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Abstract
The expander graph constructions and their variants are the main tool used in gap
preserving reductions to prove approximation lower bounds of combinatorial opti-
misation problems. In this paper we introduce the weighted amplifiers and weighted
low occurrence of Constraint Satisfaction problems as intermediate steps in the
NP-hard gap reductions. Allowing the weights in intermediate problems is rather nat-
ural for the edge-weighted problems as Travelling Salesman or Steiner Tree.
We demonstrate the technique for Travelling Salesman and use the parametrised
weighted amplifiers in the gap reductions to allow more flexibility in fine-tuning their
expanding parameters. The purpose of this paper is to point out effectiveness of these
ideas, rather than to optimise the expander’s parameters. Nevertheless, we show that
already slight improvement of known expander values modestly improve the current
best approximation hardness value for TSP from 123

122 (Karpinski et al. in J Comput
Syst Sci 81(8):1665–1677, 2015) to 117

116 . This provides a new motivation for study
of expanding properties of random graphs in order to improve approximation lower
bounds of TSP and other edge-weighted optimisation problems.
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1 Introduction

The Travelling Salesman problem (TSP) is undoubtedly one of the most famous
combinatorial optimisation problems. In its standard version, we are given an edge-
weighted (undirected) graph and the goal is to find a closed tour with a minimum cost
that visits each vertex at least once. This is equivalent to the Graphic Travelling
Salesman problem (where the cost between any two vertices corresponds to their
shortest path in a graph) and where exactly one visit per vertex is allowed.

The Graphic TSP plays an important role in understanding complexity of more
general the Metric TSP problem where cost function c : V × V → R

+ is defined
by a metric. The approximability of the Metric TSP is a long-standing open prob-
lem, Christofides’s approximation algorithm with ratio 1.5 (Christofides 1976) hasn’t
been improved for more than four decades. It is generally believed that the approxi-
mation ratio can be close to 4/3 due to known integrality gap for the Held-Karp LP
relaxation (Held and Karp 1970).

In the last decade, some significant progress has been done in the Graphic TSP.
Gharan et al. (2011) made first breakthroughwith a (1.5−ε)-approximation algorithm
where ε being of the order of 10−12. Following that, Mömke and Svensson (2011)

obtained a significantly better approximation factor of 14(
√
2−1)

12
√
2−13

≈ 1.461, which was

improved further to 13
9 ≈ 1.444 by Mucha (2014). To our best knowledge, currently

the best known approximation ratio is 1.4 due to Sebő andVygen (2014). The overview
about this recent development can also be found in Svensson (2013).

However, there is still a significant gap between the ratio of the best approximation
algorithm and the approximation ratio that provably can’t be achieved unless P =
NP. The first APX-hardness result showed the NP-hardness to approximate the TSP
problem within 1+ ε without any explicit value for ε (Papadimitriou and Yannakakis
1993). The first explicit value 5381/5380 was set by Engebretsen (1998), further
improved to 3813/3812 by Böckenhauer et al. (2000) and 220/219 by Papadimitriou
and Vempala (2006). The further progress in the reductions and amplifiers increased
the threshold to 185/184 by Lampis (2014) and to our best knowledge the currently
best value is 123/122 by Karpinski et al. (2015).

Main contribution The main novelty of this paper is using weighted amplifiers and
weighted low occurrence of Constraint Satisfaction problems (CSP) as interme-
diate steps in the NP-hard gap reductions to the Travelling Salesman problem.
Allowing theweights in intermediate problems toTSP (or the Steiner Tree problem)
is rather natural, as the problems themselves are using edge weights. We demonstrate
the technique for TSP and use the parametrised weighted amplifiers in the gap reduc-
tions to allow more flexibility in fine-tuning their expanding parameters. In this paper
we don’t aim to optimise the parameters of amplifiers that provably exist, but show
that already slight improvement of known values modestly improve the hardness of
approximation for TSP from the current best value 123

122 (Karpinski et al. 2015) to the
new value 117

116 . This provides a new motivation for study of expanding properties of
random graphs in order to improve approximation lower bounds of TSP and other
edge-weighted optimisation problems.
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Preliminaries

All graphs in this paper are undirected and connected. Let G = (V , E) be an edge-
weighted graph with cost edge-function c : E → R

+. For an edge e = {u, v} ∈ E
we also use the notation uv as an shorthand. In a narrow sense tour in the graph
G = (V , E) is an alternating sequence of vertices and edges, starting and ending at a
vertex, where each vertex is incident with the previous and the following edge in the
sequence. If a starting and ending vertex is the same, the tour is closed. Any solution
of TSP is a closed tour spanning V . The multiset T of its edges is itself called a
’tour’ (in a slightly broader sense adopted in this paper) even if it doesn’t capture the
order in which the edges are traversed by that tour. This multiset creates an Eulerian
multigraph (edges are taken with their multiplicities if they are used multiple times)
spanning V . It is well known (from the theory of Eulerian multigraphs) that from a
multiset of edges of a tour one (or possibly many) such traversing the edges can be
easily constructed.

A quasi-tour T0 in G can be obtained from a tour T removing edges of a finite
set of closed tours. It is always viewed as a multgraph with the original vertex set V ,
and now with edge multiset T0. Each connected component of this multigraph is an
Eulerian multigraph or an isolated vertex. A multiset T0 of edges from E corresponds
to a quasi-tour if and only if when all vertices V are balanced with respect to T0 (each
vertex from V is incident with even number of edges from T0, possibly 0).

Our inapproximability results for the Travelling Salesman problem use reduc-
tions from Håstad’s NP-hard gap type result for MAX-E3-LIN-2, the Maximum
Satisfiability problem for linear equations modulo 2 with exactly 3 variables per
equation Håstad (2001). In fact, Håstad’s tight inapproximability results can be stated
in the form in which every variable occurs the same number of times in the system of
equations, see e.g. Chlebík and Chlebíková (2003).

Theorem 1 For every ε ∈ (
0, 1

4

)
and every fixed sufficiently large integer k ≥ k(ε), the

following partial decision subproblem Q(ε, k) of MAX-E3-LIN-2 is NP-hard: given
an instance of MAX-E3-LIN-2 with m equations and exactly k occurrences of each
variable, to decide if at least (1− ε)m or at most ( 12 + ε)m equations are satisfied by
the optimal assignment.

The results of such form were already used to prove the inapproximability results
for other optimisation problems, e.g., the Steiner Tree problem (Chlebík and Chle-
bíková 2008).

For some optimisation problems it is more convenient to use reductions if all equa-
tions of MAX-E3-LIN-2 have the same right hand side. The NP-hard gap results in
such a case can be easily enforced if we allow flipping some occurrences of variables,
so also the literal x := 1− x can be used for a variable x . The canonical gap versions
Qb(ε, 2k), for any fixed b = 0 or b = 1, of MAX-E3-LIN-2 are as follows:

TheQb(ε, 2k) problem, b ∈ {0, 1}
Input An instance of MAX-E3-LIN-2 with m equations of the form x ⊕ y ⊕ z = b,
each variable occurring exactly k times as unnegated and k times negated.
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Task To decide if at least (1− ε)m or at most ( 12 + ε)m equations are satisfied by the
optimal assignment.

The corresponding ‘fixed occurrence’ NP-hard gap result reads as follows [see
Chlebík and Chlebíková (2003) for the details of the following theorem]:

Theorem 2 For every ε ∈ (0, 1
4 ) and every sufficiently large integer k, k ≥ k(ε),

the partial decision subproblems Q0(ε, 2k) and Q1(ε, 2k) of MAX-E3-LIN-2 areNP-
hard.

Weighted amplifiers
Amplifier graphs are useful in proving inapproximability results for CSPs in which
every variable appears a bounded (and, typically, very low) number of times. Such
CSPs are often used as intermediate steps in proving approximation hardness results for
many combinatorial optimisation problems. For problems like Travelling Sales-
man, or Steiner Tree which are based on edge weights, it is natural to consider the
intermediate low degree CSPs with their edge weights as well.

For a graphG = (V , E), a cut is a partition of V into two subsetsU andU := V \U .
The cut set E(U ,U ) is defined as E(U ,U ) = {uv ∈ E, u ∈ U and v ∈ U } and the
cut size as |E(U ,U )|. If edges are weighted with p : E → R

+, then p(E(U ,U )) is
weight of the cut set E(U ,U ), hence p(E(U ,U )) = ∑

uv∈E,u∈U ,v∈U p(uv).

Definition 1 LetG = (V , E) be a graph with edge weights p : E → R
+, and D ⊆ V ,

|D| ≥ 2. We say that a weighted graph (G, p) is an amplifier for D if for every vertex
set A ⊆ V

p(E(A, A)) ≥ min{|D ∩ A|, |D ∩ A|}.

The vertices of the given set D are called the contacts, the rest of the vertices (= V \D)
is the set of checkers. We say that an amplifier (G, p) for the set D is a d-regular
amplifier if, additionally, all contacts have degree (d−1) and all checkers have degree
d (in G).

In full generality, one could also allow distinct weights for vertices of D to replace
the sizes |D∩ A|, |D∩ A|with their weighted version, but for our purposes the vertices
of D are uniformly weighted each with weight 1.
Note If G = (V , E) is a connected graph and D ⊆ V with |D| ≥ 2 then we can
define edge weights p : E → R

+ in such a way that the graph (G, p) is an amplifier.
Indeed, if we set

β = min

{
|E(A, A)|
|D ∩ A| : A ⊆ V , 1 ≤ |D ∩ A| ≤ 1

2
|D|

}

then clearly, β > 0, and any weights p : E → R
+ such that p(e) ≥ 1

β
, ∀e ∈ E ,

produce an amplifier (G, p) for D.
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2 Intermediate weighted CSPs

In this section we extend the NP-hard gap results from a system of linear equations
with exactly 3 variables to a low occurrence version of w-MAX-3-LIN-2, a weighted
hybrid system of linear equations over Z2 with either 2 or 3 variables. Similarly to
MAX-E3-LIN-2, the task of the w-MAX-3-LIN-2 problem is to find an assignment
that maximizes weight of the satisfied equations in the hybrid system.

To prove the NP-hard gap results for the w-MAX-3-LIN-2 problem, we extend
Håstad’s results for MAX-E3-LIN-2 using the amplifiers defined in Sect. 1.

Reduction from Q(ε, k) to w-MAX-3-LIN-2
Let ε ∈ (0, 1

4 ), and k > 0 be an integer such that the problem Q(ε, k) is NP-hard. Let
an instance I of Q(ε, k) be given, denote by ν(I ) the set of variables of I , ν := |ν(I )|.
Let’s assume that G = (V , E) with the edge weights p : E → R

+ be an amplifier for
a set D ⊆ V with |D| = k.
Now we describe a gap preserving reduction from Q(ε, k) to the w-MAX-3-LIN-2
problem with an amplifier (G, p) as a parameter. The instance I of Q(ε, k) is trans-
formed to a weighted hybrid instance J of w-MAX-3-LIN-2.

• For each variable x ∈ ν(I ) take a copy of the amplifier (G, p), let (Gx , p) denote
that copy:

– Inside (Gx , p) the vertices correspond to the variables in J and each edge vv′
represents the equation v ⊕ v′ = 0 with weight p(vv′) in J .
The contact vertices of (Gx , p) represent k occurrences of the variable x in
the equations of I . Distinct occurrences of a variable x in I are represented by
the distinct contact vertices in Gx .

• Every equation x ⊕ y⊕ z = b from I , b ∈ {0, 1}, also belongs to J with weight 1.

Remark 1 Observe that the above reduction froman instance I of Q(ε, k) to an instance
J ofw-MAX-3-LIN-2 preserves the NP-hard gap of Q(ε, k). Indeed, there is a simple
dependence of an optimal value for J on that of I .

In the following we show that if we look at these problems asMinimum Unsatis-
fiability problems, where OPT′ is the corresponding minimumweight of unsatisfied
equations over all assignments, then OPT′(I ) = OPT′(J ). Clearly, any assignment
to variables from ν(I ) generate an assignment to variable of J in a natural way; the
value of a variable x ∈ ν(I ) is assigned to all variables of Gx . Such assignments to
variables of J are called standard. Hence, obviously OPT′(J ) ≤ OPT′(I ).

The observation that the optimum OPT′(J ) is achieved on standard assignments
is based on the amplifier’s properties. Any assignment ϕ to the variables of J can be
converted to a standard one in such a way that the weight of unsatisfied equations
doesn’t increase as follows: consider a variable x from ν(I ). Assign to all variables
in Gx the same value as it is assigned to the majority of contact vertices in Gx by
the assignment ϕ. The fact that (Gx , p) is the amplifier ensures that the weight of
unsatisfied equations in J doesn’t increase. Now if we repeat the same operation for
each variable from ν(I ), one after another, the result will be a standard assignment
without increase of the weight of unsatisfied equations in J . Consequently, OPT′(J )
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is achieved on the standard assignments. But for every standard assignment the weight
of unsatisfied equations of J is the same as the number of unsatisfied equations of I
by that assignment, hence OPT′(I ) = OPT′(J ).

Reduction from Qb(ε, 2k) to w-MAX-3-LIN-2
Nowwe slightly modify the previous reduction from Q(ε, k) to deal with the instances
of Qb(ε, 2k) for any fixed b = 0 or b = 1.

Let ε ∈ (0, 1
4 ) and k > 0 be an integer such that Qb(ε, 2k) is NP-hard. Assume

that G = (V , E) with edge weights p : E → R
+ is an amplifier for a set D ⊆ V

with |D| = 2k. Let {V u, V n} be a partition of V balanced in D, namely |D ∩ V u | =
|D ∩ V n| = k. Denote further Gu and Gn the induced subgraph of G with the vertex
setsV u andV n , respectively. Inwhat followswedescribe the reduction from Qb(ε, 2k)
to w-MAX-3-LIN-2 parametrised by an amplifier (G, p) for D ⊆ V with |D| = 2k
and with chosen balanced partition {V u, V n} of V .

Let an instance I of Qb(ε, 2k) be given, ν(I ) be the set of variables of I , ν = |ν(I )|.
• For each variable x from ν(I ) take a copy of an amplifier (G, p), let Gx denote
such a copy.

– Any edge vv′ inside either Gu
x or G

n
x represents the cycle equation v ⊕ v′ = 0

taken with weight p(vv′).
– Any edge between v ∈ V u

x and v′ ∈ V n
x inGx represents thematching equation

v ⊕ v′ = 1 taken with weight p(vv′).

• The contact vertices of Gu
x (resp. G

n
x ) represent k occurrences of unnegated (resp.

negated) variable x in the equations of I . Every equation x ⊕ y ⊕ z = b from I ,
b ∈ {0, 1}, also belongs to J with weight 1.

This way we produce an instance J of the w-MAX-3-LIN-2 problem. Any assign-
ment to variables from ν(I ) generates an assignment to variables of J in a natural way:
the value of a variable x is assigned to all variables of Gu

x , and the value opposite to x ,
x = 1 − x , is assigned to all vertices of Gn

x . Such assignment to the variables of J is
called standard. Any assignment to variables of J can be converted to a standard one
without increasing the weight of unsatisfied equations as it follows from properties of
an amplifier. The arguments from Remark 1 applied to the problem Q(ε, 2k) can be
transformed to the Qb(ε, 2k) by reversing all variables from V n

x to their opposite.

3 The weighted bi-wheel amplifiers

The previous reductions were based on a general theoretical model of weighted ampli-
fiers. In this section we introduce a class of weighted graphs with such expanding
properties that generalise the bi-wheel amplifiers from Karpinski et al. (2015). Fur-
ther we describe in the details the properties of the instances of the subproblem of
w-MAX-3-LIN-2, called the Hybrid bi-wheel instances.

Definition 2 Let an integer k > 0 and a rational number τ > 1 be such that τk is an
integer. The weighted (2k, τ )-bi-wheel amplifier Wk,τ = (V , E), p : E → R

+,
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is a (weighted) 3-regular amplifier with a specific balanced partition constructed
as follows: Take two disjoint cycles, each on τk vertices (connected in consecu-
tive order), V u = {1u, 2u, . . . , (τk)u} and V n = {1n, 2n, . . . , (τk)n}, respectively.
Select the sets of k contacts Du ⊆ V u and Dn ⊆ V n as Du = {cu1 , cu2 , . . . , cuk },
Dn = {cn1 , cn2 , . . . , cnk }. The remaining vertices of both cycles, V u\Du and V n\Dn ,
are checkers.

To complete the construction, consider a perfect matching between the checkers of
these two cycles where each matching edge has one vertex in the first cycle V u\Du

and another one in the second cycle V n\Dn .

We assume that in each cycle of the bi-wheel consecutive contacts are separated by
a chain of several (at least 1) checkers. Hence, in particular, τ ≥ 2.

Remark 2 Let us denote by C u (C n , resp.) the set of edges contained in the first (the
second, resp.) cycle in Wk,τ , so C u = {{iu, (i + 1)u} : i = 1, 2, . . . , τk} and C n =
{{in, (i + 1)n}} : i = 1, 2, . . . , τk} (the vertex τk + 1 is the vertex 1), and byM ⊆ E
the associated perfect matching on the set of checkers. Clearly, |C u | = |C n| = τk,
|M | = |V u\Xu | = |V n\Xn| = (τ − 1)k.

In this paper we consider only bi-wheel amplifiers (Wk,τ , p) whose weights have
uniform cycle weight pc for all cycle edges of both C u and C n , and another uniform
matching weight pm for all matching edges from M .

Now we are ready to describe the specific properties of the Hybrid bi-wheel
instances of w-MAX-3-LIN-2 based on a fixed (2k, τ )-bi-wheel amplifier Wk,τ with
weights pc and pm .

Theorem 3 For every ε ∈ (0, 1
4 ) and b ∈ {0, 1} there exist instances of

w-MAX-3-LIN-2, called Hybrid(Wk,τ , p), with the following properties:

(i) each variable of the system equations Hybrid(Wk,τ , p) occurs exactly 3 times;
(ii) m equations are of the form x ⊕ y ⊕ z = b, each of weight 1;
(iii) 3τm equations are of the form x ⊕ y = 0 each of weight pc;
(iv) 3

2m(τ − 1) equations are of the form x ⊕ y = 1 each of weight pm,

for which it is NP-hard to decide whether there is an assignment to the variables that
leaves unsatisfied equations of weight at most εm, or every assignment to the variables
leaves unsatisfied equations of weight at least (0.5 − ε)m.

Proof Let ε ∈ (
0, 1

4

)
, b ∈ {0, 1}, and k > 0 be an integer such that Qb(ε, 2k) is NP-

hard. Let an instance I of Qb(ε, 2k) be given, ν(I ) be its set of ν = |ν(I )| variables,
so m := |I | = 2kν

3 .
For any fixed variable x ∈ ν(I )we construct a (2k, τ )-bi-wheelWx (a copy ofWk,τ )

with 2τk variables Var(x) = {xuj , xnj }τkj=1. Following the notation from Definition 2,
each ju is mapped to the variable xuj , j

n to xnj . Let C
u(Wx ), C n(Wx ) denote the cycle

edges, M (Wx ) the corresponding matching edges.

– For each matching edge juln ∈ M (Wx ) we create the equation xuj ⊕ xnl = 1

weighted by pm . Therefore, we have ν(τ − 1)k = 3
2m(τ − 1) such equations.

123



Journal of Combinatorial Optimization (2022) 43:1368–1390 1375

– For each cycle edge { jq , ( j+1)q} ∈ C q(Wx ), j = 1, 2, . . . , τk (the vertex τk+1
is the vertex 1) with q ∈ {u, n}we introduce the equation xqj ⊕ xqj+1 = 0 weighted
by pc. Hence we have 2kτν = 3τm such equations.

Finally, we replace the l-th unnegated appearance of x in I by the contact variable
xucu(l) := cul , whereas the l-th negated appearance is replaced by xncn(l) := cnl , for
l = 1, . . . , k. This yields m equations of the form x ⊕ y ⊕ z = b, each weighted by 1.

Obviously, each of the variables Var(x) = {xuj , xnj }τkj=1 where x ∈ ν(I ) occurs
exactly 3 times and the hardness results follows directly from a properties of the
reduction discussed in Sect. 2. �

The reduction from Hybrid(Wk,τ , p), presented later in Sect. 4, is a gap preserving
reduction to TSP parametrised by a (2k, τ )-bi-heel amplifier with cycle weights pc
and matching weights pm . The trade-off between parameters pc, pm and τ is crucial
for quality of approximation lower bounds.

Definition 3 Wecall the triple (pc, pm, τ ) admissible if for every k0 there exists k ≥ k0
and a (2k, τ )-bi-wheel that is an amplifier with cycle weights pc andmatching weights
pm .

The bi-wheel amplifiers introduced by Karpinski et al. (2015) are based on the fact
that the triple (pc = 1, pm = 1, τ = 7) is admissible. This leads to NP-hardness to
approximate TSP to within any constant approximation ratio less than 123

122 . They also
observed (Karpinski et al. 2015) that their proof (of amplification properties) doesn’t
seem to work with τ = 6 instead τ = 7. However, there is an opportunity for fine-
tuning here if we allow non-integral τ . If, e.g., 90% of pairs of consecutive contacts in
bi-wheel cycles are separated by 6 checkers, and 10% of such pairs are separated by a
chain of 5 checkers only, then the proof of required amplification properties still works.
The detailed explanation together with all computations for wheel amplifiers can be
found in the paper Chlebík and Chlebíková (2003). The proof for bi-wheels is very
similar, so along these lines one can argue that the triple (pc = 1, pm = 1, τ = 6.9)
is admissible. This itself would (very modestly) improve on the lower approximation
bound for TSP given in Karpinski et al. (2015).

Introducing weighted amplifier graph constructions seems to have paid off even
more compared to improvement of parameters for unweighted amplifiers. In this
case we have more freedom in fine-tuning the approximation hardness lower bounds
obtained in parametric way, if we can prove that bi-wheel amplifiers with certain
parameters (pc, pm, τ ) exist.

Let us explain trade-off between parameters (pc, pm, τ ) of bi-wheels in a simple
scenario with pm = 1 fixed. Our contribution allows to use weighted amplifiers with
pc < 1 (strengthening of amplifiers) or with pc > 1 (relaxing of amplifiers). One can
achieve amplifiers with pc < 1 by increasing τ from τ = 7. On the other hand, to
relax to pc > 1 can be achieved with τ < 7. These ideas indicate importance to better
understand the exact trade-off between (pc, pm, τ ) triples for bi-wheel amplifiers that
provably exist.

Based on the definition of the admissible triples, the main result of this paper
presented as Theorem 4 in Sect. 4 can be formulated as:

123



1376 Journal of Combinatorial Optimization (2022) 43:1368–1390

Theorem If (pc, pm, τ ) is an admissible triple then it is NP-hard to approximate the
Travelling Salesman problem to within any constant approximation ratio less
than

1 + 1

3(τ − 1)(4pc + max{1, pm}) + 12pc + 20max{1, pm} .

In this paper we only want to demonstrate effectiveness of weighted parametrised
amplifiers and address the question of fine-tuning in (pc, pm, τ ) triples for bi-wheel
amplifier. This can be summarises as [see Theorem 5 in Sect. 5 for the proof]:

Theorem The triple (pc = 1
2 , pm = 1, τ = 11) is admissible, hence for every large

enough k ≥ k0 there is a (2k, 11)-bi-wheel that is an amplifier with cycle weights
pc = 1

2 and matching weights pm = 1.

Therefore we can conclude

Corollary It is NP-hard to approximate the Travelling Salesman problem within
any constant approximation ratio less than 117

116 .

4 Gap preserving reduction fromHybrid(Wk,�,p) to TSP

In this section we describe a gap preserving reduction from the system of equations
Hybrid(Wk,τ , p) to theTravelling Salesmanproblem. In the reductionwe suppose
that all equations of Hybrid(Wk,τ , p)with three variables are of the form x⊕ y⊕z = 0
to simplify a discussion later (hence Hybrid(Wk,τ , p)was obtained via reduction from
Q0(ε, 2k)). We also introduce a real parameter θ > 0 set to θ = 1

max{1,pm } , in order
to simultaneously capture different scenarios pm ≤ 1 and pm > 1.

The gap preserving reduction is similar to the reduction presented in Karpinski
et al. (2015), the main difference is in using a parametrised weighted (2k, τ )-bi-
wheel amplifier (Wk,τ , p) introduced in Sect. 3. We use the concept of forced edges
introduced by Lampis (2014) (used also in Karpinski et al. (2015)). The idea is based
on the observation that we are able to stipulate that some edges, called forced edges,
are to be used at least once in any valid tour. It can be achieved by replacing such
an edge with a path of many edges of the same total weight. With this trick we may
assumewithout loss of generality that we can force some edges to be used at least once
[see Karpinski et al. (2015) for the details]. If u and v are vertices that are connected
by a forced edge e, we write {u, v}F or simply uvF . The construction contains some
forced edges, all other edges in the constructed graph are unforced edges with edge
weight 1.

We start with an instance I of Q0(ε, 2k) with ν variables, m equations of the
form x ⊕ y ⊕ z = 0 and use the reduction from Sect. 2 to create an instance J of
Hybrid(Wk,τ , p). Using the same notation as in Theorem 3 we construct an instance
G[J ] of TSP in the following way: for each copy Wj := (Wk,τ , p), 1 ≤ j ≤ ν, of a
(2k, τ )-bi-wheel we construct a subgraph of G[J ]:
(i) each variable x of the bi-wheel Wj , corresponds to a vertex x in the subgraph,
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Fig. 1 An example of a 3-variable gadget H3Q
j including the central vertex s, which is not part of the

gadget. Thick lines represent forced edges.

Fig. 2 A gadget H2M inside the
bi-wheel Gx for the equations
xut ⊕ xnq = 1 contains only two
forced edges, represented as
thick lines.

(ii) for each cycle equation x⊕ y = 0, we create an unforced edge xy with weight 1.

Now we add the edges among the vertices of ‘bi-wheel’ subgraphs using two types
of gadgets:

• a 3-variable gadget H3Q :
for each equation j , 1 ≤ j ≤ m, of the form x ⊕ y ⊕ z = 0 we add a 3-
variable gadget H3Q

j connecting the contacts x , y, z, where each contact vertex x ,

y, and z is part of its own (2k, τ )-bi-wheel. Each gadget H3Q
j contains two new

vertices γ l , γ r for every vertex γ ∈ {x, y, z} and two additional vertices elj and
erj , see Fig. 1 how the vertices are connected. All edges {γ α, γ }F with α ∈ {r , l}
and γ ∈ {x, y, z} are forced edges with weight w({γ α, γ }F ) = 0.5 + pcθ . All
remaining edges of H3Q

j are unforced with weight 1.

• a matching gadget H2M :
for each equation xut ⊕ xnq = 1 we add a matching gadget H2M connecting the
checkers xut and xnq via two forced edges {xut , xnq }1F and {xut , xnq }2F , each of the
same weight 2pcθ (Fig. 2).

At the end of the construction, we add a new central vertex s that is connected to
every gadget H3Q

j with two forced edges {elj , s}F and {erj , s}F , both with weight 0.5,
w({eα

j , s}F ) = 0.5 for both α ∈ {r , l}.
Observe that the construction doesn’t need gadgets for the cycle edges, the connec-

tions between the matching edge gadgets are sufficient to encode these constraints.
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Now in the following we describe in the details the properties of the gap preserving
reduction from the Hybrid(Wk,τ , p) to the Travelling Salesman problem.

Local edge cost To count the cost c(T ) of a tour T , we use the local edge cost
counting based on the ideas from Karpinski et al. (2015): the cost w(uv) of any edge
uv of T is split into two nonnegative parts, one attached to u and the second one to v.
If an edge uv doesn’t contain s then cost is split equally with contribution 0.5w(uv)

for each vertex, but for edges of the form us, the full cost contributes to u, and none
to s.

Let T be a multi-set of edges from E that defines a quasi-tour in G[J ](V , E). Then
for a set V ′ ⊆ V , the local edge cost of V ′ is formally defined as

cT (V ′) =
∑

u∈V ′\{s}

∑

uv∈T
0.5w(uv) +

∑

eα
j ∈V ′

∑

eα
j s∈T

0.5w(eα
j s).

Note that for two vertex sets V1, V2 we have cT (V1 ∪ V2) ≤ cT (V1) + cT (V2) (with
equality for disjoint sets), and cT (V ) = ∑

e∈T w(e).
In Sect. 4.2 we also use the full local cost of the quasi-tour T for the set V ′, c∗

T (V ′),
which is defined as follows: if #T (V ′) is the number of connected components induced
by T which are fully contained in V ′, then

c∗
T (V ′) = cT (V ′) + 2#T (V ′).

Intuitively, c∗
T (V ′) captures the cost of the full tour restricted to V ′: it includes the

local edge cost and the cost of a connection of the components on V ′ of the lowest
possible price (using two unforced edges), to the rest of the tour. Note that for two
disjoint vertex sets V1, V2 ⊆ V we have c∗

T (V1 ∪ V2) ≥ c∗
T (V1) + c∗

T (V2).

4.1 How to construct a tour from an assignment

Given an instance J of the Hybrid(Wk,τ , p) and an assignment ϕ to its variables, we
describe a construction of a tour T in G[J ] with cost related to ϕ.

Lemma 1 Let J be an instance of Hybrid(Wk,τ , p) from Theorem 3. If there exists an
assignment ϕ to the variables of J with unsatisfied equations of total weight Δ, then
there exists a tour in G[J ] with cost at most

(
3

2
(τ − 1)(4pcθ + 1) + 6pcθ + 10

)
m + 2ν + Δ .

Proof Step 1 First we describe a construction of a quasi-tour T that may have several
connected components, but uses all forced edges, each exactly once. For each vertex
the selection of edges chosen for T is based on type of the gadget to which the vertex
belongs to, either a 3-variable gadget H3Q or a matching gadget H2M .
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Part A: A matching gadget H2M

Let {Wx , x ∈ ν(I )} be the associated set of bi-wheels of J . For a fixed x ∈ ν(I )},
let {xuj }τkj=1, {xnj }τkj=1 be the sets of the bi-wheel variables of Wx . Due to the amplifier
properties, a given assignment ϕ can be converted into a standard one satisfying the
same upper bound on the weight of unsatisfied equations [see Sect. 2 for the details].
Hence, we can assume that all equations with two variables are satisfied by the given
assignment ϕ. It means, xut = xuq , x

n
t = xnq , x

u
t �= xnq for all t, q = 1, 2, . . . , τk.

Assuming xα
t = 1 for some α ∈ {u, n}, we include in T all unforced edges xα

t x
α
t+1

with t = 1, 2, . . . , τk − 1 (each edge once), the edge xα
τk x

α
1 , and both adjacent forced

edges for each checker corresponding to matching equations (a copy of matching
gadget H2M ). Informally, for each bi-wheel we select the cycle that corresponds to
the assignment 1 and use all the unforced cycle edges including both forced edges
from each checker. This creates a component of the quasi-tour T that contains all
checkers from both cycles, and all contacts from one cycle.

The contribution of the vertices and chosen incident edges to the local edge cost
of the quasi-tour T is 4pcθ for two forced edges of matching, and 1 for two unforced
edges of one (checker) vertex of matching edge (one with xα

t = 1 for α ∈ {u, n}),
hence 4pcθ + 1 for each matching edge xut x

n
q ∈ M .

Part B: A 3-variable gadget H3Q

In this part we discuss how the quasi-tour T can traverse through the all vertices of
the gadget H3Q

j , j = 1, 2, . . . ,m. Following the construction of G[J ] each H3Q
j

simulates the equation x ⊕ y ⊕ z = 0. A selection of edges belonging to T is based
on a given standard assignment ϕ to the contact variables x , y, and z. Depending on
their values, we consider the following cases:

• Case x + y + z = 2: Suppose y = z = 1, x = 0, the other cases are symmetrical.
Then we add the edges zl zr , yl yr , elj x

l , and erj x
r to T which contributes 4 to the

local edge cost of T restricted to the gadget H3Q
j . The unforced edges adjacent to

y and z contributes 2, hence 6 together for unforced edges.
• Case x + y + z = 1 or x + y + z = 0: In both cases we add for each vertex

γ ∈ {x, y, z} the edges γ l elj , γ
r erj to T with local unforced edge cost contribution

of 6. If x + y + z = 1, we have to add 1 for edges adjacent to a vertex with
assignment 1.

• Case x + y + z = 3: This case is similar to x + y + z = 2. We add the edges
zl zr , yl yr , elj x

l , and erj x
r to T with local unforced edge cost contribution 4 for

the chosen edges inside H3Q
j , 3 for edges adjacent to x , y, and z, hence 7 together.

The local edge cost contribution of the gadget H3Q
j toT canbe split into contribution

of forced and unforced edges. The forced edges contribute 6(pcθ+0.5)+1 = 6pcθ+4
(our local count method allow to omit the vertex s, as weight of its adjacent edges
is fully counted at the vertices elj , e

r
j ) and following the detailed discussion above,

if the equation is satisfied the local unforced edge contribution to cost of T is 6,
otherwise 7.

To summarise, in this way we construct a quasi-tour T for which we can count cost
summing all local edge costs through all the gadgets (except s):
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– there are 3
2 (τ − 1)m gadgets of size two (matching gadget H3Q) with local edge

cost 4pcθ + 1, and
– there arem copies of 3-variable gadget H3Q , each contributes 6pcθ+10 if satisfied,
6pcθ + 11 otherwise.

The total edge cost of the quasi-tour T is thus at most

(
3

2
(τ − 1)(4pcθ + 1) + 6pcθ + 10

)
m + Δ.

Step 2 Observe that the quasi-tour T constructed in Step 1 may have at most ν + 1
connected components (one for each bi-wheel and one containing s), which needs to
be connected to create a tour.

Since all unforced edges have cost 1, we can connect components by double using
an unforced edge that connects them (this is possible as G[J ]was a connected graph).
This doesn’t increase the cost of quasi-tour but decreases the number of components.
Repeating this will result in a connected tour T of the cost

(
3

2
(τ − 1)(4pcθ + 1) + 6pcθ + 10

)
m + 2ν + Δ. �

4.2 How to define an assignment from a tour

Now we need to prove the opposite direction of the gap preserving reduction: given a
tour inG[J ] the task is to define an assignment to the variables of the system equations
I of Hybrid(Wk,τ , p) such that weight of unsatisfied equations is in a correlation with
cost of a given tour.

Lemma 2 If there is a tour in G[J ] with cost
(
3

2
(τ − 1)(4pcθ + 1) + 6pcθ + 10

)
m + Δ − 2,

then there is an assignment to the instance J that leaves unsatisfied equations of weight
at most Δ · max{1, pm} = Δ

θ
, where θ = 1

max{1,pm } .

The high-level idea of the proof is to partition the vertex set ofG[J ] into the gadget-
based subgraphs similarly as in the proof of Lemma 1. For each such subgraph we give
a lower bound on the local edge cost of any quasi-tour restricted to it, which in fact
corresponds to cost of the tour constructed in Lemma 1. If a given quasi-tour behaves
inside a gadget differently, its cost must be obviously higher. The difference between
the full tour’s local cost and the lower bound is called the credit of the gadget. Based
on the tour we define an assignment for J and show that the total sum of credits can
be used to bound from above the weight of unsatisfied equation, where the total sum
of credits is at most Δ.

Proof LetG[J ](V , E) be the graph constructed at the beginning of Sect. 4. Obviously,
we can suppose that T contains at most two copies of each edge. Otherwise we can
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simply remove two copies of the same edge from T and decrease the cost of the initial
tour. If T contains two copies of the same unforced edge, removing both copies from
the tour results in a quasi-tour, where the number of the connected component may
increase by 1. If this is the case, then the cost of 2, which corresponds to the cost of
removed copies of unforced edges, is paid to reconnect the tour. Therefore removing
two copies of the same edge doesn’t increase the cost of the tour, but may result in a
quasi-tour.

Thus, we can transform the initial tour T without increasing its initial cost into
a quasi-tour without multiple unforced edges and with at most two copies of forced
edges.

Consider the following partition of V : (A) 3
2 (τ −1)m sets of size 2 vertices (‘match-

ing pairs’) corresponding to the gadgets H2M covering all checker vertices, (B)m sets
of size 11 vertices corresponding to the gadgets H3Q for size-three equations, (C) a
single vertex {s}.

Obviously, local edge cost of the subgraph from part (C) is 0 due to the method how
we calculate the local cost of T (cost of all edges adjacent to s is fully contributed to
the neighbourhoods of s), therefore part (C) doesn’t need to be considered further.

In the following we analyse how the quasi-tour T can locally traverse the vertices
inside the subgraphs in (A) and (B) and based on that we define an assignment to J .

As it follows from the construction, only the vertices from the bi-wheels correspond
to the variables of J . Observe that each vertex of a bi-wheel is adjacent to exactly two
forced and two unforced edges. For a given quasi-tour T , a bi-wheel vertex v (at the
same time also variable) of G[J ] is called honest if the quasi-tour T uses both forced
edges adjacent to v exactly once, otherwise the vertex is called dishonest. Now we
define the honest assignment used for all honest variables (checkers and contacts): if
the quasi-tour T for the honest vertex v also contains both unforced edges adjacent to
it, then we assign 1 to v, and 0 otherwise.

Case A: The matching gadgets H2M

In this part we define the assignment to the checker variables of the bi-wheels. Let
W :=(Wk,τ , p) be a fixed copy of the bi-wheel gadget H2M for a variable x ∈ ν(I )
and M := {xut , xnq } be a fixed matching pair from W .

The variables from M appear in the following equations: a matching equation
xut ⊕ xnq = 1 and four incident cycle equations xut−1 ⊕ xut = 0, xut ⊕ xut+1 = 0,
xnq−1 ⊕ xnq = 0, xnq ⊕ xnq+1 = 0 (indices are modulo kτ ).

The full local cost of any quasi-tour on M is c∗
T (M) ≥ 4pcθ + 1: 4pcθ for two

forced edges and 1 for two unforced edges, hence

crT (M) = c∗
T (M) − (4pcθ + 1). (1)

Clearly, xut is the honest vertex if and only if xnq is the honest vertex, therefore we
split the discussion into two independent cases: honest matching pairs and dishonest
matching pairs.
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Case A.1 Honest checker variables
We use the honest assignment for all honest checker vertices: it means if the quasi-tour
T contains both unforced edges adjacent to xut (resp. xnq ), then we assign 1 to x

u
t (resp.

xnq ), 0 otherwise.
If we use such assignment for the honest checkers in all matching pairs in W ,

the cycle equation xut ⊕ y = 0 (resp. xnq ⊕ y = 0) is satisfied, when the adjacent
vertex y is a honest checker. In other two cases, when y is a dishonest checker or a
contact vertex, such equations are included in case of dishonest checkers (Case A.2)
or contacts (case B).

Therefore we only need to discuss a matching equation xut ⊕ xnq = 1 in this part.
Obviously, if T selects two unforced edges for only one variable, hence one checker

variable is set to 1 and the second to 0, crT (M) = 0, but the matching equation is
satisfied, so no credit is needed.

Otherwise, a quasi-tour on M can either contain two unforced edges adjacent to
both xut , x

n
q or to be a connected component without any unforced edges. The full local

cost of the quasi-tour T is in both cases c∗
T (M) = 4pcθ + 2, hence crT (M) = 1. In

both these cases the honest assignment sets the same value to both variables, therefore
the equation xut ⊕ xnq = 1 is not satisfied, but there is enough credit to pay for
it.

To summarise, the cycle equations incident to M are either satisfied (if a neigh-
bourhood is a honest checker) or they are considered later. If the matching equation
is satisfied, then crT (M) = 0, if not then crT (M) = 1:

– If pm ≤ 1 the credit crT (M) is sufficient to pay for the unsatisfied matching
equation,

– If pm > 1 then the credit is not sufficient, the weight of an unsatisfied equation is
pm · crT (M). That is why we aim in this scenario to bound from above the weight
of unsatisfied equations by max{1, pm} · crT .

Case A.2 Dishonest checker variables
If M := {xut , xnq } is a dishonest matching pair, then the quasi-tour must use one of the
incident forced edges twice. Therefore, the full local cost of T is at least 6pcθ + 1,
hence the credit is crT (M) ≥ 2pcθ due to (1).

In this case we define an assignment to the variables from M in such a way that
the matching equation xut ⊕ xnq = 1 is satisfied, and the credit is used for unsatisfied
incident cycle equations.

Now we consider an assignment to the all dishonest matching pairs inW all it once
and show that there is an assignment for dishonest checker variables for which at most
half of the cycle equations incident to the dishonest checker variables is not satisfied.

Let MDH be a set of dishonest matching pairs in W . Clearly,

∑

e∈MDH

crT (e) ≥ 2pcθ |MDH |.

Let us denoteCDH the union of quadruples of cycle edges incident to all e ∈ MDH .
Obviously, |CDH | ≤ 4|MDH |.
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Now consider random assignments to all pairs MDH satisfying xut ⊕ xnq = 1 for
every xut x

n
q ∈ MDH . The expected number of unsatisfied cycle equations in CDH is

at most 1
2 |CDH | ≤ 2|MDH | so the weight of unsatisfied equations is at most

2pc|MDH | ≤ 1

θ
·

∑

e∈MDH

crT (e) = max{1, pm}
∑

e∈MDH

crT (e).

Hence similarly to Case A.1, the weight of unsatisfied equations is bounded from
above by max{1, pm} · crT .
Case B: The 3-variable gadget H3Q

In this part we define the assignment to the contact variables of the bi-wheels.
Let H3Q := H3Q

j , j ∈ {1, . . . ,m}, be a fixed 3-variable gadget on the vertex

set V 3Q = {x, y, z, xr , xl , yr , yl , zr , zl , er , el}. We’ll discuss the individual cases
depending on how many vertices from {x, y, z} are dishonest in H3Q with regard
to T .

Case B.1. All three vertices x , y, zare honest Any unforced edge is contained in the
quasi-tour T at most once, therefore to keep the degree of the vertices x , y, z balanced
in T , the quasi-tour T either contains both unforced edges or none for every x , y, z.

To balance the degree of the vertices γ l , γ r in T , where γ ∈ {x, y, z}, either the
edges γ l el , γ r er are in T , or T contains the edge γ lγ r . In the latter case the additional
cost at least 1 must be added for connecting the quasi-tour on the vertex set γ , γ l ,
γ r to the rest of the tour either using two different unforced edges incident to γ or
using a multiple unforced edge. Hence, the contribution of the vertex set γ l , γ r , γ

to the cost of any tour is at least 3 + 2pcθ , where the full cost of the edges γ l el ,
γ r er is added to the vertices γ l , γ r to simplify counting. This holds for any vertex
γ ∈ {x, y, z}, therefore the vertices x , y, z contribute together to the cost of T with at
least (9 + 6pcθ).

The degree of the vertices el , er may be balanced in T through the edges γ l el , γ r er ,
whose cost is already counted, but cost at least 1 needs to be added for forced edges
els, er s. (If the degree of the vertices el , er is not balanced in T through the edges
γ l el , γ r er , then multiple used of forced edges els, er s contributes at least 2.)

To summarise, c∗
T (V 3Q) ≥ 6pcθ + 10, and the credit of H3Q with respect to the

quasi-tour T is

crT (V 3Q) = c∗
T (V 3Q) − (6pcθ + 10). (2)

In this subcase we use the honest assignment for the contact honest variables: for
each γ ∈ {x, y, z}, we set γ = 1 if the quasi-tour T uses both unforced edges incident
on γ , and 0 otherwise.

To recall, eachvariableγ appears in four cycle equations and the size-three equation.
Due to the properties of the construction any contact vertex in the cycle is incident
only to a checker: (i) if a honest checker is incident with a contact variable in the bi-
wheel, the honest assignment sets the same value to both honest variables (1, if they
are adjacent by an edge, 0 otherwise), therefore the corresponding cycle equations are
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always satisfied; (ii) if a dishonest checker is incident with a contact variable in the
bi-wheel, weight of all such unsatisfied cycle equations is considered in Case A.2 for
dishonest checkers.

Therefore we need to prove that the credit crT (V 3Q) is enough to pay only for
unsatisfied the size-three equation using the honest assignment to its contacts x , y, z.
We’ll discuss the possible options separately.

• If x + y + z = 0 or x + y + z = 2 then the equation x ⊕ y ⊕ z = 0 is satisfied.
As it has been proved before, the full local cost of any tour T on the vertex V 3Q is
at least (6pcθ + 10), and therefore crT (V 3Q) ≥ 0, but no credit is needed to pay
for the size-three equation.

• If x + y + z = 1, then the assignment failed to satisfy the size-three equation of
weight 1. We assume that x = y = 0 �= z holds, the other cases are symmetrical.
Now we want to prove that under such constraints the full local cost of the tour T
inside H3Q is always at least c∗

T (V 3Q) ≥ 6pcθ + 11, hence crT (V 3Q) ≥ 1 to pay
for the unsatisfied size-three equation. Let us discuss two subcases:

– If there is an edge γ lγ r ∈ T for some γ ∈ {x, y}, then we need to increase the
cost about 2 for connecting a connected component on the vertex set {γ, γ l , γ r }
to the rest of the tour. Hence c∗

T (V 3Q) ≥ 6pcθ + 11, therefore crT (V 3Q) ≥ 1
in this case as it follows from (2).

– If this is not a case, then the only way how the vertices xr , xl , yr , yl are
balances with respect to T is elγ l , erγ r ∈ T for both γ ∈ {x, y}. Because the
vertices el , er must also be balanced in T , we obtain that either er zr , el zl ∈ T
or alternatively, the forced edges er sF , elsF were usedmore than once together
with zr zl . Again, c∗

T (V 3Q) ≥ 6pcθ + 11, hence crT (V 3Q) ≥ 1.

• If x = y = z = 1, then similarly, the assignment failed to satisfy the size-three
equation with weight 1 and we need to prove that c∗

T (V 3Q) ≥ 6pcθ + 11 for the
tour T which includes both unforced edges for each vertex x , y, z.

If T contains all three edges xl xr , yl yr , zl zr , then all the vertices γ , γ l , γ r , for
each γ ∈ {x, y, z} are balanced in T , therefore the edges γ r er , γ l el can’t be in the
quasi-tour T and the degree of er , el must be balanced with multi-use of the forced
edges er sF , elsF . Therefore, c∗

T (V 3Q) ≥ 6pcθ + 11.
If there exists γ ∈ {x, y, z} such that γ l el or γ r er are in T , then both γ l el , γ r er

must be in T and the vertex set γ, γ l , γ r (including the full cost of edges γ l el , γ r er )
contributes at least 4 + 2pcθ to the cost of T , therefore c∗

T (V 3Q) ≥ 6pcθ + 11.
Summary for the case of x , y, z being honest contacts: if size-three equation is not

satisfied then crT (V 3S) ≥ 1; all incident cycle equations are either satisfied or are
considered in Case A.2 of dishonested checkers.

Case B.2. At least one of the vertices x , y, z is dishonest
We start with the following observation.
Observation Suppose that a quasi-tour T is dishonest at a vertex γ ∈ {x, y, z}. Then
it is possible to extend the initial honest assignment defined for the set of honest
variables from {x, y, z} (this can also be an empty set) such that the size-three equation
x ⊕ y ⊕ z = 0 is satisfied, and there is sufficient credit to pay for one cycle equation
incident to γ . �
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Proof of Observation If γ is incident to at least one dishonest checker then the cor-
responding cycle equation is covered in Case A.2, hence at most one incident cycle
equation needs to be discussed here

If both cycle neighbours adjacent to γ are honest, as γ is the dishonest vertex, due
to the balanced degree at γ in T , only one of the unforced edges from γ can be used
in the quasi-tour T . Consequently, one of cycle neighbours of γ is set to 1 and the
other to 0. Therefore we can chose any assignment for γ (e.g. the one satisfying the
size-three equation) and show that we have enough credit to pay for one cycle equation
associated with γ . �

In what follows we explain that for each dishonest variable γ ∈ {x, y, z} there is
always sufficient credit to pay for one cycle equation. The discussion will depend on
the number of the dishonest variables from {x, y, z}.

Obviously, for any dishonest variable γ ∈ {x, y, z} only one of the two incident
forced edges is used twice in a quasi-tour T . If this is not a case then one copy of the
edges γ rγF , γ lγF can be replaced by γ rγ l reducing the cost of T by 2pcθ > 0.

• Suppose all three vertices x , y, z use a forced edge twice in T . The cost of forced
edges inside H3Q is at least 9(pcθ + 0.5) + 1, and the unforced edges incident to
x , y, z contribute 1.5 to the local edge cost in order to balance the degree at these
vertices in T . Three vertices of the form γ α , for γ ∈ {x, y, z} and α ∈ {l, r} have
odd degree in T and any quasi-tour must use three unforced edges inside H3Q to
balance their degrees. Hence, c∗

T (V 3Q) ≥ 9pcθ + 10, and crT (V 3Q) ≥ 3pcθ due
to (2). Therefore, if we chose an assignment satisfying the size-three equation,
there is sufficient credit crT (V 3Q) ≥ 3pcθ to pay for 3 cycle equations which is
enough due to the observation above.

• Suppose exactly two of the vertices x , y, z use a forced edge twice in T , let’s
assume x , y (the other cases are symmetrical). For the honest variable z we use
the honest assignment: 1, if both unforced edges incident to z are used in T ; 0
otherwise. Then obviously, the cycle equations for edges incident with z are either
satisfied or are considered in Case A.2. The contribution of the forced edges inside
H3Q to the cost of T is at least 8(pcθ + 0.5) + 1, and unforced edges incident to
x , y contributes to the local edge cost by 1. One of the vertices xl , xr and one of
yl , yr have odd degree in T , therefore any quasi-tour needs to use two unforced
edges from H3Q to balance the degrees in T which increases the cost by 2.

Finally, the degree of the vertices zl , zr must be balanced in the quasi-tour T . If
two unforced edges incident to zl , zr are in T , we have the full local cost c∗

T (V 3Q) ≥
8pcθ+10, hence crT (V 3Q) ≥ 2pcθ . Otherwise if the edge zl zr is in T , then either two
unforced edges incident on z are used or the quasi-tour pays 2 extra for a component,
so again c∗

T (V 3Q) ≥ 8pcθ + 10 and crT (V 3Q) ≥ 2pcθ .
Therefore we can select an assignment for x , y that together with the honest assign-

ment for z satisfies the size-three equation in such a way that there is sufficient credit
to pay for at most 2 cycle equations incident on x , y, which is enough following the
observation above.

• Suppose that only one of x , y, z has an incident forced edge used twice in T , let’s
assume x (the other cases are symmetrical). For y and z we set the honest assign-
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ment and similarly to the previous case, the cycle equations for edges incident to
y and z are either satisfied or are considered in Case A.2.

The contribution of the forced edges to the full local cost of T is at least 7(pcθ +
0.5) + 1, and the local edge cost 0.5 for one unforced edge incident to x .

Also, at least one unforced edge incident on xl or xr is used, since one of them has
odd degree in T . For yl , yr either two unforced edges are used to balance their degree
in T , or if yl yr ∈ T , then either unforced edges incident on y contribute 1 (or the
quasi-tour pays extra for a component), hence the contribution to the cost to balance
the degree of the vertices yl , yr is at least 2. With the same reasoning for zl , zr , we
get that the full local cost is c∗

T (V 3Q
j ) ≥ 7pcθ + 10, hence crT (V 3Q) ≥ pcθ .

Now selecting an assignment for x that satisfies the size-three equation, we have
sufficient credit to pay for one cycle equation incident on x which is enough due to
observation above.

Summary for the quasi-tour with a dishonest vertex: we have an option to choose an
assignment for x , y, z that satisfies the size-three equation; and theweight of unsatisfied
incident cycle equations that are not considered inCaseA.2 can be bounded fromabove
by 1

θ
crT (V 3Q) = max{1, pm} · crT (V 3Q).

Let us now conclude our analysis. To calculate the cost of the quasi-tour T , the
vertex set is partitioned into two types of gadget-based subgraphs covering the entire
set V which were considered separately:

– Case A: the size of 2 gadgets H2M (‘matching pairs’), there are 3
2 (τ − 1)m such

gadgets;
– Case B: the size of 11 gadgets H3Q (‘size-three equation’), there are m such
gadgets; the edges incident to s are counted in this case even if s is not part of the
gadget.

Following the discussion in both cases, the cost of any quasi-tour must be at least( 3
2 (τ − 1)(4pcθ + 1) + 6pcθ + 10

)
m and following the assumption of the theorem,

the sum of full local costs must be

c∗
T (V ) ≤

(
3

2
(τ − 1)(4pcθ + 1) + 6pcθ + 10

)
m + Δ,

where the additional cost 2 may need to be added to connect the component with the
singleton s to the rest of the tour. Therefore the sumof all credits crT is atmostΔ. Since
we have already argued that the max{1, pm} ∑

crT bounds from above the weight of
all equations unsatisfied by the defined assignment in both cases locally, this concludes
the proof. �
Theorem 4 If (pc, pm, τ ) is an admissible triple then it is NP-hard to approximate
the Travelling Salesman problem to within any constant approximation ratio less
than

1 + 1

3(τ − 1)(4pc + max{1, pm}) + 12pc + 20max{1, pm} .
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Proof Let ε ∈ (0, 1
4 ). Consider a (2k, τ )-bi-wheel with large enough k, which is

an amplifier with cycle weights pc and matching weights pm . We have instances
of Hybrid(Wk,τ , p) with ν copies of a bi-wheel (Wk,τ , p), m equations of the form
x ⊕ y ⊕ z = 0 each of weight 1, 3τm equations of the form x ⊕ y = 1 each of
weight pm with the following NP-hard gap results: It is NP-hard to decide whether
there is an assignment to the variables that leaves unsatisfied equations of weight at
most εm, or every assignment to the variables leaves unsatisfied equations of weight
at least (0.5− ε)m. Due to Lemma 1 and 2 we now know that for produced instances
G[J ] of TSP it is NP-hard to decide whether there is a tour with cost at most

( 3
2 (τ −

1)(4pcθ + 1) + 6pcθ + 10
)
m + 2ν + εm, where θ = 1

max{1,pm } or all tours have cost
at least

( 3
2 (τ − 1)(4pcθ + 1) + 6pcθ + 10

)
m + (0.5 − ε)m · θ − 2.

The ratio between these two cases can get arbitrarily close to

1 + 1

3(τ − 1)(4pc + max{1, pm}) + 12pc + 20max{1, pm}
by appropriate choices of ε > 0 and large enough k. �

5 Random construction of bi-wheel amplifiers

As it follows directly from Theorem 4, the better bounds for the random constructions
of bi-wheel amplifiers can directly improve lower bounds for approximability of the
TSP. In this section we only focus on case pc < 1 which will be enough to improve
known lower bounds for TSP.

Theorem 5 The triple (pc = 1
2 , pm = 1, τ = 11) is admissible, hence for every large

enough k ≥ k0 there is a (2k, 11)-bi-wheel that is an amplifier with cycle weights
pc = 1

2 and matching weights pm = 1.

Proof Let an integer k > 0 be large enough. Consider a bi-wheel Wk,11 with two
disjoint cycles, each on 11k vertices,

V u = {1u, 2u, . . . , (11k)u} and V n = {1n, 2n, . . . , (11k)n}

with sets of k contacts D = Du ∪ Dn , where

Du = {11u, (11 · 2)u, . . . , (11 · k)u} and Dn = {11n, (11 · 2)n, . . . , (11 · k)n},

the remaining vertices V u\Du and V n\Dn are checkers. That means, that any two
consecutive contacts in the bi-wheel cycles are separated by a chain of 10 checkers.
For a given subset A ⊆ V , the fragments of A are all connected components of A
within cycles of V u and V n together.

Now select uniformly at randoma perfectmatching fromcheckers V u\Du to check-
ers V n\Dn . We claim that with a high probability a bi-wheel created in this way is a
weighted amplifier with weights pc = 1

2 and pm = 1.
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Such a randomly constructed bi-wheel fails to have required amplification proper-
ties if the system of so-called bad sets,

B := {B ⊆ V : p(E(B, B)) < min{|D ∩ B|, |D ∩ B|}

is nonempty. IfB �= 0, it also contains aminimal bad set, where byminimal we mean
an element of B that is minimal with respect to the partial order � defined for any
A, B ⊆ V as:

A � B iff |(|(A�B) ∩ D| ≤ p(E(B, B)) − p(E(A, A))

and if A∩ D = B ∩ D and p(E(B, B)) = p(E(A, A)) then the number of fragments
of A is at most the number of fragments of B.

These minimal bad sets have certain more restrictive properties that allow better
estimation of the upper bound of probability that such sets B exist in a randomly
constructed bi-wheel. These results are derived in details in Chlebík and Chlebíková
(2003) for the case of wheel-amplifiers. The methods and results can be extended in
straightforward way to the weighted bi-wheel case as well.

Let us mention some of these properties: given a bad set B, then

– Fact 1: Any fragment of a minimal bad set B (and of B) contains at least 2 vertices.
– Fact 2: If an end vertex of a fragment of a minimal bad set B is a checker x ,
then this checker is matched with a vertex from B as well. The same is true for
fragments of B.

In our strategy to prove that probability that a minimal bad set exists is < 1, we
need to understand how for a given subset S ⊆ V \D of checkers to estimate from
above the probability (over the random matchings of V u\Du to V n\Dn) that S is the
trace of a minimal bad set B in the checker vertices V \D, i.e., S = B\D.

We want to take the sum of these probabilities over all potentially minimal bad sets
and prove that the sum is< 1. It follows that with high probability, no set is a minimal
bad set and therefore a randomly constructed bi-wheel is a weighted amplifier with
parameters (pc = 1

2 , pm = 1, τ = 11).
Now suppose that S ⊆ V \D with |S| = w, what is the probability that there are

exactly c matching edges with exactly one endpoint in S?
We can observe that the most interesting case is the balanced one, namely when

S contains equal (or nearly equal) number of checkers from each side V u , V n , as
follows:
Suppose that S contains w

2 + l checkers on one side, and w
2 − l checkers on the side,

l ≥ 0. The probability that exactly cmatching edges have exactly one endpoint in S is

P(w, c, l) =
=

(w
2 + l
c
2 + l

)(w
2 − l
c
2 − l

)(
10k − w

2 − l
c
2 − l

)(
10k − w

2 + l
c
2 + l

)
×

×
( c
2

+ l
)
!
( c
2

− l
)
!
(

w
2 − c

2

)! (10k − w
2 − c

2

)!
(10k)!
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We observe that in such scenario to create exactly c matching edges between S and S
we need to select more endpoints, c

2 + l, on the side where S is larger, since after we
remove checkers matched from S to S we must have a perfect matching for the rest of
S (and S).

Interestingly, P(w, c, l) achieves maximum for l = 0. To see that, one can simplify
P(w,c,l+1)
P(w,c,l) as

(
1 − 2l+1

c
2+l+1

) (
1 + 2l+1

11
2 −l

) (
1 + 2l+1

10k− w
2 −l

)
and to prove that this quotient

is for relevant range of parameters less than < 1 (using the fact 1 + x ≤ ex ).
We consider several parameters for a potentially minimal bad set such as min{|D∩

B|, |D ∩ B|}; the number of fragments of B in cycles V u and V n together (this is the
same as the number of fragments of B). As p(E(B, B)) < min{|D ∩ B|, |D ∩ B|}, it
also gives estimate f < min{|D ∩ B|, |D ∩ B|}.

Also, with S := B\D we have an upper bound on the possible c for which we have
exactly c matching edges with exactly one endpoint in S, namely

c + f < min{|D ∩ B|, |D ∩ B|}.

For any feasible vector of parameters we have in hand the probability P(w, c, l)
computed above. Using restrictions of a minimal bad set we estimate from above
the number of ways how such a bad set can be generated. We use simple sum of
probabilities for the union bound. Using Stirling’s formula and the binary entropy
function for bounding 1

k log of that probability, we can see that it stays negative and
bounded away from zero.

This will complete the proof that with high probability we constructed bi-wheel
above amplifiers with parameters (pc = 1

2 , pm = 1, τ = 11). �

6 Conclusion

The methods of this paper provide a new motivation for the study of expanding prop-
erties of random graphs. As we have demonstrated, introducing the parametrised
weighted amplifiers and weighted low occurrence Constraint Satisfaction prob-
lems as intermediate steps in the NP-hard gap reductions, allows more flexibility in
fine-tuning their expanding parameters. We show that already slight improvement of
known expander valuesmodestly improve the hardness of approximation for TSP from
the current best value 123

122 (Karpinski et al. 2015) to the new value 117
116 . The introduced

method of weighted amplifiers (or expanders) can be of independent interest. Such
technique could be used in the gap preserving reductions for other edge-weighted
optimisation problems to improve their approximation hardness results.
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