
Journal of Combinatorial Optimization (2022) 43:226–234
https://doi.org/10.1007/s10878-021-00757-7

The Steiner cycle and path cover problem on interval
graphs

Ante Ćustić1 · Stefan Lendl2,3

Accepted: 8 May 2021 / Published online: 27 May 2021
© The Author(s) 2021

Abstract
The Steiner path problem is a common generalization of the Steiner tree and the
Hamiltonian path problem, in which we have to decide if for a given graph there
exists a path visiting a fixed set of terminals. In the Steiner cycle problem we look
for a cycle visiting all terminals instead of a path. The Steiner path cover problem
is an optimization variant of the Steiner path problem generalizing the path cover
problem, in which one has to cover all terminals with a minimum number of paths.
We study those problems for the special class of interval graphs. We present linear
time algorithms for both the Steiner path cover problem and the Steiner cycle problem
on interval graphs given as endpoint sorted lists. The main contribution is a lemma
showing that backward steps to non-Steiner intervals are never necessary. Furthermore,
we show how to integrate this modification to the deferred-query technique of Chang
et al. to obtain the linear running times.

Keywords Interval graphs · Steiner cycle · Hamiltonian cycle · Linear time

1 Introduction

In this paper we investigate the Steiner cycle and Steiner path problem on interval
graphs. To our knowledge, these problems have not been studied for this specific
graph class. However, the Hamiltonian cycle and Hamiltonian path problem, which

B Stefan Lendl
lendl@math.tugraz.at

Ante Ćustić
acustic@sfu.ca

1 Department of Mathematics, Simon Fraser University Surrey, 250-13450 102nd AV, Surrey,
British Columbia V3T 0A3, Canada

2 Institute of Discrete Mathematics, Graz University of Technology, Steyrergasse 30, 8010 Graz,
Austria

3 Department of Operations and Information Systems, University of Graz, Graz, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-021-00757-7&domain=pdf
http://orcid.org/0000-0002-5660-5397

Journal of Combinatorial Optimization (2022) 43:226–234 227

are special cases of the Steiner variants, are extensively studied for interval graphs and
can be solved in linear time, if the intervals are given as an endpoint sorted list (Hung
and Chang 2011; Keil 1985; Arikati and Rangan 1990; Manacher et al. 1990).

Steiner path problems have already been studied for other special graph classes,
like trees (Moharana et al. 2013) and directed co-graphs (Gurski et al. 2020a, b). For
the feasibility variant of the Steiner cycle problem, the so-called k-cycle problem an
exact FPT algorithm has been obtained (Wahlström 2013). Also, the Steiner cycle
polytope has been studied (Salazar-Gonzalez 2003) and approximation algorithms
were studied (Steinová 2010). Steiner cycles have applications in the optimal design
of reliable telecommunication and transportation networks (Steiglitz et al. 1969).

In this work we generalize the algorithms of Manacher et al. (1990) to the Steiner
setting and obtain first linear time algorithms for the Steiner path cover and Steiner
cycle problem on interval graphs. To obtain our results we extend the tools introduced
in Hung and Chang (2011), and prove an elegant skipping lemma for the Steiner
setting.

2 Definitions and preliminary results

As usual, we denote by G = (V , E) a graph, where V is the set of vertices and E is
a set of pairs of vertices (two element sets of vertices), the edges. Given an interval
i = [x, y] we denote the left endpoint x by l(i) = x and the right endpoint y by
r(i) = y. Let I = (i1, i2, . . . , in) be a list or set of n intervals. We denote by G(I)
the interval graph of I . The vertices of G(I) correspond to the intervals of I . Two
intervals i, i ′ ∈ I are connected by an edge in G(I) if i �= i ′ and i ∩ i ′ �= ∅.

For an arbitrary graph G = (V , E) a list of vertices P = (v1, v2, . . . , vl) is a
(simple) path if those vertices are pairwise distinct and for each j = 1, 2, . . . , l − 1 it
holds that {v j , v j+1} ∈ E . The start of P is denoted by start(P) = v1 and the end of
P is denoted by end(P) = vl . We define rev(P) as the reverse path (vl , vl−1, . . . , v1)

of P . If in addition {vl , v1} ∈ E holds, then we call P a (simple) cycle. For ease of
writing we sometimes abuse notation and consider P as a set instead of a list, to allow
for the use of set operations. Given two paths P and Q and a vertex v we also write
(P, Q) for the concatenation of P and Q, and (P, v) for the concatenation of P and
v.

Given a set S ⊆ V , a Steiner cycle is a cycle C in G such that S ⊆ C . A Steiner
path cover of G is a set {P1, P2, . . . , Pk} of pairwise disjoint paths in G such that
S ⊆ ⋃k

j=1 Pj . The Steiner path cover number πS(G) is the the minimum cardinality
of a Steiner path cover of G. If πS(G) = 1 we say that G has a Steiner path.

A set C ⊆ V is called a cutset of G if G − C is disconnected. A set of vertices
T ⊆ V is called an island with respect to C , if T is not adjacent to any vertex in
V \ (C ∪ T). T is called an S-island with respect to C , if T is an island with respect
to C and S ∩ T �= ∅.

The following two results for general simple graphs are generalizations of two
observations by Hung and Chang (2011).

123

228 Journal of Combinatorial Optimization (2022) 43:226–234

Proposition 2.1 Let C be a cutset of G and gS the number of connected components
K in G − C such that K ∩ S �= ∅. Then, πS(G) ≥ gS − |C |.
Proof Let (P1, P2, . . . , Pk) be a Steiner path cover of G. For every Pj let g j be the
number of components K of G − C with K ∩ S �= ∅ and K ∩ Pj �= ∅. The Pj must
use at least g j − 1 distinct vertices from C to reconnect itself from those different
components of G − C , i.e., |Pj ∩ C | ≥ g j − 1. Now, since paths of a path cover
are vertex disjoint, we have that |C | ≥ ∑k

j=1(g j − 1). Finally, from the fact that
∑k

j=1 g j ≥ gS , we get k ≥ gS − |C |, which proves our claim.
�
Proposition 2.2 Let C be a cutset of G and gS the number of connected components
K in G − C such that K ∩ S �= ∅. If gS > |C |, then G has no Steiner cycle.

Proof A Steiner cycle needs to connect all components K of G −C with K ∩ S �= ∅.
For each such connection a distinct vertex from C has to be used. Since it is a cycle,
it has to be closed, hence gS such connections are necessary. This implies that if
gS > |C | no Steiner cycle can exist.
�

We use these results to solve the Steiner path cover problem (see Sect. 3) and the
Steiner cycle problem (see Sect. 4) on interval graphs efficiently. Throughout the paper
we assume that |S| is known to the algorithms and queries i ∈ S can be performed in
O(1) time.

3 The Steiner path cover problem

We show that the basic greedy principle, that is at the core of efficient algorithms
for the path cover problem on interval graphs, can be generalized by the introduction
of neglectable intervals. But first we explain the basic greedy principle to find paths
in interval graphs that was introduced independently by Manacher et al. (1990) and
Arikati and Rangan (1990).

Given an endpoint sorted list of intervals we number those intervals as i1, i2, . . . , in
in increasing order with respect to their right endpoint, hence r(i j) < r(i j+1) for all
j = 1, 2, . . . , n − 1. (Such a numbering can be easily obtained in O(n) time using
a list which is sorted by endpoints of the intervals and is assumed for the rest of this
paper. W.l.o.g. we can assume that r(i j) �= r(ik) for i �= k.) The algorithm iteratively
constructs a path P . It starts with the path P := (i1) containing only the first interval.
Then in each iteration it extends P by the unique neighbor of end(P) which is not
already contained in P with minimum right endpoint. If no such extension is possible
the algorithm terminates with the current path P as an output.We denote this algorithm
by GP and the path P obtained by this algorithm by GP(I).

For a path P = GP(I) = (v1, v2, . . . , vl) obtained by executing the algorithm on
an interval graph G(I), we define L(P) as the set of intervals of P that exceed beyond
the right endpoint of end(P), i.e. L(P) = {v ∈ P : r(v) > r(end(P))}. Now we can
recursively define C(P), the set of covers of the path P , as follows. If L(P) = ∅, we
set C(P) = ∅. Otherwise, let j be the maximum index such that v j ∈ L(P). We set
C(P) = {v j } ∪ C(P ′) for P ′ = (v1, v2, . . . , v j−1).

123

Journal of Combinatorial Optimization (2022) 43:226–234 229

i1

i2

i3

i4

i5

i6 i7

i8

i9

i10

i11

i12

Fig. 1 An interval model I of twelve endpoint-sorted intervals (Hung and Chang 2011)

ForC(P) = {c1, c2, . . . , ck} and P = (P0, c1, P1, c2, . . . , ck, Pk), Manacher et al.
(1990) proved that for each j = 0, 1, . . . , k it holds that Pj is an island with respect
to C(P) and if I \ P �= ∅ also I \ P is an island with respect to C(P). Such a
representation of P we call a decomposition into covers and islands.

The following property directly follow from the definition of a decomposition into
covers and islands and are already essential in the proofs in Manacher et al. (1990).

Proposition 3.1 Let P = GP(I) = (v1, v2, . . . , vl). If P = (P0, c1, P1, c2, . . . , ck, Pk)
is a decomposition into covers and islands, then it holds that L(Pj) = ∅ for each
j = 0, 1, . . . , k.

Proof We prove this fact by induction on the number of covers k. If k = 0 we
have that P = (P0) and C(P) = C(P0) = ∅. By defintion of C(P0) it holds
that also L(P) = L(P0) = ∅. Otherwise, consider P = (v1, v2, . . . , vl) with
(P0, c1, P1, c2, . . . , ck, Pk) for k ≥ 1 its decomposition into covers and islands. By
the definition of C(P) it holds that ck = v j for j the maximum index such that
v j ∈ L(P). Hence, there exists no j ′ > j such that r(v′

j) > end(P) = end(Pk). This
implies that L(Pk) = ∅. For all i < k it follows by induction that L(Pi) = ∅.
�

To illustrate the notions introduced above, consider the intervals in Fig. 1 given
as a right endpoint-sorted list I = (i1, i2, . . . , i12). Algorithm GP starts by setting
P = (i1). Neighbors of i1 are {i2, i4, i6}, and since r(i2) < min{r(i4), r(i6)}we extend
P by i2, i.e. P = (i1, i2). Among neighbors of i2 that are not already in P , i3 has the
smallest right endpoint, so P is extended to P = (i1, i2, i3). Next candidates for the
extension are {i4, i6} among which we chose i4, i.e. P = (i1, i2, i3, i4). Next, the only
possible extension is by i6, hence P = (i1, i2, i3, i4, i6). Among the next candidates
for extension {i5, i10}, interval i5 is chosen. At this point the algorithm terminates and
outputs P = (i1, i2, i3, i4, i6, i5), since there is no neighbor of i5 that is not already in
P .

Now we find a decomposition into covers and islands of P . Since r(i6) >

r(end(P) = i5), we have that L(P) = {i6}, andC(P) = {i6}∪C(P ′ = (i1, i2, i3, i4)).
L(P ′) is the empty set, so the decomposition process is over and we have that
the decomposition into covers and islands of P is given by C(P) = {i6} and
P = (P0, i6, P1), where P0 = (i1, i2, i3, i4) and P1 = (i5). Note that P0, P1 and
I \ P are islands with respect to C(P) = {i6}. Furthermore, note that our decompo-
sition satisfies the properties in Proposition 3.1.

Given the fact that in the Steiner variant of the problem only the intervals in S
have to be visited, we introduce neglectable intervals. Let P be the current path at
any point of the greedy algorithm and v′ be the next extension. We call v′ neglectable

123

230 Journal of Combinatorial Optimization (2022) 43:226–234

with respect to end(P), if v′ /∈ S and r(v′) < r(end(P)), i.e. end(P) ∈ L((P, v′)).
We modify the algorithm GP, such that it skips neglectable intervals with respect to
the end of the current path. Analogously to GP this modification is denoted by GPS .
Additional two distinctions ofGPS are that it starts with the interval (with the smallest
r(v)) that is in S, and it terminates as soon as there are no more uncovered intervals
in S. We denote by Nv the set of intervals that are not contained in GPS(I) because
they are neglectable with respect to v for some path P during the execution of GPS ,
where v = end(P). Let N be the set of all such neglectable intervals obtained during
the entire run of GPS .

Now we present a lemma which is our main tool for elegantly proving our main
results.

Lemma 3.2 Let P = GPS(I) be the path obtained byGPS for a given list of intervals
I , let P = (P0, c1, P1, c2, . . . , Pk−1, ck, Pk) be its decomposition into covers and
islands in G(I \ N), and let C(P) = {c1, c2, . . . , ck}. Then it holds for all j =
0, 1, . . . , k that Pj ∩ S �= ∅, i.e. Pj is an S-island with respect to C(P) in G(I \ N). It
even holds that Pj ∪ Ncj contains at least one S-island with respect to C(P) in G(I).

Proof It is easy to see that this decomposition into covers and islands exists, since if
P = GPS(I) it follows by construction that P = GP(I \ N).

The fact that Pj is an S-island with respect to C(P) in G(I \ N) is a trivial
consequence of the decomposition into covers and islands and the definition of GPS .
Since c j is used before every interval in Ncj we have that the left endpoint of every
interval in Ncj is larger than the left endpoint of c j . The right endpoints of each of
the intervals in Ncj is smaller than the right endpoint of c j by definition of neglected
intervals. But this directly implies that C(P) separates also Ncj from the rest of G(I),
except for possibly Pj .
�

Now we can obtain an easy procedure to solve the Steiner path cover problem on
interval graphs. We start with P = ∅ and apply the algorithmGPS . After termination
let P = GPS(I). We add P to our partial solution P and find the smallest index j
such that i j ∈ S and i j is not in any path currently contained in P . Then we apply
GPS again to the list of intervals i j , i j+1, . . . , in . We iterate like this until all intervals
in S are covered by one of the paths in P . The algorithm terminates with the Steiner
path cover P as its output.

Theorem 3.3 The Steiner path cover obtained by iterated application of GPS is opti-
mal.

Proof Let P1, P2, . . . , Pl be the paths obtained by the algorithm and C ′ =⋃l
j=1 C(Pj) be the union of all the covers in the decomposition into covers and

islands of each path. Then, by repeated application of Lemma 3.2 we obtain that there
are l + |C ′| S-islands with respect to C ′ in G(I). By Proposition 2.1 we then know
that πS(G(I)) ≥ l, so our solution is an optimal Steiner path cover.
�

To illustrate our algorithm for the Steiner path cover problem we again consider the
example inFig. 1. In the casewhen S = I , i.e., all intervals need to be covered, our algo-
rithm runsGPS(I)which outputs P ′ = (i1, i2, i3, i6, i5), and then it runsGPS(I \ P ′)

123

Journal of Combinatorial Optimization (2022) 43:226–234 231

which outputs P ′′ = (i7, i8, i9, i10, i12, i11), and the algorithm terminates. Therefore,
for S = I we have that πS(I) = 2. Now lets say that S = {i2, i4, i6, i8, i10, i12}.
GPS(I) starts with the element of S with the smallest right endpoint which is i2.
Then it extends the path with i3, i4 and then i6. After that, the algorithm neglects
i5 since r(i5) < r(i6) and i5 /∈ S. Next, the path is extended by i10, then i7 is
neglected, but i8 is added to the path (since i8 ∈ S). Then the path is extended by
i9 and finally by i12. Interval i11 is neglected. The output of the algorithm is the path
P = (i2, i3, i4, i6, i10, i8, i9, i12), so πS(I) = 1. Note that the key factor that allowed
us to cover the set S with only one path is the fact that we could neglect i5.

By using the deferred-query approach by Chang et al. (1999) this algorithm can be
implemented in O(n) time.

Theorem 3.4 The iterated application ofGPS can be implemented in O(n) time, using
the deferred-query approach.

Proof Firstly, we give a high-level explanation of how to implement GPS using the
deferred-query technique. Afterwards we argue how the modifications can still be
implemented in linear time.

In the deferred-query approach the algorithm handles the intervals in the given right
endpoint sorted order one after another. For each j where i j−1 ∩ i j �= ∅ the algorithm
can be executed as stated above, since in this case we have that end(P) = i j−1 and
we extend P with i j . The main difference is, that when i j−1 ∩ i j = ∅ we still have to
process i j instantly.

This is handled in the following way: The algorithm keeps at each time a collection
of paths P1, . . . , Pl and a flag that indicates whether Pl already contains an interval
from S. (For all other paths it is an invariant of the algorithm that they always contain
an interval from S). In the beginning we have that l = 1 and P1 = (i1), where we
assume that i1 ∈ S. When handling i j we have the following case distinction.

(a) end(Pl) ∩ i j �= ∅ and end(Pk) ∩ i j = ∅ for all k < l: in this case, if Pl contains
an interval from S we extend Pl by i j , hence Pl := (Pl , i j). Otherwise we set
Pl := (i j).

(b) There is a k < l such that end(Pk) ∩ i j �= ∅: let k be minimum with this property.
Then also start(Pk+1) ∩ i j �= ∅ and hence we can connect Pk and Pk+1 using i j ,
hence the new collection of paths is P1, . . . , (Pk, i j , Pk+1), . . . , Pl . If k + 1 = l
and Pl does not contain an interval from S we instead set the new collection of
paths to P1, . . . , (Pl−1, i j).

(c) end(Pl) ∩ i j = ∅: In this case if Pl contains an interval from S we add a new path
Pl+1 := (i j), hence the new collection of paths is P1, P2, . . . , Pl , Pl+1. Otherwise
we replace Pl := (i j).

It is now easy to see that after termination this algorithm obtains exactly the set
(P1, . . . , Pl) that is the output of iterating algorithm GPS . The main observation is
that the intervals that are removed by the procedure above are either neglectable or
are intervals not in S that are strictly between r(end(Pk)) and l(start(Pk+1)) for some
k = 1, . . . , l − 1.

It remains to show that interval i j can be handled in O(1) time. This follows directly
by the implementation based on static tree set union shown in by Chang et al. (1999),

123

232 Journal of Combinatorial Optimization (2022) 43:226–234

since the only difference is that in each stepwe have to do a case distinction forwhether
the current Pl contains an interval from S. The operations performed then correspond
to operations already performed by the original algorithm, and removing the current
last path Pl . This remove operation can obviously also be handled in constant time.
�

4 The Steiner cycle problem

Next we generalize the algorithm of Manacher et al. (1990) to solve the Steiner cycle
problem on interval graphs. We first run our algorithm for the Steiner path cover
problem (see Sect. 3). If πS > 1 we know that there cannot exist a Steiner cycle.
Otherwise, let P = (v1, v2, . . . , vl) be the obtained Steiner path in G(I).

Based on P we construct two paths Q and R. We start by setting R := (v1)

and Q = (v2). Then, we iteratively process the intervals v3 to vl . If in the step of
processing interval v j we have that end(Q) = v j−1, we consider the following two
cases. If v j ∩end(R) �= ∅, we extend R by v j , i.e. R = (R, v j). Otherwise, we extend
Q by v j , i.e. Q = (Q, v j). If on the other hand in this stepwe have that end(R) = v j−1
we analogously check if v j ∩ end(Q) �= ∅. If this is the case we extend Q by v j and
if not we extend R by v j .

In the end of this process we try to connect R and rev(Q) to a Steiner cycle. To
achieve this we check if end(Q) and end(R) are directly connected, i.e. end(Q) ∩
end(R) �= ∅, or if there is an interval v′ among the intervals I ′ ⊆ I \ P , whose right
endpoints r(v′) > r(vl) such that both end(Q) ∩ v′ �= ∅ and end(R) ∩ v′ �= ∅. In any
of those two cases we can connect Q and rev(R) to a Steiner cycle. Otherwise, the
algorithm returns that no Steiner cycle exists.

Theorem 4.1 The given algorithm correctly decides the existence of a Steiner cycle in
G(I) and obtains such a cycle if possible.

Proof If the algorithm finds a Steiner cycle this is obviously true. Also, by correctness
of the algorithm for the Steiner path cover (Theorem 3.3), if no Steiner path is found
we correctly determine that no Steiner cycle can exist.

Otherwise, let us assume that the algorithm did not find a Steiner cycle. With-
out loss of generality, let end(R) = vh with h < l − 1 and consider the path
P ′ = (v1, v2, . . . , vh) and its decomposition into covers and islands. Since R was
not extended by any of the intervals vh+2, vh+3 . . . , vl , we have that C(P ′) ∪ {vh+1}
separates the islands of P ′ from {vh+2, vh+3, . . . , vl}. In addition, since end(R) and
end(Q) could not be connected with any interval in I ′, for all intervals v′ ∈ I ′
it holds that l(v′) > r(vh). Combining this with Proposition 3.1 we observe that
{vh+2, vh+3, . . . , vl}∪ I ′ is non-empty and an S-island with respect toC(P ′)∪{vh+1}.

ByLemma3.2 there are at least |C(P ′)|+1 S-islandswith respect toC(P ′)∪{vh+1}.
So in total we have at least |C(P ′)| + 2 S-islands with respect to C(P ′) ∪ {vh+1},
hence by Proposition 2.2 there does not exist a Steiner cycle in G(I).
�

Given a Steiner path P , the paths Q and R can be easily constructed in O(n) time.
This gives a linear time algorithm for the Steiner cycle problem in interval graphs.

Now we illustrate our algorithm for the Steiner cycle problem on interval graphs
with the example given in Fig. 2. The given instance has 10 intervals I =

123

Journal of Combinatorial Optimization (2022) 43:226–234 233

i1

i2

i3

i4

i5

i6

i7

i8

i9

i10

Fig. 2 An instance of the Steiner cycle problem on an interval graph with S = {i2, i5, i8}

{i1, i2, . . . , i10} and S = {i2, i5, i8}. Intervals in S are represented with the red color.
First we runGPS(I). It starts the path with i2 and then extends it with i3 and i5 before
neglecting i4. Then it proceeds by extending the path with i6, i7, finishing with i8.
Hence it obtains the Steiner path P = (i2, i3, i5, i6, i7, i8). In an attempt to create a
Steiner cycle, we partition P into two paths R and Q. We initialize them with the first
two intervals in P , that is, R = (i2) and Q = (i3). Now we consider Q to be the
current path, and R to be the previous path. In each step we consider the next interval
of P , and in the case that it intersect the end of the previous path, we extend the pre-
vious path and make it the current path. Otherwise we add the interval to the current
path. So, interval i5 is the next interval in P , and it does not intersect end(R) = i2,
hence we add it to Q, making it Q = (i3, i5). The next interval is i6, and it inter-
sects end(R) = i2, hence we extend R and make it the current path, so R = (i2, i6).
Next interval i7 does not intersect end(Q) = i5 so we extend R again, making it
R = (i2, i6, i7). Finally, interval i8 does not intersect end(Q) = i5 so we extend R,
making it R = (i2, i6, i7, i8). This ends our partition of P with the resulting subpaths
R = (i2, i6, i7, i8) and Q = (i3, i5). Since end(R) = i8 and end(Q) = i5 do not
intersect, we cannot connect them into a cycle. The only remaining chance to do so
is using an interval from I ′ = {i ∈ I \ P : r(i) > r(end(P))} = {i9, i10}. Luckily, i9
intersect both end(R) = i8 and end(Q) = i5, and can be used to connect R and Q into
a cycle. The Steiner cycle is then given by (R, i9, rev(Q)) = (i2, i6, i7, i8, i9, i5, i3).

Now let us consider a modified instance of Fig. 2, where i4 is also an element of S.
Then GPS(I) would output the path P = (i2, i3, i5, i4, i6, i7, i8), and the subsequent
partition of P would give R = (i2, i6, i7, i8) and Q = (i3, i5, i4). But now there is no
interval in I ′ that connects end(R) = i8 and end(Q) = i4, so our algorithm outputs
that there is no Steiner cycle. In order to verify that there is no Steiner cycle we can
follow the arguments in the proof of Theorem 4.1, which gives us a cutsetC = {i5, i6}
that separates I into three S-islands, and hence, by Proposition 2.2, guarantees that
there is no Steiner cycle.

5 Conclusion

We obtained linear time algorithms for both the Steiner path cover problem and the
Steiner cycle problemon interval graphs, assuming the intervals are given as a endpoint
sorted list.

123

234 Journal of Combinatorial Optimization (2022) 43:226–234

It would be of interest to study these problems also for other types of intersection
graphs, like for instance circular-arc graphs, for which efficient algorithms for the path
cover problem and the hamiltonian cycle problem are known.

Acknowledgements We would like to thank Bettina Klinz for helpful discussions about this topic.
We also thank the anonymous reviewers for helpful comments that improved our paper.

Funding Open access funding provided by Graz University of Technology. The authors acknowledge the
support of the Austrian Science Fund (FWF): W1230.

Declarations

Conflict of interest The author declares that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Arikati SR, Rangan CP (1990) Linear algorithm for optimal path cover problem on interval graphs. Inf
Process Lett 35(3):149–153

ChangM-S, Peng S-L, Liaw J-L (1999) Deferred-query: an efficient approach for some problems on interval
graphs. Networks 34(1):1–10

Gurski F, Hoffmann S, Komander D, Rehs C, Rethmann J,Wanke E (2020) Computing directed steiner path
covers for directed co-graphs. In International Conference on Current Trends in Theory and Practice
of Informatics, pages 556–565. Springer

Gurski F, Hoffmann S, Komander D, Rehs C, Rethmann J, Wanke E (2020) Exact solutions for the steiner
path cover problem on special graph classes. In Operations Research Proceedings 2019, pages 331–
338. Springer

Hung R-W, Chang M-S (2011) Linear-time certifying algorithms for the path cover and hamiltonian cycle
problems on interval graphs. Appl Math Lett 24(5):648–652

Keil JM (1985) Finding hamiltonian circuits in interval graphs. Inf Process Lett 20(4):201–206
Manacher GK, Mankus TA, Smith CJ (1990) An optimum �(n log n) algorithm for finding a canonical

hamiltonian path and a canonical hamiltonian circuit in a set of intervals. Inf Process Lett 35(4):205–
211

Moharana SS, Joshi A, Vijay S (2013) Steiner path for trees. Int J Comput Appl. https://doi.org/10.5120/
13242-0692

Salazar-Gonzalez J-J (2003) The steiner cycle polytope. Eur J Oper Res 147(3):671–679
Steiglitz K, Weiner P, Kleitman D (1969) The design of minimum-cost survivable networks. IEEE Trans-

actions on Circuit Theory 16(4):455–460
Steinová M (2010) Approximability of the minimum steiner cycle problem. Comput Inf 29(6):1349–1357
Wahlström M (2013) Abusing the tutte matrix: An algebraic instance compression for the k-set-cycle

problem. arXiv preprint arXiv:1301.1517

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5120/13242-0692
https://doi.org/10.5120/13242-0692
http://arxiv.org/abs/1301.1517

	The Steiner cycle and path cover problem on interval graphs
	Abstract
	1 Introduction
	2 Definitions and preliminary results
	3 The Steiner path cover problem
	4 The Steiner cycle problem
	5 Conclusion
	Acknowledgements
	References

