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Abstract
In this paper, we address the problem of online car-sharingwith variable booking times
(CSV for short). In this scenario, customers submit ride requests, each specifying two
important time parameters: the booking time and the pick-up time (start time), as well
as two location parameters—the pick-up location and the drop-off location within
a graph. For each request, it’s important to note that it must be booked before its
scheduled start time. The booking time can fall within a specific interval prior to the
request’s starting time. Additionally, each car is capable of serving only one request
at any given time. The primary objective of the scheduler is to optimize the utilization
of k cars to serve as many requests as possible. As requests arrive at their booking
times, the scheduler faces an immediate decision: whether to accept or decline the
request. This decision must be made promptly upon request submission, precisely
at the booking time. We prove that no deterministic online algorithm can achieve a
competitive ratio smaller than L +1 even on a special case of a path (where L denotes
the ratio between the largest and the smallest request travel time). For general graphs,
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we give a Greedy Algorithm that achieves (3L+1)-competitive ratio for CSV.We also
give a Parted Greedy Algorithm with competitive ratio ( 52 L + 10) when the number
of cars k is no less than 5

4 L + 20; for CSV on a special case of a path, the competitive
ratio of Parted Greedy Algorithm is (2L + 10) when k ≥ L + 20.

Keywords Car-sharing problem · Online scheduling · Competitive analysis

1 Introduction

Recently, car-sharing has gained popularity as a convenient mode of transportation.
Customers make reservations for their rides, and car-sharing companies provide vehi-
cles for a specified duration to fulfill these requests. This trend addresses the increasing
demand for urban mobility while optimizing the use of urban space. Car-sharing has
emerged as a prominent transportation service, offering customers the flexibility to
book rides in advance. These bookings are made within a certain time frame before the
requested start time, providing customers with greater flexibility compared to fixed-
time bookings. Furthermore, the adoption of shared cars helps reduce the reliance on
private vehicles, offering solutions to traffic congestion and environmental concerns
(The future of driving 2012). As a result, the car-sharing problem has become a crucial
area of study within the field of operations research.

Our study focused on optimizing the maximum number of satisfied customer
requests. These ride requests are submitted prior to their desired start times. Addi-
tionally, the time at which a request is booked varies and falls within a specified time
window before the request’s start time. This flexible booking approach offers cus-
tomers greater convenience compared to fixed booking schedules. We refer to this
scenario as CSV (Car-Sharing with Variable booking times), and in this paper, we
delve into the study of CSV. Specifically, we analyze the competitive ratio of two
algorithms: the Greedy Algorithm, and the Parted Greedy Algorithm. Our analysis
encompasses both general graphs and a specialized path graph.

Remark This work expanded the work of Liu et al. (2019). Our main contribution are
summarized as follows.

– For CSV on general networks, we gave a precise upper bound and lower bound,
which improved the known results.

– Compared with the conference paper, we studied a new subproblem, which is CSV
on a path. We proposed a new algorithm named Part Greedy Algorithm, which
had a well performence on both CSV on general networks and CSV on a path.

1.1 Related work

The offline car-sharing problem was initially investigated by Böhmová et al. (2016).
In a general graph, there are a number of requests, each specified by a pick-up time, a
pick-up location, and a drop-off location. The scheduler must decide whether to accept
or decline each request and efficiently schedule the accepted requests. Böhmová et
al. demonstrated that the car-sharing problem, which aims to maximize the accepted
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requests, can be solved in polynomial time. They also explored a problem variant in
which each customer submits two ride requests in opposite directions. The scheduler
faces the choice of either serving both requests or declining both. In this variant,
Böhmová et al. proved that maximizing the number of satisfied customers is both
NP-hard and APX-hard.

In the online car-sharing problem, algorithms face the challenge of making imme-
diate decisions to accept or reject each request without having access to future
information. Once a decision is made, it cannot be reversed. Due to the inherent
uncertainty of the problem, it is often impossible to achieve the best possible solu-
tion. The competitive ratio serves as a performance measure, representing the ratio
between the values of the algorithm’s solution and an optimal offline solution for
the most challenging inputs. The online car-sharing problem has been the subject of
extensive research in various scenarios. This includes different types of graphs, such
as two-location scenarios (Luo et al. 2018a, b, c; Li et al. 2020), star networks (Luo
et al. 2019), varying numbers of servers (ranging from one server (Luo et al. 2018a) to
two servers (Luo et al. 2018b) and k servers (Luo et al. 2018c, 2019; Li et al. 2020),
and variations in request attributes (such as variable booking times or fixed booking
times, where the interval between booking time and start time remains constant across
all rides Liu et al. 2019). In most cases, researchers have successfully matched upper
and lower bounds. For instance, in the two-location problem (Luo et al. 2018c), it was
established that no deterministic algorithm can achieve a competitive ratio smaller
than 1.5 for the fixed booking time variant and 5/3 for the flexible booking time vari-
ant. To address this challenge, they introduced the balanced greedy algorithm (BGA),
which achieves the best possible competitive ratio. In another study (Luo et al. 2019),
inspired by car-sharing applications between airports and hotels, the authors explored
online scheduling problems. They considered both the unit travel time variant and the
arbitrary travel time variant. In the unit travel time variant, the travel time between
the airport and any hotel is a fixed value t . They devised a 2-competitive algorithm
for scenarios where the length of the booking interval (the time between pick-up and
booking) is at least t and the number of servers is even. In the arbitrary travel time
variant, the travel time between the airport and a hotel falls within the range of t to
Lt where L is greater than or equal to 1 and represents the ratio of the longest to the
shortest travel time. They demonstrated that the competitive ratio of the algorithm is
O(log L) when the number of servers is at least log L . For both variants, they estab-
lished matching lower bounds on the competitive ratio for any deterministic online
algorithm. In our research, we expand this problem to encompassmore general graphs.

Another extensively studied problem is online interval scheduling. The online car-
sharing problem can be redefined as an interval scheduling problem when all pick-up
and drop-off locations are the same. In this context, each car can be seen as a machine,
and each interval corresponds to a ride request. The interval’s starting time corresponds
to the pick-up time of a specific request, while the ending time corresponds to the drop-
off time of that request. A feasible solution involves scheduling intervals on machines
in such a way that the selected intervals on a machine do not overlap. Lipton and
Tomkins (1994) conducted research on this problem in a one-machine setting. They
demonstrated that no randomized algorithm can achieve a competitive ratio better than
O(logΔ), where Δ represents the ratio between the longest and shortest intervals,

123



32 Page 4 of 17 Journal of Combinatorial Optimization (2024) 47 :32

Table 1 Results and theorems for the online car-sharing problem with variable booking times

Problem Lower bound Upper bound

CSV on general graphs L + 1 (Th. 2) min{3L + 1, 5
2 L + 10} (Th. 3, 6)

CSV on a path L + 1 (Th. 1) min{3L + 1, 2L + 10} (Th. 4, 5)

and it is unknown to the algorithm. Additionally, they presented an O((logΔ)ε)-
competitive randomized algorithm to address this challenge.

Another problem closely related to our setting is the online ride-sharing problem
(Guo and Luo 2022) and the online dial-a-ride problem (OLDARP). The online dial-
a-ride problem can be viewed as a version of the online car-sharing problem without
booking times. InOLDARP, the objective is tominimize themakespan orminimize the
maximum flow time (Krumke et al. 2005). The key distinction lies in OLDARP, where
all requests must be serviced as soon as possible, whereas in the online car-sharing
problem, orders need to be serviced at specific times. For a more detailed exploration
of these problems, interested readers can refer to Christman et al. (2018).

1.2 Paper outline

We formulate and analyze the online car-sharing problem with variable booking times
on two graphs: CSVon a path andCSVon a general graph.Wepropose two algorithms,
the Greedy Algorithm (GA) and the Parted Greedy Algorithm (PGA). We formulate
the results of this paper in Table 1: For CSV on a general graph, no deterministic online
algorithm can achieve a competitive ratio smaller than L +1, and we prove that GA is
(3L+1)-competitive, PGA is ( 52 L+10)-competitive when k ≥ 5

4 L+20; For CSV on
a path, no deterministic online algorithm can achieve a competitive ratio smaller than
L + 1, and we prove that GA is (3L + 1)-competitive, PGA is (2L + 10)-competitive
when k ≥ L + 20.

The rest of the paper is organized as follows. We give the preliminaries in Sect. 2.
In Sect. 3, we present the lower bounds on the competitive ratio for CSV on a path.
In Sect. 4, we propose two algorithms: the Greedy Algorithm and the Parted Greedy
Algorithm, and prove the competitive ratios. Section5 concludes the results of this
work.

2 Preliminaries

Notation. We consider a setting with a graph G = (V , E) with edge length � :
E →≥0. For an edge (p, q) ∈ E (p and q are two vertices in V ), �(p, q) represents
the distance (also, the travel time) between p and q; for convenience of representation,
for {p, q} /∈ E , let �(p, q) denote the shortest travel time between p and q. We assume
that each travel time �(p, q) is non-negative and symmetric in our setting. There are
k cars denoted by S = {s1, s2, . . . , sk}, which will ride on the graph G. Assume that
all the cars initially are at one location (in fact, the initial car locations do not affect
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our results). Let R = {r1, r2, . . . , rn} denote a request sequence, where request ri is
specified by the booking time bi , the pick-up time (start time) ti , the pick-up location
pi ∈ V and the drop-off location ṗi ∈ V , i.e., ri = {bi , ti , pi , ṗi }. According to the
definition of travel time, the drop-off time of each request ri satisfies ṫi = ti+t(pi , ṗi ).
In our setting, suppose that the shortest travel time between two locations is t , and the
longest travel time is Lt , i.e., the longest request is at most L times the length of the
shortest request. Customer requests arrive online. When a request is arrive, we need to
decide whether to accept it or not immediately and irrevocably, without knowledge of
future informations. When a request is accepted, it is not necessary to deciede which
car is assigned to serve it immediately. We only need to avoid the condition that no
car could serve the request at the start time of it.

With respect to constraint on the booking times, one can consider the car-sharing
problem with variable booking times. In this problem, customers may book a request
at any time of an interval before the start time of the request, i.e. bl ≤ ti − bi ≤ bu
with bl < bu holds for request ri ∈ R. In this paper, we assume bl ≥ Lt to ensure that
an empty car is available for serving any arriving request. Once we accept a request
ri , we must assign a car to pick up the customer at pi on ti , and then drop off the
customer at ṗi on ṫi . Each car can serve one request at a time. Our aim is to accept the
maximum number of requests.

In our problem, we require algorithms to decide either to accept or reject a request
immediately when it arrives. Usually, we do not require that the algorithm assigns an
accepted request to a specific car immediately, provided that it ensures that some cars
could serve this request. In this paper, however, it is not necessary for an algorithm to
use this flexibility. Our algorithm assigns a request immediately when it is accepted.

Note that two requests, ri and r j (w.l.o.g, suppose ti ≤ t j ), can be served by one car
only if there is enough time to reach the pick-up location of r j after serving request
ri , i.e., t j ≥ ṫi + �( ṗi , p j ). If two requests can not be served by one car, we say that
the two requests are in conflict, which will be of use in Sect. 3 and Sect. 4.

Methods. For an arbitrary algorithm ALG, the property of ALG is evaluated by
its competitive ratio (Borodin and El-Yaniv 1998). For any sequence of requests R,
let OPTR denote the objective value produced by an optimal scheduler OPT , where
OPT has full information about R in advance, and ALGR denote the objective value
produced by an online deterministic algorithm A. The competitive ratio of algorithm
A is defined by ρA, which is shown by ρA = supR

OPTR
ALGR

, and A is ρA-competitive.
For a problem, we say β is the lower bound on the best possible competitive ratio if
ρA ≥ β for all A ∈ ON , where ON is the set of all online deterministic algorithms.
We say an algorithm A is optimal if ρA = β.

In the whole paper, we use ALG to denote any online algorithm, and we use OPT
to denote an optimal scheduler. For any sequence of requests R, the set of requests
accepted by ALG is denoted by R′, the set of requests accepted by OPT is denoted
by R∗.

3 Lower bounds

In this section, we present a lower bound for CSV on a special graph of a path.
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Fig. 1 Illustration of the path with m + 1 locations

Recall that t is the shortest travel time, and Lt is the longest travel time among
all the requests. We consider a path with m + 1 locations {0, 1, 2, · · · ,m}. The travel
time between any two locations i and j satisfies �(i, j) = t · |i − j | for 0 ≤ i, j ≤ m,
as shown in Fig. 1. Note that on such a path, the travel time of any request is at most
m · t and at least t , hence we have L = m.

Our strategy to obtain a lower bound is to ensure that most of the ALG cars each
accepts exactly one request which is in conflict with the future requests. The adversary
presents requests inm phases,where phase i (1 ≤ i ≤ m) includes li groups of requests
(where li will be specified later). Let Ri, j (1 ≤ i ≤ m, 1 ≤ j ≤ li ) denote the set of
requests in phase i group j . Ri, j consists of k identical requests, which is denoted by
ri, j .

Now we place three principles for the adversary to release requests:

(a) Any two requests in the same phase are in conflict;
(b) In any two phases i and g (i < g), any request in the last group of phase i , i.e.

Ri,li , and a request in phase g are not in conflict;
(c) In any two phases i and g (i < g), any request in phase i , except for requests in

Ri,li , is in conflict with requests in phase g.

Let ki, j denote the number of requests accepted by ALG in Ri, j . Notice that any
two requests in Ri, j are in conflict, thus ki, j is also the number of cars that ALG uses
to serve the accepted requests in Ri, j .

Next, we will specify the request instance in the following Theorem 1.

Theorem 1 No deterministic online algorithm for CSV on a special graph of a path
can achieve a competitive ratio smaller than L + 1, where L is the ratio of the longest
request to the shortest request.

Proof Suppose that ν ∈ N and ν · t − bu ≥ Lt . To show the lower bound for CSV, the
adversary releases requests based on the rules shown in Algorithm 1.

Algorithm 1 Releasing rule
1: Initialization: The first group in phase 1 (R1,1) is released.
2: i = 1, j = 1.
3: While i ≤ m + 1 do
4: If ki, j = 0, then li = j , i = i + 1, j = 1 and the adversary releases Ri, j ;
5: Otherwise j = j + 1, and the adversary releases Ri, j ;
6: Output: li for all 1 ≤ i ≤ m; ki, j for all 1 ≤ i ≤ m + 1 and 1 ≤ j ≤ li .

In Algorithm 1, when a group of requests Ri, j is presented, If ALG accepts no
request in Ri, j , i.e., ki, j = 0, the adversary ends the current phase and releases reqeusts
in Ri+1,1; if ALG accepts any request in Ri, j , i.e., ki, j > 0, then the adversary releases
requests in Ri, j+1, the subsequent group of Ri, j (see line 5).
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Now we specify the requests in Ri, j . For each request ri, j , we set ṗi, j = pi, j + 1.
Thuswhenwe specify ri, j , we can ignore the drop-off location.Request ri, j is specified
as following:

– R1,1 consists of k copies of the request r1,1, where b1,1 = ν · t − bu , t1,1 = ν · t ,
p1,1 = 0;

– Ri,1 (i > 1) consists of k copies of the request ri,1 with booking time bi,1 =
ti,1 − bu , start time ti,1 = ti−1,li−1 + t + k

k+1 · min{bu−bl ,t}
(k+1)i

and pick-up location
pi,1 = i − 1;

– Ri, j (i ≥ 1, j > 1) consists of k copies of the request ri, j with booking time
bi, j = bi,1, start time ti, j = ti,1 − ( j − 1) · min{bu−bl ,t}

(k+1)i+1 , and pick-up location
pi, j = i − 1.

Firstly, we state that the requests in phase i group j are reasonable: each request
ri, j is released no later than bu + bi, j and no earlier than bl + bi, j . Observe that there
are m phases and each phase consists of no more than k + 1 groups, in phase i group
j ( j ≤ li ≤ k + 1), since bi, j = bi,1 and ti, j = ti,1 − ( j − 1) · min{bu−bl ,t}

(k+1)i+1 , we have

ti, j −bi, j = bu − ( j −1) · min{bu−bl ,t}
(k+1)i+1 . Thus we know that bl ≤ ti, j −bi, j ≤ bu since

1 ≤ j ≤ k + 1.
Note that the requests are presented in order of phases, and the requests in the

same phase are presented in order of groups: In phase i group j and phase i group
h (1 ≤ h < j), since bi, j = bi,h , we know that the requests in one phase can be
presented in order of groups. For any two consecutive phases i −1 and i (1 < i ≤ m),
since ti,1 = ti−1,li−1+t+ k

k+1 ·min{bu−bl ,t}
(k+1)i

, we have bi,1 = ti,1−bu > ti−1,li−1+t−bu .
Observe that ti−1,li−1 + t ≥ ti−1,1, we have bi,1 > ti−1,1 − bu = bi−1,1. It means that
the requests are presented in order of phases.

Next, we state that the requests satisfy the three principles.
For any two groups j, h ∈ {1, 2, . . . , li } in phase i with j ≥ h, we have ti, j =

ti,1−( j−1)· min{bu−bl ,t}
(k+1)i+1 . Andwe know that 0 < ti,h−ti, j = ( j−h)· min{bu−bl ,t}

(k+1)i
< t .

Notice that ṗi, j = ṗi,h = i , pi, j = pi,h = i − 1, we have �( ṗi,h, pi, j ) = t . Hence
ti,h < ti, j < ti,h + t < ṫi,h + �( ṗi,h, pi, j ). It means that two requests ri,h and ri, j are
in conflict, which satisfies principle (a).

For phase i + 1 group h (1 ≤ h ≤ li+1 ≤ k + 1), we have ti+1,h = ti,li + t +
k+1−h
k+1 · min{bu−bl ,t}

(k+1)i+1 . Observe that ṗi,li = pi+1,h , we have �( ṗi,li , pi+1,h) = 0, and

hence ti+1,h > ṫi,li + �( ṗi,li , pi+1,h). It means that any request in the last group of
phase i and a request in phase i +1 group h (h > 1) are not in conflict, which satisfies
principle (b). For phase i group j (1 ≤ j < li ), ti,li +t ≥ ti, j ≥ ti,li + 1

k+1 ·min{bu−bl ,t}
(k+1)i

,

we have ti, j ≤ ti+1,h ≤ ti, j + t − h
k+1 · min{bu−bl ,t}

(k+1)i+1 since ti+1,h = ti,li + t + k+1−h
k+1 ·

min{bu−bl ,t}
(k+1)i+1 . Observe that ṗi, j = pi+1,h , we have �( ṗi, j , pi+1,h) = 0, and hence

ti+1,h < ṫi, j + �( ṗi, j , pi+1,h) since h < k + 1. It means that any other requests
(except the requests in the last group of phase i) in phase i and a request in phase i +1
group h are in conflict, which satisfies principle (c) (Fig. 2 shows an example).

In the end,we analyze the number of requests accepted by ALG and OPT . Observe
that ALG accepts no request in Ri, j (∀1 ≤ i ≤ m + 1, j = li ) (see line 4). Since
there are k cars in our problem, and any two requests accepted by ALG are in conflict
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Fig. 2 Illustration of requests
ri,li−1, ri,li and requests in
phase i + 1

based on principles (a) and (c), we have |R′| ≤ k. Meanwhile, based on the principle
(b), any two requests in the last group of two different phases are not in conflict, i.e.,
a request in Ri,li and a request in Rh,lh are not in conflict. Thus, OPT accepts all
requests in Ri,li for all 1 ≤ i ≤ m + 1, i.e., |R∗| = k · (m + 1), and hence we get
|R∗|/|R′| ≥ L + 1 (L = m). 	


By Theorem 1, we have the following Theorem:

Theorem 2 No deterministic online algorithm for CSV on general graphs can achieve
a competitive ratio smaller than L + 1.

4 Upper bounds

We formulated two algorithms: the Greedy Algorithm (GA) and the Parted Greedy
Algorithm (PGA) for CSV on both the special graph of a path and general graphs. We
prove that for CSV on a path, GA is (3L + 1)-competitive and PGA is (2L + 10)-
competitive; for CSV on general graphs, GA is (3L + 1)-competitive and PGA is
( 52 L + 10)-competitive.

For the sake of analysis, let S′ and S∗ denote the sets of cars in the algorithm and
OPT . Consider a sequence R = {r1, . . . , rn}. Let R′ ⊆ R denote the set of requests
accepted by our algorithm, and R∗ ⊆ R denote the set of requests accepted by OPT .
Let R̄ be the set of requests accepted by OPT that are not accepted by the algorithm.
For each car s∗

e ∈ S∗, let R̄e be the requests in R̄ and accepted by the car s∗
e . Observe

that
∑

se∗∈S∗ |R̄e| = |R̄|.
We claim that for each R̄e ∈ R̄ and for any car s′

j ∈ S′, we have |R̄e| ≤ α · |R′
j\R∗

e |,
where R′

j is the set of requests accepted by car s′
j ∈ S′, and R∗

e is the set of requests

accepted by car s∗
e ∈ S∗. If this claim holds, since R∗\R̄ = R∗ ∩ R′, we get that

|R∗| =
∑

se∗∈S∗
|R̄e| + |R∗ ∩ R̄|
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≤
k∑

j=1

α|R′
j \ R∗

e | + |R∗ ∩ R′|

=α|R′ \ R∗| + |R∗ ∩ R′|
≤α|R′|

with α ≥ 1.
To prove the above claim, we will adapt the “charging scheme", which is similar to

lemma 9 in Luo et al. (2019). The difference here is that the requests in this paper have
variable booking times, instead of fixed booking times, and thus we need to consider
the number of requests which do not intersect with the “charging interval" at any time
point, not just the start times. For completeness, we define the “charging interval" as
follows.

For any request ri = (bi , ti , pi , ṗi ), we can find a time interval (αi , βi ) of ri , such
that another request r j is in conflict with ri only if (t j , ṫ j ) ∩ (αi , βi ) 
= ∅, for any
request r j = (b j , t j , p j , ṗ j ). Notice that (t j , ṫ j ) ∩ (αi , βi ) = ∅ means that either
ṫi < αi or ti > βi holds. We call the time interval (αi , βi ) an occupy interval of ri .
For a request ri , the occupy interval (αi , βi ) is non-unique, we concern on the occupy
interval (αi , βi ) with a proper length.

Firstly, we consider the occupy interval of any request ri = (bi , ti , pi , ṗi ) on
general graphs. Recall that the longest travel time is Lt . For any request r j , observe
that if t j > ṫi +Lt , the Lt time units is sufficient for a car to make an empty movement
from ṗi to p j , which means the two requests ri and r j are not in conflict since a car
may serve both requests. Similarly, if ṫ j < ti − Lt , ri and r j are not in conflict. Thus
we have the following observation.

Observation 1 For CSV on a general graph, for any request ri = (bi , ti , pi , ṗi ),
(ti − Lt, ṫi + Lt) is an occupy interval of ri , and the length of the occupy interval is
2Lt + ṫi − ti .

For CSV on a special graph of a path, we have the following lemma.

Lemma 1 For any request ri = (bi , ti , pi , ṗi ) in CSV on a path, we can find an occupy
interval (αi , βi ), where the length of the occupy interval is as following

βi − αi = max{Lt + 2(ṫi − ti ), 2Lt}.

Proof Consider a special graph of path G = (V , E) where V = {v1, v2, . . . , vn} and
E = {e1, e2, . . . , en−1} with ei = {vi , vi+1} for all i ∈ [n − 1]. We assume that
minvi ,v j∈V �(vi , v j ) = t and maxvi ,v j∈V �(vi , v j ) = Lt .

Now for any request ri = (bi , ti , pi , ṗi ), suppose �(v1, pi ) = pt and �(v1, ṗi ) =
qt with p < q (See Fig. 3 as an example). Then we can construct an interval (αi , βi )

as following:

· αi = ti − max{pt, Lt − pt},
· βi = ṫi + max{qt, Lt − qt}.
It is not difficult to show that (αi , βi ) is anoccupy interval of ri .We assume that there

is a request r j which is in conflict with ri and (t j , ṫ j ) ∩ (αi , βi ) = ∅. Since request r j
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Fig. 3 Illustration of the request ri = (bi , ti , pi , ṗi ) and its occupy interval (αi , βi )

and ri are in conflict, we have either t j < ti < ṫ j+�(pi , ṗ j ) or ti < t j < ṫi+�(p j , ṗi ).
Furthermore, either ṫ j > ti − �(pi , ṗ j ) ≥ αi or t j < ṫi + �(p j , ṗi ) ≤ βi , and thus
(t j , ṫ j ) ∩ (αi , βi ) 
= ∅, which derives a contradiction.

Consider the values of max{pt, Lt − pt} and max{qt, Lt − qt}, we separate three
cases to show the length of (αi , βi ):

1. When pt ≥ Lt − pt and qt ≥ Lt − qt , βi − αi = (p + q + q − p)t = 2qt ;
2. When pt ≤ Lt − pt and qt ≤ Lt − qt , βi − αi = (L − p + L − q + q − p)t =

2(L − pi )t ;
3. When pt ≤ Lt − pt and qt ≥ Lt − qt , βi − αi = (L − p + q + q − p)t =

(L + 2(q − p))t .

We can see that for the first two cases (case 1, case 2), the length of the occupy
interval is no greater than 2Lt since pt ≤ Lt and qt ≤ Lt hold, and for the case 3,
the length of the occupy interval is no greater than Lt + 2(ṫi − ti ). 	


Before introducing the algorithms, we present the following lemma which will be
used to bound the number of requests in the charging scheme analysis.

Lemma 2 For a given bipartite graph G = (U , V , E), if each vertex v ∈ V is adjacent
to at most m1 vertices of U, and each vertex u ∈ U is adjacent to at least m2 vertices
of V , then we have |V | ≥ |U |m2

m1
.

The proof is quite simple: Since each vertex u ∈ U is adjacent to at leastm2 vertices
of V , there are at least |U | ·m2 edges in the graph G, i.e., |E | ≥ |U | ·m2. Meanwhile,
since each vertex v ∈ V is adjacent to at most m1 vertices in U , then |V | is no less
than |E |/m1. Therefore, we have |V | ≥ |U |m2

m1
.

4.1 Greedy algorithm

In this section, we formulate a Greedy Algorithm (GA) for CSV on general graphs,
and prove that GA is (3L + 1)-competitive. GA can be stated in a simple way: When
a request ri arrives, if ri is acceptable to a car s j from S, we accept ri and assign it to
s j ; Otherwise, reject it.
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Request ri is acceptable to car s j : Let R j denote the set of requests assigned to
car s j from {r1, r2, . . . ri−1}. For any request rh ∈ R j , if we have ti ≥ ṫh + �( ṗh, pi )
or th ≥ ṫi + �( ṗi , ph), in other words, ri and the requests in R j are not in conflict, we
say that request ri is acceptable to car s j .

Suppose the adversary releases requests R = {r1, r2, . . . , rn} for 1 ≤ i < n. Let
R′ denote the accepted requests by GA. Let R∗ denote the accepted requests by the
offline scheduler (optimal solution).

Algorithm 2 Greedy Algorithm (GA)
1: Input: k cars, requests arrive over time.
2: When request ri arrives, if ri is acceptable to a car s ∈ S, assign it to that car; Otherwise, reject it.

Theorem 3 For CSV on general graphs, GA is (3L + 1)-competitive.

Proof Recall that R̄ is the set of requests accepted by OPT which are not accepted by
GA. For each car s∗

e ∈ S∗ of an OPT solution, R̄e is the requests in R̄ and accepted by
s∗
e .We claim that for each R̄e ∈ R̄ and for any car s′

j ∈ S′, we have |R̄e| ≤ α·|R′
j−R∗

e |.
If this claim holds, then we have |R∗| ≤ α|R′ − R∗| + |R∗ ∩ R′| ≤ α|R′| with α ≥ 1,
since R∗ − R̄ = (R∗ ∩ R′).

Consider any request ri ∈ R̄e. since s′
j did not accept ri , s

′
j must have accept another

request rc which is in conflict with ri . We charge ri to rc once we find a request rc
which is in conflict with ri . In this way, every request in R̄e is charged to a request in
R′
j .

Next, we bound the number of requests in R̄e that can be charged to a single request
rc ∈ R′

j . Observe that if interval (th, ṫh) does not intersect with the occupy interval
(αc, βc), it is sufficient for s′

j to serve both rc and rh according to the definition of the
occupy interval. As all requests have travel time at least t , the start times of any two
consecutive requests accepted by s∗

e differ by at least t . Here “consecutive requests"
means the requests are consecutive according to the time order. Recall that there is an
occupy interval (αc, βc) with length 3Lt by Observation 1, which can intersect with
at most 3L + 1 consecutive requests. It means that rc is charged by at most 3L + 1
requests from R̄e.

This establishes the claim, with α = 3L + 1. Thus we get |R∗| ≤ (3L + 1) · |R′|.
The theorem is proved. 	


Notice that a path is a special graph, by Theorem 3, we have the following Theorem:

Theorem 4 For CSV on a path, GA is (3L + 1)-competitive.

4.2 Parted greedy algorithm

According to Lemma 1, for any request ri , when ṫi − ti is no less than Lt
2 , we can find

an occupy interval of ri , the length of which is 2Lt ; when ṫi − ti is greater than Lt
2 , we
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can find an occupy interval of ri , the length of which is 3Lt . We will take advantage
of the length difference of the occupy intervals for different requests in the Parted
Greedy Algorithm. In PGA, the cars are separated into two parts, one part is denoted
by S′(1), in which the cars only serve requests of length no larger than L

2 , and the
other part of cars, denoted by S′(2), only serve requests of length larger than L

2 . The
accurate numbers of cars in S′(1) and S′(2) are shown in the following Theorems.

The definition of acceptable is similar to Greedy Algorithm. We say that request
ri is acceptable to car s j if ri and any request in R j are not in conflict. Besides, for a
request ri , if the length of ri is no larger than L

2 , ri is only acceptable to cars in S′(1);
Otherwise, ri is only acceptable to cars in S′(2).

Suppose the adversary releases requests R = {r1, r2, . . . , rn}. According to the
length of each request in R, R can be separated into two sets R(1) and R(2), where
R(1) (resp. R(2)) denotes the set of requests in R with length no larger than L

2 (resp.
larger than L

2 ).
Let R′(1) and R′(2) denote the requests accepted by PGA in R(1) and R(2). Notice

that |R′(1)| = ∑
s j∈S′(1) |R′

j | (resp. |R′(2)| = ∑
s j∈S′(2) |R′

j |). Let R∗(1) and R∗(2)
denote the requests accepted by the offline scheduler (optimal solution) in R(1) and
R(2).

Algorithm 3 Parted Greedy Algorithm (PGA)
1: Input: k cars, requests arrive over time.
2: When request ri with ri ∈ R(τ ) (τ ∈ {1, 2}) arrives, if it is acceptable to a car s ∈ S′(τ ), assign it to

that car; otherwise, reject it.

Recall that R̄ denotes the set of requests accepted by OPT that are not accepted
by PGA. For each car s∗

e ∈ S∗, let R̄e denote the requests in R̄ and accepted by the car
s∗
e . For each car s∗

e ∈ S∗, we further denote the requests in R̄e with length no larger
than L

2 (resp. larger than L
2 ) by R̄e(1) (resp. R̄e(2)). i.e., R̄e(1) = R̄e ∩ R(1) and

R̄e(2) = R̄e ∩ R(2). Observe that |R̄e(1)| + |R̄e(2)| = |R̄e|, and ∑k
e=1 |R̄e| = |R̄|.

Theorem 5 For CSV on a path with k ≥ L + 20, PGA is (2L + 10)-competitive when
we set |S(1)| = � (2L+1)k

2L+8 �.
Proof Firstly, we focus on the requests in R(1) that are either accepted by s∗

e ∈ S∗ or
accepted by s′

j ∈ S′(1). Consider any request rh ∈ R̄e(1), since PGA does not accept
rh , the car s′

j must have accepted another request rc, such that rc and rh are in conflict.

As for cars in S′(2), since the length of rh is no larger than L
2 , PGA will not assign rh

to any request in R′(2). We say that rh charges to rc once we find a rc ∈ R′(1) which
is in conflict with rh ∈ R∗.

We bound the number of requests in R̄e(1) that can be charged to a single request
rc ∈ R′(1) for any car s∗

e ∈ S∗. Observe that by Lemma 1, for a request rh , if (th, ṫh)
does not intersect with an occupy interval of rc, i.e., (αc, βc), it is sufficient for s′

j to

serve both rc and rh . Notice that the length of request rc is no larger than L
2 , according

to Lemma 1, there exists an occupy interval (αc, βc) such that βc−αc = 2Lt . Since all
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requests in R̄ ∩ R(1) have travel time at least t , the start times of any two consecutive
requests accepted by s∗

e differ by at least t , which means that (αc, βc) may intersect
with at most 2L+1 consecutive requests. Thus rc is charged by at most 2L+1 requests
from R̄e(1).

Then we consider the requests in R(2) that are either accepted by s∗
e in S∗ or

accepted by s′
j ∈ S′(2). Consider any request rh ∈ R̄e(2), since PGA does not accept

rh , the car s′
j must have accepted another request rc, such that rc and rh are in conflict.

As for cars in S′(1), since the length of rh is larger than L
2 , PGA will not assign rh to

any request in R′(1). Similarly, we charge rh to rc.
Observe that for a request rh , if (th, ṫh) does not intersect with the occupy interval

(αc, βc), it is sufficient for s′
j ∈ S′(2) to serve both rc and rh . As all requests in R̄∩R(2)

have travel time at least Lt
2 , the start times of any two consecutive requests accepted

by s∗
e differ by at least Lt

2 . By Lemma 1, we can find an occupy interval (αc, βc) of rc,
where βc − αc = 3Lt . Thus (αc, βc) may intersect with at most 3Lt

Lt/2 + 1 consecutive

requests. It means that rc is charged by at most 7 requests from R̄e(2).
For a request rh ∈ R̄e(1) (resp. rh ∈ R̄e(2)), we know that for each car s′

j ∈ S′(1)
(resp. s′

j ∈ S′(2)), s′
j can not serve rh . Thus we charge rh to at least |S′(1)| requests

in R′(1) (resp. |S′(2)| requests in R′(2)).
Set |S(1)| = � (2L+1)k

2L+8 �, then |S(2)| = k−|S1| ≥ 7k
2L+8 .We can construct a bipartite

graph between requests in
⋃

s∗e ∈S∗ R̄e(1) and requests in
⋃

s′j∈S′(1)(R
′
j − R∗), and a

bipartite graph between requests in
⋃

s∗e ∈S∗ R̄e(2) and requests in
⋃

s′j∈S′(2)(R
′
j − R∗),

separately. There is an edge (r∗, r ′) if r∗ charges r ′. Based on Lemma 2, we know
∑

s′j∈S′(1) |R′
j − R∗| ≥ ∑

s∗e ∈S∗ |R̄e(1)| · |S′(1)|
(2 L+1)k since each request in

⋃
s′j∈S′(1)(R

′
j −

R∗) is charged to atmost 2Lt+1 requests of and each request in
⋃

s∗e ∈S∗ R̄e(1) charges
to at least |S′(1)| requests of ⋃

s′j∈S′(1)(R
′
j − R∗). Similarly, we have

∑
s′j∈S′(2) |R′

j −
R∗| ≥ ∑

s∗e ∈S∗ |R̄e(2)| · |S′(2)|
7k .

By the analysis above, we have

|R′(1)| =
∑

s′j∈S′(1)
|R′

j − R∗| + |R′(1) ∩ R∗|

≥
∑

s∗e ∈S∗
|R̄e(1)| · |S′(1)|

(2L + 1)k
+ |R′(1) ∩ R∗|

≥
∑

s∗e ∈S∗
|R̄e(1)| · (

1

2L + 8
− 1

(2L + 1)k
) + |R′(1) ∩ R∗| (since k > 1),

where the first inequality follows from Lemma 2. Similarly, we also have

|R′(2)| =
∑

s′j∈S′(2)
|R′

j − R∗| + |R′(2) ∩ R∗|
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≥
∑

s∗e ∈S∗
|R̄e(2)| · |S′(2)|

7k
+ |R′(2) ∩ R∗|

≥
∑

s∗e ∈S∗
|R̄e(2)| · 1

2L + 8
+ |R′(2) ∩ R∗|.

Since k ≥ L + 20, we have ( 1
2 L+8 − 1

(2 L+1)k ) ≥ 1
2 L+10 , and then we get

|R′| =|R′(1)| + |R′(2)|
≥

∑

s∗e ∈S∗
(|R̄e(1)| + |R̄e(2)|) · 1

2L + 10
+ |R′(1) ∩ R∗| + |R′(2) ∩ R∗|

>
1

2L + 10
· (|R′(1) ∩ R∗| +

∑

s∗e ∈S∗
|R̄e(1)| + |R′(2) ∩ R∗| +

∑

s∗e ∈S∗
|R̄e(2)|)

= 1

2L + 10
· |R∗|.

The theorem is proved. 	


Theorem 6 For CSV on general graphs with k ≥ 5
4 L + 20, PGA is ( 52 L + 10)-

competitive when we set |S(1)| = � (5 L+2)k
5 L+16 �.

Proof Similarly to the analysis in Theorem 5, we focus on the requests both in R(1)
and R(2) that are either accepted by s∗

e in S
∗ or accepted by PGA.Recall that according

to Observation 1, for any request ri on a general graph, (ti − Lt, ṫi + Lt) is an occupy
interval of ri , and the length of the occupy interval is (2Lt + ṫi − ti ).

Consider any request rh with rh ∈ R̄e(1) (resp. rh ∈ R̄e(2)), since PGA does not
accept rh , car s′

j ∈ S′(1) (resp. s′
j ∈ S′(2)) must have accepted another request rc,

such that rc and rh are in conflict. Then we bound the number of requests in R̄e(1) that
can be charged to a single request rc ∈ R′(1) for any car s∗

e ∈ S∗. Observe that for a
request rh , if (th, ṫh) does not intersect with the occupy interval of rc, i.e., (αc, βc), it
is sufficient for s′

j to serve both rc and rh . Notice that the length of request rc is no

larger than L
2 , then there exists an occupy interval (αc, βc) with length 5Lt

2 . We know
that all requests in R̄ ∩ R(1) have travel time at least t , (αc, βc) may intersect with at
most 5L

2 +1 consecutive requests. Thus rc is charged by at most 5L
2 +1 requests from

R̄e(1).
On the other hand, for any request rh ∈ R̄e(2), the length of rh is larger than L

2 .
Since PGA does not accept rh , car s′

j ∈ S′(2) must have accepted another request rc
in R(2) that rc charges rh .

Observe that if (th, ṫh) does not intersect with the occupy interval (αc, βc), it is
sufficient for s′

j ∈ S′(2) to serve both rc and rh . Since all requests in R̄ ∩ R(2) have

travel time at least Lt
2 , the start times of any two consecutive requests accepted by s∗

e

differ by at least Lt
2 . Notice that we can find an occupy interval (αc, βc) of rc, where
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βc−αc = 3Lt . Thus (αc, βc)may intersect with at most 3Lt
Lt/2 +1 consecutive requests.

It means that rc is charged by at most 7 requests from R̄e(2).
For a request rh ∈ R̄e(1) (resp. rh ∈ R̄e(2)), we can find that for each car s′

j ∈ S′(1)
(resp. s′

j ∈ S′(2)), s′
j can not serve rh . Thus rh must be charged to at least |S′(1)|

requests in R′
1 (resp. |S′(2)| requests in R′(2)).

Set |S(1)| = � (5L+2)k
5L+16 �, then |S(2)| = k − |S1| ≥ 14k

5L+16 . Similar to the analysis in
Theorem 5, we have

|R′(1)| =
∑

s′j∈S′(1)
|R j − R∗| + |R′(1) ∩ R∗|

≥
∑

s∗e ∈S∗
|R̄e(1)| · 2|S′(1)|

(5L + 2)k
+ |R′(1) ∩ R∗|

≥
∑

s∗e ∈S∗
|R̄e(1)| · (

2

5L + 16
− 2

(5L + 2)k
) + |R′(1) ∩ R∗| (since k > 1),

and

|R′(2)| =
∑

s′j∈S′(2)
|R j − R∗| + |R′(2) ∩ R∗|

≥
∑

s∗e ∈S∗
|R̄e(2)| · |S′(2)|

7k
+ |R′(2) ∩ R∗|

≥
∑

s∗e ∈S∗
|R̄e(2)| · 2

5L + 16
+ |R′(2) ∩ R∗|.

Since k ≥ 5
4 L + 20, we have ( 2

5L+8 − 2
(2L+1)k ) ≥ 2

5L+20 , and then we get

|R′| =|R′(1)| + |R′(2)|
≥

∑

s∗e ∈S∗
(|R̄e(1)| + |R̄e(2)|) · 2

5L + 20
+ |R′(1) ∩ R∗| + |R′(2) ∩ R∗|

>
2

5L + 20
· (|R′(1) ∩ R∗| +

∑

s∗e ∈S∗
|R̄e(1)| + |R′(2) ∩ R∗| +

∑

s∗e ∈S∗
|R̄e(2)|)

= 2

5L + 20
· |R∗|,

which proves the theorem. 	
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5 Conclusion

We have analyzed online car-sharing problem with variable booking times on both
general graphs and a special graph of a path. For CSV on general graphs, we have
proved that no deterministic algorithm can achieve a competitive ratio smaller than
L + 1. For CSV on a path, we have also proved that no deterministic algorithm can
achieve a competitive ratio smaller than L + 1. We came up with two algorithms: the
Greedy Algorithm (GA) and the Parted Greedy Algorithm (PGA). According to the
analysis of two algorithms, we proved that GA is 3L + 1-competitive for CSV on
general graphs, and PGA is ( 52 L + 10)-competitive for CSV on a general graph. For
CSV on a path, the competitive ratio of GA and PGA are proved to be 3 L + 1 and
2 L + 10.

There are still some new interesting questions, such as the online car-sharing prob-
lem under the stochastic viewpoint, or CSV with different booking time constraints.
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