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Abstract
We consider the vertex proper coloring problem for highly restricted instances of
geometric intersection graphs of line segments embedded in the plane. Provided a
graph in the class UNIT-PURE-k-DIR, corresponding to intersection graphs of unit
length segments lying in at most k directions with all parallel segments disjoint, and
provided explicit coordinates for segments whose intersections induce the graph, we
show for k = 4 that it is N P-complete to decide if a proper 3-coloring exists, and
moreover, #P-complete undermany-one counting reductions to determine the number
of such colorings. In addition, under the more relaxed constraint that segments have
at most two distinct lengths, we show these same hardness results hold for finding and
counting proper (k − 1)-colorings for every k ≥ 5. More generally, we establish that
the problem of proper 3-coloring an arbitrary graph with m edges can be reduced in
O (

m2
)
time to the problemof proper 3-coloring aUNIT-PURE-4-DIR graph. This can

then be shown to imply that no 2o(
√
n) time algorithm can exist for proper 3-coloring

PURE-4-DIR graphs under the Exponential Time Hypothesis (ETH), and by a slightly
more elaborate construction, that no 2o(

√
n) time algorithm can exist for counting the

such colorings under the Counting Exponential Time Hypothesis (#ETH). Finally,
we prove an N P-hardness result for the optimization problem of finding a maximum
order proper 3-colorable induced subgraph of a UNIT-PURE-4-DIR graph.
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1 Introduction

In this work,1 we concern ourselves with the problem of finding proper 3-colorings,
or maximum order proper 3-colorable subgraphs, for geometric intersection graphs of
line segments embedded in the plane under stringent length and directional constraints.
More specically, we consider the following subclasses of these geometric intersection
graphs:

Definition 1 Graph class “PURE-k-DIR” (Kratochvíl 1994; Kratochvíl andMatoušek
1994; Kratochvíl and Nešetřil 1990). A graph is in this class if and only if it admits
a representation as an intersection graph of straight line segments lying in at most k
directions in the plane, where all parallel line segments are disjoint.

Definition 2 Graph class “r -L-PURE-k-DIR”; generalizing graph classes discussed in
(Cabello and Jejčič 2017; Chaplick et al. 2014; Otachi et al. 2007). A graph is in this
class if and only if it admits a representation as an intersection graph of straight line
segments lying in at most k directions in the plane, where all parallel line segments
are disjoint, and where line segments can have at most r distinct lengths.

Definition 3 Graph class “UNIT-PURE-k-DIR”. A special case of the graph class
r -L-PURE-k-DIR where r = 1, and accordingly, all line segments must be of unit
length.

Here, ∀ (k, r) ∈ N
2
>0, it holds that r -L-PURE-k-DIR � (r + 1)-L-PURE-k-DIR �

PURE-k-DIR (Cabello and Jejčič 2017; Suk 2014). Furthermore, to see these classes
as “limit” cases for increasingly constrained sets of intersection graphs, note that the
graph classes “STRING” (see Ehrlich et al. 1976; Kratochvíl et al. 1986; Sinden 1966),
“CONV” (see Kratochvíl 1991; Kratochvíl and Kuběna 1998; Roberts 1969; Steif
1985, “SEG” (seeEhrlich et al. 1976;Kratochvíl 1991, 1994;Kratochvíl andMatoušek
1994; Kratochvíl and Nešetřil 1990), and “k-DIR” (see Kratochvíl 1994; Kratochvíl
and Matoušek 1994; Kratochvíl and Nešetřil 1990) correspond to intersection graphs
ofR2 embedded Jordan curves, convex objects, straight line segments, and straight line
segments lying in at most k directions, respectively.We now remark that PURE-k-DIR
� SEG � CONV � STRING (Ehrlich et al. 1976; Kratochvíl and Matoušek 1994),
that k-DIR � (k + 1)-DIR (Kratochvíl and Matoušek 1994), and that PURE-k-DIR
� PURE-(k + 1)-DIR (Kratochvíl and Matoušek 1994).

Our motivation for this study is two-fold.
First, there has already been extensive work on characterizing the complexity of

classically hard problems on geometric intersection graphs of “fat” objects in the plane
(i.e., objects with bounded aspect ratios). While we cannot comprehensively review
this literature in the current setting, to cite a well-known result, Clark et al. (1990)
established that the maximum clique problem for intersection graphs of n unit disks—
provided a polynomial sized intersection diagram (note that Breu and Kirkpatrick
(1998) showed that the associated graph class recognition problem is N P-hard) –
was solvable in O (

n4.5
)
time. In contrast, we can observe that the maximum clique

1 A preliminary version of this article appeared in the proceedings of the 28th International Computing and
Combinatorics Conference (COCOON 2022); see Barish and Shibuya (2022).
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problem is N P-hard in the case of geometric intersection graphs of general convex
objects, even when provided polynomial sized intersection diagrams (Cabello et al.
2013; Kratochvíl and Kuběna 1998). Much more recently, letting l ∈ �(nα) for some

0 ≤ α ≤ 1, Biró et al. (2018) established that 2
Õ

(√
n·l·ln n

)

time algorithms exist for
proper l-coloring the intersection graphs of n “fat” objects, but at the same time, ruled

out the existence of 2
o
(√

n·l
)

time algorithms for this problem under the Exponential
Time Hypothesis (ETH) (see Section 2.5 for an elaboration on the ETH).

However, in contrast to this, much less appears to be known about the complexity
of fundamental problems, notably proper k-coloring, on geometric intersection graphs
of “thin” objects (i.e., objects with unbounded aspect ratios). This is particularly true
when such objects (e.g., line segments) are subject to length, orientation, and “manner-
of-intersection”-type constraints. Here, on one hand, we know for every k ≥ 3 that
it is N P-hard to proper k-color SEG graphs (Ehrlich et al. 1976) (see also Eppstein
(2009) for an alternative proof), to proper 3-color 2-DIR graphs with grid embeddings
(see Deniz et al. (2018)), and to proper (k − 1)-color PURE-k-DIR graphs for every
k ≥ 4 (Angelini and Lozzo (2018)). Due to Biró et al. (2018), we also know that no
2o(n) algorithm can exist under the ETH for proper 6-coloring 2-DIR graphs. This
latter result was also later strengthened by Bonnet and Rza̧żewski (2019) to establish
various lower bounds under the ETH for proper k-coloring 2-DIR graphs as well as
3-DIR graphs with unit length segments. On the other hand, nothing appears to be
known about the hardness of proper k-coloring PURE-k-DIR graphs under segment
length constraints.

Second, we are motivated by the practical importance of finding minimum proper
colorings for r -L-PURE-k-DIR geometric intersection graphs. Here, recall that in the
traditional frequency assignment problem (see, e.g., Aardal et al. 2007; Eisenblätter
et al. 2002; Hale 1980; de Werra and Gay 1994), one treats radio-emitters as the
centerpoints of disks assigned radii based on their emission power.Next, one constructs
a geometric intersection graph of these disks, where edges denote sources that are
sufficiently proximal to interfere with one-another’s signals. The objective is then to
assign a sparse set of at most k radio-frequency bands (colors) to each of the radio-
emitters (vertices), such that the aforementioned geometric intersection graph is proper
k-colored and we are guaranteed a minimum frequency separation (e.g., ≈ 50 kHz in
the model of de Werra and Gay (1994)) between any sufficiently proximal sources.

However, we argue that in realistic scenarios of the frequency assignment problem,
one must take into account the existence of directional antennas (see, e.g., Balanis
2016; Dai et al. 2011). Such antennas are often used to relay a signal to one or more
receivers at known locations, or to optimize energy efficiency by targeting emissions
towards population centers (e.g., consider a coastal radio station). In this context, the
radiation pattern for these antennas typically corresponds to a narrow cone with an
intensity falling off according to the inverse square law, or in terms of the geographical
area being covered, a convex geometric shape approximating a thin triangle or line
segment.
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For this study, in Sect. 3 we begin by first proving a number of results pertaining
to finding minimum proper colorings of UNIT-PURE-4-DIR and 2-L-PURE-k-DIR
graphs. In particular, we show that deciding the existence of a proper 3-coloring for
graphs in the class UNIT-PURE-4-DIR, provided a polynomial sized unit segment
intersection diagram witnessing graph class membership, is N P-complete (Theorem
1). Subsequently, we show that deciding the existence of a proper (k − 1)-coloring
for graphs in the class 2-L-PURE-k-DIR, provided a polynomial sized segment inter-
section diagram witnessing graph class membership, is N P-complete for each k ≥ 4
(Theorem 2).

More generally, we establish that the problem of proper 3-coloring a graph with m
edges can be reduced in O (

m2
)
time2 to the problem of proper 3-coloring a graph

in the class UNIT-PURE-4-DIR (Theorem 3). We remark that this latter result allows
us to rule out the existence of a 2o(

√
n) time algorithm for proper 3-coloring order

n UNIT-PURE-4-DIR graphs under the ETH (Corollary 1), and also allows for the
efficient embedding of exceptionally hard 3-colorability instances (e.g., constructed
via the method of Vlasie (1995) or Mizuno and Nishihara (2008)) in the class UNIT-
PURE-4-DIR.

Next, in Sect. 4, we prove that counting proper 3-colorings of UNIT-PURE-4-DIR
graphs is #P-complete under many-one counting reductions (Theorem 4), and fur-
thermore, that no 2o(

√
n) time algorithm can exist for counting proper 3-colorings of

UNIT-PURE-4-DIR graphs under the Counting Exponential TimeHypothesis (#ETH)
of Dell et al. (2014) (Corollary 2). In this context, wewere also able to extend Theorem
4 to establish that counting proper (k − 1)-colorings of 2-L-PURE-k-DIR graphs is
likewise #P-complete undermany-one counting reductions for every k ≥ 4 (Corollary
3).

Finally, in Sect. 5, we show that the problem of finding a maximum order proper
3-colorable induced subgraph of a UNIT-PURE-4-DIR graph, provided a polynomial
size unit segment intersection diagram witnessing graph class membership, is N P-
hard (Theorem 5).

2 Preliminaries

2.1 Graph theoretic notions and terminology

All graphs in this work should be considered to be simple (i.e., loop and multi-edge
free), undirected, and unweighted. Concerning basic graph theoretic terminology, we
will follow Bondy and Murty (1976), or where appropriate, Diestel (2017). Here,
recall that a proper k-coloring of a graph is an assignment of at most k distinct colors
(i.e., labels) to its vertices, such that no two adjacent vertices are assigned the same
color. Accordingly, the proper k-coloring decision problem (respectively, function
problem) is that of deciding the existence of (respectively, finding) a proper k-coloring
of a given input graph. In this context, we can also define the maximum proper k-

2 This was erroneously reported to be anO (m) time reduction in Barish and Shibuya (2022).
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colorable induced subgraph problem as the problem of finding a maximum order
induced subgraph of a graph which admits a proper k-coloring.

2.2 OrthogonalZ2 grid embeddings

In an orthogonal Z
2 grid embedding Q of a graph G (which must have maximum

degree ≤ 4), each vertex of G is placed at a unique coordinate (xi , yi ) in a Z
2 integer

lattice, and each pair of adjacent vertices inG are connected inQ by a contiguous poly-
line of axis-parallel segments. In this context, adjacent polyline segments at π

2 radian
angles with one another are referred to as bends, no polylines are permitted to cross
unless it is explicitly specified that this is allowed, and each grid point coordinate
(xi , yi ) is associated with a cell corresponding to a square area given by the coor-
dinates {(xi − 1

2 , yi − 1
2

)
,
(
xi + 1

2 , yi − 1
2

)
,
(
xi + 1

2 , yi + 1
2

)
,
(
xi − 1

2 , yi + 1
2

)}. As
an additional clarification, when we refer to an enlargement of an orthogonal Z

2 grid
embedding by some factor k, we mean that any line segment endpoint, at some coor-
dinate (xi , yi ) in the original embedding, is moved to the coordinate (k · xi , k · yi ) in
the factor of k enlarged embedding.

Here, to provide the reader visual intuition, in Fig. 1a we show the complete graph
K4, and in Fig. 1b, we show an orthogonal Z

2 grid embedding of this graph. For an
example in which we permit polyline crossings, in Fig. 1c we show the complete graph
K5, and in Fig. 1d, show an orthogonal Z

2 grid embedding of this graph where a lone
polyline crossing is indicated with a (gray diamond) polygon.

2.3 Segment intersection diagrams

An important notion in this work is the segment intersection diagram, which we define
as follows:

Definition 4 Segment intersection diagram. An explicit embedding of line segments
in R

2 corresponding to a given geometric intersection graph, where the lengths and
angles of all segments, as well as the number and manners of all segment-segment
intersections, can be explicitly determined.

As a clarification, we will say that a given segment intersection diagram is a polyno-
mial sized segment intersection diagram if it can be encoded using a number of bits
polynomial in the size of its corresponding geometric intersection graph. In addition,
wemay refer to a segment intersection diagram as a unit segment intersection diagram
in the special case where all embedded segments are of unit length.

2.4 Counting complexity

Recall that #P Valiant (1979a, b) is the class of integer counting problems asking for
the number of witnesses for a given N P decision problem. To establish completeness
for a problem in the class #P , it suffices to give either a Turing reduction or many-
one counting reduction from a #P-complete problem (e.g., #3-SAT) to the problem
of interest. Here, to reduce a problem # f to a problem #h via a many-one counting
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reduction, we require two polynomial time functions R1 : �∗ → �∗ and R2 : N → N

satisfying the property that f (x) = R2(h(R1(x))). In this context, a parsimonious
reduction is a special type of many-one counting reduction wherein R2 is the identity
function.

2.5 The exponential time hypothesis (ETH) & counting exponential time
hypothesis (#ETH)

At a high level of abstraction, the Exponential Time Hypothesis (ETH) of Impagli-
azzo and Paturi (2001) is the unproven conjecture that k-SAT cannot be solved in
subexponential time. A formal statement of the hypothesis is as follows:

Definition 5 Exponential TimeHypothesis (ETH) (Impagliazzo and Paturi 2001). Let-
ting k ∈ N>2, letting n and m be the number of variables and number of clauses in
an instance of k-SAT, respectively, and letting sk = in f {δ k-SAT can be solved in
2(δ·n) · poly (m) time}, it holds that sk > 0.

In this context, the Strong Exponential Time Hypothesis (SETH) adds the assumption
that s∞ = 1.

With regard to the Counting Exponential Time Hypothesis (#ETH) of Dell et al.
(2014), letting #k-SAT be the problem of counting the number of solutions for an
instance of k-SAT, a formal statement of this hypothesis is as follows:

Definition 6 Counting Exponential Time Hypothesis (#ETH) (Dell et al. 2014). For
a #k-SAT instance with n variables and m clauses, where k ≥ 3, and letting sk =
in f {δ #k-SAT can be solved in 2(δ·n) · poly (m) time}, we have that sk > 0.

Here, the #ETH can be understood as a moderation of the ETH in the sense that it is
only proposing it should take exponential time to count the number of witnesses for
an instance of k-SAT for each k ≥ 3.

3 Finding proper colorings of r-L-PURE-k-DIR graphs

Theorem 1 Deciding the existence of a proper 3-coloring for graphs in the class
UNIT-PURE-4-DIR, provided a polynomial size unit segment intersection diagram
witnessing graph class membership, is N P-complete.

Proof Observe that the stated decision problem is in N P , as we are guaranteed that the
input graph is in the class UNIT-PURE-4-DIR, and can verify a witness for proper 3-
colorability in time linear in cardinality of the input graph’s edge set. To establish N P-
hardness, we will proceed via reduction from the N P-complete problem of deciding
the existence of a proper 3-coloring for a planar 4-regular graph (Dailey 1980). To
begin, let G be an arbitrary planar 4-regular graph, and letQ be an orthogonal Z2 grid
embedding of G enlarged by a factor of 2 (see Section 2.2 for an elaboration). Note
that we can compute Q in polynomial time via network flow techniques (Biedl and
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Fig. 1 Example orthogonal Z
2 grid embeddings of graphs, where larger (black) vertices and (highlighted

black) edges indicate the vertices and polylines for the embeddings, respectively; a planar embedding of the
complete graph K4; b orthogonal Z

2 grid embedding of the complete graph K4; c non-planar embedding
of the complete graph K5; d non-planar orthogonal Z

2 grid embedding of the complete graph K5 with one
crossing indicated by the (gray diamond) polygon

Kant 1998; Cornelsen and Karrenbauer 2012; Papakostas and Tollis 1998; Tamassia
1987).

Wewill now use the embeddingQ as a guide to generate a unit segment intersection
diagramW , which in turn will correspond to a UNIT-PURE-4-DIR graph that admits
a proper 3-coloring if and only if G admits a proper 3-coloring. To do so, we will
construct a unit segment intersection diagram, in each case corresponding to a UNIT-
PURE-4-DIR graph, for every possible unit cell centered on a vertex in the embedding
Q. For visual intuition, we refer the reader to Fig. 2a–c, where we show examples of
these unit cells drawn as (black dashed) boxes corresponding to vertices of degree 4,
3, and 2 in the embedding, respectively. Note that only the degree 4 and 2 cases will
occur in this context, though we will cover the degree 3 case for completeness as it
will arise in the later Theorem 3 proof argument.

To first treat cells in Q corresponding to vertices in G, we adopt the unit segment
intersection diagram scheme shown in Fig. 2d through Fig. 2f, where all segments have
one of at most four angle types, where the corresponding UNIT-PURE-4-DIR graphs
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Fig. 2 Scheme for substituting a vertex in an enlarged orthogonal Z2 grid embedding of a graph with a unit
segment intersection diagramcorresponding to aUNIT-PURE-4-DIRgraph,where the (black dashed) box—

with dimensions
(
3
2 × 3

2

)
—indicates the placement of each diagram on a vertex in the embedding; (a,b,c)

drawings of degree 4, degree 3, and degree 2 vertices in the embedding; (d,e,f) unit segment intersection
diagrams for (a) through (c), where each segment is assigned a color according to a proper 3-coloration
of its corresponding UNIT-PURE-4-DIR graph; (g,h,i) UNIT-PURE-4-DIR graphs corresponding to the
unit segment intersection diagrams in (d) through (f), where each vertex is embedded at the midpoint of its
respective segment

are shown in Fig. 2g through Fig. 2i, respectively, and where these instances cover
all possible cell types in Q up to rotation and reflection (due to our focus on proper
3-colorings we need not consider degree 1 vertices). Here, a simple caseology shows
that, for any proper 3-coloring of the graphs in Fig. 2g through Fig. 2i, the vertices
corresponding to segments {w, x, y, z} in Fig. 2d through Fig. 2f must be identically
colored. In this context, we will refer to the color of unit segment intersection diagram
placed on a cell as the color of the vertices corresponding to segments {w, x, y, z}.

To next treat cells corresponding to polylines, we need the ability to in certain
cases copy the color of one unit segment intersection diagram placed on a cell to its
neighbors, and in other cases, to require unit segment intersection diagrams placed
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Fig. 3 Illustrative example of how the unit segment intersection diagrams from Fig. 2d–f can be placed on a
contiguous region in an enlarged orthogonal Z2 grid embedding to copy color information—corresponding
to vertex colors in any proper 3-coloring of the embedded graph—along polylines; (a) from left to right,
drawings of degree 2, 3, and 2 vertices in the embedding, with the degree 2 vertices corresponding to points
along polylines; (b) unit segment intersection diagram for (a), where each segment can be assigned a color
according to a proper 3-coloration of its corresponding UNIT-PURE-4-DIR graph; (c)UNIT-PURE-4-DIR
graph corresponding to the unit segment intersection diagram in (b), where each vertex is embedded at a
coordinate corresponding to the midpoint of its respective segment

on adjacent cells to have distinct colors. Concerning first color copying, we adopt the
scheme shown in Fig. 3. Specifically, in Fig. 3a we show three adjacent cells in an
example ofQ, where the left-most, central, and right-most vertices in the embedding
have degrees 2, 3, and 2, respectively. In Fig. 3b we show how we can place unit
segment intersection diagrams on these cells, in the process of constructingW , in such

123



70 Page 10 of 48 Journal of Combinatorial Optimization (2024) 47 :70

a manner that the central and right-most diagrams are forced to have the same color.
This is most evident by looking at the UNIT-PURE-4-DIR graphs corresponding to
these diagrams in Fig. 3c. Concerning enforcement of distinct colorations for adjacent
cells, we adopt the scheme shown in Fig. 4. Specifically, we can see in Fig. 4a, and
its associated UNIT-PURE-4-DIR graph in Fig. 4b, how the unit segment intersection
diagram placed in the central cell forces the cells to the left and right to have distinct
colorations in any proper 3-coloring. We can also see in Fig. 4c, and its associated
UNIT-PURE-4-DIR graph in Fig. 4d, how this scheme can be adopted to work for π

2
radian bends in polylines.

Putting everything together, using the scheme given in Fig. 2 to construct and place
unit segment intersection diagrams on vertices in Q, using the scheme in Fig. 3 to
construct and place unit segment diagrams in all but one cell of each polyline, and
using the scheme in Fig. 4 to construct and place unit segment diagrams in exactly one
position on each polyline—which will always exist due to our enlarging the original
grid embeddingofG by a factor of 2—wewill obtain unit segment intersection diagram
W corresponding to a UNIT-PURE-4-DIR graph that admits a proper 3-coloring if
and only if the original graph G admits a proper 3-coloring. As all of the steps used
to construct this UNIT-PURE-4-DIR graph graph can be accomplished in polynomial
time, this yields the current theorem. ��
Theorem 2 Deciding the existence of a proper (k − 1)-coloring for graphs in the
class 2-L-PURE-k-DIR, provided a polynomial size unit segment intersection diagram
witnessing graph class membership, is N P-complete ∀k ≥ 4.

Proof Let W be a unit segment intersection diagram with n lines, constructed from
an orthogonal Z

2 grid embedding as in the Theorem 1 proof argument, though in this
context having segments embedded at angles of {π

8 , 3π
8 , 5π

8 , 7π
8 } with respect to the

x-axis. Here, the case where k = 4 is given by Theorem 1. To treat the cases where
k ≥ 5, we proceed via the following steps:

– (Step 1) We compute a convex hull C for the 2n endpoints of the n lines of W
in O (n · ln n) time, via methods such as Graham’s scan (Graham 1972) or the
algorithm of Kirkpatrick and Seidel (1986).

– (Step 2) We use Shamos and Toussaint’s rotating calipers method (Shamos 1978;
Toussaint 1983) to calculate a minimum axis-oriented bounding square B for C in
O (n) time, then scale B and the enclosed line segments to ensure that it has unit
side lengths. For an illustration, see the left-hand-side of Fig. 5 where we show
an example of C as a polygon enclosed in a (black dashed) axis-aligned bounding
square B specified by the vertices {b1, b2, b3, b4}.

– (Step 3) Letting (0, 0) be the coordinate for the bottom right-hand-side of B,
we construct three line segments of length tan−1

(
π
8

) + z + 1 for some z ≥ 1
given by the vertex pairs {{l1.1, l1.2}, {l2.1, l2.2}, {l3.1, l3.2}}, having angles of
{π
8 , 3π

8 , 5π
8 } with respect to the x-axis (as shown in Fig. 5), and with each having

a midpoint at the coordinate

(
tan−1( π

8 )
2 + z, 1

2

)
.

– (Step 4) We draw at most n line segments of length tan−1
(

π
8

) + z + 1, with z
chosen to have the same value as in (Step 3), such that every line segment enclosed

123



Journal of Combinatorial Optimization (2024) 47 :70 Page 11 of 48 70

Fig. 4 Illustrative example of how the unit segment intersection diagrams from Fig. 2d–f can be placed on a
contiguous region in an enlarged orthogonalZ2 grid embedding of a graph, while forcing vertices connected
by polylines to have distinct colors in any proper 3-coloring; (a) unit segment intersection diagram encoding
a degree 3 vertex, indicated by the left-hand-side (black dashed) box, and a degree 2 vertex, indicated by
the right-hand-side (black dashed) box, where the diagram in the central (black dashed) box enforces the
requirement that the diagrams to the left and right have distinct colorations for their outgoing polylines;
(b) UNIT-PURE-4-DIR graph corresponding to the unit segment intersection diagram in (a), where each
vertex is embedded at a coordinate corresponding to the midpoint of its respective segment; (c,d) variation
on (a,b) for cases where polylines meet at an angle of π

2 radians
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Fig. 5 Illustration of the scheme used in the Theorem 2 proof argument to reduce the problem of deciding,
for each k ≥ 5, the existence of a proper 3-coloring for a UNIT-PURE-4-DIR graph to the problem of
deciding the existence of a proper (k − 1)-coloring for a graph in the class 2-L-PURE-k-DIR

in B is intersected (though not at an endpoint) at least once, such that each added
line segment passes through each of the line segments added in (Step 3), such that
each of these line segments has an angle of 0 with respect to the x-axis, and such
that each segment has endpoints on the vertical lines x = −1 (i.e., corresponding
to the left-hand-side of B) and x = tan−1

(
π
8

)+ z. In the Fig. 5 illustration of this
construction, these thin horizontal line segments are depicted as longer than the
segments added in (Step 3) for purely artistic reasons (i.e., this is not actually the
case).

– (Step 5) If k = 5, we stop. Else, we iterate (Step 4) k − 5 additional times, each
time choosing the same initial endpoints for the newly added line segments, then
infinitesimally perturbing their angle by some distinct value for each iteration.

Now let W ′ be the crossing diagram generated from W via (Step 1) through (Step
4), and let G ′ be its associated geometric intersection graph. Observe that G ′ ∈ 2-L-
PURE-5-DIR due to the line segments of length tan−1

(
π
8

) + z + 1 (for some z ≥ 1)
added in (Step 3) and (Step 4). Here, observe that G ′ will correspond to a modification
ofG, where letting VG and VG ′ be the vertex sets ofG andG ′, respectively, all vertices
vi ∈ VG are connected to at least one vertex hi ∈ VG ′ \VG (corresponding to one or
more line segments added in (Step 4)), which is in turn connected to every vertex in the
clique K3 (corresponding to the line segments added in (Step 3)). Accordingly, in any
proper 4-coloring of G ′, each vertex hi ∈ VG ′ \ VG must be assigned the same color,
implying that G has a proper 3-coloring if and only if G ′ has a proper 4-coloring.

We can also observe that after k − 5 iterations of (Step 5), all vertices vi ∈ VG will
be connected to every vertex in at least one clique of k − 4 vertices (all such cliques
being themselves disjoint), each vertex of which will in turn be connected to every
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vertex in the clique K3. In this latter context, for any proper (k − 1)-coloring of G ′,
only the colors used for the K3 clique vertices will be available to color the original
vertices of G, implying that G has a proper 3-coloring if and only if G ′ has a proper
(k − 1)-coloring. This yields the theorem. ��
Theorem 3 The problem of proper 3-coloring an arbitrary graph on m edges can be
reduced in O (

m2
)
time to the problem of proper 3-coloring a UNIT-PURE-4-DIR

graph.

Proof Let G be an arbitrary graph with vertex set VG , edge set EG , and a set ϒ ⊆ VG
of vertices having degree ≥ 5. Replace every vertex vi ∈ ϒ of degree d f ≥ 5 with a
cycle of length f , such that exactly one vertex in the cycle is adjacent to each distinct
neighbor of vi , and assign a unique label to the vertices in each generated cycle. Let
H be the graph resulting from this operation, let VH be its vertex set, observe that the
maximum degree of H will be≤ 4, and observe that |VH | ∈ O (|EG |). As an example,
if G is the wheel graphW5 with 6 vertices and 10 edges, H will be the 3-regular prism
graph Y5 with 10 vertices and 15 edges.

Once H is constructed, we use the method of Papakostas and Tollis (1998) (see also
the method of Biedl and Kant (1998)) to compute a factor of 2 enlarged orthogonal
Z
2 grid embeddingQ of H , where we allow for polyline crossings, inO (|VH |) �⇒

O (|EG |) time, and then create a new embeddingQ′ by further enlargingQ by a factor
of 3.We subsequently follow theTheorem1proof argument to construct a unit segment
intersection graphW corresponding to a UNIT-PURE-4-DIR graph fromQ′, with two
exceptions: (1) we follow the scheme shown in Fig. 3 to ensure that the vertices in
each uniquely labeled cycle in H are colored monochromatically; and (2) we replace
polyline crossings (e.g., as illustrated in Fig. 1d or Fig. 6a) with the unit segment
intersection diagram shown in Fig. 6b, where the aforementioned enlargement of Q
by a factor of 3 ensures that this can be done without overlapping other diagrams.

Here, we can verify that the Fig. 6c UNIT-PURE-4-DIR graph corresponding to the
Fig. 6b unit segment intersection diagram—which represents a minor modification of
the standard “crossing gadget” used to establish the N P-completeness of the planar
3-coloring problem (see “pg. 88” of Garey and Johnson (1979)) will ensure that the
vertices marked x and x ′ will have the same coloration and that the vertices marked
y and y′ will have the same coloration. Recasting the problem of enumerating proper
3-colorings as that of enumerating exact vertex covers, we can also use Knuth’s danc-
ing links variant of his depth-first backtracking Algorithm X (Knuth 2000), e.g., as
implemented in SageMath (W. A. Stein et al. (The SAGE Development Team) 2020),
to confirm this fact by enumerating all 3072 proper 3-colorings of the Fig. 6c graph.

Putting everything together, as the vertices in each uniquely labeled cycle in H will
be monochromatically colored, as the UNIT-PURE-4-DIR graph corresponding to the
Fig. 6b unit segment intersection diagram can be used to address crossing polylines in
Q′, and as the method of Papakostas and Tollis (1998) to generateQ (and thus,Q′) is
a linear time O (|EG |) algorithm, we have a general method of reducing the problem
of proper 3-coloring an arbitrary graph G to proper 3-coloring a UNIT-PURE-4-DIR
graph with at mostO (|EG |2) vertices. As this algorithm will take at mostO (|EG |2)
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Fig. 6 Illustrations for the scheme used in the proof arguments for Theorem 3 and Theorem 4 to substitute
a polyline crossing in a orthogonal Z

2 grid embedding of a graph with a unit segment intersection diagram

corresponding to aUNIT-PURE-4-DIR graph, where the (black dashed) box—with dimensions
(
9
2 × 9

2

)
—

indicates the placement of the diagram on a 3 × 3 cell area centered on a polyline crossing (after deleting
all existing segments in the area); (a) drawing of polyline crossing in a orthogonal Z

2 grid embedding
indicated with a (gray diamond) polygon; (b) unit segment intersection diagram substituted in place of the
polyline crossing in (a), corresponding to a proper 3-coloring of its associated UNIT-PURE-4-DIR graph
(forcing the segment pairs x and x ′ as well as y and y′ to have the same coloration); (c)UNIT-PURE-4-DIR
graph corresponding to the unit segment intersection diagram in (b), where each vertex is embedded at
the midpoint of its respective segment; (d) instance of the UNIT-PURE-4-DIR graph shown in (c) where
we illustrate the topology of the additional vertex (white colored vertex connected to adjacent vertices via
dashed edges) added in the specific context of the Theorem 4 proof argument to ensure the same number
of proper 3-colorations regardless of whether x and y have the same coloration

time, where the bound arises from the number of vertices in the constructed UNIT-
PURE-4-DIR graph, this yields the theorem at hand. ��

Corollary 1 Unless the ETH is false, no 2o(
√
n) time algorithm can exist for proper

3-coloring an order n instance of a UNIT-PURE-4-DIR graph.
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Proof By a result of Cygan et al. (2016), under the ETH, we have that no 2o(n) time
algorithm can exist for finding a proper 3-coloring of an arbitrary graph on n vertices
having degree at most 4. Accordingly, as an order n graph of degree at most 4 can have
at most 2n edges, and as Theorem 3 guarantees that an arbitrary graph onm edges can
be reduced inO (

m2
)
time to the problem of proper 3-coloring a UNIT-PURE-4-DIR

graph, unless the ETH is false, we have that no 2o(
√
n) time algorithm can exist for

finding a proper 3-coloring of an order n UNIT-PURE-4-DIR graph. ��

4 Counting proper colorings of r-L-PURE-k-DIR graphs

Lemma 1 Not-All-Equal-3-SAT (#NAE-3-SAT) is #P-complete under linear time
many-one counting reductions.

Proof Letting li , for 1 ≤ i ≤ k, be a positive or negative literal (i.e., where li
encodes the value of a corresponding variable, vari , or its negation, ¬ vari ) we
write fN AE (l1, . . . , lk) to denote a clause for an instance of NAE-k-SAT. Now,
letting l(i, j) be an arbitrary positive or negative literal for any 1 ≤ i ≤ n
and 1 ≤ j ≤ 4, and letting x be an auxiliary positive literal, observe that
an arbitrary 3-SAT formula of the form φ = (

l(1,1) ∨ l(1,2) ∨ l(1,3)
) ∧ . . . ∧(

l(n,1) ∨ l(n,2) ∨ l(n,3)
)
can be reduced to an NAE-4-SAT formula of the form φ′ =

fN AE
(
l(1,1), l(1,2), l(1,3), x

) ∧ . . . ∧ fN AE
(
l(n,1), l(n,2), l(n,3), x

)
, where φ′ will have

exactly twice the number of witnesses as φ. Finally, letting y(i,1) and y(i,2) be a
pair of auxiliary positive literals for each 1 ≤ i ≤ n, observe that we can parsi-
moniously reduce any NAE-4-SAT formula to an NAE-3-SAT formula by simply
replacing each clause of the form fN AE

(
l(i,1), l(i,2), l(i,3), l(i,4)

)
with the equiva-

lent five clause expression fN AE
(
l(i,1), l(i,2), y(i,1)

) ∧ fN AE
(
l(i,1),¬l(i,3), y(i,1)

) ∧
fN AE

(¬l(i,1), l(i,4),¬y(i,1)
)∧ fN AE

(
l(i,3), l(i,4), y(i,2)

)∧ fN AE
(
y(i,1), y(i,1), y(i,2)

)
.

Putting everything together, this gives a linear timemany-one counting reduction from
#3-SAT to #NAE-3-SAT, yielding the current lemma. ��
Theorem 4 Counting proper 3-colorings for graphs in the class UNIT-PURE-4-DIR,
provided a polynomial size unit segment intersection diagram witnessing graph class
membership, is #P-complete under many-one counting reductions.

Proof We will proceed by first carrying out a known linear time many-one counting
reduction from an arbitrary instance of #NAE-3-SAT with m clauses to the problem
of counting proper 3-colorings of an arbitrary simple undirected graph G on O (m)

edges. We will subsequently show that, with a suitable modification of original UNIT-
PURE-4-DIR “crossing gadget” from Fig. 6, the approach given in the Theorem 3
proof argument for reducing the problem of proper 3-coloring G to the problem of
proper 3-coloring a UNIT-PURE-4-DIR graph H will necessarily be an O (

m2
)
time

many-one counting reduction.
For the initial reduction from #NAE-3-SAT to the problem of counting proper 3-

colorings of a simple undirected graph G, we adopt the approach of Dewdney (1982),
which an analysis of Creignou and Hermann (1993) later established was a linear
time many-one counting reduction. To begin, let li , for 1 ≤ i ≤ 3, be a positive or
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negative literal (i.e., where li encodes the value of a corresponding variable, vari , or
its negation, ¬ vari ), and let φN AE be an arbitrary NAE-3-SAT formula of the form
fN AE

(
l(1,1), l(1,2), l(1,3)

)∧ . . .∧ fN AE
(
l(n,1), l(n,2), l(n,3)

)
. Construct a graph G from

φN AE , with m edges, by:

– creating a cycle defined by the edge set {vari ↔ ¬ vari , vari ↔ vq ,¬ vari ↔
vq} for each variable of φN AE , with vq as a common vertex;

– for each clause fN AE
(
l(i,1), l(i,2), l(i,3)

)
of φN AE , where 1 ≤ i ≤ n, creating a

cycle defined by the edge set {s(i,1) ↔ s(i,2), s(i,1) ↔ s(i,3), s(i,2) ↔ s(i,3)};
– for each 1 ≤ i ≤ n and 1 ≤ j ≤ 3, adding the edge {s(i, j) ↔ vari } (respectively,
adding the edge {s(i, j) ↔ ¬ vari }) if l(i, j) is a positive (respectively, negative)
literal.

Here, Creignou and Hermann (1993) claimed that there would be 3! · 2n instances
of proper 3-colorings for G per witness for φN AE . However, noting that any witness
for φN AE will have a complementary witness where we invert all variable truth value
assignments, this is an over count by a factor of 2, and in actuality there will be 3 · 2n
instances of proper 3-colorings of G per witness for φN AE .

We now follow along the lines of the reduction given in the Theorem 3 proof
argument to convert G into a UNIT-PURE-4-DIR graph H inO (

m2
)
time, where we

can recall that this construction also gives us an orthogonal Z
2 grid embeddingQ′ (of

a subdivision of G) that can be used to template the construction of H . However, we
first need to modify the original UNIT-PURE-4-DIR “crossing gadget” from Fig. 6c to
correct for the fact that, for a particular coloration of the vertices labeled x and y, there
are exactly 512 proper 3-colorings that are possible if the coloration of x matches the
colorationof y, andonly256possible proper 3-colorings if the colorationof x is distinct
from the coloration of y (giving the 3 · 512+ 3! · 256 = 3072 total “crossing gadget”
proper 3-colorings enumerated in the Theorem 3 proof argument). In this context, it
suffices to add the (white) vertex shown in Fig. 6d to the “crossing gadget”, which—
as again verified using Knuth’s Algorithm X (Knuth (2000)), e.g., as implemented
in SageMath (W. A. Stein et al. (The SAGE Development Team) (2020))—ensures
that there are exactly 512 possible proper 3-colorings of the “crossing gadget” for any
particular coloration of the vertices labeled x and y. We refer the reader to Fig. 14 in
the Appendix for a modified version of the Fig. 6b unit segment intersection diagram
having a new segment for the (white) vertex illustrated in Fig. 6d.

Moving forward, let C1 be the number of non-empty cells in Q′ (i.e., containing
either embedded vertices or non-crossing polylines) disjoint from any 3 × 3 cell area
centered on a polyline crossing, and let C2 be the number of polyline crossings inQ′.
Looking at the Fig. 2d–f UNIT-PURE-4-DIR subgraphs of H substituted in place of
each cell type counted by C1, we can determine that each such cell will multiply the
number of proper 3-colorings of G by a factor of 2. We can also determine that each
instance of the modified UNIT-PURE-4-DIR “crossing gadget”, substituted in place
of each 3 × 3 cell block centered on a polyline crossing, will multiply the number of
proper 3-colorings of G by a factor of 512. Accordingly, we have that H will have
2C1 ·512C2 proper 3-colorings per proper 3-coloring of G. As this is straightforwardly
a many-one counting reduction from counting proper 3-colorings of G to counting
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proper 3-colorings of theUNIT-PURE-4-DIRgraph H , we have established the current
theorem. ��
Corollary 2 Unless the #ETH is false, no 2o(

√
n) time algorithm can exist for counting

the number of 3-colorings of an order n instance of a UNIT-PURE-4-DIR graph.

Proof Recall that Lemma 1 gives a linear time many-one counting reduction from
#3-SAT to #NAE-3-SAT. Observe that the current corollary now follows from the fact
that the Theorem 4many-one counting reduction, specifically from #NAE-3-SATwith
n clauses to counting proper 3-colorings of a UNIT-PURE-4-DIR graph with O (

n2
)

vertices, will take at most O (
n2

)
time. ��

Corollary 3 Counting proper (k − 1)-colorings for graphs in the class 2-L-PURE-k-
DIR, provided a polynomial size unit segment intersection diagram witnessing graph
class membership, is #P-complete under many-one counting reductions ∀k ≥ 4.

Proof In the case where k = 4, the corollary follows from Theorem 4. In the case
where k ≥ 5, we proceed by following exactly the construction given in the proof
argument for Theorem 2, which reduces the problem of finding a proper 3-coloring
of a UNIT-PURE-4-DIR graph to the problem of finding a problem (k − 1)-coloring
of a 2-L-PURE-k-DIR graph. Here, letting G be an initial UNIT-PURE-4-DIR, and
as noted in the final paragraph of the Theorem 2 proof argument, the result will be a
graph G ′, wherein every vertex in G is connected to every vertex in at least one clique
of k − 4 vertices, and all such cliques on k − 4 vertices are connected to every vertex
in a common clique on 3 vertices (no vertex of which is adjacent to any vertex in G).
Accordingly, letting 	 be the number of proper 3-colorings for G, letting 	 ′ be the
number of proper (k − 1)-colorings for G ′, and letting M be the number of cliques on
k−4 vertices, adjacent to some vertex inG, generated via the Theorem 2 construction,
it holds that 	 ′ = (3!) · (k−1

3

) · ((k − 4)!)M . This yields the current corollary for all
cases where k ≥ 4. ��

5 Findingmaximum order proper 3-colorable induced subgraphs for
UNIT-PURE-4-DIR graphs

Theorem 5 Finding a maximum order proper 3-colorable induced subgraph of a
UNIT-PURE-4-DIR graph, provided a polynomial size unit segment intersection dia-
gram witnessing graph class membership, is N P-hard.

Proof We proceed via reduction from the problem of finding a maximum proper 3-
colorable induced subgraph of an arbitrary planar graph, or equivalently, determining
the minimum number of vertices that must be deleted in an arbitrary planar graph to
yield a proper 3-colorable graph. Here, observing that the property of a planar graph
being proper 3-colorable is non-trivial, in the sense that infinitely many proper 3-
colorable planar graphs exist, and hereditary, in the sense that any induced subgraph
of a proper 3-colorable subgraph is also proper 3-colorable, by ametatheoremof Lewis
and Yannakakis (1980) we have that this latter problem is N P-hard (see the author’s
“Corollary 5”).
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To begin, let G be an arbitrary planar graph with vertex set VG , edge set EG , and
a set ϒ ⊆ VG of vertices having degree ≥ 5. Akin to how we proceeded in the proof
argument for Theorem 3, we replace every vertex vi ∈ ϒ with a path (not a cycle
as in the Theorem 3 proof argument) of length fi vertices. More specifically, for a
given vertex vi ∈ ϒ , exactly one vertex in the path is made adjacent to each distinct
neighbor of vi , and we label the vertices in the path {w(i,1), w(i,2), . . . , w(i, f )}, where
w(i,1) and w(i, fi ) correspond to the path termini. Let H be the graph resulting from
this operation, let VH be its vertex set, observe that the maximum degree of H will
be ≤ 4, and observe that |VH | ∈ O (|EG |). Here, we use the method of Papakostas
and Tollis (1998) to compute a factor of 2 enlarged orthogonal Z

2 grid embedding Q
of H , where polyline crossings are forbidden, in O (|VH |) �⇒ O (|EG |) time, and
subsequently create a new embedding Q′ by further enlarging Q by a factor of 3.

At a high level, our strategy will now be to construct a unit segment intersection
diagram W by replacing the contents of various 3 × 3 cell areas in Q′ with copies of
the ζ1 and ζ2 UNIT-PURE-4-DIR graph gadgets shown in Figs. 7 and 8, and otherwise
following the method given in the Theorem 1 proof argument for replacing vertices
and polyline segments in Q′ with the unit segment intersection diagrams shown in
Figs. 2 and 4. As a result, the UNIT-PURE-4-DIR graph H ′ associated with W will
have the property that n vertices can be deleted in G to yield a proper 3-colorable
induced subgraph if and only if n vertices can be deleted in H ′ to yield a proper
3-colorable subgraph.

In particular, we generate W from Q′ via the following steps:

– (Step 1) We substitute each 3 × 3 cell area centered on a cell corresponding to a
vertex w(i,1), for i ∈ [1, |ϒ |], with the ζ1 unit segment diagram shown in Fig. 7a
(see Fig. 7b for the topology of its corresponding unit segment intersection graph).

– (Step 2) We substitute each 3 × 3 cell area centered on a cell corresponding to
a vertex w(i, j), for i ∈ [1, |ϒ |] and j �= 1, with the ζ2 unit segment diagram
shown in Fig. 8a (see Fig. 8b for the topology of its corresponding unit segment
intersection graph).

– (Step 3) We remove all polylines connecting cells ca and cb in Q′ corresponding
to a pair of vertices w(i, j) and w(i,k).

– (Step 4)Allowing for rotations of each ζ1 or ζ2 unit segment diagramby increments
of π

2 , or reflections of the diagrams across horizontal or vertical lines passing
through their center:

– (Step 4.1) for each i ∈ [1, |ϒ |], we draw polylines to connect the segments
markedw and x for an instance of the ζ1 gadget placed on a vertex w(i,1), with
the segments marked q2 and q3 for an instance of the ζ2 gadget placed on a a
vertex w(i,2);

– (Step 4.2) for each i ∈ [1, |ϒ |] and each j ∈ [2, fi − 1], we connect the
segments marked q3 and q4 for an instance of the ζ2 gadget placed on a vertex
w(i, j), with the segments marked q2 and q3 (in any order, e.g., q3 and q2) for
an instance of the ζ2 gadget placed on a vertex w(i, j+1);

– (Step 4.3) for each polyline adjacent to a ζ1 or ζ2 gadget and remaining after
(Step 3), we modify the polyline to connect it to the segment marked y or z in
the case of a ζ1 gadget, and the segment marked q1 in the case of a ζ2 gadget.
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– (Step 5) For all remaining cells in Q′ embedding vertices or polylines, we follow
the construction given in the Theorem 1 proof argument to place the unit segment
diagrams from Figs. 2 and 4 on these cells.

Here, in Fig. 9a we show a polyline connecting vertices (Solid squares) embedded on a
pair of cells ca and cb inQ, and in Fig. 9bwe show how it is possible to substitute a pair
of polylines in the enlarged embedding Q′ to complete (Step 4.1) through (Step 4.3)
for an appropriate placement of gadgets on ca and cb. We can observe the following
properties of the UNIT-PURE-4-DIR graphs corresponding to the ζ1 and ζ2 gadgets
(see Fig. 7b and 8b, respectively):

– (ζ1 Gadget; Property 1) Vertices corresponding the w, x , y, and z segments must
have the same coloration in any proper 3-coloring (of which there are 1536 for the
gadget’s corresponding UNIT-PURE-4-DIR graph.

– (ζ1 Gadget; Property 2) Upon deletion of vertex indicated by an arrow in Fig. 7b,
vertices corresponding to thew, x , y, and z segments can have arbitrary colorations
in any proper 3-coloring (of which there are 49152) for the gadget’s corresponding
UNIT-PURE-4-DIR graph.

– (ζ2 Gadget; Property 1) In any proper 3-coloring of the gadget’s corresponding
UNIT-PURE-4-DIR graph (of which there are 208896), if the vertices correspond-
ing to the segments q2 and q3 have the same coloration (24576 instances), then the
vertices corresponding to the segments q1 through q5 have the same coloration;
otherwise the vertex corresponding to the segment q1 may have an arbitrary col-
oration, and the vertices corresponding to the segments q4 and q5 can have distinct
colorations.

Now, for each i ∈ [1, |ϒ |], let	i correspond to the subgraph of H ′—where H ′ is again
the UNIT-PURE-4-DIR graph associated with the unit segment intersection diagram
W constructed via (Step 1) through (Step 5)—substituted in place of a given vertex
vi ∈ VG . Here, we have that (ζ1 Gadget; Property 1) and (ζ2 Gadget; Property 1) will
initially ensure that, in any proper 3-coloring of H ′, every vertex in 	i adjacent to
a vertex not in 	i will have the same coloration. This simulates an assignment of a
single color to the vertex vi ∈ VG corresponding to	i . However, (ζ1 Gadget; Property
2) and (ζ2 Gadget; Property 1) also guarantee that, with the deletion of a single vertex
in	i , there will be a cascade effect that allows vertices in	i adjacent to a vertices not
in 	i to have arbitrary colorations. This simulates the deletion of the vertex vi ∈ VG
in the context of considering a proper 3-coloring of a subset of the vertices in VG .

Putting everything together, we have that n vertices can be deleted in G to yield
a proper 3-colorable subgraph if and only if n vertices can be deleted in the UNIT-
PURE-4-DIR graph H ′ to yield a proper 3-colorable subgraph. Accordingly, as G is
an arbitrary planar graph, and as finding a minimum set of vertices to delete in a planar
graph to yield a proper 3-colorable graph is N P-hard, this yields the theorem at hand.

��
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Fig. 7 Illustration of the scheme used in the Theorem 5 proof argument to substitute a vertex in a orthogonal
Z
2 grid embedding of a graphwith a unit segment intersection diagram corresponding to theUNIT-PURE-4-

DIR graph gadget ζ1, where the (black dashed) box—with dimensions
(
9
2 × 9

2

)
—indicates the placement

of the diagram on a 3×3 cell area centered on a vertex in the embedding (after deleting all existing segments
in the area); (a) unit segment intersection diagram for the ζ1 gadget (b) ζ1 gadget, corresponding to the unit
segment diagram from (a), where each vertex is embedded at the midpoint of its respective segment
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Fig. 8 Illustration of the scheme used in the Theorem 5 proof argument to substitute a vertex in a orthogonal
Z
2 grid embedding of a graphwith a unit segment intersection diagram corresponding to theUNIT-PURE-4-

DIR graph gadget ζ2, where the (black dashed) box—with dimensions
(
9
2 × 9

2

)
—indicates the placement

of the diagram on a 3 × 3 cell area centered on a vertex in the embedding (after deleting all existing
segments in the area); (a) unit segment intersection diagram for the ζ2 gadget, where segments are colored
in accordance with a proper 3-coloring of the corresponding UNIT-PURE-4-DIR graph; (b) proper 3-
coloring of the ζ2 gadget, corresponding to the coloring of the unit segments from (a), where each vertex
is embedded at the midpoint of its respective segment
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Fig. 9 Illustration of a scheme for connecting pairs of termini on ζ2 UNIT-PURE-4-DIR graph gadgets
from the Theorem 5 proof argument; (a) abstract illustration of a pair of embedded vertices (Solid squares)
connected by a polyline in an orthogonalZ2 grid embedding; (b) an illustration of the scheme, after enlarging
the embedding from (a) by a factor of 3, for placing an appropriate rotation or reflection of the ζ2 gadgets
(black dashed boxes) on the vertices (Solid squares), then tracing the polyline from (a) to connect two
adjacent termini on one gadget with two adjacent termini on the other

6 Concluding remarks

We very strongly suspect that deciding the existence of a proper (k − 1)-coloring
for graphs in the class UNIT-PURE-k-DIR, provided a polynomial size unit segment
intersection diagram witnessing graph class membership, is N P-complete for each
k ≥ 4, and leave this as an open problem.Here,we briefly remark that such a resultmay
be interesting for at least the reason that unit segment intersection graphs are known
to be χ -bounded (see Suk (2014)), or in other words, to admit a proper coloring with
a number of colors bounded by the size of their largest clique. Accordingly, such a
result would connect proper k-colorings of SEG graphs and their subclasses to open
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problems concerning the complexity of findingmaximumcliques and independent sets
for these types of geometric intersection graphs (see Cabello et al. (2013); Kratochvíl
and Nešetřil (1990)).

7 Appendix

In this appendix, we redraw a selection of UNIT-PURE-4-DIR graphs from figures in
the main text (or relevant subgraphs of these graphs), where these redrawings show
explicit labels for vertices defining the endpoints of segments. In addition, we list all
vertex coordinates and all segment angles with respect to the x-axis.
In particular:

– Concerning the unit segment intersection diagram shown in Fig. 2d, see:

– Fig. 10
– Fig. 10 vertex coordinates
– Fig. 10 segment angles.

– Concerning the unit segment intersection diagram shown in Fig. 4a, see:

– Fig. 11
– Fig. 11 vertex coordinates
– Fig. 11 segment angles.

– Concerning the unit segment intersection diagram shown in Fig. 4c, see:

– Fig. 12
– Fig. 12 vertex coordinates
– Fig. 12 segment angles.

– Concerning the unit segment intersection diagram shown in Fig. 6b, see:

– Fig. 13
– Fig. 13 vertex coordinates
– Fig. 13 segment angles.

– Concerning the unit segment intersection diagram shown in Fig. 6b, modified as
discussed in the Theorem 4 proof argument (i.e., to include a segment for the
(white) vertex illustrated in Fig. 6(d)), see:

– Fig. 14
– Fig. 14 vertex coordinates
– Fig. 14 segment angles.

– Concerning the unit segment intersection diagram shown in Fig. 7(a), see:

– Fig. 15
– Fig. 15 vertex coordinates
– Fig. 15 segment angles.

– Concerning the unit segment intersection diagram shown in Fig. 8(a), see:
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Fig. 10 Redrawing of Fig. 2d, where explicit labels are provided for vertices defining the endpoints of
each segment (of the form {∗.1, ∗.2}), and for the vertices {box .1, box .2, box .3, box .4} defining the (black
dashed) box—with dimensions

(
3
2 × 3

2

)
—indicating the placement of the unit segment intersection dia-

gram on a cell in an orthogonal Z
2 grid embedding

– Fig. 16
– Fig. 16 vertex coordinates
– Fig. 16 segment angles.

Fig. 10 (Vertex ID; Coordinate):

– box.1;
{− 3

4 ,− 3
4

}

– box.2;
{ 3
4 ,− 3

4

}

– box.3;
{− 3

4 ,
3
4

}

– box.4;
{ 3
4 ,

3
4

}

– 1.1;
{
− 5

4 , 0
}

– 1.2;
{− 1

4 , 0
}
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– (1.1, 1.2); (0)
– (2.1, 2.2);

(
π
4

)

– (3.1, 3.2);
(

π
4

)

– (4.1, 4.2); (0)
– (5.1, 5.2);

(
π
4

)

– (6.1, 6.2);
(

π
4

)

– (7.1, 7.2);
(

π
2

)

– (8.1, 8.2);
(

π
2

)

– (9.1, 9.2); (0)
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Fig. 11 Redrawing of the central cell in Fig. 4(a), where explicit labels are provided for vertices defining
the endpoints of each segment (of the form {∗.1, ∗.2}), and for the vertices {box .1, box .2, box .3, box .4}
defining the (black dashed) box—with dimensions

(
3
2 × 3

2

)
—indicating the placement of the unit segment

intersection diagram on a cell in an orthogonal Z
2 grid embedding
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Fig. 12 Redrawing of Fig. 4c, where explicit labels are provided for vertices defining the endpoints of
each segment (of the form {∗.1, ∗.2}), and for the vertices {box .1, box .2, box .3, box .4} defining the (black
dashed) box—with dimensions

(
3
2 × 3

2

)
—indicating the placement of the unit segment intersection dia-

gram on a cell in an orthogonal Z
2 grid embedding
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Fig. 13 Redrawing of Fig. 6b, where explicit labels are provided for vertices defining the endpoints of
each segment (of the form {∗.1, ∗.2}), and for the vertices {box .1, box .2, box .3, box .4} defining the (black
dashed) box—with dimensions

(
9
2 × 9

2

)
—indicating the placement of the unit segment intersection dia-

gram on a 3 × 3 cell area in a given orthogonal Z
2 grid embedding

Fig. 12 (Segment Vertices; Angle of segment with respect to the x-axis):

– (1.1, 1.2); (0)
– (2.1, 2.2);

(
π
4

)

– (3.1, 3.2);
(
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)

– (4.1, 4.2); (0)
– (5.1, 5.2);
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Fig. 13 (Vertex ID; Coordinate):
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Fig. 14 Redrawing of Fig. 6b—modified as discussed in the Theorem 4 proof argument to include the
(white) vertex illustrated in Fig. 6d—where explicit labels are provided for vertices defining the endpoints
of each segment (of the form {∗.1, ∗.2}), and for the vertices {box .1, box .2, box .3, box .4} defining the

(black dashed) box—with dimensions
(
9
2 × 9

2

)
—indicating the placement of the unit segment intersec-

tion diagram on a 3 × 3 cell area in a given orthogonal Z
2 grid embedding; note that the segment with

endpoint labels {40.1, 40.2} corresponds to the (white) vertex illustrated in Fig. 6d, and that it is embedded
immediately below the segment with endpoint labels {9.1, 9.2}
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2
, 1
40

(
−8 − 5

√
2
)}

– 25.2;
{

35
36

√
2

− 1
17 ,− 1

5 − 5
4
√
2

}

– 26.1;
{
− 1

17 − 1
36

√
2
,− 3

17

}

– 26.2;
{
− 1

17 − 1
36

√
2
, 14
17

}

– 27.1;
{
0,− 11

4

}

– 27.2;
{
0,− 7

4

}

– 28.1;
{
0, 7

4

}

– 28.2;
{
0, 11

4

}

– 29.1;
{

1
17 + 1

36
√
2
,− 14

17

}

– 29.2;
{

1
17 + 1

36
√
2
, 3
17

}

– 30.1;
{ 1
10 , 1

}

– 30.2;
{ 1
10 , 2

}

– 31.1;
{

17
12

√
2

− 14
17 ,

1
60

(
−6 − 25

√
2
)}

– 31.2;
{

29
12

√
2

− 14
17 ,

1
60

(
5
√
2 − 6

)}

– 32.1;
{

17
12

√
2

− 14
17 ,

5
6
√
2

}

– 32.2;
{

29
12

√
2

− 14
17 ,− 1

6
√
2

}

– 33.1;
{

29
170 + 35

72
√
2
, 5
6
√
2

− 8
15

}

– 33.2;
{

29
170 + 107

72
√
2
, 1
60

(
−32 − 5

√
2
)}

– 34.1;
{

749
1700 + 35

72
√
2
, 1
300

(
−94 − 25

√
2
)}

– 34.2;
{

749
1700 + 107

72
√
2
, 5
6
√
2

− 47
150

}

– 35.1;
{
1, 1

10

}

– 35.2;
{
2, 1

10

}

– 36.1;
{

6
85 + 107

72
√
2
, 1
60

(
−41 − 5

√
2
)}

– 36.2;
{

6
85 + 107

72
√
2
, 1
60

(
19 − 5

√
2
)}

– 37.1;
{
41
20 − 1√

2
, 197
340 − 107

72
√
2

}
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– 37.2;
{
41
20 ,

197
340 − 35

72
√
2

}

– 38.1;
{
41
20 − 1√

2
, 107
72

√
2

− 163
340

}

– 38.2;
{
41
20 ,

35
72

√
2

− 163
340

}

– 39.1;
{ 7
4 , 0

}

– 39.2;
{ 11

4 , 0
}

– 40.1;
{
− 1451

1700 − 1
12

√
2
, 779
17000 − 1

24
√
2

}

– 40.2;
{

249
1700 − 1

12
√
2
, 779
17000 − 1

24
√
2

}

Fig. 14 (Segment Vertices; Angle of segment with respect to the x-axis):

– (1.1, 1.2); (0)
– (2.1, 2.2);

(
π
4

)

– (3.1, 3.2);
(

π
4

)

– (4.1, 4.2); (0)
– (5.1, 5.2);

(
π
4

)

– (6.1, 6.2);
(

π
4

)

– (7.1, 7.2);
(

π
2

)

– (8.1, 8.2);
(

π
4

)

– (9.1, 9.2); (0)
– (10.1, 10.2);

(
π
4

)

– (11.1, 11.2); (0)
– (12.1, 12.2);

(
π
4

)

– (13.1, 13.2);
(

π
4

)

– (14.1, 14.2);
(

π
4

)

– (15.1, 15.2);
(

π
4

)

– (16.1, 16.2);
(

π
4

)

– (17.1, 17.2);
(

π
4

)

– (18.1, 18.2);
(

π
4

)

– (19.1, 19.2);
(

π
4

)

– (20.1, 20.2); (0)
– (21.1, 21.2);

(
π
4

)

– (22.1, 22.2); (0)
– (23.1, 23.2);

(
π
4

)

– (24.1, 24.2);
(

π
2

)

– (25.1, 25.2);
(

π
4

)

– (26.1, 26.2);
(

π
2

)

– (27.1, 27.2);
(

π
2

)

– (28.1, 28.2);
(

π
2

)

– (29.1, 29.2);
(

π
2

)

– (30.1, 30.2);
(

π
2

)

– (31.1, 31.2);
(

π
4

)

– (32.1, 32.2);
(

π
4

)
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Fig. 15 Redrawing of Fig. 7a, where explicit labels are provided for vertices defining the endpoints of
each segment (of the form {∗.1, ∗.2}), and for the vertices {box .1, box .2, box .3, box .4} defining the (black
dashed) box—with dimensions

(
9
2 × 9

2

)
—indicating the placement of the unit segment intersection dia-

gram on a 3 × 3 cell area in a given orthogonal Z
2 grid embedding

– (33.1, 33.2);
(

π
4

)

– (34.1, 34.2);
(

π
4

)

– (35.1, 35.2); (0)
– (36.1, 36.2);

(
π
2

)

– (37.1, 37.2);
(

π
4

)

– (38.1, 38.2);
(

π
4

)

– (39.1, 39.2); (0)
– (40.1, 40.2); (0)

Fig. 15 (Vertex ID; Coordinate):

– box.1;
{− 9

4 ,− 9
4

}

– box.2;
{ 9
4 ,− 9

4

}

– box.3;
{− 9

4 ,
9
4

}
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– box.4;
{ 9
4 ,

9
4

}

– 1.1;
{− 11

4 , 0
}

– 1.2;
{− 7

4 , 0
}

– 2.1;
{

1
200

(
−326 − 75

√
2
)

, 1
200

(
25

√
2 − 6

)}

– 2.2;
{

1
200

(
25

√
2 − 326

)
,− 3

200

(
2 + 25

√
2
)}

– 3.1;
{

1
20

(
−33 − 5

√
2
)

, 4
25 − 1

2
√
2

}

– 3.2;
{

1
20

(
−13 − 5

√
2
)

, 4
25 − 1

2
√
2

}

– 4.1;
{

1
200

(
−346 − 25

√
2
)

,− 67
100 − 1

4
√
2

}

– 4.2;
{

1
200

(
−346 − 25

√
2
)

, 1
200

(
66 − 25

√
2
)}

– 5.1;
{

1
200

(
−181 − 75

√
2
)

, 1
4
√
2

− 7
100

}

– 5.2;
{

1
200

(
25

√
2 − 181

)
,− 7

100 − 3
4
√
2

}

– 6.1;
{− 29

25 ,− 3
10

}

– 6.2;
{− 4

25 ,− 3
10

}

– 7.1;
{

1
200

(
−181 − 25

√
2
)

,− 77
100 − 1

4
√
2

}

– 7.2;
{

1
200

(
−181 − 25

√
2
)

, 1
200

(
46 − 25

√
2
)}

– 8.1;
{− 4

5 ,− 71
40

}

– 8.2;
{ 1
5 ,− 71

40

}

– 9.1;
{− 7

10 ,
37
20

}

– 9.2;
{ 3
10 ,

37
20

}

– 10.1;
{
1
4

(
−1 − √

2
)

, 1
4

(√
2 − 1

)}

– 10.2;
{
1
4

(√
2 − 1

)
, 1
4

(
−1 − √

2
)}

– 11.1;
{
− 33

400 − 1
2
√
2
, 1
40

(
10

√
2 − 33

)}

– 11.2;
{

1
2
√
2

− 33
400 ,

1
40

(
−33 − 10

√
2
)}

– 12.1;
{
− 11

400 − 1
2
√
2
, 1
40

(
10

√
2 − 71

)}

– 12.2;
{

1
2
√
2

− 11
400 ,

1
40

(
−71 − 10

√
2
)}

– 13.1;
{
− 1

2
√
2
,− 1

2
√
2

}

– 13.2;
{

1
2
√
2
, 1
2
√
2

}

– 14.1;
{

1
20

(
1 − 5

√
2
)

, 1
20

(
37 + 5

√
2
)}

– 14.2;
{

1
20

(
1 + 5

√
2
)

, 1
20

(
37 − 5

√
2
)}

– 15.1;
{− 3

10 ,− 33
40

}

– 15.2;
{ 7
10 ,− 33

40

}

– 16.1;
{

1
20

(
3 − 5

√
2
)

, 1
20

(
21 + 5

√
2
)}
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– 16.2;
{

1
20

(
3 + 5

√
2
)

, 1
20

(
21 − 5

√
2
)}

– 17.1;
{

1
20

(
4 − 5

√
2
)

, 1
20

(
5
√
2 − 4

)}

– 17.2;
{

1
20

(
4 + 5

√
2
)

, 1
20

(
−4 − 5

√
2
)}

– 18.1;
{− 11

100 ,− 17
20

}

– 18.2;
{− 11

100 ,
3
20

}

– 19.1;
{
1
4

(
1 − √

2
)

, 1
4

(
1 + √

2
)}

– 19.2;
{
1
4

(
1 + √

2
)

, 1
4

(
1 − √

2
)}

– 20.1;
{− 1

10 ,
21
20

}

– 20.2;
{ 9
10 ,

21
20

}

– 21.1;
{− 3

50 ,
3

100

}

– 21.2;
{ 47
50 ,

3
100

}

– 22.1;
{− 11

200 ,− 9
5

}

– 22.2;
{− 11

200 ,− 4
5

}

– 23.1;
{
0,− 11

4

}

– 23.2;
{
0,− 7

4

}

– 24.1;
{
0, 7

4

}

– 24.2;
{
0, 11

4

}

– 25.1;
{ 1
10 ,

19
20

}

– 25.2;
{ 1
10 ,

39
20

}

– 26.1;
{ 1
5 ,

3
20

}

– 26.2;
{ 1
5 ,

23
20

}

– 27.1;
{
18
25 − 1

4
√
2
, 1
200

(
−13 − 25

√
2
)}

– 27.2;
{
18
25 + 3

4
√
2
, 1
200

(
75

√
2 − 13

)}

– 28.1;
{

1
400

(
269 + 50

√
2
)

, 1
2
√
2

− 4
25

}

– 28.2;
{

1
400

(
669 + 50

√
2
)

, 1
2
√
2

− 4
25

}

– 29.1;
{
18
25 + 1

4
√
2
, 1
200

(
25

√
2 − 153

)}

– 29.2;
{
18
25 + 1

4
√
2
, 1
200

(
47 + 25

√
2
)}

– 30.1;
{
1
8

(
13 − √

2
)

, 3
4
√
2

− 2
25

}

– 30.2;
{
1
8

(
13 + 3

√
2
)

,− 2
25 − 1

4
√
2

}

– 31.1;
{ 7
4 , 0

}

– 31.2;
{ 11

4 , 0
}

– 32.1;
{
1
8

(
13 + √

2
)

, 1
4
√
2

− 39
50

}

– 32.2;
{
1
8

(
13 + √

2
)

, 11
50 + 1

4
√
2

}

Fig. 15 (Segment Vertices; Angle of segment with respect to the x-axis):
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– (1.1, 1.2); (0)
– (2.1, 2.2);

(
π
4

)

– (3.1, 3.2); (0)
– (4.1, 4.2);

(
π
2

)

– (5.1, 5.2);
(

π
4

)

– (6.1, 6.2); (0)
– (7.1, 7.2);

(
π
2

)

– (8.1, 8.2); (0)
– (9.1, 9.2); (0)
– (10.1, 10.2);

(
π
4

)

– (11.1, 11.2);
(

π
4

)

– (12.1, 12.2);
(

π
4

)

– (13.1, 13.2);
(

π
4

)

– (14.1, 14.2);
(

π
4

)

– (15.1, 15.2); (0)
– (16.1, 16.2);

(
π
4

)

– (17.1, 17.2);
(

π
4

)

– (18.1, 18.2);
(

π
2

)

– (19.1, 19.2);
(

π
4

)

– (20.1, 20.2); (0)
– (21.1, 21.2); (0)
– (22.1, 22.2);

(
π
2

)

– (23.1, 23.2);
(

π
2

)

– (24.1, 24.2);
(

π
2

)

– (25.1, 25.2);
(

π
2

)

– (26.1, 26.2);
(

π
2

)

– (27.1, 27.2);
(

π
4

)

– (28.1, 28.2); (0)
– (29.1, 29.2);

(
π
2

)

– (30.1, 30.2);
(

π
4

)

– (31.1, 31.2); (0)
– (32.1, 32.2);

(
π
2

)

Fig. 16 (Vertex ID; Coordinate):

– box.1;
{− 9

4 ,− 9
4

}

– box.2;
{ 9
4 ,− 9

4

}

– box.3;
{− 9

4 ,
9
4

}

– box.4;
{ 9
4 ,

9
4

}

– 1.1;
{− 11

4 ,− 3
2

}

– 1.2;
{− 7

4 ,− 3
2

}

– 2.1;
{− 11

4 , 3
2

}

– 2.2;
{− 7

4 ,
3
2

}

– 3.1;
{
− 163243

88000 − 1
2
√
2
,− 23647

17600 − 1
2
√
2

}

123



Journal of Combinatorial Optimization (2024) 47 :70 Page 41 of 48 70

Fig. 16 Redrawing of Fig. 8a, where explicit labels are provided for vertices defining the endpoints of
each segment (of the form {∗.1, ∗.2}), and for the vertices {box .1, box .2, box .3, box .4} defining the (black
dashed) box—with dimensions

(
9
2 × 9

2

)
—indicating the placement of the unit segment intersection dia-

gram on a 3 × 3 cell area in a given orthogonal Z
2 grid embedding

– 3.2;
{

1
2
√
2

− 163243
88000 , 1

2
√
2

− 23647
17600

}

– 4.1;
{
− 160383

88000 − 1
2
√
2
, 122049

88000 + 1
2
√
2

}

– 4.2;
{

1
2
√
2

− 160383
88000 , 122049

88000 − 1
2
√
2

}

– 5.1;
{− 86243

44000 ,− 9039
8800

}

– 5.2;
{− 42243

44000 ,− 9039
8800

}

– 6.1;
{
− 83383

44000 ,
56049
44000

}

– 6.2;
{
− 39383

44000 ,
56049
44000

}

– 7.1;
{− 163243

88000 ,− 28047
17600

}

– 7.2;
{− 163243

88000 ,− 10447
17600

}

– 8.1;
{
− 160383

88000 , 95649
88000

}
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– 8.2;
{− 160383

88000 , 183649
88000

}

– 9.1;
{
− 115729

88000 − 1
2
√
2
,− 12509

17600 − 1
2
√
2

}

– 9.2;
{

1
2
√
2

− 115729
88000 , 1

2
√
2

− 12509
17600

}

– 10.1;
{
− 102749

88000 − 1
2
√
2
, 119747

88000 + 1
2
√
2

}

– 10.2;
{

1
2
√
2

− 102749
88000 , 119747

88000 − 1
2
√
2

}

– 11.1;
{
− 30583

22000 ,− 1823
4400

}

– 11.2;
{
− 8583

22000 ,− 1823
4400

}

– 12.1;
{
− 25083

22000 ,
23049
22000

}

– 12.2;
{− 3083

22000 ,
23049
22000

}

– 13.1;
{− 93729

88000 ,− 23421
17600

}

– 13.2;
{
− 93729

88000 ,− 5821
17600

}

– 14.1;
{
− 85149

88000 ,
12049
22000

}

– 14.2;
{
− 85149

88000 ,
34049
22000

}

– 15.1;
{
− 7923

22000 − 1
2
√
2
, 12489
22000 − 1

2
√
2

}

– 15.2;
{

1
2
√
2

− 7923
22000 ,

12489
22000 − 3

2
√
2

}

– 16.1;
{
− 7483

22000 − 1
2
√
2
, 9849
22000 − 1

2
√
2

}

– 16.2;
{

1
2
√
2

− 7483
22000 ,

9849
22000 + 1

2
√
2

}

– 17.1;
{− 14743

22000 ,
1379
22000

}

– 17.2;
{− 14743

22000 ,
23379
22000

}

– 18.1;
{
− 13863

22000 ,
15349
22000

}

– 18.2;
{

8137
22000 ,

15349
22000

}

– 19.1;
{
− 3083

22000 − 1
2
√
2
, 25249
22000 − 1

2
√
2

}

– 19.2;
{

1
2
√
2

− 3083
22000 ,

25249
22000 + 1

2
√
2

}

– 20.1;
{
− 2247

22000 − 1
2
√
2
,− 613

4400 − 1
2
√
2

}

– 20.2;
{

1
2
√
2

− 2247
22000 ,

1
2
√
2

− 613
4400

}

– 21.1;
{

1
20

(
−2 − 5

√
2
)

, 153421
88000 − 1

2
√
2

}

– 21.2;
{

1
20

(
5
√
2 − 2

)
, 153421

88000 + 1
2
√
2

}

– 22.1;
{
− 9771

22000 ,− 22513
22000

}

– 22.2;
{
− 9771

22000 ,− 513
22000

}

– 23.1;
{
− 1587

22000 − 1
2
√
2
,− 217

4400 − 1
2
√
2

}
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– 23.2;
{

1
2
√
2

− 1587
22000 ,− 217

4400 − 3
2
√
2

}

– 24.1;
{
− 1147

22000 − 1
2
√
2
, 2479
22000 − 1

2
√
2

}

– 24.2;
{

1
2
√
2

− 1147
22000 ,

2479
22000 + 1

2
√
2

}

– 25.1;
{

1
20

(
2 − 5

√
2
)

, 157821
88000 + 1

2
√
2

}

– 25.2;
{

1
20

(
2 + 5

√
2
)

, 157821
88000 − 1

2
√
2

}

– 26.1;
{− 4293

22000 ,
4371
22000

}

– 26.2;
{ 17707
22000 ,

4371
22000

}

– 27.1;
{

743
4400 − 1

2
√
2
, 18649
22000 − 1

2
√
2

}

– 27.2;
{

743
4400 + 1

2
√
2
, 18649
22000 + 1

2
√
2

}

– 28.1;
{
− 3853

22000 ,
10421
22000

}

– 28.2;
{
− 3853

22000 ,
32421
22000

}

– 29.1;
{
− 13649

88000 ,
151383
88000

}

– 29.2;
{
74351
88000 ,

151383
88000

}

– 30.1;
{
− 3303

22000 ,
25381
22000

}

– 30.2;
{
18697
22000 ,

25381
22000

}

– 31.1;
{− 247

4400 ,− 689
22000

}

– 31.2;
{− 247

4400 ,
21311
22000

}

– 32.1;
{− 9

176 ,− 23811
22000

}

– 32.2;
{ 167
176 ,− 23811

22000

}

– 33.1;
{

7191
22000 − 1

2
√
2
,− 17409

22000 − 1
2
√
2

}

– 33.2;
{

7191
22000 + 1

2
√
2
, 1
2
√
2

− 17409
22000

}

– 34.1;
{
0, 7

4

}

– 34.2;
{
0, 11

4

}

– 35.1;
{ 413
4400 ,

2391
22000

}

– 35.2;
{

413
4400 + 1√

2
, 2391
22000 − 1√

2

}

– 36.1;
{
47951
88000 − 1

2
√
2
, 130263

88000 − 1
2
√
2

}

– 36.2;
{
47951
88000 + 1

2
√
2
, 130263

88000 + 1
2
√
2

}

– 37.1;
{

4617
22000 ,− 15891

22000

}

– 37.2;
{
26617
22000 ,− 15891

22000

}

– 38.1;
{ 4837
22000 ,− 16661

22000

}

– 38.2;
{

4837
22000 ,

5339
22000

}

– 39.1;
{

9457
22000 ,

773
4400

}
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– 39.2;
{

9457
22000 ,

5173
4400

}

– 40.1;
{
61151
88000 ,

90663
88000

}

– 40.2;
{
61151
88000 ,

178663
88000

}

– 41.1;
{
294
275 − 1

2
√
2
, 1
2
√
2

− 38661
27500

}

– 41.2;
{
294
275 + 1

2
√
2
,− 38661

27500 − 1
2
√
2

}

– 42.1;
{
3561
4400 ,− 189133

110000

}

– 42.2;
{ 7961
4400 ,− 189133

110000

}

– 43.1;
{
228
275 ,− 52961

27500

}

– 43.2;
{
228
275 ,− 25461

27500

}

– 44.1;
{
9198
6875 − 1

2
√
2
,− 12921

27500 − 1
2
√
2

}

– 44.2;
{
9198
6875 + 1

2
√
2
, 1
2
√
2

− 12921
27500

}

– 45.1;
{
161251
110000 − 1

2
√
2
, 1
2
√
2

− 19513
110000

}

– 45.2;
{
161251
110000 + 1

2
√
2
,− 19513

110000 − 1
2
√
2

}

– 46.1;
{
122751
110000 ,

90487
110000

}

– 46.2;
{
232751
110000 ,

90487
110000

}

– 47.1;
{
164551
110000 − 1

2
√
2
, 53087
110000 − 1

2
√
2

}

– 47.2;
{
164551
110000 + 1

2
√
2
, 53087
110000 + 1

2
√
2

}

– 48.1;
{ 32667
27500 ,− 6049

6875

}

– 48.2;
{ 32667
27500 ,

826
6875

}

– 49.1;
{
142551
110000 ,− 14013

110000

}

– 49.2;
{
142551
110000 ,

95987
110000

}

– 50.1;
{
3761
2200 − 1

2
√
2
,− 92561

55000 − 1
2
√
2

}

– 50.2;
{
3761
2200 + 1

2
√
2
, 1
2
√
2

− 92561
55000

}

– 51.1;
{
403251
220000 − 1

2
√
2
, 255487
220000 − 1

2
√
2

}

– 51.2;
{
403251
220000 + 1

2
√
2
, 255487
220000 + 1

2
√
2

}

– 52.1;
{ 7
4 ,− 3

2

}

– 52.2;
{ 11

4 ,− 3
2

}

– 53.1;
{ 7
4 ,

3
2

}

– 53.2;
{ 11

4 , 3
2

}

– 54.1;
{ 783
440 ,− 310133

165000

}

– 54.2;
{
783
440 ,− 145133

165000

}
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– 55.1;
{
425251
220000 ,

123487
220000

}

– 55.2;
{
425251
220000 ,

343487
220000

}

Fig. 16 (Segment Vertices; Angle of segment with respect to the x-axis):
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)
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– (40.1, 40.2);
(

π
2
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π
4
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2
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Cabello S, Jejčič M (2017) Refining the hierarchies of classes of geometric intersection graphs. Electron J
Comb 24(1):1–19

Cabello S, Cardinal J, Langerman S (2013) The clique problem in ray intersection graphs. Discrete Comput
Geom 50(3):771–783. https://doi.org/10.1007/s00454-013-9538-5

Chaplick S, Hell P, Otachi Y, Saitoh T, Uehara R (2014) Intersection dimension of bipartite graphs. Proc
11th TAMC pp 323–340, https://doi.org/10.1007/978-3-319-06089-7_23

Clark BN, Colbourn CJ, Johnson DS (1990) Unit disk graphs. Discrete Math 86(1–3):165–177. https://doi.
org/10.1016/0012-365X(90)90358-O

Cornelsen S, Karrenbauer A (2012) Accelerated bend minimization. J Graph Algorithms Appl 16(3):635–
650. https://doi.org/10.7155/jgaa.00265

Creignou N, Hermann M (1993) On #P-completeness of some counting problems. Research Report (RR-
2144, INRIA) pp 1–10, https://hal.science/inria-00074528/

Cygan M, Fomin FV, Golovnev A, Kulikov AS, Mihajlin I, Pachocki J, Socała A (2016) Tight bounds for
graph homomorphism and subgraph isomorphism. Proc 27th SODA pp 1643–1649, https://doi.org/
10.1137/1.9781611974331.ch112

Dai HN, Ng KW, Li M, Wu MY (2011) An overview of using directional antennas in wireless networks.
Int J Commun Syst 26(4):413–448. https://doi.org/10.1002/dac.1348

Dailey DP (1980) Uniqueness of colorability and colorability of planar 4-regular graphs are NP-complete.
Discrete Math 30(3):289–293. https://doi.org/10.1016/0012-365X(80)90236-8

Dell H, Husfeldt T, Marx D, Taslaman N, Wahlén M (2014) Exponential time complexity of the permanent
and the Tutte polynomial. ACM Trans Algorithms 10(4):21:1-21:32

Deniz Z, Galby E, Munaro A, Ries B (2018) On contact graphs of paths on a grid. In: Proc 26th GD pp
317–330, https://doi.org/10.1007/978-3-030-04414-5_22

Dewdney AK (1982) Linear time transformations between combinatorial problems. Int J Comput Math
11(2):91–110. https://doi.org/10.1080/00207168208803302

Diestel R (2017) Graph theory, 5th edn. Heidelberg, Springer-Verlag
Ehrlich G, Even S, Tarjan RE (1976) Intersection graphs of curves in the plane. J Comb Theory Ser B

21(1):8–20. https://doi.org/10.1016/0095-8956(76)90022-8
Eisenblätter A, Grötschel M, Koster AMCA (2002) Frequency planning and ramifications of coloring.

Discuss Math Graph Theory 22(1):51–88. https://doi.org/10.7151/dmgt.1158
EppsteinD (2009) Testing bipartiteness of geometric intersection graphs. ACMTransAlgorithms 5(2):15:1-

15:35. https://doi.org/10.1145/1497290.1497291
Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness, 1st

edn. W. H. Freeman: New York, NY
Graham RL (1972) An efficient algorith for determining the convex hull of a finite planar set. Inf Process

Lett 1(4):132–133. https://doi.org/10.1016/0020-0190(72)90045-2
Hale WK (1980) Frequency assignment: theory and applications. Proc IEEE 68(12):1497–1514. https://

doi.org/10.1109/PROC.1980.11899
Impagliazzo R, Paturi R (2001) On the complexity of k-SAT. J Comput Syst Sci 62(2):367–375. https://

doi.org/10.1006/jcss.2000.1727
Kirkpatrick DG, Seidel R (1986) The ultimate planar convex hull algorithm? SIAM J Comput 15(1):287–

299. https://doi.org/10.1137/0215021
Knuth DE (2000) Dancing links. arXiv:cs/0011047 pp 1–26
Kratochvíl J (1991) String graphs. II. Recognizing string graphs is NP-hard. J CombTheory Ser B 52(1):67–

78, https://doi.org/10.1016/0095-8956(91)90091-W
Kratochvíl J (1994) A special planar satisfiability problem and a consequence of its NP-completeness.

Discrete Appl Math 52(3):233–252. https://doi.org/10.1016/0166-218X(94)90143-0
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