:

σ̄ : Rm → R
m : σ̄ (x1, . . . , xm) = (σ (x1), . . . , σ (xm)). (1)

One can assemble neurons in a multi-layer network in such a way that the outputs of the
neurons from a previous layer serve as the inputs for the successive level.

One can introduce parameters into the activation functions via a substitution of their
variables. For example a linear change of the argument in (1) results in σ̄ (Kx + B), where
x ∈ R

m, K ∈ R
m×m, B ∈ R

m.
The output of an ANN realizes the composition of the functions, each one of which

corresponds to a layer:

F(x) = (2)

= σ̄
(
K [M]σ̄

(
K [M−1] (. . . σ̄ (K [1]x + B[1]) . . .

)
+ B[M−1]) + B[M]) .

To set the classification problem we consider a finite set of objects, which are represented
by the vectors xi ∈ R

d , i ∈ I . Let X = {xi |i ∈ I}. There is a R
s-valued classify-

ing function c : R
d �→ R

s , defined on X, which attributes to each object xi its “class”
c(xi) ∈ R

s .
The objective of the training of an ANN amounts to the adjustment of the values of the

parameters K [1], . . . , K [M], B[1], . . . , B[M] in order to achieve the best approximation of
the classifying function c(x) by the output map (2). More specifically one seeks to minimize
the value of the loss function, which measures the discrepancy between the input-output
map of the system and the classification function. For example the least square loss function
has form

C
(
K [M], . . . , K [1], B[M], . . . , B[1]) =

N∑
i=1

∥∥∥c(xi) − F(xi)

∥∥∥
2

2
→ min

K [j ],B[j ]
. (3)

Minimization of (3) results in a problem of nonlinear programming, which even for a
“medium” number of layers can turn rather complex for classical approaches.

In this contribution we base on a continuous-time dynamic or residual network model
for deep learning, with a continuum of layers, labelled by the time variable. The parame-
ters involved at each layer are the values of the controls at the respective instant of time.
The analogue of the composition (2) is the end-point of the trajectory or the output of the
continuous-time control system in their dependence on control.

As in the model, we referred to above, in the control-theoretic setting one seeks for the
values of the parameters (the controls), which provide the best approximation of the classi-
fying function by the output of the control system. Precise formulations and the description
of the model can be found in Section 3.

The setting allows for the application of analytic methods of dynamic optimization such
as dynamic programming, Bellman’s optimality principle and Pontryagin’s maximum prin-
ciple together with the corresponding numerical algorithms. This approach to the deep
learning has been initiated in the last years by a number of scholars; see for example [8, 11,
12] and references therein. The readers must be warned that we consider a very restricted
issue of possible application of the methods of ensemble controllability and ensemble opti-
mal control to the problems of deep learning. Therefore, we only cite the references related
to this concrete topic, leaving aside not only a huge amount of literature on deep learning,
but also on application of the methods of deep learning to the problems of optimal control.

In the contribution we concentrate on finding the classes of control systems, which are
able to guarantee approximation of the classifying functions at each rate. It amounts to
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studying the problems of ensemble controllability of the control systems and the action of
the flows, generated by the control systems, on the manifold of mappings. We formulate
the sufficient criteria (Theorem 5.1, Corollary 5.2) of ensemble controllability and provide
examples of the nonlinear control systems which demonstrate approximate controllability
property in the group of diffeomorphisms of Rn (Theorem 6.3), of a torus Tn (Theorem 6.6)
and of the 2-dimensional sphere S (Theorems 6.7 and 6.10).

2 Neural Networks Modelled by Control Systems

It is an easy task to reformulate optimization problem (2)–(3) as an optimal control prob-
lem for a discrete-time controlled dynamic system. If one sets the variables z1, z2, . . . , zM ,
which satisfy the relations

z1 = x, zj+1 = σ̄
(
K [j+1]zj + B[j+1]) , j = 1, . . . , M − 1, (4)

then the map, defined by (2), coincides with the “end-point map”

F(x,K [1], . . . K [M], B[1], . . . , B[M]) = zM . (5)

Alternatively one can introduce the intermediate variables yj and define the dynamics

z1 = x, yj+1 = K [j+1]zj + B[j+1], zj+1 = σ̄
(
yj+1

)
, j = 1, . . . , M − 1, (6)

getting again formula (5) for the map (2).
Denote zi

j (respectively yi
j , z

i
j ) the points of the trajectories of (4) (respectively (6)),

which start with the initial data zi
1 = xi ∈ X, i ∈ I . Then, the problem of the best least

square approximation (3) takes the form

Ĉ
(
K [2], . . . , K [M], B[2], . . . , B[M]) =

∑
i∈I

∥∥∥c(xi) − zi
M

∥∥∥
2

2
→ min . (7)

Problems (4), (7), respectively (6), (7) are Mayer problems of optimal control for the
control systems with discrete time with free end-point. There are quite few numerical algo-
rithms developed for this class of problems, but we do not treat them in this contribution,
making emphasis instead on the continuous-time control systems. 1

The way to the representation of the input-output map (5)–(6) as an output of a
continuous-time control system is rather straightforward. Let us consider a system, which
for the sake of the computational simplicity we choose control-linear:

ż = f 0(z)u0(t) +
r∑

i=1

f i(z)ui(t), z ∈ R
m. (8)

For the purpose of our illustration we choose smooth vector field f 0(z) to be nonlinear, and
the vector fields f 1(z), . . . , f r (z), to form a basis of the space of the affine vector fields in
R

m.
Require the diffeomorphism ef 0(z) to coincide with σ̄ (z), so that the map σ̄ (z) is gener-

ated by control system (8), driven by the constant control u(t) = (1, 0, . . . , 0) on a unit time

1It is worth mentioning that the theoretical study of the discreet-time optimal control problems mani-
fests additional complexities in comparison with the continuous-time case, unless additional regularity
assumptions, such as convexity are imposed.
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interval. Each affine diffeomorphism Kx+B, with detK > 0, can be represented as a com-
position of the diffeomorphisms ea(z), where a(z) are affine vector fields inRm. Hence, such
diffeomorphisms are generated by the control system (8), driven by the piecewise-constant
controls.

Therefore the composition (2) or, the same the output map (5) of the discrete-time system
(6) can be represented as the end-point map of the continuous-time system (8), driven by a
piecewise-constant control.

3 Ensemble Optimal Control Model for the Training
of Control-Theoretic ANN

3.1 Ensemble Optimal Control Model

We consider a training set X = {x1, . . . , xN } ⊂ M, consisting of N points of a connected
Riemannian manifoldM. In what followsM will be a submanifold of Rd .

We set an optimal control model for the training process of an ANN, which involves a
control system in Rd , which

ẋ =
r∑

i=1

f i(y)ui(t), y ∈ M. (9)

We introduce the terminology of the ensembles of points. A finite ensemble of points of
a smooth manifold M is an N -ple γ = (x1, . . . , xN) ∈ MN , whose components xj ∈
M are pairwise distinct: i �= j ⇒ xi �= xj . Thus if �N ⊂ MN stands for the set of
N -ples (x1, . . . , xN) ∈ MN with (at least) two coinciding components, then the space
EN(M) of the ensembles of N points of M is the complement of �N : EN(M) =
MN \ �N = M(N). Note that whenever dimM > 1, M(N) is an open connected subset
and a submanifold ofMN .

Introduce a classifying map c : X → C, where C is a connected Riemannian manifold.
Our goal is to approximate the map c by an action of the flow Pt , generated by the control

system (9) which is driven by a control u(t) = (u1(t), . . . , ur (t)). The flow Pt acts on an
ensemble (x1, . . . , xN) as

Pt (x
1, . . . , xN) = (z1(t), . . . , zk(t))

where zk(t) are the points of the trajectories of the Cauchy problems

żk =
r∑

i=1

f i(zk)ui(t), k = 1, . . . , N, (10)

zk(0) = xk, k = 1, . . . , N . (11)

We introduce an output map
p : M → C,

which is a submersion in the cases we consider.
We fix T > 0 and seek to minimize

1

2

N∑
k=1

∥∥∥p(zk(T )) − c(xk)

∥∥∥
2

(12)

under constraints (10)–(11).
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The infimum of (12) is either positive or null. The distinction is related to the presence
or the lack of controllability of system (9) in the space of finite ensembles of points. The
problems of controllability have been addressed in [4], where we arranged examples of the
systems, which are controllable in the space of finite ensembles of points. We proved that
for arbitrary N generic r-ples of vector fields f 1(z), . . . , f r (z) ∈ Vect

(
Rd

)
manifest this

property.
Note that even for ensemble controllable systems, the greater is N , more complex are the

controls u1(t), . . . , ur (t), which are needed to achieve controllability.
For this reason we opt for a tradeoff between the rate or quality of the approxima-

tion (minimization of (12)) and the complexity of the needed control, introducing the loss
functional J

J = 1

2

N∑
k=1

∥∥∥p(zk(T )) − c(xk)

∥∥∥
2 + β

2

∫ T

0

(
r∑

i=1

|ui(t)|2
)

dt → min . (13)

Problem (10)–(11)–(13) is Bolza optimal control problem with free end-point. In what
regards study of the optimal control problem we limit ourselves to the formulation (in the
following subsection) of the first-order optimality condition for the problem. In the rest of
the contribution we concentrate on the problems of ensemble controllability.

3.2 Equations of Pontryagin Maximum Principle for Ensemble Optimal Control
Problem (10)–(11)–(13)

Let z = (z1, . . . , zN ), ψ = (ψ1, . . . , ψN), u = (u1, . . . , ur ), where zk ∈ R
d , ψjk ∈

R
d∗

, k = 1, . . . , N , u ∈ R
r .

We introduce the pre-Hamiltonian for (10), (13)

H(z, ψ, u) =
r∑

i=1

Fi(z, ψ)ui − β

2

(
r∑

i=1

u2i

)
, (14)

where

Fi(x, ψ) =
N∑

k=1

ψkfi(zk), i = 1, . . . , r .

The adjoint equations of the corresponding pre-Hamiltonian system are

ψ̇k = −∂H

∂zk

= −ψk

r∑
i=1

∂fi

∂z
(zk)ui(t), k = 1, . . . , N . (15)

The end-point conditions for the adjoint variables are

ψk(T ) = −(p(zk(T )) − c(xk))∗ ∂p

∂z
(zk(T )), k = 1, . . . , N . (16)

According to the Pontryagin’s Maximum Principle if ũ(t), z̃(t) are the optimal control
and the corresponding optimal trajectory of the problem, then there must exist β ≥ 0 and
an adjoint covector ψ̃(t), which satisfy the (15) and (16) and such that

H(z̃(t), ψ̃(t), ũ(t)) = max
u

H(z̃(t), ψ̃(t), u).

By the maximality condition we get ∂H
∂ui

|(ũ(t),z̃(t)) = 0, i = 1, . . . r , which in the normal
(β > 0) case implies:

ui = β−1Fi(z, ψ), i = 1, . . . , r . (17)
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Substituting expressions (17) into pre-Hamiltonian (14) we obtain the maximized (with
respect to u) Hamiltonian

M(z, ψ) = β−1

2

r∑
i=1

(Fi(z, ψ))2 .

As we already said minimization of the Bolza functional (13) on the set of trajecto-
ries (10)–(11) is an interesting example of a sequence of sub-Riemannian Bolza problems
depending on the cardinalityN of the ensemble (the training set). The complexity of optimal
controls for these problems is known to grow with the cardinality. It is rather unrealis-
tic to expect a possibility to integrate Hamiltonian equations of the Maximum Principle
(10)–(11)–(14)–(15)–(16)–(17) for a nonlinear control system (10), which is able to solve
the interpolation or ensemble controllability problem for each N . In such cases the use
of the direct numeric methods for the solution of the variational problem (10)–(11)–(13)
looks more realistic, and also for the numeric methods Hamiltonian (14), (17) plays impor-
tant role. We plan to advance in this direction in our future research. In what follows we
study interpolation, or ensemble controllability problems, or more generally approximate
controllability in the spaces of mappings.

4 Finite Ensemble Controllability via Lie Algebraic Methods

We approach ensemble controllability from the viewpoint of geometric control theory, in
the spirit of what has been done in our previous publication [4]. See also preprint [12] where
the Lie algebraic methods are applied to a different class of systems in the context of deep
learning.

We start with basic definitions.

Definition 4.1 (finite ensemble controllability) System (9) has the property of finite ensem-
ble controllability if for each N = 1, 2, . . ., for each T > 0 and for any two N -ples xα =
(x1

α, . . . , xN
α ), xω = (x1

ω, . . . , xN
ω ) ∈ M(N) there exists a control u(t) = (u1(t), . . . , ur (t))

which steers the corresponding system (10) from xα to xω in time T .

Remark 4.1 If system (10) can steer the point xα to xω in time T > 0 by means of a control
u(t), t ∈ [0, T ], then it can do the same in any time T ′ > 0 by means of the control
T
T ′ u

(
T
T ′ t

)
, t ∈ [0, T ′].

For a smooth vector field X ∈ VectM consider its N -fold - the vector field on M(N),
defined as XN(x1, . . . , xN) = (X(x1), . . . , X(xN)). System (10) can be given form γ̇ =
XN(γ ), γ = (x1, . . . , xN) ∈ M(N).

For X, Y ∈ VectM, and N ≥ 1 we define the Lie bracket of the N -folds XN, YN on
M(N) “componentwise”: [XN, YN ] = [X, Y ]N - the N -fold of the Lie bracket [X, Y ] of
X, Y onM. The same holds for the iterated Lie brackets.

We denote Lie{f1, . . . , fr } the Lie algebra generated by the vector fields f1, . . . , fr , and
Lie{f N

1 , . . . , f N
r } the Lie algebra generated by their N -folds.

For the vector fields f1, . . . fr onM, their N -folds f N
1 , . . . , f N

r are called bracket gen-
erating on M(N), if the evaluations of the iterated Lie brackets of f N

1 , . . . , f N
r at each

γ ∈ M(N), span the tangent space TγM(N) = ⊗N
j=1 Txj

M. Evidently for N > 1 the
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bracket generating property for f N
1 , . . . , f N

r on M(N) is strictly stronger, than the same
property for f1, . . . , fr onM.

Rashevsky-Chow theorem [2] implies

Proposition 4.2 If dimM > 1 and ∀N ≥ 1 the N -folds f N
1 , . . . , f N

s are bracket gen-
erating on M(N), then system (9) has the property of finite ensemble controllability on
M.

In [4] we proved that the latter property holds for each N and a generic r-ple f1, . . . , fr

of vector fields. In the present context it is more convenient to check a stronger property,
which implies the bracket generating property for any N .

Let us introduce the standard notation for the seminorms in the space of smooth vector
fields on a manifoldM: for a compact K ⊂ M and r ≥ 0

‖X‖r,K = sup
x∈K

⎛
⎝ ∑

0≤|β|≤r

∣∣DβX(x)
∣∣
⎞
⎠ , ‖X‖r = sup

x∈M

⎛
⎝ ∑

0≤|β|≤r

∣∣DβX(x)
∣∣
⎞
⎠ .

In the formulations of controllability results we invoke the following assumptions for the
vector fields f1, . . . , fr ∈ Vect(M), which define control system (9).

Assumption 1 (boundedness) The vector fields fj (x), j = 1, . . . , r , are C∞-smooth and
bounded onM together with their covariant derivatives of each order.

Assumption 2 (Lie algebra approximating property) A system of smooth vector fields
f1, . . . , fr ∈ Vect(M) demonstrates the Lie algebra approximating property, if ∃m ≥ 1
such that for each Cm-smooth vector field Y ∈ Vect(M) and each compact K ⊂ M there
holds:

inf
{‖Y − X‖0,K | X ∈ Lie{f1, . . . , fr }

} = 0.

We show that this property suffices to guarantee finite ensemble controllability.

Theorem 4.3 (Lie algebra approximating property and finite ensemble controllability) If
dimM > 1 and the vector fields f1, . . . , fr meet Assumptions 1 and 2, then ∀N ≥ 1 system
(10) is controllable in the space EN(M) of ensembles of N points.

Proof Fix N . Choose an ensemble γ = (x1, . . . , xN) ∈ M(N). We prove that the N -folds
f N
1 , . . . , f N

r are bracket generating at γ .
Pick m for which the Lie algebra approximating property holds. Consider the space

Vectm(M) of Cm-smooth vector fields onM and define for each γ ∈ M(N) the evaluation
map Eγ : Vectm(M) �→ TγM(N):

Eγ (Y ) = YN(γ ) =
(
Y (x1), . . . , Y (xN)

)
.

This linear map is obviously surjective and continuous with respect to C0-metric in
Vectm(M). By virtue of Assumption 2 the image Eγ (Lie{f1, . . . , fr }) is a dense linear
subspace of TγM(N) and hence must coincide with it.

Remark 4.2 Below we provide formulations for specific cases in which dimM = 1.
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5 Lie Algebra Strong Approximating Property: Controllability
in the Diffeomorphism Groups and theManifolds of Mappings

In the previous section we dealt with finite ensembles of points. In this section we show that
if a stronger approximating property holds for the Lie algebra Lie{f1, . . . , fr }, associated to
control system (9), then approximate controllability of system (9) holds in the group Diffc0
of diffeomorphisms onM and on the manifolds of smooth mappings ofM.

In our proofs we make occasional use of few notations of chronological calculus for
the flows generated by the time-dependent vector fields [1]. In particular for a vector field

Xt(x), which is smooth in x and locally integrable in t we denote by
−→
exp

∫ t

t0
Xsds the flow

Pt , generated by the time-dependent differential equation ẋ = Xt(x), Pt0 = I . If Xt is time
independent: Xt(x) ≡ X(x), then the flow is denoted by Pt = e(t−t0)X . A brief presentation
of the chronological calculus can be found in [2].

The following definition has been used in [4]. Put for 
 > 0 and a compact K ⊂ M:

Lie

1,K {f1, . . . , fr } = {

X(x) ∈ Lie{f1, . . . , fr }
∣∣ ‖X‖1,K < 


}
.

Assumption 3 (Lie algebra strong approximating property) A system of smooth vector
fields f1, . . . , fr ∈ Vect(M) possesses Lie algebra strong approximating property, if
∃m ≥ 1, such that for each Cm-smooth vector field Y ∈ Vect(M) and each compact
K ⊂ M ∃
 > 0 for which:

inf

{
sup
x∈K

|Y (x) − X(x)|
∣∣∣∣ X ∈ Lie


1,K {f1, . . . , fr }
}

= 0. (18)

Denote by Diffc0 the connected component of the identity of the group of the compactly
supported diffeomorphisms ofM.

Theorem 5.1 (C0-approximate controllability in the group of diffeomorphisms) Let P̂ ∈
Diffc0(M). Let C∞-smooth vector fields fj (x), j = 1, . . . , r, meet Assumptions 1 and 3.
Then for each K ⊂ M and each ε > 0 there exists a control u(t) = (u1(t), . . . , ur (t)), t ∈
[0, T ], such that for the corresponding flow

Pt = −→
exp

∫ t

0

⎛
⎝

r∑
j=1

fj (x)uj (τ )

⎞
⎠ dτ, x ∈ M (19)

generated by system (9), the diffeomorphism PT ε-approximates P̂ in C0 on K:∥∥∥P̂ − PT

∥∥∥
0,K

< ε.

Proof Join the identity I with P̂ by a curve t �→ P̂t (x), t ∈ [0, T ] in Diffc0(M). Without
loss of generality we may assume that (t, x) �→ P̂t (x) is C1-smooth. The curve t �→ P̂t (x)

can be represented as a flow P̂t = −→
exp

∫ t

0Yτ dτ , generated by a non autonomous vector field

Yt , which is continuous in t ; one can take Yt (x) = (Pt )
−1∗

dPt

dt
(x).

Denote by Kt, t ∈ [0, T ] the images of a compact set K under the flow P̂t . As far
as for each t ∈ [0, T ] condition (18 holds for the vector fields Yt and control system (9),
then one can apply Theorem 4.3 of [4] to the vector field Yt , the diffeotopy Kt, t ∈ [0, T ]
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and system (9). According to this Theorem for each ε > 0 there exists a control u(t) =
(u1(t), . . . , ur (t)), t ∈ [0, T ] such that for the flow (19)

sup
x∈K

∥∥∥P̂ (x) − PT (x)

∥∥∥
0,K

< ε.

The approximation result, we have just proved, can be extended from diffeomorphisms
ofM to a broader class of continuous maps ϕ : M → C.

One of possible constructions can be realized on the manifold M × C. Consider the
projection p : M × C → C and a diffeomorphic immersion ı : M → M × C. We opt for
ı(x) = (x, ν), ∀x ∈ M, where ν is a selected point of C. Let the metric d on M × C be
defined by d = dM + dC .

Let ϕ : M → C be a continuous mapping which is approximately C1-smoothly homo-
topic to the constant mapping ϕ0(x) = ν. This means that in any C0-neighborhood of
ϕ there are C1-smooth functions ϕ̂, which are contractible to the constant function by
C1-smooth homotopies ϕ̂t (x), t ∈ [0, 1]:

ϕ̂0(x) ≡ ν, ϕ̂1(x) = ϕ̂(x).

Without loss of generality we can limit ourselves to the case in which ϕ = ϕ̂ is C1-
smooth and C1-smoothly homotopic to the constant function. Consider the graphs of the
mappings ϕt (x) : Γt = {(x, ϕt (x)), x ∈ M} ⊂ M × C. For each t the sets Γt are
diffeomorphic to Γ0 and toM. The flow P̂t , generated on the manifoldM×C by the vector
field ∂ϕt (x)

∂t
∂
∂c
, defines the diffeotopy of the graphs:

Γt = P̂t (Γ0), t ∈ [0, 1]; P1(x, ν) = (x, ϕ(x)), ∀x ∈ M.

Let control system (9), defined now on M × C, possess the Lie algebra strong approxi-
mating property. By the previous theorem for each compact K ⊂ M and each ε > 0 there
exists a control u(·) = (u1(·), . . . , ur (·)), such that for the flow

Pt = −→
exp

∫ t

0

⎛
⎝

r∑
j=1

fj (x)uj (τ )

⎞
⎠ dτ, x ∈ M × C (20)

there holds ‖P1 − P̂1‖0,K×{ν} < ε. Then

∀x ∈ K : ε > dM(p ◦ P1(x, ν), p ◦ P̂1(x, ν)) = dM(p ◦ P1(x, ν), ϕ(x))

and we conclude with the corollary.

Corollary 5.2 Let control system (9), defined onM × C, meet Assumptions 1 and 3. Then
the system is C0-approximately controllable on the manifold of mappings: for each contin-
uous mapping ϕ : M → C, which is approximately smoothly homotopic to a constant, each
ε > 0 and each compact K ⊂ M there exists u(t) = (u1(t), . . . , ur (t)), t ∈ [0, T ], such
that for the corresponding flow (20) onM×C there holds ‖ϕ(x) − p ◦ PT ◦ ı(x)‖0,K < ε.

Recent publication [6] contains an interesting example of five polynomial vector fields
X1, . . . , X5 in R

n, which generate the Lie algebra of all the polynomial vector fields in
R

n and as a consequence guarantee in the terminology of [6] the “universal interpolation
property”. As far as polynomial vector fields Cm -approximate each Cm-smooth vector
field X1, . . . , X5 possess Lie algebra strong approximating property, i.e meet Assumption
3 (and hence Assumption 2). Then by Theorem 4.3, the control system ẋ = X1u1(t) +
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· · · + X5u5(t) possesses the property of ensemble controllability for finite ensembles of
points (equivalent to the “universal interpolation property”), and moreover by Theorem 5.1
possesses the property of C0 approximate controllability in the group of diffeomorphisms.

An interesting algebraic question consists of finding a minimal collection of the poly-
nomial vector fields in R

n, which would meet Assumption 3 or more particularly generate
a Lie algebra of all the polynomial vector fields. From our treatment of the case of a 2D
sphere, accomplished in the next section, one gets an idea that the representation theory for
GL(n) can be instrumental for a construction of such minimal collection.

6 Ensemble Controllable Systems on Euclidean SpacesRd, tori Td

and the 2-dimensional Sphere S

In this section we consider several manifolds, such as Euclidean spaces Rd , d-dimensional
tori Td and 2-dimensional sphere S. We provide examples of control systems on the
manifolds, which possess controllability properties for finite ensembles and properties of
approximate controllability in the group of diffeomorphisms of the manifolds.

For the sake of brevity along the Section we will call system ensemble controllable if the
conclusions of Theorems 4.3 and 5.1 hold for it.

The key point of the proofs is the verification of the Lie algebra strong approximat-
ing condition. Such a verification regards two moments. First we have to establish kind
of “Lie rank condition” — the approximability of the vector fields by the vector fields
from Lie{f1, . . . , fr }. The second issue is the regularity of these approximations, including
boundedness of the derivatives of the approximants.

6.1 Ensemble Controllable System inRd

Consider control-linear system in R
d :

ż =
d∑

i=1

fi(z)ui +
d∑

i=1

gi(z)vi, z ∈ R
d , (21)

where

fi(z) = e−γ (z) ∂

∂zi

, gi = ∂

∂zi

, i = 1, . . . , d, (22)

and

γ (z) = 〈z, z〉
2

= z21 + · · · + z2n

2
.

Putting z = (z1, . . . , zd), u = (u1, . . . , ud), v = (v1, . . . , vd) we represent (21)–(22) in a
vectorial form

ż = e−γ (z)u + v, z, u, v ∈ R
d . (23)

We call it GH system as far as Gaussian density function e−γ (z) and Hermite polynomials
play important role in its study.

We consider the action of system (23) onto an ensemble of points (x1, . . . , xN) ∈ (
R

d
)N

.
To establish the property of ensemble controllability we verify the Lie algebra strong
approximation condition for GH system.

Proposition 6.1 Vector fields (22) meet Assumptions 1 and 3.
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Proof Direct computation of the iterated Lie brackets of vector fields (22) gives

ad
mj1
g1 · · · admjd

gd
fj (z) = ∂mj e−γ (z)

∂z
mj1
1 . . . ∂z

mjd

d

∂

∂zj

, mj = mj1 + · · · + mjd .

As one knows

∂mj e−γ (z)

∂z
mj1
1 . . . ∂z

mjd

d

= (−1)mj Hmj1,...,mjd
(z)e−γ (z), z = (z1, . . . , zd), (24)

where Hmj1,...,mjd
(z1, . . . , zd) are multivariate Hermite polynomials. Thus for each

j = 1, . . . , d and each Hermite polynomial Hmj1,...,mjd
(z) the vector field

Hmj1,...,mjd
(z)e−γ (z) ∂

∂zj
belongs to the Lie algebra generated by vector fields (22).

Hermite polynomials {Hm1,...,md
(z1, . . . , zd)| m1 ≥ 0, . . . , md ≥ 0} form a complete

orthogonal system in L2(R
d) with respect to the weighted scalar product

〈f, g〉 = 1

(2π)d/2

∫

Rd

f (z)g(z)e−γ (z)dx.

Any function from L2(R
d) can be expanded into a L2-convergent series in Hermite poly-

nomials. To verify the Lie algebra strong approximating condition one has to prove that for
each sufficiently smooth vector field Y (X) = ∑d

j=1 Yj (z)
∂

∂zj
with compact support in R

d ,
there exists 
 > 0 such that for each j = 1, . . . , d and each ε > 0 one can find a linear
combination Xj of the functions (24) for which

‖Xj‖1,K ≤ 
, ‖Xj − Yj‖0,K ≤ ε.

Suppose Y (x) to be C[ d
2 ]+2-smooth. Pick its component Yj (x) and consider the

orthogonal expansion of the function Yj (z)e
γ (z) in Hermite polynomials:

Yj (z)e
γ (z) ∼

∑
m

cmHm(z), m = (m1, . . . , md) ∈ N
d . (25)

For |m| = m1 + · · · + md let Sn(z) = ∑
m: |m|≤n cmHm be a partial sum of this expansion.

Lie algebra strong approximating condition is implied by the following Lemma.

Lemma 6.2 For Yj (z) being C

[
d
2

]
+2

-smooth the functions Sn(z)e
−γ (z) converge uniformly

to Yj (z), as n → ∞, while ∂
∂zi

(
Sn(z)e

−γ (z)
)
converge uniformly to

∂Yj (z)

∂zi
and hence are

bounded by a constant 
 independent of n.

Proof of the lemma can be found in the Appendix.

By virtue of Theorems 4.3 and 5.1 and Proposition 6.1 there holds

Theorem 6.3 (ensemble controllability of GH system) i) For d > 1 system (23) is ensemble
controllable onM = R

d ;
ii) For M = R system (23) is approximately controllable in the group of diffeomor-

phisms Diffc0(R);
iii) For M = R system (23) can transform a finite ensemble

(
x1α, · · · , xN

α

)
into another

ensemble
(
x1
ω, · · · , xN

ω

)
if and only if they are equally ordered: xi

α < x
j
α ⇔ xi

ω < x
j
ω, ∀i, j .
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6.2 Ensemble Controllability on the ToriTd

We start with d = 1. Consider the control-linear system on T1:

ϕ̇ = u0 + u1 sinϕ + u2 sin 2ϕ, (26)

generated by the vector fields

f0(ϕ) = ∂

∂ϕ
, f1(ϕ) = sinϕ

∂

∂ϕ
, f2(ϕ) = sin 2ϕ

∂

∂ϕ
. (27)

Here ϕ is the angle coordinate on T
1.

The action of system (26) on an ensemble of N points (ϕ1
α, . . . , ϕN

α ) on T1 is defined by
the equations

ϕ̇j = u0(t) + u1(t) sinϕj + u2(t) sin 2ϕ
j , j = 1, . . . , N,

ϕj (0) = ϕj
α

Lemma 6.4 Vector fields (27) meet Assumptions 1 and 3.

Proof Boundedness is obvious.
We prove that the Lie algebra Lie{f0, f1, f2}, generated by vector fields (27), contains

the vector fields sin kϕ ∂
∂ϕ

, cos kϕ ∂
∂ϕ

, k = 1, 2, . . ..

As far as
[

∂
∂ϕ

, sin kϕ ∂
∂ϕ

]
= k cos kϕ ∂

∂ϕ
, it suffices to prove that sin kϕ ∂

∂ϕ
, k ≥ 1 are

contained in Lie{f0, f1, f2}. This can be done by induction in k, given that for k > 1
[
sinϕ

∂

∂ϕ
, sin kϕ

∂

∂ϕ

]
= (k − 1) sin((k + 1)ϕ) − (k + 1) sin((k − 1)ϕ).

Consider a vector field Y (ϕ) ∂
∂ϕ

on T1 together with its Fourier expansion

Y (ϕ)
∂

∂ϕ
∼ a0

2

∂

∂ϕ
+

∞∑
k=1

(
ak cos kϕ

∂

∂ϕ
+ bk sin kϕ

∂

∂ϕ

)
.

By the aforesaid partial sums of the series belong to Lie{f0, f1, f2}. For Y (ϕ) being C2-
smooth the partial sums Sn(ϕ) of the Fourier series converge uniformly to Y (ϕ), as n → ∞.
The derivatives S′

n(ϕ) converge uniformly to Y ′(ϕ) and hence are equibounded, wherefrom
the Lie algebra strong approximating condition follows.

To extend the construction to the d-dimensional torus Td = T
1 × · · · ×T

1 we introduce
the coordinates ϕ1, . . . , ϕd in T

d and define the vector fields

f 0
i = ∂

∂ϕi

, f 1
i = sinϕi

∂

∂ϕi

, f 2
i = sin 2ϕi

∂

∂ϕi

, i = 1, . . . , d; (28)

gi =
⎛
⎝

d∑
j=1

sinϕj

⎞
⎠ ∂

∂ϕi

, i = 1, . . . , d .

Consider the control-linear system

ϕ̇k = u0k + sinϕku1k + sin 2ϕku2k +
⎛
⎝

d∑
j=1

sinϕj

⎞
⎠ vk, k = 1, . . . d . (29)
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Lemma 6.5 The Lie algebra LTd generated by vector fields (28) contains all the monomial
vector fields of the form

(∏
i∈I

cos kiϕi

∏
i∈Ic

sin kiϕi

)
∂

∂ϕj

, j = 1, . . . , d (30)

where I ∪ Ic = {1, . . . , d}, I ∩ Ic = ∅.

Proof By the previous lemma the monomial vector fields cos kiϕi
∂

∂ϕi
, sin kiϕi

∂
∂ϕi

, i =
1, . . . , d, belong to the Lie algebra. So do the vector fields

[
f 0

j , gi

]
= cosϕj

∂

∂ϕi

,
[
f 0

j ,
[
f 0

j , gi

]]
= − sinϕj

∂

∂ϕi

for i �= j .
If sin kϕj

∂
∂ϕi

for k ≤ l belong to LTd , then
[
f 1

j , sin lϕj

∂

∂ϕi

]
= l

2

(
sin((l + 1)ϕj )

∂

∂ϕi

− sin((l − 1)ϕj )
∂

∂ϕi

)

and by induction in l we conclude that all the monomial vector fields cos lϕj
∂

∂ϕi
,

sin lϕj
∂

∂ϕi
, i, j = 1, . . . , d, belong to LTd .

We define the degree of a monomial vector field (30) as the cardinality of the set {i ∈
{1, . . . , d}|ki �= 0} and proceed by induction in the degree. Each monomial vector field of
degree s + 1 is either M(ϕ) cos kαϕα

∂
∂ϕj

or M(ϕ) sin kαϕα
∂

∂ϕj
, where M(ϕ) has degree s

and does not depend on ϕα .
In the first case if M(ϕ) does not depend on ϕj , and hence[

M(ϕ)
∂

∂ϕα

, sin kαϕα

∂

∂ϕj

]
= kαM(ϕ) cos kαϕα

∂

∂ϕj

.

If M(ϕ) depends on ϕj , then α �= j and one can easily find a monomial M1(ϕ) of degree
s such that ∂

∂ϕj
M1(ϕ) = M(ϕ). Then

[
cos kαϕα

∂

∂ϕj

,M1(ϕ)
∂

∂ϕj

]
= M(ϕ) cos kαϕα

∂

∂ϕj

.

In this way we conclude the step of induction and the proof.

The Lie algebra strong approximating property for (29) follows from the lemma by
classical approximation results for multivariate trigonometric polynomials.

In what regards the formulation of criteria of finite ensemble controllability there is some
peculiarity in the case of T1. Note that for a given orientation of T1 any ensemble of N

points on T
1 is ordered up to cyclic permutation. Two ensembles are equally ordered if the

sequences of their indices are the same up to a cyclic permutation.

Theorem 6.6 Control system (26) and (29) have the following ensemble controllability
properties:

i) for d > 1 system (29) is ensemble controllable on Td ;
ii) forM = T

1 system (26) is C0-approximately controllable in Diff0(T
1);

iii) two finite ensembles onT1 can be steered one into another by means of control system
(26) in time T > 0, if and only if they are equally ordered.
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6.3 Ensemble Controllability on the 2-dimensional Sphere

We construct examples of control systems on the 2-dimensional sphere S ⊂ R
3, which

demonstrate the property of ensemble controllability. Both examples are related to the study
in [3] of the controllability of the Navier-Stokes equation on S.

We consider a Riemannian structure on S, induced by the Euclidean structure of R3 ⊃ S.
If f : S → R is the restriction onto S of a smooth function F : R3 → R, then the spherical
gradient

∇Sf (x) = ∇F − 〈∇F, x〉Ex

is the projection of the gradient ∇F onto the tangent bundle T S to S. Here Ex stands for
the Euler vector field in R3: Ex = ∑3

i=1 xi∂i .
In general if X is a smooth vector field in R

3, then the projection onto T S of the
restriction of X to S is

prSX(x) = X(x) − 〈X(x), x〉E(x), x ∈ S,

which will be a smooth vector field on S.
Consider standard symplectic structure σx(·, ·) on S ⊂ R

3 defined by the area form. For
x ∈ S, ξ, η ∈ TxS one has σx(ξ, η) = 〈x, ξ, η〉, where the latter trilinear form is the mixed
product in R

3.
We introduce the spherical divergence divSprSX(x) of prSX(x) with respect to the area

form σ . To this end we consider the interior product of the vector field prSX(x) with the
differential 2-form σ ; it is the 1-form defined by

η → σ(prSX(x), η) = 〈x × prSX(x), η〉 = 〈x × X(x), η〉, (31)

where × stands for the cross product in R
3. The exterior derivative of the 1-form is the 2-

form ψ(x)σ , whose coefficient ψ(x) coincides with the spherical divergence divSprSX(x).
To compute the exterior derivative we apply Stokes theorem to the integral of the 1-form

(31) along a closed curve on S and conclude that it equals to the flow of the curl of the
vector field x × X(x) through the spherical area circumvented by the curve. Hence

divSprSX(x) = 〈curl (E(x) × X(x)) , E(x)〉 = 〈(divX)E(x),E(x)〉 −
divE(x)〈X(x),E(x)〉 = divX − 3〈X(x), E(x)〉.

In particular divSprSX(x) = div X, if X is tangent to S.
Once we have defined spherical divergence divS and spherical gradient∇S, then spherical

Laplacian of a function f on S is defined as:

�Sf = divS∇Sf .

Consider the homogeneous harmonic polynomials on R
3 \ 0 and take their restrictions

onto S; those are called spherical harmonics. We call them linear, quadratic, cubic, of nth
degree etc., if they are restrictions of the homogeneous polynomials of the corresponding
degree. Spherical harmonics are the eigenfunctions of the spherical Laplacian.

Restriction of any smooth function ϕ in R
3 onto S gives rise to the Hamiltonian vector

field −→ϕ on S, which is defined by the relation:

(−→ϕ (x), η) = σ(∇ϕ(x), η) = 〈x, ∇ϕ(x), η〉 = (x × ∇ϕ(x), η), η ∈ TxS;
hence −→ϕ (x) = x × ∇ϕ(x), x ∈ S.

We provide an example of Hamiltonian control system which has the property of
approximate controllability in the group of the area-preserving diffeomorphisms on S.
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Theorem 6.7 Given three independent linear harmonics (l1, x), (l2, x), (l3, x), a quadratic
harmonic q(x), a cubic harmonic c(x) and the corresponding Hamiltonian vector fields

−→
l 1(x),

−→
l 2(x),

−→
l 3(x),

−→
q (x),

−→
c (x), (32)

the control system

ẋ =
3∑

i=1

−→
l i (x)ui(t) + −→

q (x)v2(t) + −→
c (x)v3(t) (33)

is controllable in the space of finite ensembles on S and approximately controllable in the
group SDiff0 (S) of the area-preserving diffeomorphisms of S.

Proof The following statement has been proved in [3, Theorem 10.4].

Proposition 6.8 The Lie algebra generated by the Hamiltonian vector fields (32) contains
all the symplectic vector fields

−→
h , which correspond to harmonic homogeneous polynomi-

als (spherical harmonics) h(x), and therefore is dense in the space of all the divergence-free
vector fields.

Spherical harmonics form a complete system in L2(S). To prove the Lie algebra strong
approximating condition we consider the expansions of functions on S in Laplace series
with respect to spherical harmonics. We apply a result by M.Ganesh, I.G.Graham &
J.Sivaloganathan [9, Theorem 3.5] on the best approximation by Laplace series of smooth
functions on the spheres Sm together with their derivatives up to some order.

Lemma 6.9 Let C(S) be the space of continuous functions on the sphere and Pn be the
space of spherical polynomials of degree ≤ n. For each n ≥ 1 there exist continuous
linear operator Tn : C(S) �→ Pn and for every l ≥ 0 a constant bl such that for all
k = 0, . . . , l; f ∈ Cl(S)

‖f − Tnf ‖Ck ≤ bl

(
1

n

)l−k

‖f ‖Cl .

(This result builds on the previous work by D.L.Ragozin and D.J.Newman & H.S.
Shapiro; see references in [9]).

Let Y (x) be a C2-smooth divergence-free (Hamiltonian) vector field on S and Υ the
corresponding C3-smooth Hamiltonian. By Lemma 6.9

‖Υ − TnΥ ‖C2 ≤ b2

n
‖Υ ‖C3

for some constant b2 > 0.
This implies that TnΥ and its first and second derivatives DTnΥ, D2TnΥ converge uni-

formly to Υ, DΥ, D2Υ correspondingly as n → ∞. This means that the Hamiltonian

vector fields
−−→
TnΥ converge uniformly to Y , and their derivatives D

−−→
TnΥ converge uniformly

to DY as n → ∞. Hence the derivatives D
−−→
TnΥ are equibounded, and the vector fields

−−→
TnΥ

are equilipschitzian. According to Proposition 6.8 the vector fields
−−→
TnΥ belong to the Lie

algebra generated by the vector fields (32) and hence the Lie algebra strong approximating
condition holds for control system (33).
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We now pass to finding an example of control system, which is approximately control-
lable in the group of smooth diffeomorphisms Diff0 (S) of S.

By Helmholtz-Hodge theorem each smooth vector field f on S can be represented as a
sum of a gradient vector field f ∇ = ∇SF and an area-preserving (and symplectic in the 2D
case) vector field f �. One may think of constructing the desired example, by joining some
gradient vector fields to Hamiltonian vector fields (32).

Theorem 6.10 Let
−→
l 1(x),

−→
l 2(x),

−→
l 3(x),

−→
q (x),

−→
c (x), be the Hamiltonian vector fields

(32). Let l̃(x) = (l, x), q̃(x), be a linear and a quadratic spherical harmonics, and l̃′(x) =
∇S(l, x), q̃ ′(x) = ∇Sq̃(x) be the corresponding gradient vector fields.

The control system on the 2-dimensional sphere S

ẋ =
3∑

i=1

−→
l i (x)ui(t) + −→

q (x)v2(t) + −→
c (x)v3(t) + l′(x)w1(t) + q̃ ′(x)w2(t) (34)

is controllable in the space of finite ensembles on S and approximately controllable in the
group Diff0 (S) of the diffeomorphisms of S.

Proof Finite ensemble controllability follows immediately from the previous theorem. Key
technical result for proving controllability in Diff0 (S) is

Proposition 6.11 The Lie algebra L, generated by the vector fields
−→
l 1(x),

−→
l 2(x),

−→
l 3(x),

−→
q (x),

−→
c (x), l̃′(x), q̃ ′(x),

contains all the Hamiltonian vector fields
−→
h and all the gradient vector fields ∇Sh,

corresponding to all the spherical harmonics h on S.

Lie algebra strong approximating property would follow from this fact by virtue of
approximation results for spherical harmonics and Laplace series, which we used above in
the proof of Lemma 6.9.

Let Ldiv be the image of the linear space L under the action of the linear operator divS.

Proposition 6.12 The linear space Ldiv contains all the spherical harmonics on S.

Assuming the result to hold, we accomplish the proof of Proposition 6.11. Let h be any
spherical harmonic, which without loss of generality we may assume to be homogeneous.
If h = divSf and f ∈ L then divS∇Sh = αh and hence the vector field −→

p = ∇Sh − αf

is divergence-free and therefore symplectic polynomial vector field on S. Without loss of
generality one may assume that p is a restriction onto S of a harmonic polynomial p̂. 2 All
polynomial symplectic vector field, which correspond to spherical harmonics, belong to L
by Proposition 6.8 and hence ∇Sh ∈ L.

Employing Maxwell’s theorem we can reduce Proposition 6.12 to a weaker statement.

Lemma 6.13 The linear space Ldiv contains all the spherical harmonics if and only if, for
each k, Ldiv contains a homogeneous spherical harmonic of degree k.

2Any restriction of a polynomial in R
3 onto S can be represented as a restriction onto S of a harmonic

(nonhomogeneous) polynomial
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Proof For each l ∈ R
3 the symplectic vector field

−→
l , defines the rotation e

−→
l ∈ SO(3)

of R
3 and of the sphere S. By direct computation the adjoint action Ad

(
e
−→
l
)
of the

rotation onto a gradient vector field ∇Sf (x) transforms it into the gradient vector field

∇Sf (e
−→
l (x)). By Maxwell’s theorem [5] the group of rotations e

−→
l act transitively on the

space of spherical harmonics of a given degree.
By the assumptions of the theorem the Lie algebraL contains linearly independent vector

fields
−→
l 1(x),

−→
l 2(x),

−→
l 3(x). If a spherical harmonic h is homogeneous of degree k and

belongs to Ldiv , then by the aforesaid ∇Sh ∈ L, and acting onto ∇Sh by Ad
(
e
−→
l
)

, l ∈ R
3

we conclude by transitivity that the gradients of all spherical harmonics of degree k are in
L and then the harmonics themselves are in Ldiv .

To prove the existence of spherical harmonics of each degree in Ldiv we start with two
technical lemmas, whose proofs can be found in the Appendix.

Lemma 6.14 For a harmonic polynomial F , which is homogeneous of degree k inR3, there
holds

〈∇F(x), x〉 = kF (x), D2F(x)x = (k − 1)∇F(x),

[∇F(x), Ex] = (2 − k)∇F(x).

Lemma 6.15 For f, g, which are the restrictions onto S of the harmonic polynomials F,G,
homogeneous of degrees k and l in R

3, there holds

divS[∇Sf, ∇Sg] = div[∇Sf, ∇Sg] =
(k − l)(k + l + 3) (〈∇F,∇G〉|S − klfg) . (35)

Corollary 6.16 Let g(x) = x3|S and f (x) = F(x1, x2)|S be the restriction onto S of the
harmonic polynomial F(x1, x2) homogeneous of degree k in the variables x1, x2. Then

divS[∇Sf, ∇Sg] = −(k − 1)(k + 4)kx3f (x1, x2) (36)

and the right-hand side is a spherical harmonic polynomial homogeneous of degree k + 1.

We prove the corollary. Formula (36) follows from (35). As far as x3 and F(x1, x2) are
both harmonic, then

�(x3F(x1, x2))(x) = 2〈∇x3,∇F(x1, x2)〉 = 0

and hence x3F(x1, x2) is harmonic in R
3 and the restriction x3F(x1, x2)|S is a spherical

harmonic of degree k + 1.
Now we complete the proof of Lemma 6.13. As far as the linear harmonic vector field

l̃′ = ∇S l̃, and the quadratic harmonic vector field q̃ ′ = ∇Sq̃ belong to L and the group of

rotations e
−→
l act transitively on the space of spherical harmonics of given degree, we can

obtain by the action the gradients of all the spherical harmonics of degrees 1 and 2 and, in
particular, ∇Sx3 and ∇Sf (x1, x2).

Then [∇Sx3,∇Sf (x1, x2)] ∈ L and by Corollary 6.16

divS[∇Sx3, ∇Sf (x1, x2)] = −12x3f (x1, x2)

with the right-hand side being a spherical harmonic of degree 3, which belongs to Ldiv .
Then by Maxwell theorem we conclude that the gradients of all the spherical harmonics of
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degree 3 belong to L. The proof can be completed by induction in the degree of harmonics
with Corollary 6.16 applied at each induction step.

Appendix. Proofs of technical lemmas

A.1 Proof of Lemma 6.2

As far as the function Yj (x)eγ (x) is C

[
d
2

]
+2

-smooth, the partial sums of series (25) converge
uniformly to it according to [7, Propositions 7.1.2, 7.1.5, Corollary 7.1.3]. 3

Thus for each ε > 0 one can find sufficiently large n for which the partial sums Sn(x) =∑
m: |m|≤n cm1,...,md

Hm1,...,md
(x) satisfy

‖Sn(x) − Yj (x)eγ (x)‖0,K < ε,

and hence
‖Sn(x)e−γ (x) − Yj (x)‖0,K < ε.

To get a bound for the (first) partial derivative, say in x1, of the functions Sn(x)e−γ (x)

we note that
∂

∂x1

(
Hm1,...,md

(x)e−γ (x)
)

= −Hm1+1,...,md
(x)e−γ (x),

and therefore
∂

∂x1

(
Sn(x)e−γ (x)

)
= −

∑
m: |m|≤n

cm1,...,md
Hm1+1,...,md

(x)e−γ (x).

We prove that the latter series
∑

m cm1,...,md
Hm1+1,...,md

(x) is the Fourier-Hermite series

for the function
∂Yj (x)

∂x1
eγ (x) ∈ C

[
d
2

]
+1

and hence converges uniformly to
∂Yj (x)

∂x1
as n → ∞.

Multivariate Hermite polynomials are factorable into the products of univariate Hermite
polynomials:

Hmj1,...,mjd
(x1, . . . , xd) = Hmj1(x1) · · ·Hmjd

(xd)

and therefore we may proceed as in the univariate case. It suffices to prove that given
Yj (x)eγ (x) ∼ ∑

m cmHm(x), x ∈ R it follows

Y ′
j (x)eγ (x) ∼ −

∑
m

cmHm+1(x), x ∈ R. (37)

From the formulae for the Fourier-Hermite coefficients it follows that

cm =
∫
R

Yj (x)Hm(x)dx∫
R
(Hm(x))2e−γ (x)dx

.

Since H ′
m+1(x) = (m + 1)Hm(x) we get

cm =
∫
R

Yj (x)H ′
m+1(x)dx

(m + 1)
∫
R
(Hm(x))2e−γ (x)dx

.

3The convergence is determined by the interplay of two entities: the Christoffel constant Λn (or the related
Lebesgue constant) and the approximation error rate En of the function Yj (x)eγ (x) by means of the n-
truncations of the Hermite series. For the uniform convergence it suffices [7, Proposition 7.1.2] that Λn ∼
n−d as n → ∞ and |En| ≤ n− d

2 −β , β > 0. For the first fact see [7, Proposition 7.1.5]; for the second fact,

valid for C

[
d
2

]
+2

-smooth functions, see [7, Corollary 7.1.3].
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From the identities
∫
R
(Hm(x))2e−γ (x)dx = √

2πm!, m = 0, 1, 2 . . . we conclude that the
denominator coincides with

∫
R
(Hm+1(x))2e−γ (x)dx. Integrating the numerator by parts we

bring it to the form − ∫
R

Y ′
j (x)Hm+1(x)dx and thus conclude (37).

By the above cited approximation results from [7] the partial derivatives ∂
∂xi(

Sn(x)e−γ (x)
)
converge uniformly to

∂Yj (x)

∂xi
as n → ∞ and hence are upper equibounded

for all n.

A.2 Proof of Lemma 6.14

First equality is the well-known Euler identity for homogeneous functions.
Differentiating the identity

∀t ∈ R, x, y ∈ R
3 : ∇F(x + ty) · (x + ty) = kF (x + ty)

in t at t = 0 we conclude

D2F(x)y · x + ∇F(x) · y = k∇F(x) · y

and hence ∀y : D2F(x)x · y = (k − 1)∇F(x) · y wherefrom the second equality follows.
The third equality follows from the previous two directly.

A.3 Proof of Lemma 6.15

By direct computation with the use of Euler identity:

[∇Sf, ∇Sg] = [pr∇F, pr∇G] = [∇F − 〈∇F, x〉E(x),∇G − 〈∇G, x〉E(x)] =
[∇F(x) − (kF (x))E(x),∇G(x) − (lG(x))E(x)].

By simple manipulation with application of the identities of Lemma 6.14 we get

[∇Sf, ∇Sg] = [∇F,∇G] − (2 − k)(lG(x))∇F(x) + (2 − l)(kF (x))∇G(x) +
(k − l)〈∇F(x),∇G(x)〉E(x) + kl(l − k)(F (x)G(x))E(x).

Recall that for F,G, which are harmonic in R3, their gradients ∇F,∇G are divergence-
free, and so is [∇F,∇G].

Calculating the divergence of the right-hand side and using the identities of Lemma 6.14
we get the result we seek.
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