
Journal of Combinatorial Optimization (2023) 45:120
https://doi.org/10.1007/s10878-023-01055-0

Airline capacity distribution under financial budget
and resource consideration

Jing Zhou1

Accepted: 30 May 2023 / Published online: 12 June 2023
© The Author(s) 2023

Abstract
Capacity distribution is a challenging issue for an airline under financial budget and
resource consideration. It is a large-scale optimization problem covering both long-
term planning and short-term operating arrangements. This study investigates on the
airline capacity distribution problemwith financial budget and resource consideration.
It contains subproblems of financial budget arrangement, fleet introduction, and fleet
assignment. Among them, financial budget is arranged in multiple decision periods,
fleet introduction is decided under fixed time points, while fleet assignment is decided
under all available time points. To tackle this problem, an integer programming model
is formulated for descriptions. Then, an integrated algorithm of modified Variable
Neighborhood Search (VNS) and Branch-and-bound (B&B) strategy is developed to
find solutions. In detail, a greedy heuristic approach is utilized to generate an initial
solution for fleet introduction, the modified B&B strategy is utilized to generate the
optimal solution for fleet assignment and themodifiedVNS is applied to update current
solution for a new onewith better quality. In addition, budget limit checks are added for
financial budget arrangements. Finally, the hybrid algorithm is tested on efficiency and
stability. It is also compared to other algorithms which replace the modified VNS by
basic VNS, differential evolution and genetic algorithm. Computational results show
that performance of our approach is powerful in terms of objective value, convergence
speed and stability.
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1 Introduction

Airline capacity distribution problem (ACDP) is a combination of subproblems which
contain financial budget distribution, fleet introduction, and fleet assignment. Airlines
usually deal with this problem in batches (Belobaba et al. 2019). For example, United
Airlines (2023) introduces its fleets in batches because they are usually ordered and
delivered in fixed time points due to a manufacturer’s production costs. Therefore,
an airline plans to distribute its long-term financial budget into multiple short terms
and then decides on fleet introduction and assignment, which is more complex than an
individual fleet introduction and assignment problem. This means that taking financial
budget and resource of ACDP into consideration is essential.

In detail, ACDPcan be processed as followings. Firstly, a long-termfinancial budget
is distributed into multiple short terms. Secondly, in the beginning of each short term,
distributed financial budget is utilized for fleet introduction decisions, containingwhen
to obtain fleets, whether to buy or lease fleets, and which type of fleets to choose. After
this process, numbers of different fleet types are determined for fleet assignment.
Finally, fleet assignment assigns executed flights with a specific fleet type.

ACDP is a NP-hard optimization problem with high complexity in an airline’s
planning and operating process. In recent years, airline network expansion and flight
frequency growth make ACDP more complex than before (Development Planning
Department of Civil Aviation Administration of China 2023). In addition, unexpected
public events can interfere with an airline’s capacity arrangement. For example, travel
restrictions during COVID-19 force airlines to rearrange their capacity. The above
factors cause improper ACDP arrangements, which then lead to a large proportion of
abnormal flights. According to Civil Aviation Administration of China (2023), apart
from bad weather and temporary military control, improper ACDP arrangement is the
largest cause which accounts for 15.28% of all abnormal flights. In the US, according
to the latest flight data from Bureau of Transportation Statistics (2023), the improper
ACDP arrangement ranks first among all the reasons for the abnormal flights, which
accounts for 30.48% of a total proportion. These numbers indicate that efficiency of
airline capacity distribution can be improved considerably to capture more demands
and save fleet resources.

As mentioned above, airline capacity is under pressure to deal with the booming
industry and public events. Consequently, ACDP is receivingmore andmore attention.
ACDP mainly has three subproblems containing budget distribution, fleet introduc-
tion, and fleet assignment. The first subproblem, budget distribution, is a strategic
planning arrangement. In this process, an airline generally spends a large proportion
of budgets for regular fleet introduction (Assaf 2009). Consequently, an airline tends to
distribute long-term budgets into short-term pieces and then introduce fleets in batches
(Moon et al. 2015). Oum et al. (2000) furtherly calculate an optimal buy-or-lease pro-
portion on budget distribution, but they have not considered multi-period decisions.
The second subproblem, namely fleet introduction, can be constructed in a linear pro-
gramming model and solved by CPLEX or dynamic programming (Hsu et al. 2011;
Bazargan and Hartman 2012). But a limitation for CPLEX and dynamic programming
is that they can only deal with small-scale cases, which is far from reality. The third
subproblem, fleet assignment, is studied by Abara (1989) and Hane et al. (1995). It is
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formulated by connection network and time–space network respectively. Then, spilled
passengers capture is added to fleet assignment and this more realistic problem can
be solved by heuristic method (Barnhart et al. 2009). More recently, fleet assignment
has been integrated with other operating procedures in the airline industry containing
timetabling design, aircraft routing and crew scheduling (Faust et al. 2017; Kenan
et al. 2018; Birolini et al. 2021a). CPLEX and heuristic method are utilized to solve
these integrated problems. Although the heuristic method like genetic algorithm can
deal with large-scale cases, it is limited to specially-designed settings and cases.

The subproblems of ACDP have been studied individually and integrated with
other operating processes. However, they have not been considered as a whole as
ACDP, which is a major decision for an airline’s panning and operating processes. By
optimizing this problem, an airline can save valuable capacity resources and improve
profitability. As this problem has three stages, variable dimension is high, whichmakes
it invalid to utilize enumeration method.

There are several studies on similar problems shown on Table 1 offering insights
on algorithm design for our problem. A flowshop problem in manufacture industry is
exploredwith two stages of sorting and assignment by Ewa (2014). A heuristic priority
rule and column generation are designed to minimize makespan. A similar two-stage
problem in surgery arrangement is studied byWang et al. (2015). This problem ismore
complex due to weekly and bi-objective consideration. It is then solved by a discrete
particle swarm optimization (PSO) algorithm. Additionally, fixed setup time is taken
into consideration and the problem is solved by local search (Li et al. 2018). Then,
batch processors and multi-type resources are added to problem settings and genetic
algorithm is utilized to search satisfying solutions (Qin et al. 2019; Sun et al. 2020).

More recently, metaheuristic methods including variable neighborhood search
(VNS) are applied. Rezgui et al. (2019) apply VNS to solve an integrated problem of
fleet introduction and routing for electrical vehicles. Even a part of VNS, namely vari-
able neighborhood descent (VND) algorithm can be applied to solve a hybrid problem
of assignment and sorting problem in manufacture industry with additional consistent
sublots (Zhang et al. 2021). VNS can also be integrated with Bat algorithm (BA) by
Pei et al. (2019) to solve a serial-batching scheduling problem with resource, budget,
setup time and multiple manufacturers considerations. The hybrid VNS-BA algorithm
performs better than BA, VNS, and PSO. Similarly, Zhu et al. (2020) develop a hybrid
algorithm combining Grey Wolf Optimizer (GWO) with VNS to solve a three-stage
dynamic operating room scheduling problem. Fan et al. (2020) replace GWO with
estimation of distribution algorithm (EDA) and also combine EDA with VNS for a
patient scheduling problem. Then, Samanta et al. (2022) innovatively extend security
routing-scheduling problem with single decision maker to double decision makers
and build a parallelized framework according to game theory. This large-scale prob-
lem is also dealt with a VNS-based metaheuristic approach. Tao et al. (2022) develop
a similar metaheuristic method with additional self-adaptive strategy.

According to studies above, VNS is an efficient framework to deal with multi-stage
optimization problems which are similar to ACDP. In addition, to improve solution
quality, exact method can be incorporated into VNS framework. As a result, in this
study, ACDP under financial budget and resource consideration is presented and a
hybrid algorithm of VNS and an exact method is proposed to maximize profits. The
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Table 1 Summary of literature for multi-stage optimization problems

Literature Industry Planning
interval

Phase Objective
function

Algorithm

Ewa (2014) Manufacture Periodically Sorting +
Scheduling

Minimize
makespan

A heuristic
with priority
rules and
column
generation

Wang et al.
(2015)

Healthcare Weekly Scheduling +
assignment
+ sorting

Maximize
patient
satisfaction
and minimize
hospital
operating costs

A discrete PSO
algorithm

Li et al.
(2018)

Energy Daily Assignment
+
scheduling

Minimize
makespan and
energy
consumptions

A heuristic
method
based on
local search

Qin et al.
(2019)

Manufacture Daily Assignment
+ sorting

Minimize
makespan

Genetic
algorithm

Sun et al.
(2020)

Warehouse Daily Assignment
+ sorting

Minimize
makespan

Genetic
algorithm

Pei et al.
(2019)

Manufacture Periodically Planning +
assignment
+
scheduling

Minimize
maximum
completion
time of all jobs
on each
machine

A hybrid
algorithm of
BA and VNS

Rezgui
et al.
(2019)

Vehicle Periodically Planning +
routing

Minimize
acquisition,
travel and
recharging
costs of
electrical fleets

A VNS
algorithm

Zhu et al.
(2020)

Healthcare Weekly Planning +
assignment

Minimize patient
waiting and
operating room
overtime costs

A hybrid
algorithm of
GWO and
VNS

Fan et al.
(2020)

Healthcare Daily Planning +
scheduling

Minimize
completion
time of all
patients in
ophthalmology
clinic

A hybrid
algorithm of
EDA and
VNS

Zhang et al.
(2021)

Manufacture Periodically Assignment
+ sorting

Minimize
maximum
completion
time

A collaborative
VND
algorithm
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Table 1 (continued)

Literature Industry Planning
interval

Phase Objective
function

Algorithm

Tao et al.
(2022)

Manufacture Daily Sorting +
assignment

Minimize
completion
time

A self-adaptive
artificial bee
colony
algorithm

Samanta
et al.
(2022)

Security Daily Routing +
scheduling

Maximize
probability of
interdiction

A VNS-based
metaheuristic
approach

This study Airline Periodically Planning +
assignment

Max operating
profits minus
fleet
introduction
costs

A hybrid
algorithm of
modified
B&B and
VNS

main contributions are as follows: (1) ACDP under financial budget and resource
consideration is described mathematically as an integer programming model; (2) a
greedy heuristic approach is designed to improve quality of initial solution; (3) VNS
encoding process is utilized to integrate budget distribution and fleet introduction for
dimension reduction; (4) a shaking strategy and special neighborhood structure are
applied to generate efficient perturbation solutions; (5) an exact method is applied to
improve solution quality; (6) the hybrid algorithm is tested on efficiency and stability
and compared to other algorithms.

The remaining chapters of this study are arranged below. Section 2 illustrates the
description of ACDP. Next, a mathematical model is formulated in Sect. 3. Then, to
solve this problem, a modified VNS-B&B algorithm is designed and illustrated in
Sect. 4. Section 5 conducts computational experiments for the designed algorithm and
compare its performance with other algorithms. Finally, conclusions and future works
are described in the last section.

2 Notations and problem statement

In this study, ACDP under financial budget and resource consideration is studied. It is
an integration problem involving three stages: budget distribution, fleet introduction,
and fleet assignment. The notations used throughout this paper are given in Table 2.

During the first stage, a long planning term is divided as a set of H periods. Each
period h furtherly contains Y years, with the beginning of each year y as a decision
time point. In each period h, an airline has a financial budget bh to decide on numbers
of purchased and leased aircraft Pf h/L f y for all fleet types in set F . Purchasing can
only be conducted at the beginning of each period h, while leasing can be conducted
at the beginning of each year y. Total fleet introduction costs should not exceed total
financial budget B.
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Table 2 Notations

Notation Definition

Sets

F Set of fleet types, indexed by f

L Set of flight legs scheduled, indexed by l

R Set of routes scheduled, indexed by r, r(l) means a route r including leg l

H Set of time periods, indexed by h

Y Set of years in each time period, indexed by y

Parameters

c f r Cost of a route r with assigned fleet type f , f ∈ F, r ∈ R

rl Ticket revenue for flight leg l, l ∈ L

Cap f Capacity of fleet type f , f ∈ F

Dly Passenger demand for flight legs l in period h, l ∈ L, y ∈ h, h ∈ H

p f Price of a bought aircraft with fleet type f, f ∈ F

l f Price of a leased aircraft with fleet type f, f ∈ F

bh Upper limit of financial budget proportion in period h, l ∈ L, h ∈ H

B Total financial budget

Decision variables

x f r y A binary variable which equals 1 if the fleet type f is assigned to leg l in year y,
f ∈ F, l ∈ L, y ∈ h, h ∈ H

qly Number of passengers on flight leg l in period h, l ∈ L, y ∈ h, h ∈ H

Pf h Number of bought aircraft with fleet type f in stage h, f ∈ F, h ∈ H

L f y Number of leased aircraft with fleet type f in stage h, f ∈ F, y ∈ h, h ∈ H

Additionally, a proportion upper limitation bh is set in each period h. Thus, total
flight numbers of all fleet types can be determined for fleet assignment. At last, in
each year y with determined fleet numbers, each flight mission r can be assigned with
a suitable fleet f until there is no available fleet left. Each flight mission r contains
multiple stops and a flight between two stops is defined as a leg l. Each leg l can have
a passenger demand qly . This study focuses on an airline’s perspective and assumes
that there are no limits on numbers of fleets flowing into and out of all the stops. A
framework of the studied problem is shown in Fig. 1.

For example, an airline’s fleet prices, flying missions, flight demands and budget
limits are defined in Tables 3, 4 and 5. Because most airlines keep data privacy, direct
and complete company-specific data is difficult to obtain. As a result, open websites
and reports are referred for numerical settings. Tobe specific, fleet capacity, fleet prices,
total budget volume and period limit numbers, are estimated based on open reports
on Statista (Erick 2022a, b). Only three-stop routes with one origin, mid-stop, and
destination are considered, which are common choices for an airline. Ticket prices
and passenger demands are generated based on an official website-Civil Aviation
Administration of China (2022). In detail, from Table 3, purchase prices are set as
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Table 3 Fleet prices

Fleet Name Seat Purchase price Lease price

1 737 150 1 × 108 2 × 107

2 757 200 2 × 108 4 × 107

3 787 300 4 × 108 1 × 108

Table 4 Flying missions

Mission Stop1 Stop2 Stop3 Distance

1 A B A 1200

2 A C A 800

3 B C B 1600

four times bigger than lease prices. This indicates that, for the same fleet type, it is
more profitable to buy a fleet rather than lease if it is utilized for more than 5 years.
Table 4 specifies flights in each flying mission. A flight means one departure and one
land from one stop to another, each mission can have multiple flights. Table 5 presents
budget limit proportions in each planning period and flight demands in each year.

According to the example above, total financial budget is set as 8 × 108. Total
planning term is 10 years and divided into 5 periods with 2 years in the same period.
Then, the budget can be distributed as 4× 108, 2× 108,0, 1× 108 and 0 fromH1–H5,
not exceeding the proportion limit in each period of 50%, 30%, 20%, 20% and 20%.
Then, the airline decides on fleet introduction. There are three decisions containing
buying one 787 in H1, one 757 in H2 and leasing one 737 in H4. These decisions are
shown in a square box, a circle and a triangle respectively in Table 6. As a result, in
H1, there is one fleet of 787 in each period; in H4, there are three fleets of 737, 757
and 787 in each period; in other periods, there are two fleets of 757 and 787 in each
period.

After fleet numbers are determined, an airline assigns available fleets to flying
missions in all planning years. Results are shown in Table 7. Each flying mission in
each year is assigned a fleet according to matching degree of fleet capacity and flying
mission demand. Specifically, one 737 is assigned to Mission 2 from Y7 to Y8; one
757 is assigned to Mission 1 from Y3 to Y8 and Mission 2 from Y9 to Y10; one 787
is assigned to Route 3 from H1 to H10.

To summarize, for our ACDP study, a combination of subproblems containing
budget distribution, fleet introduction, and fleet assignment, the following decisions
should be made:

(1) How many budgets to be distributed in each planning period,
(2) Which time point is chosen to buy or lease an aircraft,
(3) Which type of aircraft is chosen,
(4) How many aircrafts is bought or leased,
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Table 6 Example of budget distribution and fleet introduction results

Table 7 Example of fleet assignment results

Period H1 H2 H3 H4 H5

Fleet Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10

737 – – – – – – R2 R2 – –

757 – – R1 R1 R1 R1 R1 R1 R2 R2

787 R3 R3 R3 R3 R3 R3 R3 R3 R3 R3

(5) How to match flying missions with suitable available aircrafts.

Among the decisions, (1) belongs to budget distribution, (2–4) belong to fleet intro-
duction and (5) belongs to fleet assignment. In the next sections, this problem is
formulated as an integer programming model and then valuable solutions are searched
by a designed hybrid algorithm.

3 Mathematical modeling

According to descriptions and assumptions above, an integer programming model for
ACDP is constructed. As mentioned before, there are mainly three parts of ACDP
containing financial budget distribution, fleet introduction, and fleet assignment. The
fleet introduction part refers to formulation of Bazargan and Hartman (2012). The
fleet assignment part refers to formulation of Xu et al. (2021). Then, to incorporate
financial budget distribution, total and period budget limits are added in constraints.
The model of ACDP can be described as following:

Maximize : ∑

h∈H

(
∑

y∈h

(
∑

l∈L
rlqly − ∑

f ∈F
∑

r∈R
c f r x f r y − ∑

f ∈F
l f L f y

)

− ∑

f ∈F
p f Pf h

)

(1)

Subject to :
∑

f ∈F
x f ry ≤ 1∀r ∈ R, y ∈ h, h ∈ H (2)
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∑

r∈R
x f ry ≤ L f y + Pf h +

h−1∑

m=0
Pf m∀ f ∈ F, y ∈ h, h ∈ H (3)

qly ≤ Dly∀l ∈ L, y ∈ h, h ∈ H (4)

qly ≤ ∑

f ∈F
Cap f x f r(l)y∀l ∈ r(l), r(l) ∈ R, y ∈ h, h ∈ H (5)

∑

h∈H

(
∑

y∈h
∑

f ∈F
l f L f y + ∑

f ∈F
p f Pf h

)

≤ B (6)

∑

y∈h
∑

f ∈F
l f L f y + ∑

f ∈F
p f Pf h ≤ bh∀h ∈ H (7)

x f ry ∈ {0, 1}, qly, Pf h, L f y ∈ N (8)

Equation (1) illustrates that the objective is tomaximize an airline’s profits. Its value
calculated by flying mission revenues minus operating costs and fleet introduction
costs. In detail, flying mission revenues are calculated in missions, which indicate all
passenger ticket revenues in missions of all executing routes, while operating costs
contain costs are calculated in routes. Fleet introduction costs contain purchase and
lease costs, calculated in periods and years respectively.

Equation (2) promises that in each fleet assignment decision point, a route can
choose no more than one available fleet to execute missions. The decision point is
yearly in this study. Then, Eq. (3) connects fleet assignment and introduction. It ensures
that in the same point, to sum up all routes, number of occupied fleets cannot exceed
upper bound of available ones. The available ones indicate all introduced fleets con-
taining leased fleets in this year, purchased fleets in this period which the year belongs
to and all previous periods. Equations (4) and (5) guarantee that realized passen-
ger demand in each flying mission of each route is no more than requested passenger
demand and fleet capacity respectively. Equations (6) and (7) indicate a corresponding
relationship between budget distribution and fleet introduction. Equation (6) guaran-
tees that total fleet introduction costs cannot exceed total financial budget, while Eq. (7)
specifies that in each period, fleet introduction costs cannot exceed periodically upper
bounds. Equation (8) defines the nature of all decision variables.

4 Proposed algorithm

This section introduces the proposed hybrid algorithm of VNS and B&B in detail.
Firstly, algorithm design motivations and framework are illustrated. Secondly, with
regards to problem-specific characteristics, algorithm components, involving initial
solution generation, encoding, decoding, modified B&B strategy and VND process,
are presented respectively. Finally, the whole procedure of the hybrid algorithm for
addressing ACDP is summarized.
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Fig. 2 Framework of the integrated problem of fleet introduction and assignment

4.1 Motivations and algorithm framework

In ACDP, there exist mainly three subproblems containing budget distribution, fleet
introduction, and fleet assignment. They are considered simultaneously. Since these
subproblems are dependent, the whole problem has NP-hard property and its various
variables cannot be dealt efficiently with exact methods in limited time. As a result,
we adopt a VNS metaheuristic framework to solve this problem. In addition, as one of
the subproblems, fleet assignment, can be handled with B&B (Morrison et al. 2016).
By integrating a VNS framework and B&B strategy, a hybrid algorithm is designed
to give attention to both running speed and solution quality.

Figure 2 shows procedures of the algorithm in detail. Firstly, if the initial solution
is generated randomly, our algorithm is easy to stuck in a local optimum and difficult
to find a satisfying finial result in limited time. Thus, greedy heuristics based on our
problem are applied to generate various solutions for budget distribution and fleet
introduction. Then, one of them with the best performance on objective function (1)
is picked as the initial solution to start the algorithm. Secondly, two subproblems,
budget distribution and fleet introduction can be cooperated and encoded. For the last
subproblem, fleet assignment, B&B strategy is utilized to provide results. Solutions of
these three subproblems can generate a VNS evaluator, which equals to the objective
function (1) in Sect. 3. Thirdly, based on the current solutions, VND with specific
neighborhood design is conducted to search for better solutions. Finally, after solution
updating, a shaking operation is adopted to start a new iteration until the maximal one
is ended.

4.2 Initial solution generation

To start the hybrid algorithm, an initial solution is generated by greedy heuristics
shown in Fig. 3 based on problem-specific characteristics. To be specific, passenger
demand Dly (predefined) domains profits in objective function (1). It can be utilized
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Fig. 3 Framework of greedy heuristics

to conduct greedy strategy. Firstly, for fleet assignment, assuming that a fleet can only
execute one route r and there is no transformation between routes, a fleet with the
nearest capacity to a route’s average passenger demand is assigned to the same route.
Secondly, once a fleet type f is determined, buying or leasing is decided by the fleet
type’s buy-lease ratio. For example, in Table 3, if a fleet 737 is executed for more than
5 years, buying it is less costly than leasing it. Thirdly, total and period budget limits
are added. If fleet introduction costs exceed a period H budget limit, a fleet bought or
leased in the same period is deleted randomly until the budget limit is met. For total
budget limit, fleets in all periods can be deleted randomly until the budget limit is met.
After that, because fleet introduction decisions are changed, fleet assignment, which is
correlated, should be updated with B&B strategy to calculate objective function value.
Finally, due to randomness in budget distribution process, a population of solutions is
generated iteratively and one with the best performance on objective value is chosen
as the initial solution.
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Fig. 4 Initial solution generation algorithm

Pseudocode of the initial solution generation process is illustrated in Fig. 4. Flight
demands Dly , financial budgets B, bh , initial solution population N I are imported into
the greedy heuristics and initial solutions of fleet introduction and budget distribution
decisions P I f h/L I f y are returned for a subsequent encoding process.

4.3 VNS encoding and decoding process

Encoding process plays an important role in the VNS framework. It needs to construct
a suitable solution structure for consecutive search efficiency. As described above,
three subproblems of ACDP involving budget distribution, fleet introduction, and fleet
assignment should be considered. For fleet assignment, due to discussions in 4.1, B&B
strategy can be applied and its details is illustrated in Sect. 4.4 illustrates. For budget
distribution and fleet introduction, if they are encoded jointly, both spent budget in
all periods Bh and bought/leased numbers of all fleet types in all periods Pf h/L f y

should be set as variables illustrated in Fig. 5. This encoding has two major layers
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Fig. 5 Joint encoding process

Fig. 6 Single encoding process with budget checks

containing budget distribution and fleet introduction. For the latter layer, it even has
three sub-layers, which leads to great difficulty in subsequent search steps.

To improve the encoding design, fleet introduction is considered singly to reduce
variable dimensions illustrated in Fig. 6. To be specific, the three sub-layers of fleet
introduction variables can be linearized by period, fleet type and buy-or-lease choices.
Budget distribution considerations are transferred to budget limit checks both totally
and periodically which can be programmed in the following search steps. Thus, a total
budget Bh and its periodical arrangement bh can be deleted from our formulation and
algorithm framework. This operation reduces not only orders of variables in encoding
process, but also possibility of illegal solution generations.

The encoding process is prepared for the following VND and shaking operations
after solving fleet assignment with B&B strategy. Differently, the decoding process
is prepared for fleet assignment in the next step directly. Values of numbers of newly
introduced fleets (Pf h, L f y) can be extracted from arrays in Fig. 6 with indexes (H ×
(1 + Y ), H × (1 + Y ) + 1 ∼ H × (1 + Y ) + Y ). Based on these values, numbers of
all available fleets in different periods and specific years can be calculated as the right
hand of Eq. (3). Then, fleet assignment is ready to be solved in the next section.
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4.4 Modified B&B strategy

After the encoding process, bought/leased numbers of all fleet types in all periods
Pf h/L f y can be determined. According to our formulation, the third and fourth terms
in objective function (1) can be calculated out with constraints (6) and (7) satisfied.
To calculate the first and second terms of objective function (1) with all the other
constraints satisfied, namely to solve the fleet assignment problem, B&B strategy can
be applied. In this study, as mentioned above, the first and second terms of objective
function (1) is set as the B&B evaluator and also illustrated in Eq. (9). This evaluator
represents an airline’s net operating profits of fleet assignment.

net operai tng prof i ts = ∑

l∈L
rlqly − ∑

f ∈F
∑

r∈R
c f r x f r y (9)

Specifically, in Eq. (9), a unit profit rl of a flight leg l (a route r contains several
legs l) is predefined. Then, realized demand qly is the minimum value of requested
passenger demand Dly and assigned fleet type capacity Cap f shown in Eq. (10). For
operating costs, they are calculated in a route unit as Birolini et al. (2021b) estimate in
Eq. (11). In Eq. (11), a route’s distance Sr is also predefined. In addition, for aircraft
maintenance consideration, maintenance can be divided into two types containing
route and scheduled maintenance (Zhu 2009). The former is closely related to the
flying mission r in this study. Its costs are considered in Eq. (11), which is also a
route-based estimation (Birolini et al. 2021b). The latter has a relatively long interval
and is usually ignored in estimation.

qly = min
{
Dly,Cap f

}
(10)

c f r = (Sr + 722.0) × (
Cap f + 104.0

) × 0.019 (11)

Then, there are three rules in B&B involving searching, branching, and bounding
which can be modified to adapt to our problem. Firstly, a cyclic best-first search is
adopted to find results. A priority queue is built to move the current best solution at
the top until the bottom layer is searched. The queue ensures both solution quality and
running speed (Morrison et al. 2016). Secondly, in branching process, wide branching
is chosen. This mean that one route is set as one layer and different fleet type choices
connect two adjacent layers. Compared to binary branching, which determining a yes-
or-no problem for all fleet types one by one for each route, wide branching improves
search efficiency. Thirdly, if the value of operating profits in Eq. (9) is the lowest
among all potential results, this value and its correlated solution should be deleted.
The modified B&B strategy is presented in Fig. 7.

4.5 VNS evaluator and neighborhood design

Based on the steps above, both an initial solution and a related objective value of
ACDP is prepared. Specifically, greedy heuristics in Sect. 4.2 offer initial solutions
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Fig. 7 Modified B&B algorithm

of budget distribution and fleet introduction. In addition, the third and fourth terms
of objection function Eq. (1) are calculated. Then, encoding results are generated in
Sect. 4.3 to be utilized in neighborhood design. Finally, a modified B&B strategy in
Sect. 4.4 provides fleet assignment solutions and calculates out the first and second
terms of objection function Eq. (1). In this way, VNS evaluator [namely the value of
objective function Eq. (1)] and the initial solution of ACDP are ready.

To improve this solution, VND and shaking operations should be applied. In the
two operations, neighborhood structures should be designed carefully, because they
make considerable effects on solution quality and running speed. Different from a
traditional VNS structure, our encoding results have multiple layers involving time
periods, buy-or-lease choices and fleet types. As a result, neighborhood structures are
designed as followings.

There are nine neighborhood structures to deal with encoding results involving:
Add-Buy,Minus-Buy, Add-Lease,Minus-Lease, Add-Buy-Minus-Lease, Add-Lease-
Minus-Buy, Fleet-Change, Buy-Lease-Swap, and Period-Swap. They are indexed in
Fig. 8 from (1) to (9):

(1) Add-Buy: choose a value of bought fleet Pf h randomly and add 1;
(2) Minus-Buy: choose a value of bought fleet Pf h randomly and minus 1;
(3) Add-Lease: choose a value of leased fleet L f y randomly and add 1;
(4) Minus-Lease: choose a value of leased fleet L f y randomly and minus 1;
(5) Add-Buy-Minus-Lease: combination of (1) and (4);
(6) Buy-down-lease-up: combination of (2) and (3);
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Fig. 8 Neighborhood structures with crossover and variation operations
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(7) Fleet-Change: change one fleet type to another randomly;
(8) Buy-Lease-Swap: swaps values of bought and leased fleets in one period;
(9) Yearly swap: choose two years randomly, swap all the fleet numbers.

For these nine structures, (1–4) only change one value in the encoded results, (5–7)
change two values, (8) changes six values, while (9) involves two periods and change
18 numbers totally. From a multi-layer view, (1–6) and (8) are concerned with buy-
or-lease choices, (7) is related to fleet type decisions, while (9) represents time period
choices.

4.6 Budget limit checks

Once a neighborhood of fleet introduction is generated in Fig. 8, a new value of
fleet introduction costs replaces the previous one, which is possibly conflicted with
constraints (6) and (7). Consequently, budget limits should be considered totally and
periodically.

Our budget limit checks are incorporated into neighborhood generation process
in Sect. 4.5. When a new code is generated, fleet introduction cost is calculated out
according to the third and fourth terms of Eq. (1). Then, it is compared with relative
period budgets and total budget (both predefined). For example, for a new code from
neighborhood (8), it has changes in period 1, thus, both total budget and budget of this
period should be checked, while for a new code from neighborhood (9), it has changes
in period 1 and 5, thus, budget of these two periods should be checked. As numbers
in this code is swapped between periods, there is no need to check total budget.

After comparison, if the fleet introduction cost of the new code exceeds relative
period budgets or total budget, the code is invalid and should be deleted. The previous
code is output for VND process.

Algorithms of period and total budget checks are illustrated in Fig. 9. As shown
before, an initial code a0 is firstly input with three dimensions involving year y,
buy-or-lease choice bl and fleet type f . Secondly, after the neighborhood change as
shown in Fig. 8, a new code a′ is generated and a relative year y′ with value change
of a′[y′][bl][ f ] is picked up. Thirdly, a time period h which y′ belongs to can be
found. Then, both total and period (h) fleet introduction costs are calculated. They are
compared to total and period (h) budgets respectively. If the costs exceed budgets, the
new code is deleted and the initial one is reused for the following VND process.

5 Computational experimentation

This section intends to systematically evaluate our integer programming model and
modified VNS-B&B hybrid algorithm. It is compared with three metaheuristics con-
taining basic VNS, differential evolution (DE), and genetic algorithm (GA). They
only replace the modified VNS part and incorporate with B&B. Three different sets
of benchmarks are set and collected to compare their performance involving objec-
tive value, running speed and robustness. All experiments of the modified VNS-B&B
hybrid algorithm and compared metaheuristics are coded in C++. They are run on a
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Fig. 9 Period and total budget check operations

windows 10 system with a 1.10 GHz Intel Core i7-10710U CPU processor and a 16G
RAM.

5.1 Test data

To solve ACDP problem, we set four instances scaled with 3, 10, 20, and 50 routes,
which covers airlines of small and medium sizes. For each instance, there are four
sets of input data involving budget, fleet, route, and flying mission information shown
in Fig. 10. Firstly, budget numbers are prepared for budget limits distribution. Sec-
ondly, fleet and route settings are predefined for fleet introduction and assignment
decisions. Thirdly, flying mission inputs offer details for routes and help objective
function calculation.

Data sources are open websites and reports. Because most of airlines keep data
privacy, direct and complete company-specific data is difficult to obtain. As a result,
open resources are referred for numerical settings. To be specific, total budget volume,
period limit numbers, fleet capacity and fleet prices are estimated based on open reports
on Statista (Erick 2022a, b). Only three-stop routes are considered in our experiments,
which are common choices and consistent to the short-distance calculation in Eq. (11).
Ticket prices and passenger demands are generated based on an official website-Civil
Aviation Administration of China (2022). The smallest case is illustrated above in
Tables 3, 4, and 5 with a scale of 3 routes.
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Fig. 10 Parameter input structure

5.2 Parameter settings

To test our modified VNS-B&B algorithm, the modified VNS part is tested and then
replaced by other efficient metaheuristics involving DE, GA, and basic VNS. There
are various parameters to be predefined before the experiments described in Table 8.

For all experiments, ACDP is planned in the future 10 years and they are divided into
5 periods with 2 years in each period. Assuming there are 365 days in each year, flying
missions are repeated in each day, once a mission is assigned a fleet type, it would
repeat in each day. Then, yearly operating profits can be calculated as daily profits
multiplied by 365 days, which is a widely used simplification (Kenan et al. 2018). All
the four algorithms are conducted for 20 times and in each time the maximal iterations
are 300. Then, specific parameters for themodifiedVNS-B&B algorithm and the other
three compared algorithms are also set in Table 8.

For our modified VNS, number of VND neighborhoods L is set as 9 and maximal
iterations in each VND neighborhood LL is set as 10. Those numbers in basic VNS
are set as 4 and 30 based on Xu et al. (2021). To improve performances, a population
of 100 is additionally set in shaking operation in both algorithms (SP, BSP). For GA,
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Table 8 Parameter settings

Notation Definition

H Number of time periods 5

PY Number of years in each time period 2

Day Number of days in each year 365

R Number of routes 3, 10, 20, and 50

F Number of fleet types 3 (737, 757, and 787)

EX Experimental times for each algorithm 20

VNS

S Maximal iterations of VNS (shaking times) 300

SP Population of each shaking operation 100

L Number of VND neighborhoods 9

LL Maximal iterations in each VND neighborhood 10

Basic VNS

BS Maximal iterations of VNS (shaking times) 300

BSP Population of each shaking operation 100

BL Number of VND neighborhoods 4

BLL Maximal iterations in each VND neighborhood 30

GA

G Maximal iterations of GA 300

P Population size 250

PC Probability of crossover 0.9

PM Probability of mutation 0.4

DE

D Maximal iterations of DE 300

FF DE-scaling factor 3

N Population 300

CR Recombination rate of DE 0.8

based on Tang et al. (2021), population size P is set as 250, probabilities of crossover
and mutation are set as 0.9 and 0.4 respectively. For DE, according to Kusoncum et al.
(2022), population size N is the biggest of all the four algorithms with the number of
300. DE-scaling factor FF and recombination rate CR are set as 3 and 0.8.

5.3 Result analysis

This subsection intends to evaluate the performance of modified VNS-B&B algorithm
and compare it with DE-B&B, GA-B&B and basic VNS-B&B algorithms. The first
phases of the four hybrid algorithms deal with two subproblems of ACDP containing
budget distribution andfleet introductionwithmetaheuristics. The secondphases apply
modified B&B strategy to solve fleet assignment, another subproblem of ACDP. The
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four algorithms are compared on running speeds, objective values and robustness. For
robustness, an evaluator named Relative Percent Deviation (RPD) is applied. All the
four algorithms should be conducted for 20 times, thus, both average value Avg and
best objective value Best are prepared. RPD is calculated as deviation between Best
and Avg divided by Best and multiplied by 100. The equation of RPD is presented in
Eq. (12).A smaller RPDmeans a smaller deviation between best and average solutions,
which indicates a more stable algorithm.

RPD = Best−Avg
Best × 100 (12)

Experiments of the four instances inSect. 5.1 are coded inC++and runon awindows
10 systemwith a 1.10GHzCPU processor and a 16GRAMasmentioned before. After
experiments, performances of all the four algorithms are illustrated in Table 9. The first
and second column display case indexes and scales. The third column lists the four
algorithms to compare their results. Then, the last three columns show three indicators
of algorithm performance, containing objective value, RPD and running time.

In terms of objective value, the modified VNS-B&B is dominant among all the four
algorithms. Because the objective in Eq. (1) is to maximizer total profits, if the value
in the fourth column is bigger, the performance of an algorithm is better. In all cases,
the modified VNS-B&B algorithm obtains the biggest values of objective with the
numbers of 5.82E + 08, 1.61E + 09, 2.59E + 09 and 7.00E + 09. This indicate that
the modified VNS-B&B provides the best objective value of all the four algorithms.

Table 9 Performances for modified VNS/Basic VNS/GA/DE-B&B algorithms

Case Scale Algorithm Objective value RPD Running time(s)

1 3 routes Modified VNS-B&B *5.82E + 08 *0.00 *4.79

Basic VNS-B&B 5.53E + 08 2.70 6.46

GA-B&B 5.78E + 08 0.69 8.25

DE-B&B 5.48E + 08 5.86 9.46

2 10 routes Modified VNS-B&B *1.61E + 09 0.68 *18.60

Basic VNS-B&B 1.54E + 09 *0.16 28.02

GA-B&B 1.48E + 09 1.82 45.86

DE-B&B 1.46E + 09 9.70 52.15

3 20 routes Modified VNS-B&B *2.59E + 09 2.81 *49.78

Basic VNS-B&B 2.31E + 09 *0.54 70.53

GA-B&B 2.22E + 09 3.08 125.38

DE-B&B 2.04E + 09 0.59 121.65

4 50 routes Modified VNS-B&B *7.00E + 09 *1.67 *265.82

Basic VNS-B&B 6.28E + 09 2.19 313.50

GA-B&B 6.21E + 09 2.37 443.83

DE-B&B 6.94E + 09 3.79 608.59

*represents that an algorithm has the best performance among all algorithms on an indicator in a case
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In terms of running speed, the modified VNS-B&B also has advantage over the
other three algorithms. The running speed is measured as the running time in second,
which starts from the beginning of our algorithms and ends after the final iteration is
finished. A smaller value of seconds means a better running speed of an algorithm.
In all cases, the modified VNS-B&B algorithm obtains the smallest values of running
timewith the numbers of 4.79 s, 18.60 s, 49.78 s and 265.82 s. To compare it with other
algorithms, our modified VNS-B&B is approximately 1/3 faster than basic VNS-B&B
and 1/2 faster than GA/DE-B&B. For example, in case 1, the modified VNS-B&B has
a running time of 4.79 s while the basic VNS-B&B has a running time of 6.46 s, which
means that the former is 25.81% faster than the latter. The proportion for case 2 is
33.62% and similar in other cases.

Comprehensively, although there are adjacent objective values compared to those
of modified VNS-B&B, their speeds are considerably slower than those of modified
VNS-B&B. For example, the objective value of GA-B&B in case 1 with the number
of 5.78E + 08 has the smallest deviation to that of the modified VNS-B&B, while the
running time of the former with the number of 4.79 s is considerably slower than that
of the latter with the number of 8.25 s. For the objective value of DE-B&B in case 4
with the number of 6.94E + 09, the situation is similar.

In terms of robustness, as mentioned before, RPDs are utilized for evaluations.
In Table 9, the modified VNS-B&B algorithm has a relatively good performance on
RPDs. Specifically, in case 1 and 4, the RPDs of modified VNS-B&B algorithm are
the smallest compared to those of the other three algorithms with values of 0.00 and
1.67 respectively. This indicates that it is the most robust method to solve the ACDP
among all four algorithms. In case 2 and 3, although the RPDs of basic VNS-B&B
algorithm are the smallest, which means that this algorithm can robustly find similar
solutions in 20 repeated experiments, its objective values in Table 9 are considerably
smaller than those of modified VNS-B&B, cancelling the robustness advantage of
basic VNS-B&B. In addition, the RPDs of modified VNS-B&B algorithm in case 2
and 3 are close to the basic VNS-B&B one with values of 0.68 and 2.81 respectively,
which are acceptable.

In detail, in all cases and algorithms, iterative processes are tracked and recorded
as convergence curves shown in Fig. 11. For basic VNS and DE-B&B, they converge
quickly and both lines are under the line of modified VNS-B&B. For modified VNS
and GA-B&B, they both converge slowly but diverge in objective values. Specifically,
the line of modified VNS-B&B is on top of GA-B&B and is potential to increase after
300 iterations are over.

Furtherly, to test out whether the robustness of modified VNS-B&B algorithm is
sensitive to input disturbance, we make changes on input numbers of total budget and
passenger demands, which are likely to fluctuate under volatile market conditions.
To be specific, total budget and passenger demands are assumed to be 10% more
or less than before while the other input numbers remain the same. Then, two more
groups of experiments are conduced besides those shown in Table 9. For all the cases,
three-dimension graphs on RPDs are illustrated in Fig. 12.

In Fig. 12, for case 1 and 4, although GA-B&B algorithm performs better than
modified VNS-B&B algorithm in terms of RPDs, their gaps are small with a largest
deviation of approximately 2. Similarly, for case 2 and 3, basic VNS-B&B algorithm
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Fig. 11 Convergence for Modified VNS/Basic VNS/GA/DE-B&B Algorithm

performs slightly better than modified VNS-B&B algorithm with a largest deviation
of approximately 1. In the other conditions, modified VNS-B&B algorithm domains
in terms of RPDs.

To summarize, compared to DE-B&B, GA-B&B, and basic VNS-B&B hybrid
algorithms, the modified VNS-B&B algorithm has advantages on objective value and
running speed. In terms of robustness, the modified VNS-B&B algorithm performs
good and only has slight deviations in limited conditions.
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Fig. 11 continued

6 Conclusion

This paper investigates on the ACDP problemwith resource and budget consideration.
It is an integration of subproblems containing budget distribution, fleet introduction,
and fleet assignment. An integer programming model is formulated to describe the
problem and a hybrid algorithm of modified VNS and B&B strategy is designed to
find solutions. The hybrid algorithm consists of seven components containing initial
solution generation, encoding, decoding, modified B&B, VND and shaking process
processes.Moreover, budget limit checks are added once a new neighborhood is gener-
ated to avoid invalid solutions and improve search efficiency. ThemodifiedVNS-B&B
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Fig. 12 RPDs for Modified VNS/Basic VNS/GA/DE-B&B Algorithm

algorithm is compared with the DE/GA/basic VNS-B&B algorithms on objective val-
ues, running speeds, and robustness. Experimental results show that the efficiency and
stability of the modified VNS-B&B algorithm take advantage over the other compared
algorithms.

Our study contributes to reduce dimensions of the complex integrated ACDP prob-
lem and provide practical advice for airline planning decisions under budget and
resource limits. In the future, relative research can focus on incorporate more limited
considerations into ACDP problem and solve it with a more efficient method in larger
cases.
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