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Abstract We consider a nonlinear periodic problem driven by a nonhomogeneous differ-
ential operator, which includes as a particular case the scalar p-Laplacian. We assume that
the reaction is a Carathéodory function which admits time-dependent zeros of constant sign.
No growth control near ±∞ is imposed on the reaction. Using variational methods coupled
with suitable truncation and comparison techniques, we prove two multiplicity theorems
providing sign information for all the solutions.
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deformation theorem

Mathematics Subject Classification (2010) 34B15 · 34B18

1 Introduction

In this paper, we study the following nonlinear periodic problem:{ − (
a

(|u′(t)|) u′(t)
)′ = f (t, u(t)) a.e. on T = [0, b],

u(0) = u(b), u′(0) = u′(b).
(1.1)

Here, the differential operator is in general nonhomogeneous and incorporates as special
cases the scalar p-Laplacian, the scalar (p, q)-Laplacian and the scalar generalized p-mean
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424 Leszek Gasiński and Nikolaos S. Papageorgiou

curvature differential operator. The reaction f (t, ζ ) is a Carathéodory function (i.e. for all
ζ ∈ R, the function t �−→ f (t, ζ ) is measurable, and for almost all t ∈ T , the func-
tion ζ �−→ f (t, ζ ) is continuous) which has cosign, t-dependent zeros. Our aim is to
prove multiplicity theorems for problem (1.1), providing precise sign information for all the
solutions.

In fact, our conditions on the reaction f (t, ζ ) are simple and easy to verify and incor-
porate into our framework several interesting applied cases. Essentially, we require that the
reaction f (t, ·) exhibits a kind of oscillatory behaviour near zero. For example, consider the
following semilinear periodic problem:{ −u′′ = αu − βu2 + γ u3,

u(0) = u(b), u′(0) = u′(b),

with α, β, γ > 0 such that β2 − 4αγ > 0. For this problem, the reaction is autonomous
(t-independent) and has the form

f (ζ ) = ζ
(
α − βζ + γ ζ 2

)
.

Since β±
√

β2−4αγ

2γ
> 0, there exist 0 < ζ0 < ζ1 such that f (ζ0) = f (ζ1) = 0. Then accor-

ding to Proposition 3.4, this problem has a positive solution. This equation is a homogeneous
version of a problem studied by Cronin-Scanlon [8] in the context of a biomathematical
model of aneurysm. In fact, we can add in the reaction a suitable perturbation h(ζ ) with no
growth restriction, provided that it has suitable oscillatory behaviour near zero.

Our framework also incorporates logistic equations of the following form:{ −u′′ = u − uq−1, u > 0,

u(0) = u(b), u′(0) = u′(b),

with q > 2. In this case, f (ζ ) = ζ − ζ q−1 = ζ(1 − ζ q−2), ζ > 0, and we infer that
the problem has a positive solution. Of course we can have a reaction of the form f (ζ ) =
ζ − |ζ |q−2ζ , ζ ∈ R, and then we can guarantee also negative solutions (see Proposition
3.4). We may include harvesting, that is

f (ζ ) = ζ − ζ q−1h(ζ ), with h > 0.

Usually the harvesting is proportional to the population, that is h(ζ ) = cζ , c > 0. Then

f (ζ ) = (1 − c)ζ − ζ q−1, ζ > 0.

If c ∈ (0, 1), then we are back to the previous situation. In fact for such problems, the func-
tion ζ �−→ f (ζ )

ζ
is strictly decreasing on (0,+∞) and so according to Kyritsi-Papageorgiou

[19], the positive solution is unique.
Other possibility is a reaction of the form

f (ζ ) = ζ q−1 − ζ, ζ > 0,

with q > 2, which arises in chemotaxis models.
The reaction

f (ζ ) = |ζ |τ−2ζ − |ζ |q−2ζ, ζ ∈ R,

with τ < p < q, leads to a logistic-type equation of subdiffusive type and fits in the frame-
work of Theorem 3.11. So, the corresponding equation driven by the scalar p-Laplacian has
at least three solutions, two of constant sign and the third nodal.
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Thus, we see that our setting is general and rather natural in the context of many applied
problems.

In this paper, we prove two “three-solution theorems,” in which we produce a positive, a
negative and a nodal (sign changing) solutions. The assumption that f (t, ·) has zeros implies
that we do not need to impose any growth control near ±∞ for the function (t, ·). Our
approach is variational based on the critical point theory, coupled with suitable truncation
and comparison techniques.

Multiplicity results for the periodic scalar p-Laplacian were proved by Aizicovici-
Papageorgiou-Staicu [1, 5, 6], del Pino-Manásevich-Murúa [9], Gasiński [11], Gasiński-
Papageorgiou [15–17] and Zhang-Liu [23]. None of the aforementioned works produce
nodal solutions. For periodic problems with more general operators, we refer to Gasiński
[12] and Gasiński-Papageorgiou [18].

In the next section, for the convenience of the reader, we present the main mathematical
tools which we will use in this work.

2 Mathematical Background - Hypotheses

Let X be a Banach space and let X∗ be its topological dual. By 〈·, ·〉, we denote the duality
brackets for the pair (X,X∗). We say that ϕ ∈ C1(X) satisfies the Palais-Smale condition
if the following is true:

“Every sequence {xn}n�1 ⊆ X, such that {ϕ(xn)}n�1 ⊆ R is bounded and

ϕ′(xn) −→ 0 in X∗,

admits a strongly convergent subsequence.”

Using this compactness-type condition, we can prove the following minimax theorem,
known in the literature as the “mountain pass theorem.”

Theorem 2.1 If X is a Banach space, ϕ ∈ C1(X) satisfies the Palais-Smale condition,
x0, x1 ∈ X, ‖x1 − x0‖ > r > 0,

max {ϕ(x0), ϕ(x1)} < inf {ϕ(x) : ‖x − x0‖ = r} = ηr ,

and

c = inf
γ∈	

max
t∈[0,1]

ϕ (γ (t)) ,

where

	 = {γ ∈ C ([0, 1]; X) : γ (0) = x0, γ (1) = x1} ,

then c � ηr and c is a critical value of ϕ.

Another result from critical point theory which we will need in the sequel is the so-called
second deformation theorem (see, e.g. Gasiński-Papageorgiou [13, p. 628]). Let ϕ ∈ C1(X)

and let c ∈ R. We introduce the following sets:

ϕc = {x ∈ X : ϕ(x) � c} ,

Kϕ = {
x ∈ X : ϕ′(x) = 0

}
,

Kc
ϕ = {

x ∈ Kϕ : ϕ(x) = c
}
.
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Theorem 2.2 If ϕ ∈ C1(X), a ∈ R, a < b � +∞, ϕ satisfies the Palais-Smale condition,
ϕ has no critical values in (a, b) and ϕ−1({a}) contains at most a finite number of critical
points of ϕ, then there exists a homotopy h : [0, 1] × (ϕb \ Kb

ϕ) −→ ϕb, such that

(a) h
(
1, ϕb \ Kb

ϕ

) ⊆ ϕa;

(b) h(t, x) = x for all t ∈ [0, 1], all x ∈ ϕa;

(c) ϕ (h(t, x)) � ϕ (h(s, x)) for all t, s ∈ [0, 1], s � t , all x ∈ X.

Remark 2.3 In particular, Theorem 2.2 implies that ϕa is a strong deformation retract
of ϕb \ Kb

ϕ . Hence, the two sets are homotopy equivalent.

In the study of problem (1.1), we will use the following two spaces:

W
1,p
per (0, b) =

{
u ∈ W 1,p(0, b) : u(0) = u(b)

}
,

Ĉ1(T ) = C1(T ) ∩ W
1,p
per (0, b),

where 1 < p < +∞. Recall that the Sobolev space W 1,p(0, b) is embedded continuously
(in fact compactly) in C(T ), and so the evaluations at t = 0 and t = b of u ∈ W 1,p(0, b)

make sense. The Banach space Ĉ1(T ) is an ordered Banach space with a positive cone

Ĉ+ =
{
u ∈ Ĉ1(T ) : u(t) � 0 for all t ∈ T

}
.

This cone has a nonempty interior given by

int Ĉ+ = {
u ∈ Ĉ+ : u(t) > 0 for all t ∈ T

}
.

Consider the following nonlinear eigenvalue problem:{ − (|u′(t)|p−2u′(t)
)′ = λ|u(t)|p−2u(t) a.e. on T = [0, b],

u(0) = u(b), u′(0) = u′(b),
(2.1)

where 1 < p < +∞. A number λ ∈ R is said to be an eigenvalue of the negative
periodic scalar p-Laplacian if problem (2.1) has a nontrivial solution, which is a corres-
ponding eigenfunction. Evidently, a necessary condition for λ ∈ R to be an eigenvalue is
that λ � 0. We see that λ0 = 0 is an eigenvalue and the corresponding eigenfunctions are
constant functions (i.e. the corresponding eigenspace is R). Let

πp = 2π(p − 1)
1
p

p sin π
p

.

Then
{
λn =

(
2nπp

b

)p}
n�0

is the set of eigenvalues of Eq. 2.1. If p = 2 (linear eigenvalue

problem), then π2 = π and so we recover the well-known sequence of eigenvalues of

the negative periodic scalar Laplacian, which is

{
λn =

(
2nπ
b

)2
}

n�0
. Every eigenfunction

u ∈ C1(T ) of Eq. 2.1 satisfies

u(t) �= 0 a.e. on T

(in fact, it has a finite number of zeros) and all eigenfunctions corresponding to an
eigenvalue λ > λ0 = 0 are nodal (see Aizicovici-Papageorgiou-Staicu [3]).
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Let û0 be the Lp-normalized principal (i.e. corresponding to λ0 = 0) eigenfunction.
Hence,

û0(t) = 1

b
1
p

∀t ∈ T .

Also, let

∂BLp

1 = {
u ∈ Lp(T ) : ‖u‖p = 1

}
,

M = W
1,p
per (0, b) ∩ ∂BLp

1 .

For λ1 > 0 (the first nonzero eigenvalue), we have the following variational characterization
(see Aizicovici-Papageorgiou-Staicu [4, 5]).

Proposition 2.4 If

	̂ = {γ̂ ∈ C ([−1, 1]; M) : γ̂ (−1) = −û0, γ̂ (1) = û0} ,

then

λ1 = inf
γ̂∈γ̂

max
−1�s�1

∥∥ d

dt
γ̂ (s)

∥∥p

p
.

The hypotheses on the map a are the following:
H(a) a : (0,+∞) −→ (0,+∞) is a C1-function, such that

(i) the function ζ �−→ a(ζ )ζ is strictly increasing on (0,+∞) and

lim
ζ→0+ a(ζ )ζ = 0, and lim

ζ→0+
a′(ζ )ζ

a(ζ )
= c > −1;

(ii) there exist c0 > 0 and p ∈ (1,+∞), such that

c0|ζ |p−1 � a′(|ζ |)ζ 2 ∀ζ ∈ R;
(iii) there exists c1 > 0 such that∣∣a(|ζ |)ζ ∣∣ � c1

(
1 + |ζ |p−1

)
∀ζ ∈ R;

(iv) if

G0(t) =
∫ t

0
a(s)s ds ∀t > 0,

then
pG0(ζ ) − a(ζ )ζ 2 � −c̃ ∀ζ � 0,

with c̃ > 0 and there exists τ ∈ (1, p) such that

lim
t→0+

G0(t)

tτ
= 0.

Remark 2.5 Evidently, the function G0 : [0, +∞) −→ [0,+∞) introduced in hypothesis
H(a)(iv) is strictly convex and strictly increasing. We set

G(ζ) = G0(|ζ |) ∀ζ ∈ R.

Then G(0) = 0 and we have

G′(ζ ) = G′
0(|ζ |) ζ

|ζ | = a(|ζ |)ζ ∀ζ �= 0,
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while G′(0) = 0 (see hypothesis H(a)(i)). Therefore, the function ζ �−→ G(ζ) is the
primitive of the function ζ �−→ a(|ζ |)ζ . Then G is strictly convex and so

G(ζ) � a(|ζ |)ζ 2 ∀ζ ∈ R. (2.2)

Then from hypotheses H(a) and Eq. 2.2, we obtain

c0

p
|ζ |p � G(ζ) � c2

(
1 + |ζ |2

)
∀ζ ∈ R, (2.3)

for some c2 > 0.

Example 2.6 The following functions a(·) satisfy hypotheses H(a):

(a) a(|ζ |)ζ = |ζ |p−2ζ , with 1 < p < +∞. This map corresponds to the scalar
p-Laplacian.

(b) a(|ζ |)ζ = |ζ |p−2ζ + |ζ |q−2ζ , with 1 < q < p < +∞. This map corresponds to
the (p, q)-Laplace differential operator (the sum of a scalar p-Laplacian with a scalar
q-Laplacian).

(c) a(|ζ |)ζ = (
1 + ζ 2

) p−2
2 ζ , with 1 < p < +∞. This map corresponds to the scalar

generalized p-mean curvature operator.

(d) a(|ζ |) = |ζ |p−2ζ + |ζ |p−2ζ
1+|ζ |p with 1 < p < +∞.

In what follows, for notational economy, we write W = W
1,p
per (0, b). We introduce the

nonlinear map A : W −→ W ∗, defined by

〈A(u), y〉 =
∫ b

0
a

(|u′(t)|) u′(t)y′(t) dt ∀u, y ∈ W. (2.4)

From Papageorgiou-Rocha-Staicu [21], we have the following result concerning the map A.

Proposition 2.7 If hypotheses H(a) hold, then A : W −→ W ∗ defined by Eq. 2.4 is con-
tinuous, bounded (i.e. maps bounded sets to bounded ones), maximal monotone and of type
(S)+, i.e. if un

w−→ u in W and lim sup
n→+∞

〈A(un), un − u〉 � 0, then un −→ u in W .

Let f0 : T × R −→ R be a Carathéodory function, such that
∣∣f0(t, x)

∣∣ � ϑ(t)
(

1 + |ζ |r−1
)

for almost all t ∈ T , all ζ ∈ R,

with ϑ ∈ L1(T )+, 1 < r < +∞. We set

F0(t, ζ ) =
∫ ζ

0
f0(t, s) ds

and consider the C1-functional σ0 : W −→ R, defined by

σ0(u) =
∫ b

0
G

(
u′(t)

)
dt −

∫ b

0
F0 (t, u(t)) dt ∀u ∈ W.

Then as in Aizicovici-Papageorgiou-Staicu [1] (see Proposition 9, where G(ζ) = 1
p
|ζ |p),

we can have the following result relating local Ĉ1(T )-minimizers and local W -minimizers
for the functional σ0 (cf. also Gasiński-Papageorgiou [18, Proposition 2.5]).
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Proposition 2.8 If hypotheses H(a) hold and u0 ∈ W is a local Ĉ1(T )-minimizer of σ0,
i.e. there exists �0 > 0, such that

σ0(u0) � σ0(u0 + h) ∀h ∈ Ĉ1(T ), with ‖h‖Ĉ1(T ) � �0,

then u0 ∈ Ĉ1(T ) and it is also a local W -minimizer of σ0, i.e. there exists �1 > 0, such that

σ0(u0) � σ0(u0 + h) ∀h ∈ W, with ‖h‖ � �1.

Throughout this paper, by ‖ · ‖, we denote the norm of the Sobolev space W =
W

1,p
per (0, b). The norm of Lp(T ) (1 � p � +∞) is denoted by ‖ · ‖p, while by

w−→, we
denote the weak convergence in any Banach space. If ζ ∈ R, then we set

ζ+ = max{ζ, 0} and ζ− = max{−ζ, 0}.
We have ζ = ζ+ − ζ− and |ζ | = ζ+ + ζ−. If u ∈ W , we define

u+(·) = u(·)+ and u−(·) = u(·)−.

We know that u+, u− ∈ W and u = u+ − u−, |u| = u+ + u−. By | · |1 we denote the
Lebesgue measure on R and if h : T × R −→ R is a measurable function (for example,
a Carathéodory function), then we set

Nh(u)(·) = h (·, u(·)) ∀u ∈ W.

3 Three Solution Theorems

In this section, we prove two multiplicity theorems for problem (1.1) providing sign
information for all the solutions.

To produce the constant sign solutions, we will need the following hypotheses on the
reaction f :

H(f )1 f : T × R −→ R is a Carathéodory function, such that f (t, 0) = 0 for almost
all t ∈ T and

(i) for every � > 0, there exists a� ∈ L1(T )+, such that∣∣f (t, ζ )
∣∣ � a�(t) for almost all t ∈ T , all |ζ | � �;

(ii) there exist functions w± ∈ W , such that

w−(t) � c− < 0 < c+ � w+(t) ∀t ∈ T ,

f (t, w+(t)) � 0 � f (t, w−(t)) for a.a. t ∈ T

and
A(w−) � 0 � A(w+) in W ∗;

(iii) there exist δ0 ∈ (0, min{c+, −c−}) and T0 ⊆ T with |T0|1 > 0, such that{
f (t, ζ )ζ � 0 for almost all t ∈ T , all |ζ | � δ0,

f (t, ζ )ζ > 0 for almost all t ∈ T0, all 0 < |ζ | � δ0;
(iv) there exists ξ∗ > 0, such that

f (t, ζ )ζ + ξ∗|ζ |p � 0 for almost all t ∈ T , all ζ ∈ [−m∗,m∗],
where m∗ = max {‖w+‖∞, ‖w−‖∞}.
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Remark 3.1 Hypotheses H(f )1(ii) and (iii) imply that for almost all t ∈ T , f (t, ·) has
t-dependent zeros of constant sign. The presence of these zeros frees f (t, ·) from any
growth restrictions near ±∞. Note that we do not impose any control on the growth of
f (t, ·) near ±∞. Hypothesis H(f )1(ii) is satisfied if we can find c− < 0 < c+, such that

f (t, c+) � 0 � f (t, c−) for almost all t ∈ T .

We start by showing that the nontrivial constant sign solutions of Eq. 1.1 have L∞ norms
which are bounded away from zero.

Proposition 3.2 If hypotheses H(a) and H(f )1 hold and u ∈ Ĉ+ \ {0}, v ∈ (−Ĉ+) \ {0}
are solutions of Eq. 1.1, then δ0 � ‖u‖∞ and δ0 � ‖v‖∞, where δ0 > 0 is as in hypothesis
H(f )1(iii).

Proof Since by hypothesis u ∈ Ĉ+ \ {0} is a solution of Eq. 1.1, we have

A(u) = Nf (u). (3.1)

Suppose that ‖u‖∞ < δ0. Acting on Eq. 3.1 with h ≡ 1 ∈ Ĉ+, we obtain

0 =
∫ b

0
f (t, u(t)) dt

(see Eq. 2.4), so

f (t, u(t)) = 0 for almost all t ∈ T

(since 0 � u(t) < δ0 for all t ∈ T ; see hypothesis H(f )1(iii)). This contradicts hypothesis
H(f )1(iii). Therefore, ‖u‖∞ � δ0.

Similarly for v ∈ (−Ĉ+) \ {0}.

Next, we establish the existence of nontrivial solutions of constant sign.

Proposition 3.3 If hypotheses H(a) and H(f ) hold, then problem (1.1) has at least one
nontrivial positive solution u0 ∈ int Ĉ+ and at least one nontrivial negative solution
v0 ∈ −int Ĉ+.

Proof First, we produce the nontrivial positive solution. To this end, we consider the
following truncation-perturbation of the reaction f :

f̂+(t, ζ ) =
⎧⎨
⎩

0 if ζ < 0,

f (t, ζ ) + ζp−1 if 0 � ζ � w+(t),

f (t, w+(t)) + w+(t)p−1 if w+(t) < ζ.

(3.2)

This is a Carathéodory function. Let

F̂+(t, ζ ) =
∫ ζ

0
f̂+(t, s) ds

and consider the C1-functional ϕ̂+ : W −→ R, defined by

ϕ̂+(u) =
∫ b

0
G

(
u′(t)

)
dt + 1

p
‖u‖p

p −
∫ b

0
F̂+ (t, u(t)) dt ∀u ∈ W.
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It is clear from Eq. 2.3 and Eq. 3.2 that ϕ̂+ is coercive. Also, using the Sobolev embedding
theorem, we see that ϕ̂+ is sequentially weakly lower semicontinuous. So, by virtue of the
Weierstrass theorem, we can find u0 ∈ W , such that

ϕ̂+(u0) = inf
u∈W

ϕ̂+(u) = m̂+. (3.3)

Let ξ ∈ (0, δ0]. Then, for

F(t, ζ ) =
∫ ζ

0
f (t, s) ds,

we have

ϕ̂+(ξ) = −
∫ b

0
F(t, ξ) dt < 0

(see Eq. 3.2 and hypothesis H(f )1(iii)), so

ϕ̂+(u0) = m̂+ < 0 = ϕ̂+(0),

i.e. u0 �= 0. From Eq. 3.3, we have

ϕ̂′+(u0) = 0,

so
A(u0) + |u0|p−2u0 = Nf̂+(u0). (3.4)

Acting on Eq. 3.4 with −u−
0 ∈ W , we obtain

c0
∥∥(u−

0 )′
∥∥p

p
+ ‖u−

0 ‖p
p � 0

(see hypothesis H(a)(ii) and Eq. 3.2), so

u−
0 = 0,

hence u0 � 0, u0 �= 0. Then from Eq. 3.4 and Eq. 3.2, we have

A(u0) = Nf (u0),

so { − (
a

(|u′
0(t)|

)
u′

0(t)
)′ = f (t, u0(t)) a.e. on T ,

u0(0) = u0(b), u′
0(0) = u′

0(b),

so u0 ∈ Ĉ+ \ {0} solves problem (1.1).
Moreover, hypothesis H(f )1(iv) implies that

a
(|u′

0(t)|
)
u′

0(t) � ξ∗u0(t)
p−1 almost everywhere on T ,

so u0 ∈ int Ĉ+ (see Pucci-Serrin [22, p. 120])
For the nontrivial negative solution, we consider

f̂−(t, ζ ) =
⎧⎨
⎩

f (t, w−(t)) + |w−(t)|p−2w−(t) if ζ < w+(t),

f (t, ζ ) + |ζ |p−2ζ if w−(t) � ζ � 0,

0 if 0 < ζ.

This is a Carathéodory function. We set

F̂−(t, ζ ) =
∫ ζ

0
f̂−(t, s) ds

and consider the C1-functional ϕ̂− : W −→ R, defined by

ϕ̂−(u) =
∫ b

0
G

(
u′(t)

)
dt + 1

p
‖u‖p

p −
∫ b

0
F̂− (t, u(t)) dt ∀u ∈ W.
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Reasoning as above, via the direct method, we obtain a nontrivial negative solution
v0 ∈ −int Ĉ+.

In fact, we can show that (1.1) admits extremal nontrivial constant sign solution, i.e. there
is the smallest nontrivial positive solution and biggest nontrivial negative solution.

Proposition 3.4 If hypotheses H(a) and H(f ) hold, then problem (1.1) has the smal-
lest nontrivial positive solution u∗ ∈ int Ĉ+ and biggest nontrivial negative solution
v∗ ∈ −int Ĉ+.

Proof First, we show the existence of the smallest nontrivial positive solution. Let
ξ ∈ (0, δ0] (where δ0 > 0 is as in hypothesis H(f )1(iii)) and consider the order interval

[ξ,w+] = {u ∈ W : ξ � u(t) � w+(t) for almost all t ∈ T } .

Claim 1. Problem (1.1) has a solution in the order interval [ξ,w+].
To this end, we consider the following truncation-perturbation of f (t, ·):

k+(t, ζ ) =
⎧⎨
⎩

f (t, ξ) + ξp−1 if ζ < ξ,

f (t, ζ ) + ζp−1 if ξ � ζ � w+(t),

f (t, w+(t)) + w+(t)p−1 if w+(t) < ζ.

(3.5)

This is a Carathéodory function. Let

K+(t, ζ ) =
∫ ζ

0
k+(t, s) ds

and consider the C1-functional ψ+ : W −→ R, defined by

ψ+(u) =
∫ b

0
G

(
u′(t)

)
dt + 1

p
‖u‖p

p −
∫ b

0
K+ (t, u(t)) dt ∀u ∈ W.

Clearly ψ+ is coercive (see Eq. 2.3 and Eq. 3.5). Also, it is sequentially weakly lower
semicontinuous. Therefore, we can find ũ ∈ W , such that

ψ+(̃u) = inf
u∈W

ψ+(u) = m̃+. (3.6)

Note that

ψ+(ξ) = −
∫ b

0
f (t, ξ)ξ dt < 0

(see hypothesis H(f )1(iii) and Eq. 3.5), so

ψ+(̃u) = m̃+ < 0 = ψ+(0),

hence ũ �= 0. From Eq. 3.6, we have

ψ ′+(̃u) = 0,

so

A(̃u) + ∣∣̃u∣∣p−2
ũ = Nk+ (̃u). (3.7)



Nonlinear, Nonhomogeneous Periodic Problems 433

On Eq. 3.7, we act with (ξ − ũ)+ ∈ W . Then, using Eq. 3.5 and hypothesis H(f )1(iii),
we have

〈
A(̃u), (ξ − ũ)+

〉 +
∫ b

0
|̃u|p−2ũ(ξ − ũ)+ dz

=
∫ b

0

(
f (t, ξ) + ξp−1

)
(ξ − ũ)+ dz

�
∫ b

0
ξp−1(ξ − ũ)+ dt,

so ∫
{ξ>ũ}

a
(|̃u′|) ũ′(−ũ)′ dt −

∫
{ξ>ũ}

(
ξp−1 − |̃u|p−2ũ

)
(ξ − ũ) dt � 0,

so

−c0

∥∥∥(
(ξ − ũ)+

)′∥∥∥p

p
−

∫
{ξ>ũ}

(
ξp−1 − |̃u|p−2ũ

)
(ξ − ũ) dt � 0.

If p � 2, then (ξp−1 − |̃u|p−2ũ)(ξ − ũ) � c1|ξ − ũ|p for some c1 > 0. So

−c0

∥∥∥(
(ξ − ũ)+

)′∥∥∥p

p
− c1

∥∥(ξ − ũ)+
∥∥p

p
� 0,

hence ξ � ũ.
If 1 < p < 2, then

(ξp−1 − |̃u|p−2ũ)(ξ − ũ) � c2|ξ − ũ|2 1

(1 + ξ + |̃u|)2−p
� c3|ξ − ũ|2,

for some c2, c3 > 0. Therefore

−c0
∥∥ (

(ξ − ũ)+
)′ ∥∥p

p
− c3

∥∥(ξ − ũ)+
∥∥2

2 � 0,

hence ξ � ũ.
Next on Eq. 3.7, we act with (̃u − w+)+ ∈ W . Then, using Eq. 3.5 and hypothesis

H(f )1(ii), we have

〈
A(̃u), (̃u − w+)+

〉 +
∫ b

0
ũp−1(̃u − w+)+ dt

=
∫ b

0

(
f (t, w+) + w

p−1
+

)
(̃u − w+)+ dt

�
〈
A(w+), (̃u − w+)+

〉 +
∫ b

0
w

p−1
+ (̃u − w+)+ dt,

so ∫
{̃u>w+}

(
a

(|̃u′|) ũ′ − a
(|w′+|)w′+

)
(̃u′ − w′+) dt

+
∫

{̃u>w+}

(
ũp−1 − w

p−1
+

)
(̃u − w+) dt � 0,

so ũ � w+ (as before, see hypothesis H(a)(i)).
Therefore, we have proved that ũ ∈ [ξ,w+]. This by virtue of Eq. 3.5 and Eq. 3.7

implies that

A(̃u) = Nf (̃u),
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so { − (
a

(|̃u′(t)|) ũ′(t)
)′ = f (t, ũ(t)) a.e. on T ,

ũ(0) = ũ(b), ũ′(0) = ũ′(b)

and thus ũ ∈ Ĉ1(T ) is a solution of Eq. 1.1 in the order interval [ξ,w+]. This proves
Claim 1.

Claim 2. Problem (1.1) has the smallest solution in the order interval [ξ,w+].

Let Y+ be the set of solutions of problem (1.1) in the order interval [ξ, w+]. From
Claim 1, we know that Y+ �= ∅. Let C ⊆ Y+ be a chain (i.e. a nonempty totally ordered
subset of Y+). From Dunford-Schwartz [10, p.336], we know that we can find a sequence
{un}n�1 ⊆ C, such that

inf C = inf
n�1

un.

We have
A(un) = Nf (un) and un ∈ [ξ,w+] ∀n � 1, (3.8)

so the sequence {un}n�1 ⊆ W is bounded.
So, we may assume that

un
w−→ u in W and un −→ u in C(T ). (3.9)

Acting on Eq. 3.8 with un − u ∈ W , passing to the limit as n → +∞ and using Eq. 3.9,
we obtain

lim
n→+∞ 〈A(un), un − u〉 = 0,

so
un −→ u in W (3.10)

(see Proposition 2.7), with u ∈ [ξ,w+].
So, if in Eq. 3.8, we pass to the limit as n → +∞ and use Eq. 3.10, we have

A(u) = Nf (u), u ∈ [ξ,w+],
so

u ∈ Y+ and u = inf C.

Since C is an arbitrary chain, from the Kuratowski-Zorn lemma, we infer that Y+ has
a minimal element û ∈ Y+. Exploiting the monotonicity of A (see Proposition 2.3),
as in Aizicovici-Papageorgiou-Staicu [3] (see Lemma 1 and Proposition 8), we show that
Y+ is downward directed (i.e. if u1, u2 ∈ Y+, then we can find u ∈ Y+, such that u � u1,
u � u2). Hence, û ∈ Y+ is the smallest solution of Eq. 1.1 in the order interval [ξ,w+].
This proves Claim 2.

Now suppose that {ξn}n�1 ⊆ (0, δ0] is a sequence, such that ξn ↘ 0. By virtue of
Claim 2, for every n � 1, we can find the smallest solution un ∈ Ĉ1(T ) of Eq. 1.1
in [ξn,w+]. Then, {un}n�1 ⊆ W is bounded decreasing, and we may assume that

un
w−→ u∗ in W and un −→ u∗ in C(T ),

so ‖u∗‖∞ � δ0 (see Proposition 3.2) and thus u∗ �= 0.
Also as above, via Eq. 3.8 and Proposition 3.9, we have

A(u∗) = Nf (u∗),
hence u∗ ∈ Ĉ+ \ {0} is a solution of Eq. 1.1. Moreover, hypothesis H(f )1(iv) and the
nonlinear maximum principle of Pucci-Serrin [22, p. 120] imply that u∗ ∈ int Ĉ+.
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Similarly, for the negative solution, we choose ξ ∈ [−δ0, 0) and consider the order
interval

[w−, ξ ] = {u ∈ W : w−(t) � u(t) � ξ for almost all t ∈ T } .

Then, the set Y− of nontrivial solutions of problem (1.1) in [w−, ξ ] is nonempty and upward
directed (i.e. if v1, v2 ∈ Y−, then we can find v ∈ Y−, such that v1 � v, v2 � v;
see Aizicovici-Papageorgiou-Staicu [3]). So, as above, we can find the biggest nontrivial
negative solution v∗ ∈ −int Ĉ+ of problem (1.1).

Using these extremal nontrivial constant sign solutions, we will produce a nodal (sign
changing) solution. To this end, we need to restrict further the behaviour of f (t, ·) near zero.
More precisely, the new hypotheses on the reaction f are the following:

H(f )2 f : T × R −→ R is a Carathéodory function, such that f (t, 0) = 0 for almost all
t ∈ T , hypotheses H(f )2(i), (ii) and (iv) are the same as the corresponding hypotheses
H(f )1(i), (ii), (iv) and
(iii) there exist q ∈ (1, τ ) and δ0 > 0, such that

qF(t, ζ ) � f (t, ζ )ζ > 0 for almost all t ∈ T , all 0 < |ζ | � δ0,

and

ess inf
T

F (·, δ0) > 0.

Remark 3.5 Clearly hypothesis H(f )2(iii) is more restrictive than hypothesis H(f )1(iii)
and we can easily see that it implies that

F(t, ζ ) � c3|ζ |q for almost all t ∈ T , all |ζ | � δ0

with some c3 > 0.

With these stronger hypotheses on f (t, ·), we can produce a nodal solution.

Proposition 3.6 If hypotheses H(a) and H(f )2 hold, then problem (1.1) has a nodal
solution y0 ∈ Ĉ1(T ).

Proof Let u∗ ∈ int Ĉ+ and v∗ ∈ int Ĉ+ be the two extremal nontrivial constant sign
solutions produced in Proposition 3.4. Using them, we introduce the following truncation-
perturbation of the reaction f (t, ·):

β(t, ζ ) =
⎧⎨
⎩

f (t, v∗(t)) + |v∗(t)|p−2v∗(t) if ζ < v∗(t),
f (t, ζ ) + |ζ |p−2ζ if v∗(t) � ζ � u∗(t),
f (t, u∗(t)) + u∗(t)p−1 if u∗ < ζ.

(3.11)

This is a Carathéodory function. We set

B(t, ζ ) =
∫ ζ

0
β(t, s) ds

and consider the C1-functional σ : W −→ R, defined by

σ(u) =
∫ b

0
G

(
u′(t)

)
dt + 1

p
‖u‖p

p −
∫ b

0
B (t, u(t)) dt ∀u ∈ W.
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Also, let

β±(t, ζ ) = β
(
t, ±ζ±)

,

B±(t, ζ ) =
∫ ζ

0
β±(t, s) ds

and consider the C1-functional σ± : W −→ R, defined by

σ±(u) =
∫ b

0
G

(
u′(t)

)
dt + 1

p
‖u‖p

p −
∫ b

0
B± (t, u(t)) dt ∀u ∈ W.

As in the proof of Proposition 3.4, we can show that

Kσ ⊆ [v∗, u∗], Kσ+ ⊆ [0, u∗], Kσ− ⊆ [v∗, 0].
The extremality of the solutions u∗ and v∗ implies that

Kσ ⊆ [v∗, u∗], Kσ+ = {0, u∗}, Kσ− = {v∗, 0}. (3.12)

Claim. u∗ and v∗ are local minimizers of σ .
Evidently, the functional σ+ is coercive (see Eq. 3.11). Also, it is sequentially weakly

lower semicontinuous. So, we can find û ∈ W , such that

σ+(̂u) = inf
u∈W

σ+(u).

As before, hypothesis H(f )2 (iii) implies that

σ+(̂u) < 0 = σ+(0),

hence û �= 0. Since û ∈ Kσ+ , from Eq. 3.12, it follows that û = u∗ ∈ int Ĉ+. But note that

σ
∣∣
Ĉ+ = σ+

∣∣
Ĉ+ .

Because u∗ ∈ int Ĉ+, it follows that u∗ is a local Ĉ1(T )-minimizer of σ . Invoking
Proposition 2.8, we infer that u∗ is a local W -minimizer of σ .

Similarly for v∗ using this time the functional σ−. This proves the Claim.
Without any loss of generality, we may assume that σ(v∗) � σ(u∗) (the analysis

is similar if the opposite inequality holds). Then, as in Aizicovici-Papageorgiou-Staicu
[2, Proposition 29] or Gasiński-Papageorgiou [14, proof of Theorem 3.4], we can find
� ∈ (0, 1) small, such that

σ(v∗) � σ(u∗) < inf {σ(u) : ‖u − u∗‖ = �} = η�, ‖v∗ − u∗‖ > �. (3.13)

Since the functional σ is coercive (see Eq. 3.11), it satisfies the Palais-Smale condition.
Indeed, let {un}n�1 ⊆ W be such that

the squence {σ(un)}n�1 ⊆ R is bounded and σ ′(un) −→ 0 in W ∗. (3.14)

From the coercivity of σ , it follows that {un}n�1 ⊆ W is bounded, and so we may assume
that

un
w−→ u in W and un −→ u in C(T ).

Then as before, using the convergence in Eq. 3.14 and Proposition 2.7, we conclude that

un −→ u in W,

hence σ satisfies the Palais-Smale condition. This fact and (3.13) permit the use of the
mountain pass theorem (see Theorem 2.1). So, we can find y0 ∈ W , such that

y0 ∈ Kσ and η� � σ(y0),
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so y0 ∈ Ĉ1(T ) solves problem (1.1), y0 ∈ [v∗, u∗] (see Eq. 3.12), y0 �= v∗ and y0 �= u∗
(see Eq. 3.13).

It remains to show that y0 is nontrivial. We know that y0 is a critical point of σ of
mountain pass type, while hypothesis H(f )2(iii) implies the presence of a concave term
near the origin. Hence, the origin is a critical point of a different kind and must be different
from y0. An easy way to establish this rigorously is to use critical groups. Since y0 ∈ Kσ is
of mountain pass type, we have

C1(σ, y0) �= 0 (3.15)

(see Chang [7, p. 89]). On the other hand, hypothesis H(f )2(iii) and Proposition 2.1 of
Moroz [20] imply that

Ck(σ, 0) = 0 ∀k � 0. (3.16)

Comparing Eqs. 3.15 and 3.16, we infer that y0 �= 0. Therefore,

y0 ∈ [v∗, u∗], y0 �∈ {0, u∗, v∗}.
The extremality of u∗, v∗ implies that y0 ∈ Ĉ1(T ) is a nodal solution of Eq. 1.1.

So, we can now state the first multiplicity theorem for problem (1.1).

Theorem 3.7 If hypotheses H(a) and H(f )2 hold, then problem (1.1) has at least three
nontrivial solutions

u0 ∈ int Ĉ+, v0 ∈ −int Ĉ+, and y0 ∈ Ĉ1(T ) nodal.

As we already mentioned, hypothesis H(f )2(iii) implies that the reaction f (t, ·) near
ζ = 0 exhibits a “concave” term. We can relax this restriction and allow nonlinearities with
more general growth near ζ = 0, provided that we restrict the growth of ζ �−→ a(ζ ).

So, the new hypotheses on the functions a and f are the following:

H(a)′ a : (0,+∞) −→ (0,+∞) is a C1-function, such that hypotheses H(a)′(i), (ii) and
(iv) are the same as the corresponding hypotheses H(a)(i), (ii), (iv) and (iii) there exists
c1 > 0 such that ∣∣a(|ζ |)ζ ∣∣ � c1|ζ |p−1 ∀ζ ∈ R.

Remark 3.8 The more restrictive growth imposed in H(a)′(iii) excludes from consideration
the scalar (p, q)-Laplacian and the scalar p-generalized mean curvature differential oper-
ator. On the other hand, it applies to the scalar p-Laplacian corresponding to a(|ζ |)ζ =
|ζ |p−2ζ with 1 < p < +∞. Other possibilities are:

a(|ζ |)ζ = |ζ |p−2ζ + |ζ |p−2ζ

1 + |ζ |p ,

a(|ζ |)ζ = |ζ |p−2ζ + ln
(

1 + |ζ |p−2
)

ζ,

a(|ζ |)ζ =
{ |ζ |p−2ζ + |ζ |r−2ζ if |ζ | � 1,

2|ζ |p−2ζ + |ζ |τ−2ζ if |ζ | > 1,

where 1 < τ < p < r < +∞, r = p + τ − 1.
Note that this new growth condition on σ implies that

c0

p
|ζ |p � G(ζ) � c1

p
|ζ |p ∀ζ ∈ R.
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H(f )3 f : T × R −→ R is a Carathéodory function, such that f (t, 0) = 0 for almost all
t ∈ T , hypotheses H(f )3(i), (ii), (iii) and (iv) are the same as the corresponding hypotheses
H(f )1(i), (ii), (iii) and (iv) and in addition (v) there exist δ̂0 > 0 and ϑ > λ1, such that

c1ϑ |ζ |p
p

� F(t, ζ ) for almost all t ∈ T , all |ζ | � δ̂0,

with c1 > 0 as in hypothesis H(a)′(iii).

Remark 3.9 Evidently, hypothesis H(f )3(v) permits reactions f (t, ζ ) which are
(p − 1)-linear near zero, a case which was excluded by hypothesis H(f )2(iii).

The previous analysis concerning nontrivial solutions of constant sign remains valid.
What changes is the proof of the existence of a nodal solution.

Proposition 3.10 If hypotheses H(a)′ and H(f )3 hold, then problem (1.1) has a nodal
solution y0 ∈ Ĉ1(T ).

Proof As before (see the proof of Proposition 3.6), using the extremal nontrivial con-
stant sign solutions u∗ ∈ int Ĉ+ and v∗ ∈ −int Ĉ+, truncating f (t, ·) at {u∗(t), v∗(t)}
(see Eq. 3.11) and employing the mountain pass theorem (see Theorem 2.1), we obtain a
solution y0 ∈ Ĉ1(T ) of problem (1.1), such that y0 ∈ [v∗, u∗], y0 �∈ {u∗, v∗} and

σ(y0) = inf
γ∈	

max
0�t�1

σ (γ (t)) , (3.17)

with 	 = {γ ∈ C ([0, 1]; W) : γ (0) = v∗, γ (1) = u∗}. We need to show that y0 �= 0 and
then due to extremality of u∗ and v∗, we will have that y0 ∈ Ĉ1(T ) is nodal. To show
the nontriviality of y0, we will use the minimax expression in Eq. 3.17. According to this
characterization of ϕ(y0), it suffices to produce a path γ∗ ∈ 	, such that σ

∣∣
γ∗ < 0.

To this end, let

M = W ∩ ∂BLp

1 and Mc = M ∩ Ĉ1(T ).

We endow M with the relative W -topology and Mc with the relative Ĉ1(T )-topology.
Evidently, Mc is dense in M and C ([−1, 1]; Mc) is dense in C ([−1, 1]; M).

We consider the following sets of points

	̂ = {γ̂ ∈ C ([−1, 1]; M) : γ̂ (−1) = −û0, γ̂ (1) = û0} ,

	̂c = {γ̂ ∈ C ([−1, 1]; Mc) : γ̂ (−1) = −û0, γ̂ (1) = û0} .

Then 	̂c is dense in 	̂ and so by virtue of Proposition 2.4, we can find γ̂0 ∈ 	̂c, such that

max
−1�s�1

∥∥∥∥ d

dt
γ̂0(s)

∥∥∥∥
p

p

< ϑ. (3.18)

Since γ̂0 ∈ 	̂c and v∗ ∈ −int Ĉ+, u∗ ∈ int Ĉ+, we can find ε > 0 small, such that

v∗(t) � εγ̂ (s)(t) � u∗(t), ε
∣∣γ̂0(s)(t)

∣∣ � δ̂0 ∀s ∈ [−1, 1], t ∈ T . (3.19)

Then, assuming without any loss of generality that δ̂0 � min{−c−, c+}, we have

σ (εγ̂0(s)) =
∫ b

0
G

(
d

dt
εγ̂0(s)(t)

)
dt −

∫ b

0
B (t, εγ̂0(s)(t)) dt

� c1ε
p

p

∥∥∥∥ d

dt
γ̂0(s)

∥∥∥∥
p

p

− c1

p
εpϑ <

c1ε
p

p
(ϑ − ϑ) = 0 (3.20)
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(see Eqs. 3.11, 3.18, 3.19 and hypothesis H(f )3(v) and recall that ‖γ̂0(s)‖p = 1 for all
s ∈ [−1, 1]).

Therefore, if γ0 = εγ̂0, then γ0 is a continuous path in W which connects −εû0 and εû0,
and we have

σ
∣∣
γ0

< 0 (3.21)

(see Eq. 3.20).
Next, we produce a continuous path in W , which connects εû0 and u∗ and along which

σ is strictly negative.
Let

a = inf
W

σ+ < 0 = σ+(0)

(see the proof of Proposition 3.6). Recall σ+ being coercive, it satisfies the Palais-Smale
condition. So, we can apply the second deformation theorem (see Theorem 2.2) and obtain

a deformation h : [0, 1] ×
(
σ 0+ \ K0

σ+

)
−→ σ 0+, such that

h(t, ·)
∣∣∣Ka

σ+ = id

∣∣∣
Ka

σ+
and

h
(

1, σ 0+ \ K0
σ+

)
⊆ σa+ = {u∗}, (3.22)

σ (h(τ, ζ )) � σ+ (h(s, ζ )) ∀τ, s ∈ [0, 1], s � τ, ζ ∈ σ 0+ \ {0}. (3.23)

Let
γ+(s) = h (s, εû0)

+ ∀s ∈ [0, 1]
(see Eq. 3.21). Then

γ+(0) = h(0, εû0)
+ = εû+

0 = εû0,

γ+(1) = h(1, εû0)
+ = u+∗ = u∗

(see Eq. 3.22).
Hence, γ+ is a continuous path in W which connects εû0 and u∗. Also, from Eqs. 3.21

and 3.23, we have σ+
∣∣
γ+ < 0. If

W+ = {u ∈ W : u(t) � 0 for all t ∈ T } ,

then
σ+

∣∣
W+ = σ

∣∣
W+ .

Also range γ+ ⊆ W+. Therefore
σ

∣∣
γ+ < 0. (3.24)

In a similar fashion, we produce a continuous path γ− in W which connects −εû0 and v∗
and such that

σ
∣∣
γ− < 0. (3.25)

We concatenate γ−, γ0, γ+ and produce γ∗ ∈ 	, such that

σ
∣∣
γ∗ < 0

(see Eqs. 3.21, 3.24 and 3.25), so

σ(y0) < 0 = σ(0)

(see Eq. 3.17) and thus y0 ∈ Ĉ1(T ) is a nodal solution of Eq. 1.1.

So, we can now state the second multiplicity theorem for problem (1.1).
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Theorem 3.11 If hypotheses H(a)′ and H(f )3 hold, then problem (1.1) has at least three
nontrivial solutions

u0 ∈ int Ĉ+, v0 ∈ −int Ĉ+, and y0 ∈ Ĉ1(T ) nodal.
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