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Abstract
Let n measurements of a process be provided sequentially, where the process follows
a sigmoid shape, but the data have lost sigmoidicity due to measuring errors. If we
smooth the data bymaking least the sum of squares of errors subject to one sign change
in the second divided differences, then we obtain a sigmoid approximation. It is known
that the optimal fit of this calculation is composed of two separate sections, one best
convex and one best concave. We propose a method that starts at the beginning of the
data and proceeds systematically to construct the two sections of the fit for the current
data, step by step as n is increased. Although the minimization calculation at each step
may have many local minima, it can be solved in about O(n2) operations, because
of properties of the join between the convex and the concave section. We apply this
method to data of daily Covid-19 cases and deaths of Greece, the United States of
America and the United Kingdom. These data provide substantial differences in the
final approximations. Thus, we evaluate the performance of the method in terms of its
capabilities as both constructing a sigmoid-type approximant to the data and a trend
detector. Our results clarify the optimization calculation both in a systematic manner
and to a good extent. At the same time, they reveal some features of the method to be
considered in scenaria that may involve predictions, and as a tool to support policy-
making. The results also expose some limitations of the method that may be useful to
future research on convex-concave data fitting.
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1 Introduction

It has been about two years since the Covid-19 pandemic went into full force across
the world, with its contagion seeing thousands of new cases and deaths every day.
At the same time, policy makers are tasked with formulating policy to handle the
pandemic as each wave of Covid-19 sweeps through society. Given that the pandemic
is a phenomenon of growth, many analyses conducted in the years since the start of
the pandemic have employed analytical models such as sigmoid curves in efforts to
model and predict the evolution of the pandemic, to assist in the formulation of policy
(Debecker and Modis 2021).

However, there has been a distinct lack of approaches to this problem that were not
of analytical presumptions. In this paper, we propose a method for the first time, where
the rates of change of new confirmed Covid-19 cases and deaths are estimated from
the data through a convex-concave fitting process to data obtained from Our World
in Data (Ritchie et al. 2020). We evaluate its performance as the Covid-19 pandemic
develops and ascertain how well it can be used to assist in policy making.

Let {φi : i = 1, 2, . . . , n} be given measurements of the real function values
{ f (xi ) : i = 1, 2, . . . , n}, where the abscissae {xi : i = 1, 2, . . . , n} satisfy the
conditions x1 < x2 < . . . < xn , and the measurements contain random errors. When
the data are collected from some process, such as a pandemic or a product substitution,
the data may well take the form of the letter S when plotted, the underlying shape
granting them the name ‘sigmoid’.

Sigmoid functions have seen applications in a variety of fields, such as in the study
of population growth since the beginning of the 19th century by Gompertz (1815) and
Verhulst (1838), and throughout the last two centuries to date.When sigmoid functions
are used for prediction, they are made to fit a dataset that exhibits a matching trend, in
order to ascertain certain aspects of the data, as well as project on future data points;
for example, when faced with a sigmoid curve of daily contagion growth data of a
given population, it may be possible to tell if the contagion is on a rampant increase,
which would, in turn, allow for proper decision-making in handling the emergency.
As mentioned before, sigmoid functions are presently seeing great use for modeling
purposes, tackling the problem of the growth of contagion in the pandemic of Covid-19
(Shen 2020). In this approach, the user relies on certain parameters and presumptions
about an analytical model f (x). If the assumption is corroborated by collected data,
then the parameters of the algebraic form of f (x) are evaluated so as to derive a useful
approximation in accordance to some criterion, such as least squares.

In this paper we avoid the assumption that f (x) has a form that depends on a few
parameters. We take the view that some smoothing should be possible, if the data fail
to possess a property that is usually obtained by the underlying function. We consider
the problem of calculating numbers {yi : i = 1, 2, . . . , n} from the measurements
{φi : i = 1, 2, . . . , n}, that are smooth and that should be closer to the true function
values { f (xi ) : i = 1, 2, . . . , n} compared to the measurements. The errors in the data
tend to cause many sign alterations in the sequence of the second divided differences
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φ[xi−1, xi , xi+1] = φi−1

(xi−1 − xi ) (xi−1 − xi+1)
+ φi

(xi − xi−1) (xi − xi+1)

+ φi+1

(xi+1 − xi−1) (xi+1 − xi )
, i = 2, 3, . . . , n − 1. (1)

If, however, the data are exact values of a function f (x), x1 ≤ x ≤ xn which has a
continuous second derivative that changes sign at most once, then it can be proved
that the number of sign changes in the sequence (1) is at most one (see, for example,
Powell (1981)). Our approach is based on a method developed by Demetriou (2004a),
which seeks numbers yi , i = 1, 2, . . . , n that minimize the sum of squares

F(y) =
n∑

i=1

(yi − φi )
2, y ∈ R

n, (2)

subject to the constraints that the sequence

y[xi−1, xi , xi+1], i = 2, 3, . . . , n − 1 (3)

changes sign at most once. Ideally, one sign change occurs in the second deriva-
tive of the underlying function f (x), which would give a sigmoid form. Therefore,
this method imposes the missing sigmoid property of f (x) as a condition to the data
smoothing calculation. Let y(n) ∈ R

n be a solution to this problem, which we descrip-
tively call an optimal convex-concave approximation to the data {φi : i = 1, 2, . . . , n}.
Of note, is that a related problem is studied by Cullinan (2019), where the minimiza-
tion of the objective function max{|yi − φi | : i = 1, 2, . . . , n}, subject to the same
constraints on y ∈ R

n , is considered.
This sigmoid property plays a crucial part in our analysis of Covid-19 contagion.

A key characteristic of the pandemic is that a given affected country usually has to
face one or more ‘waves’ of Covid-19, which refer to a surge of Covid-19 cases in the
population. A ‘wave’ is usually signified by a period where new cases slowly increase,
followed by a period of rapid increase as each case begets others. This rapid increase is,
in turn, normally followed by a period of slowdown,1 until contagion slows to the point
where new cases dwindle and total cases finally level off. Under this configuration,
the data of new and total cases alike exhibit behaviour that, over time, lends itself to
convex-concave approximation. The total cases evolve to exhibit a sigmoid trend, as is
the result of the behaviour described previously; on the other hand, the new cases data
can exhibit convexity-concavity, as they provide the rate of change of the total cases
data, which are sigmoid in nature. Both the prevalence of and interaction between
these sigmoid / convex-concave properties showcase both the need for this particular
type of modeling, and why enforcing it as a condition for data fitting is an important
part of the process.

With this in mind, we extend the mentioned smoothing calculation in a way that
is applied to {φi : i = 1, 2, . . . , n} for successive values of n. Sect. 2 gives some

1 In our scenario, the conditions for this can be likely enforced artificially, such as with the imposition of
policy-based preventative measures.
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background results. First, it briefly describes themain property of the smoothing calcu-
lation. The property states that an optimal convex-concave fit consists of two separate
sections, one best convex and one best concave that can be derived independently
by two strictly convex quadratic programming calculations. Then, it states a B-spline
representation of the best fit that is appropriate for presenting the application in Sect. 4.
The main property is taken from Demetriou (2004a), and allows for the development
of an efficient method that calculates the solution to this problem in about O(n2)
computer operations. The mentioned extension is considered in Sect. 3. The extended
method starts at one end of the data and proceeds systematically as data enter the calcu-
lation. Specifically, the method produces a best convex-concave fit to the current data,
and, in the long run, the fitting provides an approximation to the function underlying
the data. The extension achieves substantial efficiencies in computation and savings
in storage by taking advantage of the structure of the problem and the arrangement of
the calculation.

In Sect. 4, the extended method is applied to real data regarding daily cases related
to Covid-19 in the countries of Greece, the United States of America and the United
Kingdom. In the timeframe covered by the data, spanning the period of June 1st 2021
to September 30th 2021 – a period of four months –, the three countries exhibit distinct
data behaviours, facing waves of Covid-19 contagion that vary in scale and duration.
The method is applied to the data on a monthly basis. It is first run on just the June
2021 data; after the output is extracted, the dataset is expanded to include the data
of July and the method is run anew. This process continues until all data in the June-
September dataset are used. The purpose that drives this process is twofold: first, it
allows one to ascertain performance of the method as new data enter the optimization
calculations carried out therein, regardless of the nature of the data used;2 second,
analysis of the output of the method may provide insights regarding the data that can
support specific purposes, such as assisting in policy-making regarding Covid-19. For
instance, a strong indicator for policy makers to consider is how the inflection point in
the generated splines evolves, as new data enter the calculation. An additional analysis
is also conducted, where data pertaining to new deaths inGreece are added on aweekly
basis, to provide a more dynamic view of the performance of the method. Identifying
the extent to which such insights can indeed prove useful, at least in the context of
Covid-19, is also one of the purposes of this paper. Finally, our results are reviewed
in Sect. 5.

Beyond its application to modeling the epidemic growth, the approach presented
here may be applied to a variety of situations, when we know some properties of
the underlying function, but do not have sufficient information to express f (x) in a
parametric form. For example, all industries are faced with the threat of substitution,
where one product supplants another (Porter 1985). Our approach may provide an
efficient tool for defending against a substitute or for promoting substitution, thus
guiding in practice a competitive strategy. Technological substitution and forecasting
include a wide range of problems where our method may find fruitful domains for
applications (see, for example, sigmoid substitution curves from real data byMarchetti

2 In this case, Covid-19 data are used, but any set of data that displays convexity-concavity may be used in
general.
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(1988), Modis (1993, 1999), Duncan (1999), and references therein). Other examples
arise from machine maintenance, economic utility curves, and financial mathematics,
to name a few.

2 Background of the convex-concave fit

This section consists of two parts. The first part states the main property of the optimal
convex-concave approximation which was mentioned in Sect. 1. Specifically, the best
approximation can be generated by solving two independent quadratic programming
problems. The second part gives a brief description of the quadratic programming
algorithm, and provides a spline representation of its solution that is instructive when
employing the method for data analyses.

2.1 Some properties

A vector y ∈ R
n is feasible if it satisfies the constraints

y[xi−1, xi , xi+1] ≥ 0, i = 2, 3, . . . , j − 1
y[xi−1, xi , xi+1] ≤ 0, i = j, j + 1, . . . , n − 1,

}
(4)

for some integer j in [2, n] where we ignore the first line of (4) if j = 2 and the
second line of (4) if j = n.

If y = y(n) ∈ R
n is optimal, then, for some integer ζ in [2, n], the components yi ,

i = 1, 2, . . . , ζ − 1 have the values ycxi , i = 1, 2, . . . , ζ − 1 that solve the quadratic
programming problem (best convex approximation on [x1, xζ−1])

minimize
∑ζ−1

i=1 (yi − φi )
2,

subject to y[xi−1, xi , xi+1] ≥ 0, i = 2, 3, . . . , ζ − 2,

}
(5)

except that there are no constraints if ζ ≤ 3. Assuming that ζ is well inside the
range [2, n], which avoids trivialities of the presentation, the components yi , i =
ζ, ζ + 1, . . . , n have the values ycvi , i = ζ, ζ + 1, . . . , n that solve the quadratic
programming problem (best concave approximation on [xζ , xn])

minimize
∑n

i=ζ (yi − φi )
2,

subject to y[xi−1, xi , xi+1] ≤ 0, i = ζ + 1, . . . , n − 1,

}
(6)

except that there are no constraints if ζ ≥ n − 1.
We define α(1, ζ − 1; n) and β(ζ, n; n) to be the least values of the objective

functions of the quadratic programming problems (5) and (6) respectively. Further, if
we define γ (ζ ; n) = ∑ζ−1

i=1 (ycxi − φi )
2 + ∑n

i=ζ (ycvi − φi )
2, which is the optimal

value of the objective function (2), it follows that we can obtain the expression

γ (ζ ; n) = α(1, ζ − 1; n) + β(ζ, n; n), (7)
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where we let α(1, 1; n) = α(1, 2; n) = β(n − 1, n; n) = β(n, n; n) = 0. Because ζ

is not known in advance, one can calculate this sum for every ζ in [2, n] in order to
find one that gives the value γ (ζ ; n). The assertion that the components of y(n) can
be generated by solving separate quadratic programming problems on the convex and
the concave section is proven by Demetriou (2004a).

In order to state a method that makes use of this idea, we define the quantities
{α(1, j; n) : j = 1, 2, . . . , n} by

α(1, j; n) = min
y1,...,y j

{ j∑

i=1

(yi − φi )
2 : y[xi−1, xi , xi+1] ≥ 0, 2 ≤ i ≤ j − 1

}
, (8)

and, analogously, the quantities {β( j, n; n) : j = 1, 2, . . . , n}. Algorithms for obtain-
ing an optimal integer ζ are proposed by Demetriou and Powell (1997) and Demetriou
(2004a). They seek an integer j ∈ [2, n] that solves the problem

minimize γ ( j; n) = α(1, j − 1; n) + β( j, n; n), 2 ≤ j ≤ n − 1
subject to y[x j−1, x j , x j+1] < 0
or j = n,

⎫
⎬

⎭ (9)

where the second difference y[x j−1, x j , x j+1] in formula (9) is evaluated on the vector
y whose first j − 1 components occur at the definition of α(1, j − 1; n), and whose
last n − j + 1 components occur at the definition of β( j, n; n). We let ζ(n) = ζ be
an integer j that minimizes expression (9) when γ ( j; n) is calculated. Having found
ζ(n), the components of the two sections of y(n) are calculated by solving problems
(5) and (6). It is important to note that the optimality of ζ does not depend on the sign
of the difference y[x j−2, x j−1, x j ]. Therefore, the constraint y[x j−1, x j , x j+1] < 0
is a necessary and sufficient condition for the feasibility of y.

2.2 The spline representation of the fit

We briefly describe the main ideas of the quadratic programming calculation with
reference to problem (5) after we replace ζ − 1 by n. The quadratic programming
problem is solved by the method of Demetriou and Powell (1991). This method gen-
erates a finite sequence of subsets {A(m) : m = 1, 2, 3, . . .} of the constraint indices
{2, 3, . . . , n − 1} with the property

y[xi−1, xi , xi+1] = 0, i ∈ A(m). (10)

For eachm, we let y(m) be the vector that minimizes the objective function (2) subject

to the equations (10). Unique Lagrange multipliers {λ(m)
i : i ∈ A(m)} are defined by

the first order optimality condition

y(m) − φ = 1
2

∑

i∈A(m)

λi
(m)ai , (11)
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where ai is the normal of the constraint function y[xi−1, xi , xi+1]. If A(m) is not the
final set of the mentioned sequence, then the quadratic programming method makes
adjustments toA(m) until the solution is reached. TheKarush-Kuhn-Tucker conditions
provide necessary and sufficient conditions for optimality.

The equality constrained minimization problem that gives y = y(m) forms an
important part of the calculation, because it is solved very efficiently by a reduc-
tion to an equivalent unconstrained one with fewer variables due to a linear B-spline
representation. Specifically, if s(x), x1 ≤ x ≤ xn is the piecewise linear inter-
polant to the points {(xi , yi ) : i = 1, 2, . . . , n}, then s(x) has its knots on
the set {xi : i ∈ {1, 2, . . . , n} \ A(m)} including x1 and xn . Indeed, the equa-
tion y[xi−1, xi , xi+1] = 0, when i ∈ A(m), implies the collinearity of the points
(xi−1, yi−1), (xi , yi ) and (xi+1, yi+1), but if y[xi−1, xi , xi+1] > 0, then i is the index
of a knot of s(x). Thus, the knots of s(x) are determined from the abscissae due
to the constraints (10). Let kn = n − 1− | A(m) |, let {ξ j : j = 0, 1, . . . , kn}
be the knots of s(x) in ascending order, where ξ0 = x1 and ξkn = xn , and let
{Bj : j = 0, 1, . . . , kn} be a basis of normalized linear B-splines that are defined
on the abscissae {xi : i = 1, 2, . . . , n} and satisfy the equations Bj (ξ j ) = 1 and
Bj (ξi ) = 0, j �= i . Then s(x) may be written uniquely in the form

s(x) =
kn∑

j=0

c j B j (x), x1 ≤ x ≤ xn, (12)

where the spline coefficients {c j : j = 0, 1, . . . , kn} are the values of s(x) at the knots
and are calculated by solving the normal equations associated with the minimization
of the objective function (2).

We assume that φ ∈ R
n is available throughout the calculation, and we accompany

y(n) by the quintuple of the elements (n, kn, ξ , c, ζ(n)), where ξ ∈ R
kn+1 is the vector

whose components are the knots, c ∈ R
kn+1 is the vector whose components are the

spline coefficients, and ζ(n) is the optimal value of j obtained at the end of calculation
(9). In this waywe simplify the development of our approximation procedure in Sect. 3
by just referring to y(n) and ζ(n). In addition, the quintuple is a convenient way of
representing the spline fittings in Sect. 4.

3 The approximation procedure

The user provides the data (xi , φi ), i = 1, 2, . . . , n, and the procedure calculates a
best convex-concave approximation yi (n), i = 1, 2, . . . , n and the associated integer
variable ζ(n), as n is increased by one.

The procedure begins with n = 3. Then the components of the vectors y(1), y(2)
and y(3), and the associated integer variables ζ(1), ζ(2) and ζ(3) are given the values

{
y1(1) = y1(2) = y1(3) = φ1, y2(2) = y2(3) = φ2, and y3(3) = φ3
ζ(1) = 1, ζ(2) = 2; if y[x1, x2, x3] < 0 then ζ(3) = 2, else ζ(3) = 3.

(13)
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It is worth noting that past approximations may provide for a starting point other
than n = 3. After the procedure has started, y(n) is available and provides the starting
point for the calculation of the best convex-concave approximation to the first n + 1
data. Now we increase n by one, and in order to obtain the best convex-concave
approximation to the first n data, we add the new data point (xn, φn) to the best
approximation y(n − 1), which defines ŷ(n) ∈ R

n by

ŷi (n) =
{
yi (n − 1), i = 1, 2, . . . , n − 1
φn, i = n.

(14)

Then we define y(n) = ŷ(n) and ζ(n) = ζ(n − 1) unless

ŷ(n)[xn−2, xn−1, xn] > 0, (15)

which gives infeasibility. In this case, an equality constraint occurs at the concave
section of the best fit, so we undertake the calculation of y(n) on the range [x1, xn].
Theprocedure is describedbelow.Themotivation for treating a convexity as an equality
constraint is given in the following lemma.

Lemma 1 We employ the notation of the first two paragraphs of this section. If
ŷ(n)[xn−2, xn−1, xn] ≤ 0 then y(n) = ŷ(n), but otherwise y(n) satisfies the equation
y(n)[xn−2, xn−1, xn] = 0.

Proof By following Lemma 2 of Demetriou (2004a). ��

The procedure depends on the important separation property of the convex and
the concave section of a best approximation, as was stated in Sect. 2.1, and allows a
constructive method for obtaining y(n). The method calculates an integer ζ such that
the final fit has a convex section on [x1, xζ−1] and a concave section on [xζ , xn]. It
follows that the equality

n∑

i=1

(yi (n) − φ)2 = α(1, ζ − 1; n) + β(ζ, n; n) (16)

is derived. Precisely, the method seeks an integer ζ ∈ [2, n] that minimizes the right-
hand side of expression (16), provided that the corresponding approximation y satisfies
the constraint y[xζ−1, xζ , xζ+1] ≤ 0 or ζ = n. The constraint allows for a convex
section on [x1, xζ−1] and a concave section on [xζ , xn] as was written in the paragraph
following the statement of problem (9).

In order to implement this technique for obtaining ζ(n), we let j be any trial value
of ζ in the righthand side of the sum (16), and we obtain the quantity α(1, j; n) by
solving problem (8). The calculation starts from the formula

γ ( j; n) = α(1, j; n), j = 1, 2, . . . , n,
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and proceeds by employing the formula

γ (ζ ; n) = min
2≤ j≤n−1

{α(1, j − 1; n) + β( j, n; n) : y[x j−1, x j , x j+1] < 0}. (17)

However, the constraint y[x j−1, x j , x j+1] < 0 involves only three components of the
trial vector whose components occur at the definitions of α(1, j−1; n) and β( j, n; n).
Therefore, we only need to pick the value y j−1 that occurs in the calculation of
α(1, j − 1; n) which we denote by ψ( j−1)(x j−1), and we take the components y j and
y j+1 from thefit that providesβ( j, n; n)whichwedenote byψ( j)(x j ) andψ( j)(x j+1),
respectively. So far, this method, when n is fixed, is known and is briefly presented in
Sect. 2.1.

Our procedure extends this method for successive values of n in a way that achieves
substantial efficiencies in computation and savings in storage by taking advantage
of the structure of the problem and the arrangement of the calculation. The gain
in efficiency comes from the remark that all the numbers α(1, j; n) and β( j, n; n),
j = 1, 2, . . . , n are required (also including the limiting cases when j = 1, n) in
order to implement formula (17) for the current n. Therefore, when n takes values in
the set {4, 5, 6, . . .}, these numbers have to be recomputed or stored. We avoid this
task when n is increased, because the values α(1, j; n − 1), j = 1, 2, . . . , n − 1 are
kept in storage, and no storage is required for β( j, n; n), j = 1, 2, . . . , n. Indeed,
j has already run through the set {1, 2, . . . , n − 1}, and the numbers α(1, j; n − 1),
j = 1, 2, . . . , n − 1 were calculated and placed in temporary storage together with
the components specified in the paragraph after equation (17). Thus, they can be used
again when n is increased. It follows that just the number α(1, n; n) need be calculated
when n is increased, as we explain next.

The calculation of α(1, n; n) requires eitherO(1) or at mostO(n) computer opera-
tions.We recall definition (14) and theO(1) complexity is obtainedwhen the inequality

ŷ(n)[xn−2, xn−1, xn] ≥ 0, (18)

is satisfied, because in this case y(n) = ŷ(n) occurs, so α(1, n; n) = α(1, n − 1; n −
1). If, instead, inequality ŷ(n)[xn−2, xn−1, xn] < 0 occurs, then, by reference to
Lemma 1, the best convex approximation to the first n data satisfies the constraint
y[xn−2, xn−1, xn] ≥ 0 in equational form and has sum of squares of residuals equal to
α(1, n; n). TheO(n) complexity is achieved because the best convex approximation to
the first n − 1 data provides a very good starting point for the quadratic programming
calculation that gives the best convex approximation to the first n data (Demetriou
2006). It is sufficient for future applications of formula (17) to retain the numbers
ycxn−1 and ycxn , because ycxn−1 is used to test the feasibility condition (18), and ycxn is
used to test the feasibility condition included in formula (17). Note that the storage
requirements for all the values

α(1, j; ·), ycxj−1, and ycxj , j = 2, 3, . . . , n, (19)

are only O(n).
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Further, the numbers β( j, n; n), j = 1, 2, . . . , n are calculated on stream for the
current value of n, and are then used in formula (17). We remember the remark made
in the paragraph following inequality (18) about the O(n) requirements for having
the best convex approximation to the first n data from the best convex approximation
to the first n − 1 data, and, analogously, the calculation of the sequence β( j, n; n),
j = 1, 2, . . . , n is obtained by repeated applications of the mentioned quadratic pro-
gramming algorithm in only O(n2) computer operations. We arrange this calculation
so that β( j, n; n) need not be stored. Indeed, if j runs through the set {2, 3, . . . , n−1},
then these numbers have to be recomputed or stored. We avoid these tasks by employ-
ing an outer loop that makes use of the formula

γ ( j; n) = α(1, j − 1; n) + β( j, n; n), if y[x j−1, xi , x j+1] < 0, (20)

for j = 2, 3, . . . , n − 1, before it obtains the least value of γ ( j; n) on those indices
j in [2, n], such that the feasibility condition y[x j−1, xi , x j+1] < 0 is satisfied, or
j = n. The numbers β( j, n; n) are accompanied by the components

ycvj and ycvj+1, (21)

which are used to test the feasibility condition in formula (20), but no storage is
required. The outer loop provides the values γ (ζ ; n) and ζ(n). Furthermore, the con-
cave section of the associated y(n) on [xζ , xn] provides the components

ycvn−1 and ycvn , (22)

which are needed to test the feasibility of ŷ(n), when a new data point enters the
calculation (as described in the paragraph after equation (14)). Then another cycle of
the procedure begins. This procedure may well be applied to obtain a best concave-
convex fit after a sign change in the components φi , i = 1, 2, . . . , n.

4 The application to the covid-19 data

Davos (2021) created a Python Interface to the software of Demetriou (2006), which
implements the algorithm described by Demetriou (2004a) through use of Fortran
(Demetriou 2006). As of yet, this is a prototype of the approximation procedure in
Sect. 3. Henceforth, we refer to it as the ‘algorithm’.

Data can be input through the interface; in turn, the user is provided with the associ-
ated output of the algorithm. The output includes the convex-concave approximations
to the data, the associated Lagrange multipliers, the knots that comprise the approxi-
mation spline, its inflection point (if any), as well as the slope of each linear segment of
the spline, representing the rate of change of the underlying function in each spline seg-
ment. We represent y(n) by the quintuple (n, kn, ξ , σ , ζ(n)) as described in Sect. 2.2.
An important note regarding the presentation: whenever inflection is detected, it is
presented through two highlighted points on the approximation spline; the rightmost
of which – or just the one, if only one exists – is what the algorithm recognizes as
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the inflection point with index ζ(n). These highlighted points represent what can be
called the inflection range of the data, within which the actual inflection point of the
underlying function lies (Davos 2021).

Herein we shall present graphical and numerical output of themethod and interface,
through application to Covid-19 data of Greece (pop. 11 mil.), the United States of
America (pop. 334 mil.) and the United Kingdom (pop. 68 mil.). The datasets used
pertain to new Covid-19 cases on a daily basis, spanning the period of June 1st 2021 to
September 30th 2021. For purposes of demonstrating certain aspects of the calculation,
additional data on daily deaths for Greece, spanning the period of June 1st 2021 to
October 31st 2021, were also used. The data have been gathered from Our World in
Data (Ritchie et al. 2020), sourced from Johns Hopkins University. In this dataset, the
abscissae used are the dates for each day; since the algorithm requires strictly numeric
data as input, the dates have been converted into integers using the Microsoft Excel
DATEVALUE() function. The data in question are too many to be presented in these
pages.

An important factor to consider that Covid-19 data generally possess is a cycle-
like diffusion stemming from weekly seasonality; the strength of this diffusion varies
from dataset to dataset, which, in turn, can affect performance of the algorithm in a
number of ways. In addition, different countries may be facing different periods of a
Covid-19 wave over the same timeframe; where one might be approaching a peak in
cases, another may be exiting a wave entirely. Differences in terms of the starting point
can affect performance in convex-concave approximations. This follows naturally: if
the dataset starts out as concave and then becomes convex, the concave section of the
data will likely be misapproximated, as the convex-concave algorithm will attempt to
construct a convex section first.

Material supplementary to this paper also contains results and analyses for the new
deaths data corresponding to the new cases data studied herein. From this, among
others, an insight regarding the relationship between the deaths data and the cases
data of a given country was gleaned: the behaviour of the new deaths data tends to be
quite similar to that of the new cases, with a delay of half a month, on average, as a
result of Covid-19 pathology, in terms of cases that become mortalities.

With the above inmind, the aforementioned datasets were selected: the behaviour of
the data in the case of Greece provides a more standard use scenario for the algorithm,
highlighting its primary properties as a dynamically evolving process. On the other
hand, the USA and UK data are such that peculiarities in the behaviour thereof are
reflected in the output of the algorithm as time goes on; said peculiarities will be
addressed accordingly, in their respective sections of this paper. The complexity of the
data provides a good test of the power of the method. The results are analyzed so as
to assist decision making, particularly regarding the evolution of the inflection point.

4.1 Greece—standard inflection behaviour

In this section, we apply the method to Covid-19 daily cases data of Greece, spanning
the period of June 1st 2021 to September 30th 2021. In Fig. 1, we have the raw
data presented as scattered dots and four convex-concave approximation splines as
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Fig. 1 New Cases in Greece from June 1st 2021, to September 30th 2021. (Large circles denote inflection
point/range; the three highlighted columns section off each of the four months in the dataset, each on the
last day of June, July and August, from left to right)

generated by themethod. Each spline corresponds to an approximation run on a dataset
expanded by one month, starting from a set of data pertaining to the period of June
1st to June 30th and ending with the full dataset of June 1st to September 31st.

As can be seen, up until the middle of July 2021, the cases data are generally non-
diffuse, closely following a clear trend and inflecting, from convexity to concavity,
in early July. This subset provides an example of a standard convex-concave approx-
imation, where the splines generated by the algorithm are performing well, both as
approximants and as trend detectors.

However, past the middle of July, the data grow significantly more diffuse, exhibit-
ing a seasonality that is frequently found acrossCovid-19datasets fromother countries;
the USA and the UK are no exception to this. Likely having their roots, at least in
part, in administrative matters, the figures of the cases data recorded at the week-
ends are considerably smaller, while those in the middle of the week tend to be much
higher; the rest of the weekdays tend to operate on similar levels. This property of
the data prevents the approximation splines from performing well as approximants,
unless measures are taken to counteract it, such as using moving 7-day averages (see
Ritchie et al. (2020), for instance), or splitting the dataset into subsets isolating the
problematic days and approximating them separately (Davos 2021).

Whatever the case may be, while the algorithm may be lacking as an approximant,
its performance as a trend detector is still strong. As seen in Fig. 1, the approximation
splines, after the middle of July, strongly assert that the end-of-June-to-present Covid
wave in Greece inflects in early July and reaches its peak mid-to-end-of August. Post-
inflection, both the ascent towards the peak and descent afterwards are characterized
by non-steep slopes, leading to an extended period of high Covid-case readings. The
knowledge of the current date in relation to the position of the inflection point can give
indications to policy makers, regarding whether or not additional measures need be
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taken to stifle the flow of viral transmission; for instance, seeing increasing slopes in
successive, mostly convex splines (as is the case for the June and July splines in Fig. 1)
would suggest that a significant influx in cases is still to be expected, which could, for
example, lead to more restrictive measures in favour of reducing transmission.

This behaviour is also reflected in the numerical data provided by the interface -
they are presented in Table 1, which summarizes the results of the run on the data of
cases in Greece. It displays the knot and end point indices j = 0, 1, . . . , kn(= 7), the
dates at the knots and corresponding values ξ j , the estimated values, i.e. the spline
coefficients c j , the first divided differences of the fit s[ξ j−1, ξ j ] (namely, the slopes
of the line segments that join the two consecutive knots ξ j−1 and ξ j ) and the second
divided differences of the fit s[ξ j−1, ξ j , ξ j+1] centered at knot ξ j . Table 1 consists
of four separate sets of rows, each of which provides the spline representation of a
convex-concave approximation, starting with the approximation over the data of June
and subsequently over the addition of the data of July, August and September. In this
paper, we shall analyse the output regarding the period of June 1st to July 31st, as
an example; the style of presentation is uniform across all tables and between cases
and deaths data, so it can be easily extended to any output pertaining to either cases
or deaths data, over different periods and/or different countries (or different data, in
general).

The approximation spline that the algorithm calculates for these data is convex-
concave in nature; this can be seen by studying the second divided differences column
in relation to the inflection point of the spline. As seen in the table, the spline inflects
in the range of the two knots {ξ7, ξ8} = {44382, 44383}, with associated spline coef-
ficients (c j ) of 1043.465 and 1767.438, respectively. The change in convexity, from
convex to concave, is marked by the change in sign in the second divided differences.
From the first knot of the spline (ξ0 = 44348, June 1st 2021), up to and including the
left bound of the inflection range (ξ7 = 44382, July 5th 2021), the second divided
differences are positive in sign, which denotes convexity. On the other hand, starting
from the right bound of the inflection range (ξ8 = 44383, July 6th 2021) all the way to
the last knot of the spline (ξ11 = 44408, July 31st 2021), second divided differences
are negative, which denotes concavity. Whenever the approximation spline bears an
inflection range (comprised of two knots), the leftmost bound of the inflection range
will bear a positive second divided difference and the rightmost, negative. This is
a clear display of the convex-concave property, as seen through the second divided
differences.

It should be noted, that the first of the four splines generated, covering the June
1st - Jun 30th period, is entirely convex in nature (indeed, its ‘inflection point’ is
actually the last knot of the spline, ξ7 = 44377 - June 30th 2021). From this, the
inflection point is observed to move rightwards, if only once, before becoming fixed
on the June 5th - June 6th inflection range across all following splines (tantamount
to a mostly secure detection of the actual inflection range in the data). This is a case
of a forward-progressing and fixed inflection point as new data are included in the
calculation, which is the standard scenario when the data are not overly irregular in
their convexity-concavity.

In addition to the aforementioned, the output also contains information on the slopes
of the individual linear segments of the spline, which denote the rates of change in the
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Table 1 The approximation spline output fromNewCases data in Greece. Each date is paired with its corre-
sponding MS Excel DATEVALUE(), which was used in the calculation. Inflection Point/Range underlined

j Date (ξ j ) c j s[ξ j−1, ξ j ] s[ξ j−1, ξ j , ξ j+1]
June 01 2021 - June 30 2021

0 01/06/2021 (44348) 1857.000 − −
1 02/06/2021 (44349) 1379.000 −478.000 157.780

2 03/06/2021 (44350) 1216.559 −162.441 12.255

3 05/06/2021 (44352) 965.205 −125.677 8.394

4 13/06/2021 (44360) 631.309 −41.737 0.199

5 20/06/2021 (44367) 360.088 −38.746 2.615

6 28/06/2021 (43375) 363.925 0.480 13.106

7 30/06/2021 (44377) 627.000 131.538 −
June 01 2021 - July 31 2021

0 01/06/2021 (44348) 1857.000 − −
1 02/06/2021 (44349) 1379.000 −478.000 157.819

2 03/06/2021 (44350) 1216.639 −162.361 12.148

3 05/06/2021 (44352) 964.806 −125.917 8.436

4 13/06/2021 (44360) 632.339 −41.558 0.139

5 20/06/2021 (44367) 355.998 −39.477 3.054

6 27/06/2021 (44374) 378.918 3.274 5.320

7 05/07/2021 (44382) 1043.465 83.068 71.212

8 06/07/2021 (44383) 1767.438 723.973 −75.006

9 13/07/2021 (44390) 2634.905 123.924 −4.840

10 30/07/2021 (44407) 2766.710 7.753 −1.248

11 31/07/2021 (44408) 2752.000 −14.710 −
June 01 2021 - August 31 2021

0 01/06/2021 (44348) 1857.000 − −
1 02/06/2021 (44349) 1379.000 −478.000 157.819

2 03/06/2021 (44350) 1216.639 −162.361 12.148

3 05/06/2021 (44352) 964.806 −125.917 8.436

4 13/06/2021 (44360) 632.339 −41.558 0.139

5 20/06/2021 (44367) 355.998 −39.477 3.054

6 27/06/2021 (44374) 378.918 3.274 5.320

7 05/07/2021 (44382) 1043.465 83.068 76.343

8 06/07/2021 (44383) 1813.624 770.159 −83.666

9 13/07/2021 (44390) 2519.440 100.831 −1.685

10 24/08/2021 (44432) 3285.817 18.247 −1.557

11 31/08/2021 (44439) 2879.423 −58.056 −
June 01 2021 - September 30 2021

0 01/06/2021 (44348) 1857.000 − −
1 02/06/2021 (44349) 1379.000 −478.000 157.819

2 03/06/2021 (44350) 1216.639 −162.361 12.148
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Table 1 continued

j Date (ξ j ) c j s[ξ j−1, ξ j ] s[ξ j−1, ξ j , ξ j+1]
3 05/06/2021 (44352) 964.806 −125.917 8.436

4 13/06/2021 (44360) 632.339 −41.558 0.139

5 20/06/2021 (44367) 355.998 −39.477 3.054

6 27/06/2021 (44374) 378.918 3.274 5.320

7 05/07/2021 (44382) 1043.465 83.068 76.138

8 06/07/2021 (44383) 1811.775 768.311 −83.319

9 13/07/2021 (44390) 2524.061 101.755 −1.948

10 18/08/2021 (44426) 3171.329 17.980 −0.599

11 30/09/2021 (44469) 1910.095 −29.331 −

studied measure (the daily cases, in this case) per segment; along with the information
regarding the rates of change themselves, the behaviour of the sign changes in the
slopes helps one readily identify the bottom and the peak of the spline. The first six
knots of the June-July spline produce five linear segments with - gradually flattening
- negative slopes, starting from a steep negative slope of –478 (which lasts for a day)
and bottoming out with a less steep slope of –39.477, at the knot of ξ5 = 44367, June
20th 2021, with a spline coefficient of 355.998 (approximately 356 daily cases at the
lowest, in the period in question). Afterwards, the slopes turn positive, increasing as
one heads through to the end of the inflection range (with a rampant increase of about
724 cases from the left bound of the inflection range to the rightmost bound). Since the
inflection range signifies a change from convexity to concavity, as is also revealed by
the second divided differences, the slopes of subsequent linear segments, expectedly,
start to flatten and may even return to being negative; this behaviour, depending on
the extent to which the slopes flatten over a given dataset, can also provide hints as to
the position of the peak of the studied measure. For instance, in the June-July period,
the slopes start to flatten following the July-6th knot (rightmost inflection bound); in
doing so, they even change sign, with the last linear segment of the spline becoming
a descending one, thus identifying a possible peak (of approximately 2767 cases) at
the penultimate knot (ξ10 = 44407, July 30th 2021).

However, it is to be noted that the proximity of the last two knots (ξ10 = 44407,
July 30th 2021 and ξ11 = 44408, July 31st 2021), with them being only one day apart
(i.e. pertaining to successive observations in the original dataset), provides reasonable
doubt as to whether or not the peak is actually there. That doubt is indeed confirmed,
as a higher peak, of about 3200 cases, was identified in the period of August 18th
(knot ξ10 = 44426 for 3171.329 cases - June-September spline) and August 24th
(knot ξ10 = 44432 for 3285.817 cases - June-August spline).
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Fig. 2 New Cases in the USA from June 1st 2021, to September 30th 2021. Same presentation style as
Fig. 1

4.2 United States of America—variant inflection bounds

In this section, we apply the method to Covid-19 cases data of the United States of
America, as in Sect. 4.1. The studied period finds the USA entering and going through
a new Covid-19 wave, reaching its peak in late July - early September, exhibiting a
weekly seasonality standard to Covid-19 data, as seen in Fig. 2. In the same figure,
another property of these data is made apparent; in their diffusion, the mid-range
values appear to be rather proximal to the high-end values. This contrasts somewhat
with the diffusion observed in the data of Greece in Sect. 4.1, where the mid-range
values appeared relatively equidistant from either extreme. Besides this element of
seasonality, however, the diffusion in the USA data in particular is also rooted in
another important factor: the data are an aggregate of each individual State in the
USA. Each State has its own population characteristics (size, demographics, et cetera)
and its own state-wide policies. Additionally, any two States follow Covid-19 waves
somewhat independently; for instance, one state may be entering a Covid-19 surge as
another is leaving one (although, it is not beyond reason to assume that a wave in one
state, particularly among the largest, will eventually cascade through the rest). Thus,
while any one of the United States may have relatively standard Covid-19 readings
for a given period, the aggregate for the USA will likely be particularly diffuse.

The inflection range in this dataset exhibits a particularly interesting property. In
the case of Greece, the inflection range proceeded rightwards as new data were added,
following the evolution of the Covid-19 wave, until the actual inflection point was
reached. However, in the case of the USA, the inflection range actually changes its
size and position in somewhat irregular ways.

While the shift from June through July is forward, as expected, the addition of the
data of August cause the inflection range to expand dramatically—presenting nearly
the entire ascent from growth to peak in the data as linear—so as to encompass the
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inflection range of the previous period. This extensive linearity also serves to obfuscate
the actual exact location of the inflection point in the data; bounds less proximal to
the inflection range would give a larger room for error, in terms of pinpointing the
exact inflection point. In addition, when the algorithm runs on the complete four-
month dataset, the inflection range is once again compacted, with both its bounds
within the inflection range of August. In essence, the inflection point in the data that
as asserted by the spline does not necessarily proceed rightwards with the addition of
new data; indeed, on the complete dataset, it proceeds leftwards compared to an earlier
inflection point,3 in reverse of what would be usually expected by adding new data.
This is an important remark, as it rules out the possibility of reducing the number data
that need be considered when finding the optimal inflection points as was observed by
Demetriou (2004b).

This shift, among other things, can also be seen in the numerical output in Table 2;
in the first two subperiods, the inflection range bounds proceed rightwards, from the
6th and 7th of June in the June data (knots ξ1 and ξ2, respectively), to the 25th and
29th in the June-July data (knots ξ7 and ξ8, respectively). The addition of the August
data finds the inflection bounds distancing themselves from one another, with the left
bound at July 11th (knot ξ5) and the right bound at August 29th (knot ξ6), a significant
range of 49 days, as opposed to the much more common one-to-two-day span of most
inflection ranges derived from the studied data. It is to be noted, however, that the
inflection range in the last period (June - September), with its bounds situated on
the 8th and 9th of August (knots ξ7 and ξ8 respectively), showcases a more standard
rightward movement of the range in relation to the first two subperiods; in addition to
its span being one day, as is common, this serves to identify it as a more likely location
for the actual inflection range.

In terms of the general structure of the June-September wave, the approximation
splines, as revealed through the slopes and second divided differences in Table 2,
provide the following: the lowest point of the studied data (exit from the previous
wave into the current one) is identified in the area of the 20th of June and 4th of July,
seeing as all approximation splines, barring the June spline, see a sign change in their
slopes at that point, from descending to ascending. It is noted that the slopes in this
range are much flatter relative to slopes elsewhere on the splines, being practically
horizontal in comparison, which lends to the extent of this 15-day range. On the other
hand, each approximation spline, barring the June-September spline, identifies the
peak of the data as being close to the end of their respective subperiod - the second
divided differences change sign only near the end of the data subsets, which is to be
expected, as the data, though diffuse, do display a mostly upward trend.

However, once the data of September are included, the resulting approximation
spline provides clear insight on the structure of the studied wave: its lowest point
is in the area of the 20th of June and the 4th of July, at around 11000 to 11500
cases, evidenced by the negative-to-positive sign change in the slopes; its inflection
range spans the 8th and 9th of August, as evidenced by the sign change in the second
divided differences; and its peak is identified around the 1st of September, with the
spline coefficient asserting it at about 160247 cases, as the slopes change back into

3 Reminding that the right bound of the inflection range is the inflection point returned by the algorithm
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Table 2 The approximation spline output from New Cases data in the USA. Same presentation style as in
Table 1

j Date (ξ j ) c j s[ξ j−1, ξ j ] s[ξ j−1, ξ j , ξ j+1]
June 01 2021 - June 30 2021

0 01/06/2021 (44348) 22450.238 − −
1 06/06/2021 (44353) 9268.095 −2636.429 1284.340

2 07/06/2021 (44354) 14337.707 5069.611 −217.256

3 30/06/2021 (44377) 11013.627 −144.525 −
June 01 2021 - July 31 2021

0 01/06/2021 (44348) 22119.000 − −
1 02/06/2021 (44349) 18518.696 −3600.304 484.922

2 06/06/2021 (44353) 13815.913 −1175.696 56.233

3 20/06/2021 (44367) 11527.009 −163.493 11.375

4 04/07/2021 (44381) 13696.975 154.998 73.680

5 11/07/2021 (44388) 25612.946 1702.282 38.283

6 18/07/2021 (44395) 41280.621 2238.239 29.133

7 25/07/2021 (44402) 59803.366 2646.106 217.352

8 29/07/2021 (44406) 79951.278 5036.978 −4810.936

9 31/07/2021 (44408) 32294.000 −23828.639 −
June 01 2021 - August 31 2021

0 01/06/2021 (44348) 22119.000 − −
1 02/06/2021 (44349) 18542.854 −3576.146 475.259

2 06/06/2021 (44353) 13743.439 −1199.854 58.587

3 20/06/2021 (44367) 11709.495 −145.282 8.567

4 04/07/2021 (44381) 13033.890 94.600 106.315

5 11/07/2021 (44388) 29324.393 2327.215 9.794

6 29/08/2021 (44437) 170233.206 2875.690 −50.319

7 31/08/2021 (44439) 170852.000 309.397 −
June 01 2021 - September 30 2021

0 01/06/2021 (44348) 22119.000 − −
1 02/06/2021 (44349) 18517.135 −3601.865 485.546

2 06/06/2021 (44353) 13820.594 −1174.135 56.081

3 20/06/2021 (44367) 11515.221 −164.670 11.556

4 04/07/2021 (44381) 13739.806 158.899 71.572

5 11/07/2021 (44388) 25373.215 1661.916 53.266

6 18/07/2021 (44395) 42226.682 2407.638 35.798

7 08/08/2021 (44416) 113836.336 3409.983 1145.059

8 09/08/2021 (44417) 142437.622 28601.286 −1543.554

9 26/08/2021 (44434) 156331.848 817.307 −4.324

10 31/08/2021 (44439) 159942.692 722.169 −69.670

11 01/09/2021 (44440) 160246.841 304.150 −91.421

12 15/09/2021 (44454) 145306.585 −1067.161 −59.017

13 30/09/2021 (44469) 103626.651 −2778.662 −
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Fig. 3 New Cases in the UK from June 1st 2021, to September 30th 2021. Same presentation style as Fig. 1

descent after this point. It is to be noted that, while the value of the peak itself is
misapproximated due to extensive diffusion in the data, its position at September 1st
is more securely identified, which is a valuable piece of information in itself.

That said, the erratic behaviour of the inflection range in the period of July-August-
September also highlights an important aspect of applying themethod on overly diffuse
data: though general trends can be tracked, the position of the inflection point may
require several periods of data addition in order to be verifiably asserted. Compare this
to the data of New Cases in Greece back in Fig. 1, where the inflection range persisted
through all periods of data addition once it was reached.

4.3 United Kingdom—short-term data irregularities

In this section, we apply the method to Covid-19 cases data of the United Kingdom, as
in Sect. 4.1. The data of cases in the UK, as far as the studied period is concerned, dis-
play a remarkably irregular behaviour compared to that of the other countries studied
previously. As can be seen in Fig. 3, the period of June and July finds the UK facing
what could be described as a rapid transition from the peak of one wave directly to
the ascent and peak of another. The approximation splines in the data showcase this;
the June spline detects the inflection point of its wave near the end of June (inflection
range of {ξ4, ξ5} = {44374, 44375}, the 27th and 28th of June), while the addition of
the July data shifts the inflection range rightwards, to the 14th and 15th of July. The
latter is found remarkably close to the peak of the compounded wave, with nearly the
entirety of the June wave becoming practically linear in comparison.

However, the June-July spline also descends quite rapidly; at the end of July, the
behaviour of the data becomesmuch less wild in its variations. The weekly seasonality
is still in effect, certainly; but the data are more closely gathered and follow a con-
siderably subdued increase, compared to the rampant increases in June and July. The
extent of this change in behaviour is such that the inflection range of the associated
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approximation spline actually regresses entirely (and persists) back to that of June –
verily, the June spline is a near-perfect subset of the post-July splines. In addition,
the peaks of the splines are much lower and the splines themselves much smoother
compared to the June-July spline; this can well be interpreted as the July Covid-19
surge having momentarily commandeered the wave of June, as if extruding a spike
from the peak of a bell curve (with all deformities that would entail).

This change in spline structure is also in part because of the nature of the post-
July data themselves; given that the algorithm employs least squares optimization,
the least-squares measurement from maintaining the forward-moving July inflection
range would be far larger compared to when using the June inflection range (one need
only apply simple linear regression from the July inflection point onwards to verify
this).

For their part, the post-July splines also serve in providing a hint regarding the
location of the knot, as the data inflect from the concave descent of the July spike
back into the slower convex ascent of the new data, in the form of the intersection of
their last linear segments. While not providing decisive evidence so as to the value of
the approximation coefficient at that knot (or even an exact value for the knot itself),
it can nonetheless provide an indication that the data are in the process of shifting
from concavity back into convexity (Davos 2021), leading to an eventual collapse of
the currently detected inflection range and proceeding towards detecting the one that
characterizes the new–now convex–splines.

As is the norm, the numerical output regarding the cases data is seen in Table 3. The
slopes of all splines start positive and remain so at least until a peak is reached, which
identifies the lowest point of all splines as the first data point (the splines all claim a
measure of cases around 4140 for this, which is slightly higher from the first actual
data point, on account of the optimization calculation); in this, this lowest point is not
necessarily the actual low point of the wave (i.e. the point the wave actually started
at) as it may well have appeared earlier. This is simply because the chosen period for
our data happened to start after this point had already been reached.

Aside from the June-July spline, with the location of the inflection range pinpointed
on the spike on July 14th and 15th, leading to its associated peak of 51091 cases on
July 16th, all other splines have exactly the same structure up to and including the
rightmost bound of the inflection range: six knots, starting from June 1st and inflecting
in the range of June 27th and June 28th. The increasingly steepening slopes show a
standard case of the growth phase of a wave, spanning the period from June 1st through
July 28th; the abnormal extrusion of the mid-July spike does not, in the end, serve
to destroy the form of the wave as described by the splines. On the other hand, the
location of the peak showed minor changes as new data were added, and the image of
the wave became clearer. The June spline ended with an ascending line segment, thus
showing a peak on June 30th of 24358 cases, while also casting doubt as to whether
this peak was the actual peak of the wave.

This doubt is confirmed by subsequent splines, suggesting that the peak of the wave
appeared somewhere in the area of July 14th and July 16th; this includes the date of
the spike in the June-July spline, which makes its constancy interesting when taking
the last two splines into account.
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Table 3 The approximation spline output from New Cases data in the UK. Same presentation style as in
Table 1

j Date (ξ j ) c j s[ξ j−1, ξ j ] s[ξ j−1, ξ j , ξ j+1]
June 01 2021 - June 30 2021

0 01/06/2021 (44348) 4138.429 − −
1 14/06/2021 (44361) 8171.429 310.231 4.402

2 15/06/2021 (44362) 8543.286 371.857 6.221

3 20/06/2021 (44367) 10589.214 409.186 48.407

4 27/06/2021 (44374) 17519.714 990.071 362.673

5 28/06/2021 (44375) 21411.167 3891.452 −805.984

6 30/06/2021 (44377) 24358.167 1473.500 −
June 01 2021 - July 31 2021

0 01/06/2021 (44348) 4146.041 − −
1 15/06/2021 (44362) 8464.678 308.474 9.105

2 20/06/2021 (44367) 10871.992 481.463 23.315

3 13/07/2021 (44390) 36960.280 1134.273 170.352

4 14/07/2021 (44391) 42183.000 5222.720 617.640

5 15/07/2021 (44392) 48641.000 6458.000 −2003.941

6 16/07/2021 (44393) 51091.118 2450.118 −275.702

7 31/07/2021 (44408) 21674.507 −1961.107 −
June 01 2021 - August 31 2021

0 01/06/2021 (44348) 4138.429 − −
1 14/06/2021 (44361) 8171.429 310.231 4.402

2 15/06/2021 (44362) 8543.286 371.857 6.221

3 20/06/2021 (44367) 10589.214 409.186 48.407

4 27/06/2021 (44374) 17519.714 990.071 380.386

5 28/06/2021 (44375) 21552.870 4033.156 −178.203

6 14/07/2021 (44391) 37612.204 1003.708 −18.813

7 31/08/2021 (44439) 27996.820 −200.320 −
June 01 2021 - September 30 2021

0 01/06/2021 (44348) 4138.429 − −
1 14/06/2021 (44361) 8171.429 310.231 4.402

2 15/06/2021 (44362) 8543.286 371.857 6.221

3 20/06/2021 (44367) 10589.214 409.186 48.407

4 27/06/2021 (44374) 17519.714 990.071 376.717

5 28/06/2021 (44375) 21523.520 4003.805 −955.788

6 30/06/2021 (44377) 23796.402 1136.441 −15.885

7 09/07/2021 (44386) 32451.747 961.705 −28.780

8 13/07/2021 (44390) 34801.999 587.563 −7.518

9 30/09/2021 (44469) 31921.455 −36.463 −
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It is worth noting, that the final line segment of each of the June-August and June-
September splines is remarkably long, spanning one-and-a-half and two-and-a-half
months respectively. When considering the relative brevity of the July spike compared
to the entire studied period (half a month of a rapid ascent and descent compared to
nearly three months along an average of 30000 cases), it would appear that it is a
momentary extrusion in a longer, sustained wave. In light of this, the June-August and
June-September splines would indeed provide a clearer view of the actual form of the
wave. Verily, this entire studied period is generally considered as being part of one
single wave. However, should one require greater accuracy in approximation and not
just in trend detection, it would be prudent to run the convex-concave algorithm with
a date in the end of July as a starting point, as opposed to the 1st of June. That said, the
intersection of the rightmost line segments in the June-August and June-September
splines seems to be a good indicator as to where to place the first knot. Alternatively,
the method of Demetriou and Powell (1997) might have been applied with 4 or 5
inflection points.

It should be mentioned that the United Kingdom, too, is an aggregate, comprised
of four countries (England, Scotland, Wales and Northern Ireland). However, unlike
in the case of the USA, the Covid-19 data from the UK are comparatively non-diffuse.
One likely reason for this, is that the data mainly follow the same trends as the data for
England which has by and large the greatest population among the four countries and
the greatest proportion of the population in the United Kingdom overall (according to
the latest census at the time of writing (July 2020 to July 2021),4 England has about
55, 944, 000 of the estimated 66, 329, 000 residents of the UK, or about 84 percent
of the population). In addition the four countries, partly due to being proximal, with
England at the epicentre, generally follow waves in a synchronous fashion, barring
differences in policy on the country level. Thus, any particular diffusions in the UK
data that cannot be explained from weekly seasonality alone (at least when regarding
the data of England), can usually be easily traced back to an irregularity in either of
the four component countries.

4.4 An example of weekly analysis

The results on the daily data presented thus far have all been on a monthly basis (i.e.
the inclusion of new data has always been in batches of a month’s worth of data). It
would be prudent for a presentation of weekly inclusions of data to also be provided,
since analysis on a weekly basis can provide more immediate insights regarding the
current state of affairs. Carried out on such a comparitively frequent basis, analysis of
such data can provide information that may well assist in policy making, particularly
since it can allow for insights regarding the near future (such as indications for the
coming of a cases surge, for instance).

The data used for this purpose pertain to daily Covid-19 deaths in Greece, from
June 1st 2021 through October 31st 2021. The process followed is largely the same as
in the previous subsections, with the difference that each batch of data added contains

4 https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/
internationalmigration/datasets/populationoftheunitedkingdombycountryofbirthandnationality.
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Fig. 4 NewDeaths in Greece from June 1st 2021, to October 31st 2021 on a weekly basis for October. (The
first four highlighted columns denote end-of-month. The last four denote end-of-week throughout October.
Large circles denote inflection point/range)

a week’s worth of data, covering the entirety of October 2021. The splines generated
here showcase a regressive inflection range, which stands to differentiate this particular
subset from the one presented previously. In thematerial supplementary to this paper, a
similar analysis is conducted for data of daily deaths in the UK, where the data batches
added cover the month of July 2021. Said analysis provides a standard scenario of a
forward-proceeding inflection range, which serves as a complement to the regressive
inflection range presented herein.

Figure 4 displays the four approximation splines that resulted over the four weeks
of October 2021 (with June 1st 2021 as the origin). As can be seen, the approximation
splines for the first two weeks of October agree that the data inflect on the 4th and
5th of September5 (knots ξ9 = 44443 and ξ10 = 44444 in the associated subtables of
Table 4). As revealed by the addition of data, this inflection range is remarkably close
to the peak of deaths in the wave studied; the inflection range of the two splines, on
September 4th and September 5th, either is adjacent to the peak (the June 1st–October
7th spline suggests a peak of about 43 deaths on September 6th, just one day after
inflection, on knot ξ11), or outright includes it (in the June 1st–October 14th spline,
the right bound of the inflection range (knot ξ10) also serves as the peak of the spline,
suggesting about 42 deaths).

However, once the second half of October is introduced, in which the advent of a
new Covid-19 wave in Greece is already in effect, the inflection range actually shifts
backwards, transfixed as the range of August 21st and August 22nd (and, to be noted,
both the knots and the coefficients in this inflection range are exactly the same for the
latter half of October – knots ξ7 = 44429 and ξ8 = 44430, with coefficients at 25.725
(about 26 deaths) and 33 deaths, respectively –, whereas the inflection range in the first

5 For reference, the same inflection range was suggested by the monthly analysis for the New Deaths in
Greece, in the supplementary material
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Table 4 The approximation spline output from the weekly-basis New Deaths data in Greece. Same presen-
tation style as in Table 1

j Date (ξ j ) c j s[ξ j−1, ξ j ] s[ξ j−1, ξ j , ξ j+1]
June 01 2021 - October 07 2021

0 01/06/2021 (44348) 32.825 − −
1 11/06/2021 (44358) 20.196 −1.263 0.023

2 05/07/2021 (44382) 8.415 −0.491 0.011

3 10/07/2021 (44387) 7.543 −0.174 0.008

4 22/07/2021 (44399) 7.075 −0.039 0.013

5 23/07/2021 (44400) 7.205 0.130 0.078

6 26/07/2021 (44403) 8.533 0.443 0.019

7 02/08/2021 (44410) 12.968 0.634 0.001

8 16/08/2021 (44424) 22.220 0.661 0.001

9 04/09/2021 (44443) 35.614 0.705 0.334

10 05/09/2021 (44444) 43.000 7.386 −3.662

11 06/09/2021 (44445) 43.063 0.063 −0.048

12 13/09/2021 (44452) 40.843 −0.317 −0.007

13 05/10/2021 (44474) 29.31 −0.524 −0.036

14 07/10/2021 (44476) 26.538 −1.386 −
June 01 2021 - October 14 2021

0 01/06/2021 (44348) 32.825 − −
1 11/06/2021 (44358) 20.196 −1.263 0.023

2 05/07/2021 (44382) 8.415 −0.491 0.011

3 10/07/2021 (44387) 7.543 −0.174 0.008

4 22/07/2021 (44399) 7.075 −0.039 0.013

5 23/07/2021 (44400) 7.205 0.130 0.078

6 26/07/2021 (44403) 8.533 0.443 0.019

7 02/08/2021 (44410) 12.968 0.634 0.001

8 16/08/2021 (44424) 22.220 0.661 0.001

9 04/09/2021 (44443) 35.614 0.705 0.278

10 05/09/2021 (44444) 41.879 6.265 −0.164

11 14/10/2021 (44483) 30.421 −0.294 −
June 01 2021 - October 21 2021

0 01/06/2021 (44348) 32.610 − −
1 11/06/2021 (44358) 20.699 −1.191 0.021

2 05/07/2021 (44382) 9.591 −0.463 0.001

3 10/07/2021 (44387) 7.473 −0.424 0.023

4 22/07/2021 (44399) 7.106 −0.031 0.036

5 23/07/2021 (44400) 7.547 0.441 0.005

6 17/08/2021 (44425) 21.626 0.563 0.016

7 21/08/2021 (44429) 25.725 1.025 1.250

8 22/08/2021 (44430) 33.000 7.275 −2.909

123



Journal of Combinatorial Optimization (2022) 44:3233–3262 3257

Table 4 continued

j Date (ξ j ) c j s[ξ j−1, ξ j ] s[ξ j−1, ξ j , ξ j+1]
9 23/08/2021 (44431) 34.457 1.457 −0.067

10 08/09/2021 (44447) 39.513 0.316 −0.009

11 21/10/2021 (44490) 30.749 −0.204 −
June 01 2021 - October 31 2021

0 01/06/2021 (44348) 32.610 − −
1 11/06/2021 (44358) 20.699 −1.191 0.021

2 05/07/2021 (44382) 9.591 −0.463 0.001

3 10/07/2021 (44387) 7.473 −0.424 0.023

4 22/07/2021 (44399) 7.106 −0.031 0.036

5 23/07/2021 (44400) 7.547 0.441 0.005

6 17/08/2021 (44425) 21.626 0.563 0.016

7 21/08/2021 (44429) 25.725 1.025 1.250

8 22/08/2021 (44430) 33.000 7.275 −2.452

9 23/08/2021 (44431) 35.372 2.372 −0.151

10 06/09/2021 (44445) 36.939 0.112 −0.002

11 31/10/2021 (44500) 36.226 −0.013 −

half did have fixed knots, but a slightly variant right bound – the left bound was steady
at 35.614 (about 36 deaths), but the latter ranged from 43 to 41.879 – in essence, about
42 or 43 deaths). This backstep of the inflection range actually places it at a more
believable position for an inflection point of the wave (since, on average, one would
not expect inflection directly next to a peak, barring unforseen events or phenomena);
in addition, its continued stability, that even applies to spline coefficients, serves to
suggest that this may be the true inflection range of the wave.

That said, all four splines, despite differences over their suggested inflection ranges,
agree upon the general location of the peak of the wave, placing it in the range of
September 5th to September 8th, though there are differences in coefficients between
the forward-inflecting splines (ending on 7/10 and 14/10, suggesting about 43 deaths)
and the backstep-inflecting splines (ending on 21/10 and 31/10, suggesting about 37
to 39 deaths). What is more remarkable still, however, is the fact that, when combined,
they provide an additional important piece of information; as can be readily observed
through the data themselves, a new Covid-19 death wave emerges after a period of
decreasing deaths following the peak in the data. This emergence is, naturally, marked
by an inflection in the data, from concavity descending from the peak, to a convexity
leading into the growth of the new wave. The combined readings of the four splines
suggest that this inflection point is around September 21st, which is the point where
the dominant linear segments in the concave sections of each spline intersect. This is
a significant piece of information to consider, as it is one way that the approximation
splines can signal the emergence of a new wave, in addition to being applied on a
more dynamically changing dataset. The accuracy of this indication may be tested by
applying the algorithm of Demetriou and Powell (1997), searching for more inflection
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points. This point of interest warrants further investigation over whether or not the
intersection point defines an invariant of this combinatorial calculation locally.

5 Conclusion

We developed a method that gives a sigmoid-type approximation to noisy data, and
applied it to dailyCovid-19 pandemic data. Specifically, themethod calculates the least
squares convex-concave approximation to the first n data points for n = 1, 2, 3, . . .,
as the data enter the process. The statement of the convexity-concavity constraints
in terms of second divided differences subject to one sign change gives rise to a
combinatorial problemwhich is known andwas solved some years ago. The solution to
this problem allowed the development of themethodwe presented here. The important
property of this calculation is that the piecewise linear interpolant to the optimal
approximation for each n consists of two separate parts of components, one best
convex and one best concave, that are calculated independently by two quadratic
programming calculations. This serves for a reduction in the number of combinations.

Our method starts at the beginning of the data and proceeds systematically as data
enter the calculation. Specifically, it produces a best convex-concave fit to the current
data; in the long run, the fitting provides an approximation that reveals the structure
of the function underlying the data. In the context of the Covid-19 data, this equates
to revealing the general form of a major contagion wave. In light of this, the point
where the convex part meets the concave one, ideally being the inflection point of an
underlying function that has a continuous second derivative, is critical to management
when projecting the future.

The method achieves substantial efficiencies in computation and savings in storage
by taking advantage of the characteristics of the problem and the arrangement of the
calculation. The efficiencies are due to a relation of the components of best approx-
imations to consecutive data, a linear B-spline representation of the components and
a suitable quadratic programming calculation. The quadratic programming part takes
advantage of changes to the spline that occur on each n, and the use of splines reduces
considerably the size of the internal matrix computations (numerical evidence for up
to n = 10000 data shows it to be around n/10).

Moreover, the best convex-concave approximation to the first n−1 data provides an
excellent starting point for the best convex-concave approximation to the first n data.
In effect, the latter approximation is obtained in about O(n2) or just O(1) computer
operations. However, the numerical results from the Covid-19 data confirm that much
shorter computation times are achieved in practice.

The method was applied to data pertaining to cases related to Covid-19 in Greece,
theUSA and theUK.A common characteristic in all studied datasets was a diffusion of
varying strengths, primarily due to weekly seasonality. On the other hand, there were
differences between the datasets of the three countries, which helped in showcasing the
performative capabilities of the method: Greece generally provided a more favourable
dataset for purposes of both approximation and trend detection, the USA exhibited a
more commonly diffuse dataset and the UK bore an irregular spike whose quick ascent
and descent momentarily commandeered a comparatively extended, milder wave. As
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a complement to this, the supplementary material contains a similar analysis of Covid-
19 deaths data for each country in the same studied period, the contents thereof helped
in understanding both the relationship between cases and deaths, as well as the deaths
data themselves.

Several points of interest were identified in the output obtained through this pro-
cess. It became clear that the level of diffusion in the data is one of the chief factors
that affect the capabilities of the method, in terms of approximation. Generally, the
approximation splines returned by the method serve to detect trends in the data, even if
the data are misapproximated on account of the weekly seasonality that characterizes
diffusion in the data. However, in some cases, such as the new cases data over the
June-September period in the US, the diffusion can adversely affect the accuracy of
the point of inflection suggested by the splines. On the other hand, the long-term anal-
ysis of the output proved to be unaffected by relatively short-term irregularities in the
data. For instance, in the UK new cases data, while the July spike in the data served to
severely alter spline structure in the June-July spline, subsequent splines revealed that
it was indeed an irregularity, while showing amore accurate representation of what the
wave would be without the spike in cases. Furthermore, a weekly-basis analysis was
carried out and provided additional insights pertaining to both behaviours of forward
and backward movement in the inflection range of the splines, on a more dynamic
timescale compared to the monthly additions.

The former instances also served to highlight the fact that, when introducing new
data to the optimization calculation, a rightward movement of the inflection point (i.e.
towards the more recent values, in terms of time series) is not a foregone conclusion.
Diffusion in the data may serve to obfuscate the true nature and/or location of the
inflection point until a sufficient amount of data are introduced. That being said, when
several successive splines report the same (or quite nearly so) inflection range, it is
strongly suggested to be the actual one. Any erratic movement of the inflection point,
be it forwards or backwards, was, insofar as the studied data revealed, a temporary
effect, mitigated once convexity-concavity was made clearly present in the data.

The output provided by the method, be it through short-term or long-term applica-
tion, can provide insight that may well support processes of decision making. In the
case of Covid-19 time series, the method quite handily provides immediate indicators
regarding the status of a given studied Covid-19 wave, in terms of both the convex-
concave linear spline fit to the Covid-19 data and the corresponding inflection point,
as shown in Tables 1–4 for the purposes of our presentation. Indeed, the fit reveals
the rates of change of the underlying sigmoid function. Moreover, the spline repre-
sentation of the data uses the minimal number of parameters, where the density of the
number of spline knots to the number of data was kept between 1/7 and 1/14 as n = 30
and n = 120 respectively. The nature of the inflection point suggested by sequential
splines gives indication regarding the growth phase of the studied wave: a steadily
proceeding inflection point shows a wave in growth, which could call for policies to
restrict transmission; a stationary inflection point most likely means that the wave
starts to decelerate, which could have policy makers prepare for a peak and eventual
reduction in the Covid-19 measures; while a drastically forward-shifting inflection
point, coupled with a drastic change in spline structure, heralds a new Covid wave. An
important aspect of this is that the inflection point was found to regress on occasion,
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primarily in instances of overly diffuse or otherwise irregular data; depending on the
scenario, this retrogression was either in favour of or against an accurate reading of
where the inflection point is located. As such, one should always bear in mind the
nature of the analyzed data itself; if the data are unfavourable towards the method, as
in the UK cases spike or the overly diffuse USA cases data, their short-term results
may be misleading by their lonesome. Thus, it is imperative that a decision-maker
frequently run the method as datasets are updated. For one, insight from previous runs
made on earlier data may well be used in analyzing the results from subsequent runs
of the method (such as identifying concave-convex inflection through intersections of
succesive splines, an example of which appears in Fig. 4). Furthermore, other prop-
erties of the data themselves, such as the seasonal diffusion present in Covid-19 data,
can assist in analysis when identified, since they shape the lens through which one
may view the results. These steps need be taken in order for the method to be used to
its greatest effect.

Covid-19 data are not themselves considered exactly known. Therefore an imme-
diate question is to what extent do these values influence the values of the solution
components. The results of this analysis do confirm our convexity- concavity assump-
tion for the evolution of the pandemic. That is, the linear spline fitting as the data
entered the calculation is robust with respect to the uncertainty of the Covid-19 val-
ues. We remind of the variety in the datasets the method was applied to; each dataset
may be characterized by a behaviour that separates it from the rest – be it diffusion,
irregularities, both or lack thereof—but not once did the method fail to provide a
convex-conave that adequately describes the data. Even in cases of misapproximation
due to diffusion, the ability of the method to detect the general trends in the data
held strong, thus providing pertinent information for Covid-19 policy. Apart from the
real data considered here, this is also the conclusion of Demetriou (2015) when the
quadratic programming algorithm of our technique, that gives the convex-concave
linear spline fit, was applied to simulated data with infinitesimal changes.

The technique presented here may be valuable for applications to a variety of
situations in a variety of ways, partly because it provides useful parameters for the phe-
nomenon under investigation, and partly because it is very economical. For example,
our technique may be employed at each node of the traffic-driven epidemic spreading
model by Wu et al. (2021) when this model is applied to a real Covid-19 network, in
order to observe the evolution of the pandemic and inform a decision-maker. Further-
more, certain features of our analysis may be combined with probabilistic suggestions
of other techniques that take account of the dependence of data on the Covid spread
(Lee et al. 2020; Overton et al. 2020).

All the work presented in Sects. 3 and 4 was done after the conference on Global
Optimization in July 2021. The method is so new that there has not been enough time
for more numerical experiments, to test its efficiency more extensively. However, we
have managed to provide a Python interface to associated Fortran software that is
very convenient, friendly and fast for interactive computation as the data enter the
computation. A programmed version and numerical results and further applications
will be published elsewhere by the authors. In addition, supplementary material, that
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covers the deaths side of the Covid-19 data presented herein, can be found in the
on-line version of this work.
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