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Abstract
The paper on hand approaches the classical makespan minimization problem on iden-
tical parallel machines from a rather theoretical point of view. Using an approach
similar to the idea behind inverse optimization, we identify a general structural pat-
tern of optimal multiprocessor schedules. We also show how to derive new dominance
rules from the characteristics of optimal solutions. Results of our computational study
attest to the efficacy of the new rules. They are particularly useful in limiting the search
space when each machine processes only a few jobs on average.

Keywords Scheduling · Identical parallel machines · Makespan · Solution structure ·
Dominance rules

1 Introduction

The present paper is concerned with the multiprocessor scheduling problem. Given
a set M = {M1, . . . , Mm} of m ≥ 2 identical parallel machines and a set
J = {J1, . . . , Jn} of n > m independent jobs with positive processing times
p1, p2, . . . , pn , the objective is to assign the jobs to the machines so that the latest
machine completion time (also called makespan) Cmax = max{C1, . . . ,Cm}—with
Ci being the sum of processing times of all jobs assigned to Mi—is minimized. Pre-
emption is not allowed. Using the three-field notation of Graham et al. (1979) this
problem is abbreviated as P||Cmax. In the literature, P||Cmax is also known as the
makespan minimization problem on identical parallel machines.
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The NP-hard problem P||Cmax (see Garey and Johnson 1979) represents one of
the very basic and fundamental problems in scheduling theory. It has received and
still receives a lot of attention from both the academic world and practitioners. The
large body of literature, that has evolved over the years, contains papers on approxi-
mation algorithms, (meta-)heuristics, exact solution procedures, and lower bounding
techniques.

From the numerous publications on (meta-)heuristic algorithms within the last two
decades, we selected the following few ones to outline the broad range of near-optimal
solution approaches. Alvim and Ribeiro (2004) exploited the “dual” relation between
P||Cmax and the bin packing problem (BPP). They proposed a hybrid improvement
heuristic that consists of construction, redistribution, and improvement phases. In the
latter phase, tabu search is applied. Frangioni et al. (2004) proposed new neighborhood
operators for local search algorithms that perform multiple exchanges of jobs among
machines. Dell’Amico et al. (2008) presented an effective meta-heuristic algorithm
based on the scatter search paradigm. Kashan and Karimi (2009) presented a discrete
particle swarm optimization algorithm and a hybrid version, that makes use of an effi-
cient local search algorithm to further improve on the makespan. Paletta and Vocaturo
(2011) developed a composite heuristic. In the construction phase, families of partial
solutions are combined until a feasible solution is generated. The construction phase is
followed by an improvement phase. Local search techniques are used to improve on the
initial solution. Davidović et al. (2012) applied a bee colony optimization approach. In
the same year, Chen et al. (2012) proposed a dynamic harmony search algorithm and a
hybrid version, that additionally performs a variable neighborhood search based local
search. Among the most recently published meta-heuristic algorithms are the group-
ing evolutionary strategy of Kashan et al. (2018) and an improved cuckoo search of
Laha and Gupta (2018). Only recently, Della Croce et al. (2019) and Della Croce and
Scatamacchia (2018) have revisited the famous longest processing time (LPT) rule of
Graham (1969).

A few approaches towards the exact solution of P||Cmax have also been published.
Dell’Amico and Martello (1995) implemented a depth-first branch-and-bound algo-
rithm.They also derived tight lower bounds from the relationship between P||Cmax and
BPP. Mokotoff (2004) designed a cutting plane algorithm. Dell’Amico et al. (2008)
proposed a specialized binary search and a branch-and-price scheme. Haouari and
Jemmali (2008) suggested a new symmetry-breaking branching scheme and lifting
procedures to tighten lower bounds. Lenté et al. (2013) derived a new exponential-
time algorithm from their extension of the Sort and Searchmethod. Mnich and Wiese
(2015) presented the first fixed-parameter algorithm for P||Cmax. Recently, Mrad and
Souayah (2018) proposed an arc-flow formulation.

Despite the large number of publications, only little is known about the structure
of optimal solutions. This might be due to the fact that P||Cmax itself has very lit-
tle structure compared to other NP-hard optimization problems. To the best of our
knowledge, only Dell’Amico and Martello (1995) addressed this issue casually by
developing upper and lower bounds on the number of jobs per machine. These bounds
are then used to derive lower bounds on the optimal makespan.

To close this gap, we aim at identifying general characteristics of optimal multipro-
cessor schedules. Using an approach that is to some extent related to the concept of
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inverse optimization, we show that a schedule has to have a specific characteristic in
order to be (uniquely) optimal. This allows us to restrict the solution space effectively
during the search for an optimal schedule. In one of our earlier papers (Walter et al.
2017), we have already applied this approach successfully to the exact solution of
the “dual” problem P||Cmin, i.e., the problem of maximizing the minimum machine
completion time. As the said paper overtook the present one during the review process,
it does not contain any proofs of the underlying mathematical theory. However, we
think that it is important to provide the formal results as well. This makes it easier for
future researchers to transfer them to other combinatorial optimization problems such
as the bin packing problem. The mathematical groundwork, therefore, constitutes the
main contribution of this paper.

We identify and prove a general characteristic of optimal multiprocessor schedules
and translate it into new dominance rules. Although this paper focuses on theoretical
foundations, we implemented these rules in order to determine their benefit in a com-
putational study. Usedwithin a rather simple depth-first search, we obtained promising
results: The new rules are quite effective in eliminating dominated (partial) solutions
when each machine processes only a few jobs on average (i.e., 2 < n/m < 4).
Those instances are known to be typically more difficult to solve than large-sized
instances with multiple jobs per machine (cf. the computational results published in
Dell’Amico and Martello (1995), Dell’Amico et al. (2008) and Haouari and Jemmali
(2008)). With increasing n/m, bounding arguments often become tighter (cf., e.g.,
Haouari et al. 2006) and this helps to verify optimality more quickly.

Our paper is divided into a theoretical part (Sects. 2, 3) and a practical part (Sects. 4,
5). The theoretical part represents themain contribution.Here,weundertake a thorough
investigation of the solution space and identify a general characteristic of optimal
multiprocessor schedules. We then translate our findings into new dominance rules
and discuss prerequisites for their application within a tree search. In the second part,
we describe the elements of the implemented branch-and-bound algorithm and address
the efficient implementation of the new dominance rules. We then analyze the results
of our experimental study and assess the benefit of the new rules. Finally, Sect. 6
concludes the paper and describes future research directions.

2 A theoretical study of the solution space

In this section we provide a profound theoretical study of the underlying solution
space. Using an approach similar to the idea behind inverse optimization (cf., e.g.,
Ahuja and Orlin 2001), we aim at the identification of a general characteristic of
optimal multiprocessor schedules. In the remainder of the paper we presuppose the
jobs to be labeled so that p1 ≥ p2 ≥ · · · ≥ pn .

2.1 A symmetry-breaking solution representation

We represent a schedule S as a sting of length n where each component can take the
values {1, 2, . . . ,m} with S( j) = i meaning that job j is assigned to (or processed
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by) machine i . Noticing that there always exists an optimal solution with S(1) = 1,
S(2) ∈ {1, 2}, and so on, we restrict the values of S( j) as follows:

1. S(1) = 1

2. S( j) ∈
{
1, . . . ,min{m, 1 + max1≤k≤ j−1 S(k)}

}
for all j = 2, . . . , n.

With these restrictions we eliminate symmetric solutions that result from a simple
renumbering of the machines. We, therefore, call the remaining solutions non-
permuted schedules. It is readily verified that the number of non-permuted schedules
is approximately equal to mn/m!. Throughout this paper we use the aforementioned
symmetry-breaking solution representation. For brevity, we often omit the adjunct
“non-permuted” when we speak of schedules.

2.2 Methodological approach: the concept of potential optimality and the path
conditions

Our study originates from the question whether there exists a general pattern that
characterizes non-optimal solutions no matter what selection of processing times is
given. The existence of such a characteristic would allow us to limit the solution space
to those schedules that do not have this characteristic and therefore have the potential
to become (uniquely) optimal. We call them potentially (unique) optimal schedules.

Our main goal is to identify such a characteristic and to find a preferably small
set of schedules that contains at least one optimal solution for any feasible input
data. If this would succeed, then it suffices to search this set for an optimal schedule.
To achieve this goal we apply an approach that is related to the concept of inverse
optimization (see Ahuja and Orlin 2001; Heuberger 2004). In inverse optimization
one aims at determining unknown exact values of (some) adjustable parameters—
such as processing times—within given boundaries so that a pre-specified solution
becomes optimal. Until now, this concept has been applied to scheduling problems
only by very few researchers (e.g., Brucker and Shakhlevich 2009, 2011; Koulamas
2005). Slightly deviating from the basic idea of inverse optimization, we consider
arbitrary schedules and ask whether we can select n feasible processing times so that
the given schedule becomes uniquely makespan-optimal. If no such set of processing
times exists, we can eliminate this schedule from the solution space.

Before we start with the characterization of potentially optimal solutions, we intro-
duce a new way of illustrating schedules. Usually, Gantt charts are used to display
which machine performs which job and what is the start and end time of processing.
However, as our methodological approach mainly builds on the number of jobs on
each machine rather than on processing times, we propose to illustrate a schedule S
by

(m
2

)
paths P(i1,i2)

S (1 ≤ i1 < i2 ≤ m)—one for each pair of machines. Simply put,

the (i1, i2)-path P(i1,i2)
S is a string of length n+ 1 where the j-th entry ( j = 1, . . . , n)

represents the difference between the number of jobs on machine i1 and i2 after the j
longest jobs have been assigned according to schedule S. We set P(i1,i2)

S (0) = 0 for
each path to represent initially empty machines. Example 2.1 shows how we depict
paths.
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Example 2.1 Let n = 4, m = 3 and consider the non-permuted schedule
S = (1, 2, 3, 2). The three corresponding paths are P(1,2)

S = (0, 1, 0, 0,−1),

P(1,3)
S = (0, 1, 1, 0, 0), and P(2,3)

S = (0, 0, 1, 0, 1). They are illustrated below.

The difference P(i1,i2)
S ( j)− P(i1,i2)

S ( j − 1) between any two successive entries can
take only one of the three values 1, −1, or 0 for each path. A difference equal to 1
means that job j is assigned to machine i1 (illustrated by an upward line), a difference
equal to −1 means that job j is assigned to machine i2 (illustrated by a downward
line), and if the difference equals 0 this means that j is assigned neither to machine i1
nor to i2 but to one of the other m − 2 machines (illustrated by a horizontal line).

As will become apparent in the next two subsections (cf. Theorems2.3 and 2.5),
schedules in the set S(n,m) (n > m ≥ 2) are central to the concept of potentially
unique optimal P||Cmax-solutions. We define this set as follows:

S(n,m) =
{
S : for each pair (i1, i2)where 1 ≤ i1 < i2 ≤ m

either “P(i1,i2)
S ( j) < 0 for at least one j ∈ {3, . . . , n}”

or “P(i1,i2)
S ( j) = 1 for j = j1, . . . , j2 (0 < j1 ≤ j2 < n) and

P(i1,i2)
S ( j) = 0 for j = 0, . . . , j1 − 1, j2 + 1, . . . , n”

}
. (1)

The set S(n,m) contains all schedules S that feature two characteristics: (i) each
machineprocesses at least one job and (ii) eachpath has at least onenegative entrywhen
the total number of jobs on the two corresponding machines is greater than 2. We say
that schedules in S(n,m) satisfy the path conditions or, equivalently, each of the

(m
2

)
paths satisfies the path condition. Returning to Example2.1, schedule S = (1, 2, 3, 2)
is obviously not in S(4, 3) as the (2, 3)-path does not satisfy the path condition,
whereas the other two paths satisfy the path condition.

Example 2.2 The elements of S(n, 2) (n = 3, 4, 5) are:

S(3, 2) = {(1, 2, 2)}; S(4, 2) = {(1, 2, 2, 2), (1, 2, 2, 1)};
S(5, 2) = {(1, 2, 2, 2, 2), (1, 2, 2, 2, 1), (1, 2, 2, 1, 2),

(1, 2, 2, 1, 1), (1, 2, 1, 2, 2), (1, 1, 2, 2, 2)}.
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The elements of S(n, 3) (n = 4, 5, 6) are:

S(4, 3) = {(1, 2, 3, 3)}; S(5, 3) = {(1, 2, 3, 3, 3), (1, 2, 3, 3, 2)};
S(6, 3) = {(1, 2, 3, 3, 3, 3), (1, 2, 3, 3, 3, 2),

(1, 2, 3, 3, 2, 3), (1, 2, 3, 3, 2, 2), (1, 2, 3, 3, 2, 1),

(1, 2, 3, 2, 3, 3), (1, 2, 2, 3, 3, 3)}.

Table1 provides the share of non-permuted schedules that belong to S(n,m) (in
%) for m ≤ 7 and n ≤ 20.

The shares are quite small as can be seen from Table1. In particular, when m ∈
{5, 6, 7} the number of schedules in S(n,m) is smaller by some orders of magnitude
than the number of non-permuted schedules. However, recalling that the total number
of non-permuted schedules is approximately equal to mn/m!, S(n,m) may contain a
great number of schedules despite small shares.

2.3 Potentially optimal schedules on twomachines

We start with the case of two identical parallel machines and prove the following
theorem.

Theorem 2.3 Let S be a schedule that is not in S(n, 2). Then, S is not a potentially
unique makespan-optimal schedule.

Proof Consider a schedule S /∈ S(n, 2) and let J1(S) = {a1, . . . , ar } and J2(S) =
{b1, . . . , bs} denote the set of jobs (to be more accurate: their indices) that are assigned
tomachine 1 and 2, respectively.Without loss of generality, we assume that a1 < a2 <

· · · < ar and b1 < · · · < bs . Since S /∈ S(n, 2), the number of jobs onmachine 1 must
be at least as large as the number of jobs on machine 2, i.e., r ≥ s (with r + s = n).
Moreover, for each k ∈ {1, . . . , s}, the processing time of the k-th longest job on
machine 1 is at least as large as the processing time of the k-th longest job on machine
2, i.e., pak ≥ pbk which is equivalent to ak < bk . Thus, machine 1 runs at least as long
as machine 2. The completion time of the last job on machine 1 gives the makespan
of schedule S, i.e., Cmax(S) = ∑r

k=1 pak .
In order to prove that S is not a potentially unique makespan-optimal solution, we

construct a schedule S̄ that is not “longer” than S, i.e., Cmax(S̄) ≤ Cmax(S), no matter
what problem instance is given. We distinguish two cases depending on the number
of jobs on machine 2 in S.

1. s < 2.
Let S̄ be the schedule that is obtained when job a2 is shifted from machine 1 to
machine 2 in S. Obviously, this cannot increase the makespan.

2. s ≥ 2.
Now, let S̄ be the schedule that is obtained when the jobs as and bs are swapped in
S, i.e., as is processed on machine 2 and bs on machine 1 in S̄. Then, the makespan
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of schedule S̄ is

Cmax(S̄) = max

{
s−1∑
k=1

pak + pbs +
r∑

k=s+1

pak ,
s−1∑
k=1

pbk + pas

}
.

In case Cmax(S̄) = ∑s−1
k=1 pak + pbs + ∑r

k=s+1 pak , we can conclude

s−1∑
k=1

pak + pbs +
r∑

k=s+1

pak ≤
r∑

k=1

pak = Cmax(S).

In the other case, i.e., Cmax(S̄) = ∑s−1
k=1 pbk + pas , we can conclude

s−1∑
k=1

pbk + pas ≤
s−1∑
k=1

pak + pas =
s∑

k=1

pak ≤
r∑

k=1

pak = Cmax(S).

Thus, we have Cmax(S̄) ≤ Cmax(S).

This completes the proof of the theorem as in either case a schedule S̄ exists that is
not longer than S. ��

We remark that the schedule S̄ itself is not required to be an element of S(n, 2).
However, it is readily verified that we can convert any schedule S /∈ S(n, 2) into a
schedule S′ �= S that belongs to S(n, 2) by an iterative application of the shifting
operation (as in Case 1 of the proof of Theorem2.3) and/or swapping operation (as in
Case 2). We call the entire process path conversion (on two machines). Clearly, the
path conversion does not increase themakespan. Example2.4 illustrates the procedure.

Example 2.4 We consider m = 2 machines, n = 9 jobs with processing times
(20, 18, 15, 12, 10, 10, 8, 5, 2), and the initial schedule S = (1, 1, 2, 1, 1, 2, 1, 2, 1).
Thepath conversion takes two steps: First, S is converted into S̄ = (1, 1, 2, 2, 1, 2, 1, 1, 1)
and then S̄ is converted into the potentially unique makespan-optimal schedule
S′ = (1, 1, 2, 2, 2, 1, 1, 1, 1) (Tables2, 3, 4).

In view of Sect. 2.4 it is useful to record two important properties of the swapping
operation (recall that swaps imply s ≥ 2 jobs on machine 2):

• The s − 1 longest jobs on machine 1 are not affected by any swap.
• Let S̄ denote the schedule that is obtained when one swap is performed on a
schedule S /∈ S(n, 2). Then, the entries in the path PS̄ can be computed as follows:

PS̄( j) =

⎧
⎪⎨
⎪⎩

PS( j), if j = 1, . . . , as − 1,

PS( j) − 2, if j = as, . . . , bs − 1,

PS( j), if j = bs, . . . , n.
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Table 2 Schedule S

Table 3 Schedule S̄

Table 4 Schedule S′

Thus, the path conversion takes exactly (PS(2s − 1) + 1)/2 swaps. The first negative
entry in the path of the resulting schedule S′ occurs at position 2s − 1.

To sum up, we can say that S(n, 2) contains at least one optimal solution for every
selection of n feasible processing times. Consequently, when searching for an optimal
solution, it is not necessary to consider schedules that are not inS(n, 2), i.e., schedules
that do not satisfy the path condition. In a preliminary experimental study we found
for every schedule S in S(n, 2) (n ≤ 25) a selection of n processing times so that S is
the unique optimal solution. This implies that further reductions in the solution space
appear to be only realizable when processing times are explicitly taken into account.
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2.4 Potentially optimal schedules on three or moremachines

Using our findings from the previous subsection we now address potentially optimal
schedules on more than two identical parallel machines.

Theorem 2.5 Let S be a schedule that is not in S(n,m) (m ≥ 3). Then, S is not a
potentially unique makespan-optimal schedule. Moreover, any schedule S /∈ S(n,m)

can be converted into a schedule that belongs to S(n,m) by a successive application
of the path conversion.

We will prove this theorem with the help of the following two Lemmata2.6 and
2.7.

Lemma 2.6 Let 1 ≤ i1 < i2 < i3 ≤ m and S be a schedule where P(i1,i2)
S satisfies the

path condition but P(i1,i3)
S does not satisfy it. Then, the (i1, i2)-path still satisfies the

path condition after application of the path conversion to P(i1,i3)
S .

Proof We consider the application of the path conversion to P(i1,i3)
S . Each single shift

and swap also affects the entries in the (i1, i2)-path. We start with the case of a shift.
Assume that job k is shifted frommachine i1 to i3. Then, the entries in the (i1, i2)-path
change as follows:

P(i1,i2)
S̄

( j) =
{
P(i1,i2)
S ( j), if j = 1, . . . , k − 1,

P(i1,i2)
S ( j) − 1, if j = k, . . . , n.

Now consider the case of a swap. Assume that job k onmachine i1 is swapped with job
l on machine i3. Recall from Sect. 2.3 that k < l. This leads to the following entries
in the (i1, i2)-path:

P(i1,i2)
S̄

( j) =

⎧
⎪⎨
⎪⎩

P(i1,i2)
S ( j), if j = 1, . . . , k − 1,

P(i1,i2)
S ( j) − 1, if j = k, . . . , l − 1,

P(i1,i2)
S ( j), if j = l, . . . , n

with S and S̄ denoting the schedule before and after the current swap is performed,
respectively.

As can be seen from the two formulas, after each single step of the (i1, i3)-path
conversion we have P(i1,i2)

S̄
( j) ≤ P(i1,i2)

S ( j) for all positions j . Hence, it is impossible
that the (i1, i2)-path does not contain a negative entry anymore after the conversion
of the (i1, i3)-path is completed. ��

Lemma 2.7 Let 1 ≤ i1 < i2 < i3 ≤ m and S be a schedule where P(i1,i2)
S and P(i1,i3)

S

satisfy the path condition but P(i2,i3)
S does not satisfy it. Then, the (i1, i2)-path and the

(i1, i3)-path still satisfy the path condition after application of the path conversion to
P(i2,i3)
S .
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Proof Assume that the number of jobs on the three machines i1, i2, and i3 are r , s, and
q in schedule S, respectively. We let bk (k = 1, . . . , s) denote the job with the k-th
smallest index on machine i2 and cq denote the job with the largest index on machine
i3. We use bk and cq also as the index of the corresponding job.

We distinguish two cases for q.

1. q = 1.
Due to the assumptions on the three considered paths, q = 1 implies r = 1 and
s > 1. Then, according to Sect. 2.3, the conversion of the (i2, i3)-path takes at
most two steps (one shift and at most one subsequent swap). After completing the
conversion of the (i2, i3)-path, the number of jobs on machine i2 is still greater
than or equal to one and the number of jobs on machine i3 equals two. The number
of jobs on i1 remains unchanged. Thus, the (i1, i2)-path and the (i1, i3)-path still
satisfy the path condition.

2. q > 1.
In this case we have s ≥ q since P(i2,i3)

S ( j) ≥ 0 for all j = 1, . . . , n. Let j1 and j2
denote the position of the first negative entry in P(i1,i2)

S and P(i1,i3)
S , respectively.

As P(i2,i3)
S ( j) ≥ 0 for all j = 1, . . . , n we have P(i1,i2)

S ( j) ≤ P(i1,i3)
S ( j) for all

j = 1, . . . , n and, thus, j1 < j2.Moreover, we have j1 ≤ bq as P
(i1,i3)
S is supposed

to satisfy the path condition.
Now we consider the path conversion of P(i2,i3)

S . First, recall from Sect. 2.3 that
this conversion does not affect the q − 1 longest jobs b1, . . . , bq−1 on machine i2.
Furthermore, note that the first step of the conversion consists in swapping job bq
on i2 with job cq on i3, i.e., no previous shift is performed which means that the
number of jobs on each machine remains unchanged. We distinguish two subcases
depending on the relation between j1 and bq .

(a) j1 < bq .
Note that j1 < bq is equivalent to j1 ≤ bq−1. Since b1, . . . , bq−1 remain the

q − 1 longest jobs on i2 in the resulting schedule S̄, we have P(i1,i2)
S̄

( j) =
P(i1,i2)
S ( j) for j ≤ bq−1 and, in particular, P(i1,i2)

S̄
( j1) = −1 which means

that the (i1, i2)-path still satisfies the path condition.
(b) j1 = bq .

First, note that this subcase implies j2 = cq . Hence, there are exactly q − 1
jobs on machine i1 whose index is not greater than cq − 1 in schedule S.

Since the path conversion of P(i2,i3)
S leaves the jobs b1, . . . , bq−1 unchanged

but swaps at least the jobs bq and cq , there are at least q jobs on machine
i2 whose index is not greater than cq in the resulting schedule S̄. Thus, we

have P(i1,i2)
S̄

(cq) ≤ P(i1,i3)
S (cq) = −1 which means that the (i1, i2)-path still

satisfies the path condition.

It remains to show that the (i1, i3)-path of the resulting schedule S̄ also still satisfies
the path condition. This is readily done because (i) jobs on machine i1 were not
affected by the conversion of the (i2, i3)-path and (ii) some of the “downward

123



Journal of Combinatorial Optimization (2020) 40:876–900 887

lines” in the resulting (i1, i3)-path occur earlier than in the initial (i1, i3)-path.
Hence, in either subcase we have P(i1,i3)

S̄
( j) ≤ P(i1,i3)

S ( j) for all j = 1, . . . , n. ��
Proof of Theorem 2.5 The proof of the first part of the theorem is straightforward.
Since S is not in S(n,m), there exists at least one path that does not satisfy the path
condition. Let the (i1, i2)-path be such a path. Application of the path conversion to
P(i1,i2)
S neither increases the maximum completion time of the two machines i1 and i2

(cf. Sect. 2.3) nor involves any jobs on the other m − 2 machines. Thus, the makespan
of the resulting schedule cannot be greater than the makespan of S. This proves that
S cannot be a potentially unique makespan-optimal schedule.

We prove the second part of the theorem with the help of the two Lemmata2.6
and 2.7. First, we consider the paths (1, 2), (1, 3), . . . , (1,m) one by one. If any of
these does not satisfy the path condition, we apply the path conversion. According
to Lemma2.6, each of the m − 1 paths (1, i) (i = 2, . . . ,m) is then satisfying the
path condition. However, a renumbering of the machines may now be required in
order to restore the representation as a non-permuted schedule. In the second round,
we consider the paths (2, 3), (2, 4), . . . , (2,m) one by one. If any of these does not
satisfy the path condition, we apply the path conversion. According to Lemmata2.6
and 2.7, each of the 2m − 3 paths (1, i) (i = 2, . . . ,m) and (2, i) (i = 3, . . . ,m)

is then satisfying the path condition. Again, a renumbering of the machines may be
required. We repeat this iterative process until we finally arrive at the (m−1,m)-path.
This shows that we can convert any schedule S /∈ S(n,m) into a schedule that belongs
to S(n,m) by a successive application of the path conversion. ��

To sum up the results of Sects. 2.3 and 2.4, we can say that for every m ≥ 2 and
n > m the set S(n,m) always contains at least one optimal solution no matter what
processing times are given. Hence, when searching for an optimal solution to a given
sequence of processing times it is not necessary to consider schedules that are not in
S(n,m). Those schedules can be excluded from the solution space since there exists
always at least one optimal solution that satisfies the path conditions. In view of the fact
that P||Cmax has only very little problem-inherent structure, we did not quite expect
such a universal result. However, we shall also remark that we can select processing
times in such a way that not every optimal solution satisfies the path conditions. An
obvious example is the case of identical processing times where p1 = . . . = pn .
Then, any schedule with either 	n/m
 or �n/m� jobs on each of the m machines is
makespan-optimal. However, not every such schedule is in S(n,m), e.g., the schedule
S = (1, 2, . . . ,m, 1, 2, . . . ,m, . . .).

As before, we conducted a small experimental study for m = 3 and n ≤ 12.
Again, we were able to find processing times for every S ∈ S(n,m) so that S is
the unique optimal solution. Although we do not have a mathematical proof yet, we
strongly conjecture that processing times exists for each S ∈ S(n,m) so that S is the
unique optimal solution. This would imply that S(n,m) cannot be further reduced
without explicitly taking into account the processing times. However, a watertight
proof remains as a challenging task for future research. Keeping in mind that the
concept of potential optimality does not require knowledge about the actual processing
times, we feel that there might be some room to tighten our universal results when
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specific classes of processing times (e.g., depending on the ratio of the longest to the
smallest processing time) are considered.

3 New dominance rules derived from the path conditions

From our study of the solution space (see Sect. 2) we have learned that there exists
always an optimal solution that satisfies the path conditions.Wewill nowuse this result
to derive and formulate new existential property-based dominance rules for P||Cmax

(cf. Jouglet and Carlier 2011, for an overview on different formulations and types of
dominance rules in combinatorial optimization). These rules will then be integrated
into an exact solution procedure to guide the search towards schedules in S(n,m) (see
Sect. 4).

We now describe the rationale behind the new rules. Given a partial solution we
want to decide whether or not it is possible to complete this solution in such a way
that the path conditions are satisfied. Basically, this can be done by counting for each
machine separately the minimum number of jobs that still have to be assigned until the
path conditions are satisfied. Obviously, the counting strongly depends on which jobs
have already been assigned and which jobs still have to be assigned, i.e., assumptions
on the order in which the jobs are selected for assignment are required. To derive
effective rules, that preferably allow for an early decision whether or not the path
conditions can be satisfied, we assume the jobs to be successively assigned in order
of non-increasing processing times. This is a common job selection principle—not
only in a job-oriented branching scheme but also in construction heuristics such as the
well-known LPT-rule (cf. Graham 1969). However, it is important to keep in mind that
neither the validity of the theoretical results derived in Sect. 2 nor their translation into
dominance rules presupposes this specific job selection principle. At the end of this
section we will sketch how to derive special dominance rules for other job selection
principles or a machine-oriented branching scheme.

3.1 Counting theminimum number of required jobs

In order to count the minimum number of required jobs we identify all machine-pairs
that do currently not satisfy the path condition and determine the minimum number
of required jobs on these machines. Let us consider a partial solution S̃k in which the
k < n longest jobs have already been assigned. For each pair of machines (i1, i2)
with 1 ≤ i1 < i2 ≤ m we introduce a dummy variable δ

(i1,i2)
S̃k

∈ {0, 1} that indicates
whether or not the corresponding path condition is currently fulfilled (δ(i1,i2)

S̃k
= 1

if the answer is yes, δ
(i1,i2)
S̃k

= 0 if the answer is no). In line with the definition of

the set S(n,m) in (1), a pair (i1, i2) currently satisfies the path condition if either
the corresponding partial path has already at least one negative entry or each of the
two machines processes exactly one of the first k jobs. At this point it is important to
note that in the former case, the path condition remains satisfied no matter how the
remaining n − k jobs are assigned, whereas in the latter case, the (i1, i2)-path might
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not satisfy the path condition after the assignment of the remaining jobs (e.g., when
i1 receives another job but i2 does not).

Obviously, only the pairs (i1, i2) with δ
(i1,i2)
S̃k

= 0 have to be considered in the

calculation of theminimumnumber of required jobs.Depending on the current number
of jobs on machine i1, we distinguish two cases:

1. i1 processes at most one of the first k jobs.
In this case it is sufficient to assign one job to i2 in order to satisfy the path
condition.

2. i1 processes at least two of the first k jobs.
In this case at least P(i1,i2)

S̃k
(k) + 1 jobs still have to be assigned to i2 in order to

obtain a negative entry in the (i1, i2)-path. Recall from Sect. 2.2 that P(i1,i2)
S̃k

(k)

gives the difference between the current number of jobs on i1 and i2 in the partial
schedule S̃k .

As each pair (i1, i2) has to satisfy the path condition,

vi2(k) = max
i1=1,...,i2−1

δ
(i1,i2)

S̃k
=0

{
P(i1,i2)
S̃k

(k)
}

+ αi2(k) (2)

gives the minimum number of jobs that still have to be assigned to machine i2. If
δ
(i1,i2)
S̃k

= 1 for all i1 = 1, . . . , i2 − 1, we set vi2(k) = 0. The additional αi2(k)-term

in Eq. (2) corresponds to the aforementioned case differentiation. More precisely, if
Case 1 holds for all machines i1 = 1, . . . , i2 − 1, then αi2(k) = 0. Otherwise, if at
least one of the machines 1, . . . , i2 − 1 processes more than one job (cf. Case 2), then
αi2(k) = 1.

It is readily verified that by assigning the next vm(k) jobs to machinem, the follow-
ing vm−1(k) jobs to machinem−1 and so on until machine 2 finally receives its v2(k)
required jobs, all

(m
2

)
path conditions are satisfied, i.e.,

∑m
i2=2 vi2(k) is the minimum

number of required jobs. If this number exceeds the number of remaining jobs, i.e.,

m∑
i2=2

vi2(k) > n − k (3)

the current partial solution cannot be completed in such a way that the resulting
schedule belongs to S(n,m).

We remark that this first dominance rule is a very basic one. It does not require
any explicit information on the (current) objective function value. In what follows, we
derive two makespan-specific dominance rules from the results of Sect. 2. Afterwards,
Example3.1 illustrates the benefit of each of our new rules.
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3.2 Increasing theminimum number of required jobs

Given the vi (k)-values for i = 2, . . . ,m as determined in Sect. 3.1, we now present a
procedure that checkswhether some of these values can be increased by one. Requiring
an upper bound U on the optimal makespan, the procedure determines the minimum
numberm′ ofmachines that have to process at least two jobs in order that themakespan
of the corresponding schedule does not exceed U . To determine m′, we successively
consider the ratios

qi = P� − iU

m − i
(i = 0, 1, . . . ,m − 1) (4)

where P� = ∑n
j=1 p j . Starting with i = 0, q0 represents the average machine

completion time. If q0 > p1, at least one machine has to process more than one
job. Assuming that the completion time of this machine equals U , q1 represents the
minimum average load of the remaining m − 1 machines. If q1 > p1, one of these
m − 1 machines also has to process at least two jobs. We continue this process with
considering q2 and so on. The process stops as soon as qi ≤ p1 and we obtainm′ = i .

Instead of using the aforementioned iterative procedure, we can determine m′ also
analytically. It is readily verified that m′ =

⌈
P�−mp1
U−p1

⌉
provided that P� > mp1 and

U > p1. If P� < mp1 or U = p1, we set m′ := 0.
To decide whether some of the vi (k)-values can be increased, we take a look at

those machines to which currently at most one job is assigned. Let i ′(k) denote the
smallest index of all machines to which currently at least two jobs are assigned. If no
such machine exists, we can increase vi (k) by one for i = m −m′ + 1, . . . ,m. In the
other case, i.e., i ′(k) ≤ m, each machine i > i ′(k) also has to process at least two jobs
in order to satisfy the path conditions. These are m − i ′(k) + 1 machines (including
machine i ′(k)). If m′ > m − i ′(k) + 1, then the machines m − m′ + 1, . . . , i ′(k) − 1
also have to process at least two jobs which means that we can increase vi (k) by one
for i = m − m′ + 1, . . . , i ′(k) − 1.

3.3 Incorporating the processing times

After having determined all vi (k)-values, we now also take the processing times into
account. Our intention is to decide whether it is possible to assign the required number
of jobs

∑m
i=1 vi (k) to the machines in such a way that no machine runs longer than

U − 1. As this problem is NP-hard in the strong sense (proof by reduction from
3-Partition, cf. Garey and Johnson 1979), we solve a relaxed version instead. The
relaxation concerns the restriction that each job has to be assigned exactly once, i.e.,
we now allow jobs to be assigned more than once.

Assume that 1 ≤ r ≤ m machines still require at least one job and let I =
{i1, i2, . . . , ir } be the corresponding set of machines, i.e., vi (k) > 0 for all i ∈ I . We
then determine for each i ∈ I the longest job ji that can be assigned to machine i in
combination with the vi (k) − 1 shortest jobs so that i finishes not later than U − 1.
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More formally,

ji = min

⎧⎨
⎩ j ∈ {k + 1, . . . , n} | Ck

i + p j +
vi (k)−2∑
l=0

pn−l ≤ U − 1

⎫⎬
⎭ (5)

whereCk
i is the current completion time of machine i after the first k jobs have already

been assigned to themachines. Note that an assignment of a job j ∈ {k+1, . . . , ji −1}
to machine i cannot improve on U and will therefore not lead to a new incumbent
solution that satisfies the path conditions. The same holds true for the case that Ck

i +∑vi (k)−2
l=0 pn−l is already exceeding U − 1.
Let π denote a permutation of the machines in I that sorts the corresponding

jobs ji (i ∈ I ) in non-increasing order of their indices. Obviously, in case that n −
jπ(1) + 1 < vπ(1)(k), the current solution cannot be completed in such a way that
both the path conditions are satisfied and the makespan is less than U . In the other
case, i.e., n − jπ(1) + 1 ≥ vπ(1)(k), we go on and check whether n − jπ(2) + 1 is
smaller than vπ(1)(k)+vπ(2)(k). If this is the case, the partial solution can be fathomed
using the same argument as before. Otherwise, we repeat this iterative process and
consider the next machines according to π one by one, i.e., we check for n − jπ(3) +
1 <

∑3
b=1 vπ(b)(k), n − jπ(4) + 1 <

∑4
b=1 vπ(b)(k) and so on. In case that one

of the inequalities n − jπ(r ′) + 1 <
∑r ′

b=1 vπ(b)(k) (r ′ = 1, . . . , r) is fulfilled, the
current partial solution cannot lead to a new incumbent solution that satisfies the path
conditions.

Example 3.1 We consider m = 5 machines and n = 11 jobs with processing times
(187, 162, 140, 127, 119, 108, 101, 71, 62, 50, 25). Application of the well-known
LPT-rule yields an upper bound value of U = 237 on the optimal makespan. Given
the partial schedule S̃ = (1, 2, 3, 4, 5, 4), i.e., the longest k = 6 jobs have already
been assigned, Table5 provides the entries of all paths at position 6. The superscript
� indicates that the corresponding path does currently not satisfy the path condition.

According to Sect. 3.1, we readily obtain vi (6) = 0 for i = 1, . . . , 4 and v5(6) =
1+α5(6) = 1+1 = 2. However, as n− k = 5 > 2 = ∑5

i=1 vi (6), we cannot fathom
the current partial solution. Next, we try to increase the vi (6)-values by application of
the procedure as described in Sect. 3.2. We get m′ = 	 1152−5·187

237−187 
 = 5 and i ′(6) = 4

and can increase the vi (6)-values by one for i = 1, 2, 3. Nevertheless, S̃ cannot be
fathomed as the minimum number of required jobs is still not greater than the number
of unassigned jobs (

∑5
i=1 vi (6) = 5 ≯ n − k = 5). Finally, we take the processing

times of the five unassigned jobs into account as suggested in Sect. 3.3. We have
I = {1, 2, 3, 5}, j1 = 11, and j2 = j3 = j5 = 8. As n− j5+1 = 4 < 5 = ∑

i∈I vi (6)
(at iteration number 4 of the above-mentioned procedure), S̃ cannot be completed in
such a way that both the resulting makespan is less thanU and the path conditions are
satisfied, i.e., we can fathom S̃ after all.
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Table 5 Entries of all 10 paths at
position k = 6 P

(i1,i2)
S̃

(6) 2 3 4 5

1 0 0 −1 0

2 – 0 −1 0

3 – – −1 0

4 – – – 1�

3.4 Outlook

In this finishing subsection of the theoretical part we briefly show that the translation
of the new structural characteristics into dominance rules is not restricted to a specific
job selection rule. By relaxing the assumption that jobs are selected in non-increasing
order of their processing times, the results of Sect. 2 can still be applied to evaluate
partial solutions with respect to the satisfiability of the path conditions. We clarify this
by means of two examples.

Example 3.2 Let n = 8, m = 2 and consider the partial solution S = (1, x, 1, 2, 2,
x, 2, 1), i.e., job 2 and 6 still have to be assigned. In order to satisfy the path condition,
at least one of the remaining two jobs has to be assigned to machine 2.

Example 3.3 Let n = 8, m = 2 and consider the partial solution S = (1, x, 1, 2,
1, x, x, 1), i.e., job 2, 6, and 7 still have to be assigned. This time, the path condition
can only be satisfied when all three remaining jobs are assigned to machine 2.

The previous two examples reveal that there is a lot of potential in translating the
theoretical results of Sect. 2 into methods that evaluate partial solutions and restrict
the remaining job assignments when other job selection rules are applied within a
job-oriented branching scheme or even when a machine-oriented branching strategy
is used. The formulation of general rules for different branching schemes appears to
be a challenging but valuable task for future research.

4 A simple branch-and-bound algorithm

We implemented a basic branch-and-bound algorithm in order to determine the effec-
tiveness of the new (path-related) dominance rules in a computational study. Our
procedure performs a depth-first search similar to the one in Dell’Amico and Martello
(1995). At each level of the branching-tree, the job with the longest processing time
amongst all unassigned jobs is chosen. More specifically, at level k, the current node
generates at most m son-nodes by assigning job k to those machines Mi that fulfill
Ck−1
i + pk < U∗. The corresponding machines are selected according to increasing

current completion times Ck−1
i . The makespan of the currently best known solution

is denoted by U∗.
Note that selecting the job with the longest remaining processing time at each level

of the tree is necessary for the application of the dominance rules derived in Sects. 3.1–
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3.3, whereas the depth-first nature of our search is not a prerequisite. One can also
implement a breadth-first or minimum lower bound strategy instead.

To avoid complete enumerationswe also implemented a few lower andupper bound-
ing procedures from the literature (see Sect. 4.1). Details on the application of the new
dominance rules are provided in Sect. 4.2. However, it is beyond the scope of this paper
to design a state-of-the-art algorithm for P||Cmax. This would require the implemen-
tation of even more sophisticated branching and bounding techniques than the ones
described here.

4.1 Implemented lower and upper bounding procedures

To guide the search and to assess the quality of partial solutions, we imple-
mented some lower and upper bound arguments. Concerning lower bounds, we
apply two procedures of Dell’Amico and Martello (1995). The first one, LTV =
max

{
	∑n

j=1 p j/m
, p1, pm + pm+1

}
, is an immediate bound obtained from sim-

ple relaxations of P||Cmax. The second one, LDM = max{C + 1 : ∃p ≤
C/2 for which Bα(C, p) > m or Bβ(C, p) > m}, exploits the coherence between
P||Cmax and the bin packing problem (BPP). In its core, LDM consists of two sophis-
ticated lower bounds Bα(C, p) and Bβ(C, p) for BPP. For any further details we refer
to Dell’Amico and Martello (1995).

To enhance lower bounds we implemented a lifting procedure of Haouari et al.
(2006). Roughly speaking, this procedure determines lower bounds for specific partial
instances that are also valid for the entire instance.We let L̃ denote the lifted version of
a bound L . Finally, we implemented a procedure of Haouari and Jemmali (2008). This
procedure tries to tighten a lower bound L by solving a specific subset-sum-problem
(SSP). It checks whether a subset of J exists so that the corresponding processing
times sum up exactly to a known lower bound value L . If no such subset exists, then
the smallest realizable sum of processing times greater than L constitutes an improved
lower bound. We denote the tightened bound by LSSP .

Concerning upper bounds, we implemented three procedures: the well-known LPT-
rule (cf. Graham 1969), the Multifit-algorithm (cf. Coffman et al. 1978), and a multi-
start local search improvement heuristic (cf. Haouari et al. 2006). The latter procedure
iteratively solves specific P2||Cmax-instances. We denote the three corresponding
upper bounds by ULPT , UMF , and ULS , respectively. For further details we refer to
the literature.

To obtain global bounds we applied the above-mentioned bounding procedures at
the root node in the following order. At first, we compute LTV and ULPT . In case
LTV = ULPT , an optimal solution is obtained. Otherwise, we determine LDM . If
LDM < ULPT , we compute UMF and if LDM < UMF , we additionally determine
ULS . If there is still a gap between LDM andULS , the lifted bound L̃ DM is computed.
LSSP is only determined in case that L̃ DM < ULS . To obtain a local bound and to
save up computation time, we only compute LDM at each branched node of the search
tree.
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4.2 Dominance rules

If we cannot fathom a current partial solution after application of the bounding pro-
cedures, we check whether the path conditions are already satisfied. If they are not
yet satisfied, we make use of our new path-related dominance rules. To allow for an
efficient application, it is advisable to store not only the current position of each path
but also the information whether or not the path (currently) satisfies the path condition.
Using simple data structures such as two-dimensional arrays, an update of the relevant
information consumes O(m2) time at each generated node.

Provided that all these information is available, it takes O(m) time to determine
the minimum number of required jobs (cf. Sect. 3.1). The same asymptotic run time is
required for the attempt to increase the number of required jobs according to Sect. 3.2.
Finally, incorporating the processing times as explained in Sect. 3.3 can be realized
in O(mn) time. If none of the new rules confirms that the current solution can be
fathomed, we branch the corresponding node.

Having in mind that there might be some optimal solutions that do not satisfy
the path conditions (cf. end of Sect. 2.4), it does not seem to be useful to apply the
new dominance rules at deep levels of the branching tree. Indeed, our preliminary
tests indicated that their benefit decreases when they are applied to almost complete
solutions. We do therefore not apply them when the number of remaining jobs is
smaller than 	0.3n
.

5 Computational study

This section reports on the results of our computational study and we discuss the
benefits of the new (path-related) dominance rules. To appropriately assess their benefit
we implemented the branch-and-bound algorithm of Sect. 4 and a variant thereof. We
label them BBPaths and BBNoPaths, respectively. Both algorithms are identical except
that our new dominance rules are only applied in BBPaths but not in BBNoPaths.

5.1 Setup of the tests

Following the existing literature we considered different combinations ofm and n and
different distributions of processing times to generate our test instances. Specifically,
we chosem ∈ {3, 5, 10, 15, 20} andn = 	km
with k ∈ {2, 2.25, 2.5, 2.75, 3, 3.5, 4, 5}.
Processing times are randomly drawn from five different distributions (see Table6) as
proposed in Dell’Amico and Martello (1995).

For each parameter setting (Class,m, n), we successively generated instances until
five of them fulfilled the property of not being solved to proven optimality already
at the root node by application of the global bounds. In other words, we tested our
two branch-and-bound algorithms only on those instances which require branching
in order to find an optimal solution or to verify optimality. We also recorded the
total number of instances (column “Inst” in Table8) that had to be generated. Thus,
“Inst” serves as an indicator for the difficulty of finding optimal solutions or verifying

123



Journal of Combinatorial Optimization (2020) 40:876–900 895

Table 6 Distribution of processing times

Class Distribution

1 Discrete uniform distribution in [1, 100]

2 Discrete uniform distribution in [20, 100]

3 Discrete uniform distribution in [50, 100]

4 Cut-off normal distribution with μ = 100 and σ = 20

5 Cut-off normal distribution with μ = 100 and σ = 50

Table 7 Performance criteria

Criterion Description

Nodes Average number of generated branch-and-bound nodes

Time Average computation time in seconds

US Number of unsolved instances (no optimal solution found or verified)

optimality by means of upper and lower bounds at the root node. Since the likelihood
of being solved at the root node rapidly increases with increasing ratios of n to m (cf.,
e.g., Haouari et al. 2006, and column “Inst” in Table8), we concentrate on those cases
where n/m ≤ 5. To avoid trivial instances we omitted the settings (3,m, 2m) for all
m and (Class, 3, 6) for all five classes. Hence, our data set contains a total of 955
instances. We applied both BBPaths and BBNoPaths to each of them.

Table7 lists our three main performance criteria. To allow for a fair and meaning-
ful comparison, the “Nodes”-criterion considers only those instances that have been
solved by both algorithms within a prespecified time limit, whereas “Time” averages
over all instances. Additionally, we recorded how often one algorithm returned a better
solution than the other one. In case that no optimal solution has been found or opti-
mality could not have been verified, we also determined the average and maximum
relative deviation between the returned objective function value and the global lower
bound.

We have implemented our algorithms in Java language (version 7.2). The com-
putational tests were performed on a personal computer with an Intel Core i7-2600
processor (3.4GHz), 8GB RAM, andWindows 7 Professional SP1 (64bit). The max-
imal computation time was set to 600s per instance for each of our two algorithms.
BBPaths and BBNoPaths were run as single processes/threads.

5.2 Experimental results on the effectiveness of the new rules

Table8 contains the results of our experiments on the effectiveness of the new domi-
nance rules. For reasons of comprehensibility, we abstain fromproviding the results for
each individual setting of the 5 × 39 parameter combinations (Class,m, n). Instead,
we average the results over the 25 (20) instances per (m, n)-pair and provide the
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influence of the processing time classes in a compact way in a separate table (see
Table10).

Starting with the “US”-criterion, i.e., the number of unsolved instances, it can
be seen that both algorithms show the same performance for the majority of the
investigated parameter combinations. However, there are seven (m, n)-pairs [(15, 30),
(15, 34), (15, 38), (15, 42), (20, 40), (20, 45), and (20, 50)] where BBPaths finds sig-
nificantlymore optimal solutions thanBBNoPaths—132 compared to 90, i.e., 42 optimal
solutions more. Note that all these (m, n)-pairs satisfy 2 ≤ n/m < 3. In total, 371
out of the 955 instances remained unsolved after application of BBNoPaths, whereas
only 329 instances remained unsolved when BBPaths was applied. In case of unsolved
instances, relative deviations from the global lower bound are fairly small (0.55% on
average and a maximum of 4.19%). Solving the small-sized instances with m ≤ 5
machines did not pose a problem to our algorithms. None of the corresponding 370
instances remained unsolved. In contrast, almost all of the large-sized instances with
m ≥ 15machines and n ≥ 3m jobs remained unsolvedwithin the time limit. However,
it is also worth noting that the solution returned by BBPaths is at least as good as the
BBNoPaths-solution for each of the 955 instances. In particular, BBPaths is superior to
BBNoPaths in verifying optimality.

The superior performance of BBPaths over BBNoPaths becomes even more obvious
whenwe take a look at the twoother criteria “Time” and “Nodes”.BBPaths does not only
find more optimal solutions, the new dominance rules also help to identify optimality
more quickly (overall average of 215s vs. 242s) and to considerably reduce the number
of generated branch-and-bound nodes (overall average of about 6.2 millions vs. 9.4
millions). While BBPaths usually generates far less nodes than BBNoPaths, distinctly
shorter computation times can only be realized when m ≥ 10. For smaller values
of m, average computation times of the two variants are almost identical. However,
for very few (m, n)-pairs [e.g., (5, 20) and (5, 25)], BBNoPaths is even slightly faster
than BBPaths despite generating more nodes. Thus, the additional time required for
application of the new rules could not always be compensated for by smaller search
trees.

Table9 summarizes the results depending on the ratio of n to m. The results reveal
that the new dominance rules are particularly effective in limiting the search space
when n/m ranges between 2 and 3. When solving instances of the two smallest inves-
tigated ratios, only about 15.8% of the average computation time is required and only
about 6.5% of the decision nodes are generated. For larger ratios, the effect diminishes
as now more and more solutions exist that satisfy the path conditions. In particular, it
becomes more difficult for the new rules to prune partial solutions at early levels of
the decision tree and, thus, to restrict the search space effectively since the number of
possible ways to satisfy the path conditions increases with increasing n/m. However,
the entries in the “Inst”-column of Table8 immediately reveal that the larger the ratio
of n to m the more often instances can already be solved at the root node without
requiring any branching effort at all. Almost all of the generated instances (249,816
out of 251,948, i.e., 99.15%) belong to the group of instances with n/m ∈ [4, 5]. We,
therefore, did not consider any larger ratios in our tests.

Table10 summarizes the results depending on the processing time classes. As can
be seen the new rules achieve the greatest improvements in terms of “US” (up to
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Table 8 Detailed performance depending on (m, n)

BBNoPaths BBPaths

m n TO Inst US Time Nodes US Time Nodes

3 7 25 169 0 0.001 5 0 0.001 4

8 25 397 0 0.002 7 0 0.002 6

9 25 35 0 0.003 8 0 0.003 8

10 25 42 0 0.004 26 0 0.004 22

11 25 48 0 0.005 40 0 0.005 36

12 25 61 0 0.006 72 0 0.006 56

15 25 199 0 0.006 1815 0 0.009 998

�/Avg 175 951 0 0.004 282 0 0.004 161

5 10 20 205 0 0.003 15 0 0.003 6

12 25 108 0 0.004 33 0 0.004 12

13 25 37 0 0.008 42 0 0.006 22

14 25 30 0 0.009 141 0 0.009 81

15 25 28 0 0.010 111 0 0.011 106

18 25 32 0 0.055 78,163 0 0.049 45,321

20 25 78 0 0.093 100,012 0 0.131 75,334

25 25 522 0 81.583 80,018,661 0 87.750 63,089,740

�/Avg 195 1040 0 10.483 10,281,689 0 11.277 8,103,926

10 20 20 90 0 0.317 299,941 0 0.006 41

23 25 43 0 3.792 2,258,140 0 0.025 7577

25 25 32 0 2.509 1,070,870 0 0.068 22,106

28 25 31 0 1.502 995,093 0 1.192 552,355

30 25 31 2 97.317 50,176,331 2 94.891 41,950,814

35 25 54 24 576.184 2,360,385 24 576.255 2,319,624

40 25 207 25 600.000 – 25 600.000 –

50 25 24,165 25 600.000 – 25 600.000 –

�/Avg 195 24,653 76 241.225 10,676,617 76 240.056 8,249,917

15 30 20 70 1 36.180 4,349,088 0 0.033 3011

34 25 62 9 254.074 31,464,084 0 1.721 2,660,472

38 25 51 8 254.272 22,145,666 1 53.465 7,070,422

42 25 46 18 454.719 47,178,837 15 414.321 45,565,493

45 25 40 22 550.786 188,700,054 22 550.313 180,059,094

53 25 91 25 600.000 – 25 600.000 –

60 25 967 25 600.000 – 25 600.000 –

75 25 162,082 25 600.000 – 25 600.000 –

�/Avg 195 163,409 133 428.563 29,982,038 113 361.519 16,483,188
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Table 8 continued

BBNoPaths BBPaths

m n TO Inst US Time Nodes US Time Nodes

20 40 20 78 6 189.901 6,429,464 1 32.369 288,517

45 25 53 14 365.783 21,893,449 3 99.542 1,563,022

50 25 46 19 466.834 6,277,367 13 364.109 5,732,183

55 25 40 23 552.038 25,032 23 552.045 25,032

60 25 38 25 600.000 – 25 600.000 –

70 25 105 25 600.000 – 25 600.000 –

80 25 437 25 600.000 – 25 600.000 –

100 25 61,098 25 600.000 – 25 600.000 –

�/Avg 195 61,895 162 504.689 11,168,324 140 441.230 1,687,141

Overall 955 251,948 371 241.956 9,422,838 329 215.232 6,232,307

Table 9 Overall performance depending on n/m

BBNoPaths BBPaths

n/m TO US Time Nodes US Time Nodes

[2, 2.5) 205 30 98.143 5,596,297 4 15.515 365,989

[2.5, 3) 225 68 192.433 5,070,677 52 153.913 3,108,045

[3, 4) 275 123 274.942 11,345,229 123 274.685 9,924,362

[4, 5] 250 150 368.169 20,030,140 150 368.790 15,791,532

Table 10 Overall performance depending on the processing time classes

BBNoPaths BBPaths

Class TO US Time Nodes US Time Nodes

1 195 62 197.243 9,361,678 61 196.955 7,572,801

2 195 71 229.670 9,731,305 68 216.847 4,120,017

3 175 79 278.742 15,770,803 59 214.671 13,905,970

4 195 84 268.983 7,443,097 68 215.887 3,333,063

5 195 75 238.925 5,924,761 73 231.753 3,472,163

26% less unsolved instances) and “Time” (savings of up to 23%) for the processing
time classes 3 and 4. These two classes have in common that the processing times
of the jobs do not vary widely among each other, i.e., the range of values is rather
small. In particular, the ratio p1/pn of the longest to the shortest processing time is
small. Smaller ratios seem to be beneficial for the dominance rule of Sect. 3.3. The
greatest improvements in terms of “Nodes” are realized when processing times are
drawn according to Class 2 and 4 (savings of up to 58%).
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6 Conclusions

The present paper addressed the fundamental makespan minimization problem on
identical parallel machines from a theoretical point of view. Using an approach similar
to the idea behind inverse optimization, we identified and proved general character-
istics of optimal schedules. These new structural insights were then translated into
dominance rules to restrict the solution space during the search for an optimal sched-
ule. Although focusing on the theoretical foundation and mathematical groundwork,
we implemented the new dominance rules into a depth-first branch-and-bound algo-
rithm in order to determine their effectiveness. In our computational study the new
rules proved to be very useful. Depending on the ratio of n tom they did not only help
to find more optimal solutions but also to identify them more quickly.

Based on the output of our experimentswe believe that it isworthwhile to pursue and
develop the concept of potential optimality. Firstly, theremight be some room to tighten
our results either by considering specific classes of problem instances or by taking the
job processing times explicitly into account. Although this appears to be a technically
challenging task, it might not only result in a further restriction of the set of potentially
optimal solutions but also allow for tighter vi -values. As our new dominance rules
largely depend on the vi -values and the vi -values themselves depend on the theoretical
results on structural patterns of optimal schedules, we can even expect tighter versions
of our dominance rules. Secondly, it is useful to develop our first ideas on deriving
dominance rules for other job selection rules than LPT. This way, the new structural
insights can also be used in other branching schemes than the one implemented here.
Thirdly, it would be interesting to integrate our findings into other exact solution
approaches, such as column generation or dynamic programming, or to define efficient
neighborhoods for local search procedures based on the path conditions. Last but not
least, it appears promising to tackle similarly structured optimization problems by our
methodological approach.
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