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Abstract Aword of the formWW for somewordW ∈ Σ∗ is called a square. A partial
word is a word possibly containing holes (also called don’t cares). The hole is a special
symbol ♦ /∈ Σ whichmatches any symbol from Σ ∪{♦}. A p-square is a partial word
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matching at least one squareWW without holes. Two p-squares are called equivalent if
theymatch the same set of squares. A p-square is called here unambiguous if it matches
exactly one square WW without holes. Such p-squares are natural counterparts of
classical squares. Let PSQUARESk(n) andUSQUARESk(n) be themaximumnumber
of non-equivalent p-squares and non-equivalent unambiguous p-squares in T over all
partial words T of length nwith atmost k holes.We show asymptotically tight bounds:

PSQUARESk(n) = Θ(min(nk2, n2)), USQUARESk(n) = Θ(nk).

We present an algorithm that reports all non-equivalent p-squares in O(nk3) time
for a partial word of length n with k holes, for an integer alphabet. In particular, it
runs in linear time for k = O(1) and its time complexity near-matches the asymptotic
bound for PSQUARESk(n).We also show anO(n)-time algorithm that reports all non-
equivalent p-squares of a given length. The paper is a full and improved version of
Charalampopoulos et al. (in Cao Y, Chen Y (eds) Proceedings of the 23rd international
conference on computing and combinatorics, COCOON 2017; Springer, 2017).

Keywords Partial word · Square in a word · Approximate period · Lyndon word

1 Introduction

A word is a sequence of letters from a given alphabet Σ . By Σ∗ we denote the set of
all words overΣ . A word of the formU 2 = UU , for some wordU , is called a square.
For a word W , a factor is a subword composed of some number of consecutive letters
and a square factor is a factor of W which is a square. Enumeration of square factors
in words is a well-studied topic, both from a combinatorial and from an algorithmic
perspective. Obviously, a word W of length n may contain Θ(n2) square factors (e.g.
W = an), however, it is known that such a word contains only O(n) distinct square
factors (Fraenkel and Simpson 1998; Ilie 2005); currently the best known upper bound
is 11

6 n (Deza et al. 2015).
Moreover, all distinct square factors of a word over an integer alphabet can be listed

inO(n) time using the suffix tree (Gusfield and Stoye 2004; Bannai et al. 2017) or the
suffix array and the structure of runs (maximal repetitions) in the word (Crochemore
et al. 2014).

A partial word is a sequence of letters from Σ ∪ {♦}, where ♦ denotes a hole, that
is, a don’t care symbol. Two symbols a, b ∈ Σ ∪ {♦} are said to match (denoted as
a ≈ b) if they are equal or one of them is a hole; note that this relation is not transitive.
The relation of matching is extended in a natural way to partial words of the same
length.

A partial word UV is called a p-square if U ≈ V . Like in the context of words, a
p-square factor of a partial word T is a factor being a p-square; see Blanchet-Sadri
et al. (2014b, 2015).
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We introduce the notion of equivalence of p-square factors in partial words. Let
sq-val(UV ) denote the set of squares that match the partial word UV :

sq-val(UV ) = {WW : W ∈ Σ∗, WW ≈ UV }.

Example 1.1 Let Σ = {a, b}. Then:

sq-val(a♦b a♦♦) = sq-val(a♦♦ ♦♦b) = {(aab)2, (abb)2},
sq-val(a♦♦ ♦ab) = {(aab)2}.

The p-squares UV and U ′V ′ are called equivalent if sq-val(UV ) = sq-val(U ′V ′)
(denoted as UV ≡ U ′V ′). For example,

a♦b a♦♦ ≡ a♦♦ ♦♦b, but a♦b a♦♦ 	≡ a♦♦ ♦ab.

Let us assume that Σ is non-unary. We say that X2 = XX is the representative
(also called general form; see Blanchet-Sadri et al. 2009) of a p-square UV , denoted
as repr(UV ), if

XX ≈ UV and sq-val(XX) = sq-val(UV ).

(In otherwords, X is the “most general” partial word thatmatches bothU and V .) It can
be noted that the representative of a p-square is unique. ThenUV ≡ U ′V ′ if and only
if repr(UV ) = repr(U ′V ′). A p-square is called unambiguous if its representative
does not contain the symbol ♦ and ambiguous otherwise.

Example 1.2 repr(a♦b a♦♦) = (a♦b)2 and the p-square is ambiguous.
repr(a♦♦ ♦ab) = (aab)2 and the p-square is unambiguous.

The set of non-equivalent p-square factors in a partial word T is denoted by
psquares(T ). Thus, psquares(T ) corresponds to the set of different representatives
of p-square factors of T .

Example 1.3 Let T = ab♦♦ba♦aaba♦b.
T contains 4 non-equivalent classes of p-squares of length 4:

1. a♦aa with representative (aa)2,
2. ab♦♦ ≡ ♦ba♦ ≡ aba♦ with representative (ab)2,
3. ♦♦ba ≡ ba♦a with representative (ba)2, and
4. b♦♦b with representative (bb)2.

T contains 4 equivalence classes of p-squares of length 6 with representatives:

(aab)2, (aba)2, (baa)2, (ba♦)2;

see also Fig. 1.
Overall, we have |psquares(T )| = 14. The remaining 6 representatives are:

♦♦, aa, bb, (aaba♦)2, (abaab)2, (baaba)2.
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Fig. 1 All non-equivalent
p-square factors of length 6 with
their representatives in an
example partial word

a b ♦ ♦ b a ♦ a a b a ♦ b

(aba)2 (baa)2

(ba♦)2 (aab)2

Our work is devoted to enumeration of non-equivalent p-square factors in a partial
word with a given number k > 0 of holes.
Previous results Alongside (Blanchet-Sadri et al. 2009, 2014b, 2015), we define a
solid square as a square of a word and a square subword of a partial word T as a solid
square that matches a factor of T .

Previous studies on squares in partial words were mostly focused on combinatorics.
They started with the case of k = 1 (Blanchet-Sadri et al. 2009), in which case distinct
square subwords correspond to non-equivalent p-square factors. It was shown that a
partial word with one hole contains at most 7

2n distinct square subwords (Blanchet-
Sadri and Mercaş 2009) (3n for binary partial words; Halava et al. 2010). Also a
generalization of the three squares lemma (see Crochemore and Rytter 1995) was
proposed for partial words (Blanchet-Sadri and Mercaş 2012). As for a larger number
of holes, the existing literature is devoted mainly to counting the number of distinct
square subwords of a partial word (Blanchet-Sadri et al. 2009, 2015) or all occurrences
of p-square factors (Blanchet-Sadri et al. 2014a, 2015).On the algorithmic side,Manea
and Tiseanu (2010) proved that the problem of counting distinct square subwords of
a partial word is #P-complete and Diaconu et al. (2009), Manea et al. (2014), and
Blanchet-Sadri et al. (2014b) showed quadratic- and nearly-quadratic-time algorithms
for finding all occurrences of p-square factors and primitively-rooted p-square factors
of a partial word, respectively.
Our combinatorial results Let PSQUARESk(n) and USQUARESk(n) be the maxi-
mum number of non-equivalent p-squares and non-equivalent unambiguous p-squares
in T over all partial words T of length n with at most k holes. We show the following
bounds:

PSQUARESk(n) = Θ(min(nk2, n2)), USQUARESk(n) = Θ(nk).

This work can be viewed as a generalization of the results on partial words with one
hole (Blanchet-Sadri et al. 2009; Blanchet-Sadri andMercaş 2009; Halava et al. 2010)
to k holes.
Our algorithmic results We present an algorithm that reports all elements of the set
psquares(T ) in a partial word of length n with k holes in O(nk3) time. In particular,
our algorithm runs in linear time for k = O(1) and its time complexity near-matches
the maximum number of non-equivalent p-square factors. We also show anO(n)-time
algorithm that reports all non-equivalent p-squares of a given length. The algorithms
assume integer alphabet Σ ⊆ {1, . . . , nO(1)}. We use recently introduced advanced
data structures by Kociumaka (2016).
Comparison with the conference version The paper is an extended version of
Charalampopoulos et al. (2017). As far as combinatorics of p-squares is con-
cerned, the conference version of the paper derived the bound PSQUARESk(n) =
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Θ(min(n2, nk2)). Let ASQUARESk(n) be the maximum number of non-equivalent
ambiguous p-squares in T over all partial words T of length n with at most k holes.
The boundwas proved by showing that ASQUARESk(n) = Θ(min(n2, nk2)) and that
USQUARESk(n) = O(nk2). As a new contribution here, we present a tight estima-
tion USQUARESk(n) = Θ(nk). This lets us identify ambiguous p-squares as the ones
that attain the bound on PSQUARESk(n). On the algorithmic side, Charalampopoulos
et al. (2017) presented an algorithm computing the set psquares(T ) in O(nk3) time.
Here the readability of the algorithm has been considerably improved; we also show
a linear-time algorithm that reports all non-equivalent p-squares of a specified length.
Structure of the paper After the Preliminaries comes the algorithmic part of the
paper, which is followed by the combinatorial part. In Sect. 3 we show an O(n)-
time algorithm that reports all non-equivalent p-squares of a specified length and, as
an immediate corollary, O(nk2)-time computation of all non-equivalent ambiguous
p-squares. Then in Sect. 4 we give an O(nk3)-time algorithm for computing all non-
equivalent unambiguous p-squares. Asymptotic bounds for ambiguous p-squares and
unambiguous p-squares are presented in Sects. 5 and 6, respectively.

2 Preliminaries

For a word W ∈ Σ∗, by |W | = n we denote the length of W , and by Wi , for
i = 1, . . . , n, the i th letter of W . For 1 ≤ i ≤ j ≤ n, by [i.. j] and (i.. j] we denote
integer intervals {i, . . . , j} and {i +1, . . . , j}, respectively.W [i.. j] denotes the factor
ofW equal toWi · · ·Wj ; we also use the notationW [I ], where I is an integer interval.
A factor of the form W [1.. j] is called a prefix, a factor of the form W [i..n] is called a
suffix.

For a partial word T we use the same notation as for words: |T | = n for its length,
Ti for the i th letter, T [i.. j] for a factor. If T does not contain holes, then it is called
solid. The relation ≈ of matching on Σ ∪ {♦} is defined as: a ≈ a, ♦ ≈ a, and a ≈ ♦
for all a ∈ Σ ∪ {♦}.

We define an operation � such that: a � a = a � ♦ = ♦ � a = a for all
a ∈ Σ ∪ {♦}, and otherwise a � b is undefined. Two equal-length partial words S
and T are said to match (denoted as S ≈ T ) if Si ≈ Ti for all i = 1, . . . , n. In this
case, we denote

S � T = S1 � T1, . . . , Sn � Tn .

Also note that if UV is a p-square, then repr(UV ) = (U � V )2.
If U ≈ T [i..i + |U | − 1] for a partial word U , then we say that U occurs in T at

position i .
Two equal-length partial words U and V are called cyclic shifts if there are partial

words X,Y such that U = XY and V = Y X . We denote this as rot(U, |X |) = W ,
where |X | is the shift value.

For a partial word X , by #♦(X)we denote the number of holes in X . For 1 ≤ i ≤ n
and 0 ≤ q ≤ log n, we denote Ti,q = T [i..min(n, i + 2q − 1)]. We say that Ti,q is a
q-basic factor of the partial word T . In other words, q-basic factors are factors of T
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of length 2q and suffixes of T of length at most 2q . By B(T ) we denote the set of all
basic factors of T .

Lemma 2.1 If T is a partial word of length n with k holes, then

∑

W∈B(T )

#♦(W ) ≤ 2nk.

Proof The number of q-basic factors that contain a given position i ∈ {1, . . . , n} is at
most 2q . Thus the total number of basic factors that contain a given hole position i is
at most:

log n�∑

q=0

2q ≤ 2n.

��
We say that a p-square is an unambiguous p-square (u-square) if its representa-

tive is solid and an ambiguous p-square (a-square) otherwise. By asquares(T ) and
usquares(T ) we denote the sets of non-equivalent factors of T being a-squares and
u-squares, respectively. Obviously:

Observation 2.2 psquares(T ) = asquares(T ) ∪ usquares(T ).

2.1 Periods in solid and partial words

Apositive integer q is called a period of awordW ifWi = Wi+q for all i = 1, . . . , n−
q. In this case, W [1..q] is called a string period of W . A word W is called periodic if
it has a period q such that 2q ≤ |W |.

A quantum period of a partial word T is a positive integer q such that Ti ≈ Ti+q

for all i = 1, . . . , n − q. A deterministic period of T is an integer q such that there
exists a word W such that W ≈ T and W has a period q.

The partial word T is called quantum (deterministically) periodic if it has a quantum
(deterministic) period q such that 2q ≤ n.

For a partial word U and integer δ > 0, we denote

Misδ(U ) = {i ∈ [δ + 1..|U |] : Ui−δ 	≈ Ui },
Holes(U ) = {i ∈ [1..|U |] : Ui = ♦}.

Wesay that p is a d-approximate quantumperiod of a partial word T if |Misd(T )| ≤
d. Note that a 0-approximate quantum period is exactly a quantum period.

Lemma 2.3 Assume that U ≈ V .

(a) If i ∈ Misδ(U ), then i ∈ Misδ(V ) or i ∈ Holes(V ) or i − δ ∈ Holes(V ).
(b) |Misδ(U )| ≤ |Misδ(V )| + 2|Holes(V )|.
(c) If δ ≥ 1

2 |U |, then |Misδ(U )| ≤ |Misδ(V )| + |Holes(V )|.
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Proof (a): We have Vi−δ ≈ Ui−δ 	≈ Ui ≈ Vi . This means that Ui−δ,Ui ∈ Σ .
Hence, if i /∈ Holes(V ) and i − δ /∈ Holes(V ), then Vi−δ = Ui−δ and Vi = Ui , so
i ∈ Misδ(V ).

Point (b) follows from point (a). Also point (c) follows from point (a). Indeed, if
i ∈ Misδ(U ) in this case, then for each of the positions i , i − δ in V , if it contains a
hole, then it is counted only for the index i . ��

3 Computing all p-squares of specified length and non-equivalent
ambiguous p-squares

In this section we develop anO(n)-time algorithm that enumerates all non-equivalent
p-squares of a half length d in a partial word T of length n. As a corollary, we obtain
a simple computation of all non-equivalent ambiguous p-squares in optimal time.

For a partial word T , we denote by T ′ a partial word of length n − d such that
T ′[i] = T [i] � T [i + d] for each i = 1, . . . , n − d. If T [i] � T [i + d] is undefined
(since T [i] 	≈ T [i + d]), we set the value to a symbol # /∈ Σ .

Observation 3.1 (a) T [i..i +2d −1] is a p-square if and only if T ′[i..i +d −1] does
not contain the symbol #.

(b) If T [i..i +2d−1] is a p-square, then repr(T [i..i +2d−1]) = (T ′[i..i +d−1])2.
Proof (a) If T ′[i..i + d − 1] contains the symbol #, this means that T [ j] 	≈ T [ j + d]

for some j ∈ [i..i + d − 1]. Hence, T [i..i + 2d − 1] is not a p-square. Otherwise,
T [ j] ≈ T [ j + d] for all j ∈ [i..i + d − 1]. Hence, T [i..i + 2d − 1] indeed is a
p-square.

(b) If T [i..i + 2d − 1] is a p-square, then

(T ′[i..i + d − 1])2 = (T [i..i + d − 1] � T [i + d..i + 2d − 1])2 = repr(T [i..i + 2d − 1]).

��
Example 3.2 Let us consider the partial word T = ab♦♦ba♦aaba♦b from Exam-
ple 1.3. For d = 2 we construct the following partial word T ′:

abbabaa#ab#

from which we conclude that T contains p-squares of half length 2 with representa-
tives:

(ab)2, (bb)2, (ba)2, (ab)2, (ba)2, (aa)2, (ab)2.

For d = 3 we construct the partial word T ′:

aba♦#abaab
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which means that T contains p-squares of half length 3 with representatives:

(aba)2, (ba♦)2, (aba)2, (baa)2, (aab)2.

Theorem 3.3 All non-equivalent p-squares of half length d in a partial word of length
n can be reported (as factors of the partial word) in O(n) time.

Proof Let T be a partial word of length n. InO(n) timewe compute T ′. Let S1, . . . , Sq
be a partition of T ′ into maximal factors that do not contain the symbol #. By Observa-
tion 3.1, our task is equivalent to reporting all distinct factors of length d of the partial
words S j . This can be performed by listing all nodes (implicit and explicit) at depth d
in the generalized suffix tree T of S1, . . . , Sq , that is, in the suffix tree of S1#1 . . . Sq#q ,
where #1, . . . , #q /∈ Σ are distinct symbols. For details, see Gusfield (1997). As the
suffix tree of a word of length n can be constructed in O(n) time (Farach 1997), the
whole algorithm works in O(n) time. ��

As a corollary we obtain efficient computation of non-equivalent a-squares.

Theorem 3.4 For a partial word T of length n with k holes, all elements of the set
asquares(T ) can be reported in O(nk2) time.

Proof There are at most k2 possible lengths of ambiguous p-squares. For each length
we use the algorithm of Theorem 3.3 to report all non-equivalent p-squares. This takes
O(nk2) time. In the end, for each length we need to filter out unambiguous p-squares.
For a specified half length d, it suffices to check, for each p-square T [i..i + 2d − 1]
found, if T ′[i..i + d − 1] contains a hole. This condition can be checked inO(1) time
if the prefix sums of the sequence ai = [T ′[i] = ♦] are stored. ��

4 Computing all non-equivalent unambiguous p-squares

We start the description of the algorithm by an abstract lemma that lets us efficiently
generate all distinct squares induced by a special family of (solid) words.

4.1 Computing squares induced by a family of words

For a word S, we define its primitive root U as the shortest word such that Uk = S
for some integer k ≥ 1. The Lyndon root λ of a word U is the minimal cyclic shift
of the shortest string period of U . The notion of a Lyndon root was introduced in the
context of runs by Crochemore et al. (2014).

Example 4.1 The Lyndon root of U = abaababaababa is aabab. The word U is
periodic and its shortest period is 5.

For a word W and its period q, by squares(W, q) we denote the set of square factors
of W of length 2q. We say that squares(W, q) is the set of squares induced by the
word W with the period q. Each square factor in squares(W, q) can be represented in
O(1) space by specifying its occurrence in W .
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λi λi λi λi

rot(λ2
i , 5) rot(λ2

i , 5)

Fig. 2 In this case ni = 32, qi = 14, �i = 7, firsti = 3. Hence, Wi induces 5 squares being cyclic shifts
of λ4i , that is, Ii = [0, 2] ∪ [5, 6]

Lemma 4.2 Assume we have a family of possibly unknown words W1,W2, . . . ,WN

with periods q1, . . . , qN , a positive integer k and positive integers ni , firsti , �i for
i = 1, . . . , N, such that:

(1) ni ≤ n is the length of Wi and 2qi ≤ ni ;
(2) all the words Wi for which 2qi = ni (so-called short words) are distinct;
(3) for a given qi , the number of words Wi for which 2qi < ni (so-called long words)

is at most k;
(4) firsti is the starting position of the first occurrence of the Lyndon root λi of Wi in

Wi and �i is its length;
(5) any two Lyndon roots λi , λ j can be compared in O(k) time.

Then we can compute the cardinality of the set SQ = ⋃
i squares(Wi , qi ) and its

representation (as sets of intervals in Wi ’s) in O(Nk2 + nk3 + |SQ|) time.
Proof Let us start with the following observation; see also Fig. 2. The same type of
observation was used by Crochemore et al. (2014).

Observation 4.3 For every i , the set squares(Wi , qi ) equals

{rot(λ2qi/�ii , a) : a = (1 − firsti ) mod �i , . . . , (1 + ni − 2qi − firsti ) mod �i }.

The above set of integers is denoted by Ii . Note that it forms one cyclic subinterval of
[0..�i − 1] (composed of up to two standard intervals) and that it can be computed in
O(1) time. Each of the elements a ∈ Ii represents a unique square that is induced by
Wi and qi .

We make two transformations of the set of intervals Ii so that, in the end, each
square from the set SQ is induced by exactly one word Wi with period qi . If any of
the intervals is made empty, this corresponds to removing the word as unnecessary.
The first transformation deals with the long wordsWi ; by definition, at most k of them
share the same period qi .
First transformation For every pairWi , qi andWj , q j of long words such that i 	= j
and qi = q j , we check if λi = λ j . If Ii ⊆ I j , we dispose of Wi . Likewise, if I j ⊆ Ii ,
we remove Wj . If none of the two cases holds and still Ii ∩ I j 	= ∅, we trim I j to
make it disjoint with Ii .
ComplexityAll long words can be sorted by their periods inO(N +n) time by bucket
sort. There are n/2 buckets and each bucket contains at most k words. For each of
the k(k − 1)/2 pairs of long words in a bucket, we check equality of their Lyndon
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roots, which takes O(k) time per pair and O(nk3) time overall. The time complexity
of trimming of cyclic intervals is dominated by this step.
Second transformation For every short word Wi with period qi and long word Wj

with period q j = qi , we check if λi = λ j . If so and Ii ⊆ I j , we remove Wi . Note that
Ii is a singleton.
ComplexityAll words can be sorted by their periods inO(N +n) time by bucket sort.
For each short word Wi , we need to inspect at most k long words and check if their
Lyndon roots are equal. This takes O(k2) time per short word, O(Nk2) time overall.
Checking inclusion of elements in cyclic intervals is dominated by this step.

The two transformations takeO(Nk2 + nk3) time in total. Afterwards each square
is induced by exactly one interval Ii for a wordWi and period qi , so we can list all the
distinct squares in O(|SQ|) time. ��

For a partial word T , by ssquares(T ) we denote the set of distinct solid factors of
T being squares. The following fact was already mentioned in Sect. 1.

Fact 4.4 (Bannai et al. 2017; Crochemore et al. 2014; Gusfield and Stoye 2004) All
distinct squares in a word of length n can be computed in O(n) time.

By substituting all holes in a partial word with distinct symbols #1, . . . , #k , we
obtain the following corollary.

Corollary 4.5 For partial word T of length n, the set ssquares(T ) can be computed
in O(n) time.

The algorithm of Crochemore et al. (2014) actually computes the set ssquares(T )

together with all the data in assumption of Lemma 4.2. These are the short words in
the construction.

In the following section we construct a familyF of words (called sealed fragments)
that represent the u-squares that contain a hole and compute for them the data required
in Lemma 4.2. These are the long words in the construction. Afterwards we list all
distinct representatives of u-squares using Lemma 4.2. Then non-equivalent u-squares
are extracted from their representatives.

4.2 Computing a special family of sealed fragments

If T is a partial word, then U is a sealed fragment of T if U is a factor of T with
holes substituted by solid symbols. By unseal(U ) we denote the original factor of the
partial word.

A sealed fragment is always solid. Obviously, a sealed fragment can be represented
in space proportional to the number of holes that were substituted. For example, if
T [i..i + 2q − 1] is a u-square, then repr(T [i..i + 2q − 1]) is a sealed fragment.

If W is a (solid) word, then by a d-fragment we mean a concatenation of d factors
W [i1.. j1] . . .W [id .. jd ]. A d-fragment can be represented in O(d) space. Kociumaka
(2016) showed that several types of operations on d-fragments can be performed in
O(d) or O(d2) time after O(n)-time preprocessing. We notice here that a sealed
fragment of a partial word T with k holes corresponds to a d-fragment with d = O(k)
in a word that corresponds to T where ♦ is treated as an alphabet symbol. Thus the

123



J Comb Optim (2019) 37:501–522 511

following simple fact is a consequence of Observation 18 from Kociumaka (2016)
that was stated in terms of d-fragments.

Fact 4.6 (Kociumaka 2016) For a partial word of length n with k holes, after O(n)-
time preprocessing, the length of the longest common prefix (or suffix) of any two sealed
fragments can be computed in O(k) time. In particular, equality of sealed fragments
can be checked within the same time complexity.

Definition 4.7 A family of pairs (Wi , qi ), where each Wi is a sealed fragment of a
partial word T of length n with k holes and qi is a positive integer, is called an S-family
if it satisfies the following properties:

(a) For every i , qi is a period of Wi and |Wi | ≥ 2qi .
(b) For every i , there are no two holes in unseal(Wi ) at distance qi .
(c) For every q = 1, . . . , n, there are O(k) sealed fragments with qi = q.
(d) If X is a non-solid u-square in T , then X is a factor of unseal(Wi ) for some Wi

with qi = 1
2 |X |.

The size of an S-family follows from point (c).

Observation 4.8 An S-family contains O(nk) elements and thus can be represented
in O(nk2) space.

In the following lemma we provide an algorithm for constructing an
S-family. Our approach resembles computing anchored squares in the Main-Lorentz
algorithm (Main and Lorentz 1984).

Lemma 4.9 For apartialword T of length n with k holes, an S-family canbe computed
in O(nk2) time.

Proof Each non-solid u-square X contains a hole in the first half or in the second half.
Below, we construct an S-family for u-squares containing a hole in the second half. A
symmetric procedure deals with the u-squares containing a hole in the first half.

For a hole h and integer q, we define the family S(q, h) of u-squares of length
2q, which contain h as the leftmost hole in the second half. For each non-empty set
S(q, h), we shall construct a sealed fragment W with period q so that each u-square
X ∈ S(q, h) is a factor of unseal(W ).

First, let us seal the text consistentlywith the representatives of u-squares inS(q, h).
A hole at position i < h may only be contained in the first half, while a hole at position
i ≥ h may only be contained in the second half of such a u-square. Thus, we seal the
hole T [i] = ♦ with T [i + q] if i < h, and with T [i − q] if i ≥ h. Any remaining
hole is sealed with a unique marker (distinct for every hole). This produces a sealed
fragment T that covers the whole partial word T ; see Fig. 3. Let z be the distance
between h and the position of the preceding hole (z = +∞ if there is none). We
define W as a maximal fragment of T which contains T [h − q..h], is contained in
T [h − q − min(q − 1, z − 1)..h + q − 1], and has period q. If |W | < 2q, there is no
u-square of the desired type and we can discard W .

The fragmentW is unique and it can be retrieved inO(k) timeusingFact 4.6. Indeed,
it suffices to compute the longest common prefix P of T [h − q..n] and T [h..n], the
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T ♦ ♦ ♦ ♦ ♦

q

a
b

c d

T a c d b $

h

Fig. 3 A partial word T with 5 holes and the corresponding sealed text T with holes sealed by 5 (solid)
symbols implied by the value of q. The rightmost hole is filled by a special unique marker denoted by $

T
h

q

P P

S S

W

Fig. 4 The fragment W with period q anchored at h is computed using an operation of modified longest
common extension and its reversed version. We have |S| ≤ min(q − 1, z − 1), where z is the distance
between h and the position of the preceding hole, and |P| ≤ q − 1

longest common suffix S of T [1..h − q] and T [1..h], and take the possibly trimmed
fragment S T [h−q +1..h−1] P; see Fig. 4. We may need to trim S so that its length
exceeds neither q − 1 (so that the hole at position h is contained in the right half of
the square) nor z − 1 (so that h is the leftmost hole in the right half). Similarly, we
may need to trim P to the length q − 1. In total, the construction takes O(nk2) time.

Let us verify that this construction indeed satisfies the condition of Definition 4.7.
For each hole we construct just one sealed fragment, so the condition (c) is satisfied.
Clearly, W has period q and |W | ≥ 2q, which yields point (a). Moreover, if X =
T [i.. j] ∈ S(q, h), then repr(X) = T [i.. j], so (by maximality) repr(X) is contained
in W , and X is contained in unseal(W ). This gives point (d). Finally, we shall prove
that unseal(W ) does not contain two holes at distance q (condition (b)). Suppose that
the holes are at positions i and i + q. Observe that one of the holes is sealed with a
unique marker, which contradicts T [i] = T [i + q]. This completes the proof. ��
Example 4.10 Consider the partial word T = ab♦♦ba♦aaba♦b from Example 1.3
and q = 2. For the first hole we obtain the following word T :

ab|abbabaababb

with the original positions of holes underlined. The computed sealed fragment is
W = abab. For the second hole we obtain the word T :

abb|bbabaababb

and the sealed fragment bbbb. For the third hole T equals:

abbaba|baababb
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and the sealed fragment is ababa so S(2, 8) = {♦ba♦, ba♦a}. Finally, for the fourth
hole T equals:

abbabaaaaba|bb

and the sealed fragment is abab.

Henceforth we denote by F the S-family constructed in Lemma 4.9. In order to
transform it into an instance of Lemma 4.2, we need to compute the Lyndon roots of
the sealed fragments Wi (that is, the values firsti and �i ).

4.3 Lyndon roots of sealed fragments

We will show how to compute Lyndon roots λi of sealed fragments (Wi , qi ) ∈ F .
Obviously, a Lyndon root of a sealed fragment can be represented in the same space
complexity as the sealed fragment itself.

Let us start with the following fact that encapsulates Theorems 20 and 23 from
Kociumaka (2016).

Fact 4.11 (Kociumaka 2016) For a word of length n, after O(n)-time preprocessing,

(a) the length of the lexicographicallyminimal suffix of a d-fragment can be computed
in O(d2) time;

(b) the shift value of the minimal cyclic shift of a d-fragment can be computed in
O(d2) time.

As a consequence of Fact 4.11(a) we obtain:

Observation 4.12 For a word of length n, after O(n)-time preprocessing, the length
of the lexicographically maximal suffix of a d-fragment can be computed in O(d2)
time.

Proof To compute the maximal suffix instead of the minimal suffix, we reverse the
lexicographic order on the alphabet and append the d-fragment in question with a
letter that is greater than all the letters from Σ . ��

Fact 4.11(a) and Observation 4.12 provide us with the following toolbox for sealed
fragments.

Lemma 4.13 (Kociumaka 2016) For a partial word of length n with k holes, after
O(n)-time preprocessing,

(a) the length of the lexicographically maximal suffix of a sealed fragment can be
computed in O(k2) time.

(b) the shift value of the minimal cyclic shift of a sealed fragment can be computed
in O(k2) time.

Lemma 4.14 If W is a periodic sealed fragment and q is its period (not necessarily
shortest) such that 2q ≤ |W |, then the length of the Lyndon root of W and its first
occurrence in W can be computed in O(k2) time after O(n)-time preprocessing.
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c b a b c b a b c b a b c b a b c b

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Fig. 5 We have |W | = 18 and q = 8. The minimal cyclic shift of W [1..16] is (abcb)4 and starts, e.g., at
position i = 7, so the shift value is s = 6. Then, the maximal suffix over reversed alphabet of W [8..18]
starts at position i ′ = 11. We have � = i ′ − i = 4 and s mod � = 2. The Lyndon root of W is abcb

Proof Let s ∈ [0..q − 1] be the shift value of the minimal cyclic shift of W [1..2q]
and i = s + 1. It can be computed inO(k2) time using Lemma 4.13(a). We know that
the Lyndon root λ of W starts at the position s and that its length � divides q.

We then use Lemma 4.13(b) to find the starting position i ′ of the maximal suffix of
W [i + 1..|W |] with the reversed lexicographic order of the alphabet. If W [i ′..|W |] is
a prefix of W [i..|W |], then � = i ′ − i , and otherwise � = q. We check this condition
in O(k) time using Fact 4.6. Finally, we return s mod � and �; see Fig. 5. ��

By point (a) of the definition of an S-family we immediately obtain:

Corollary 4.15 The Lyndon roots of all sealed fragments (Wi , qi ) ∈ F can be com-
puted in O(nk3) time after O(n)-time preprocessing.

With this missing puzzle we are ready to conclude the algorithm for reporting all
unambiguous p-square factors of a partial word.

Theorem 4.16 For a partial word T of length n with k holes, all elements of the set
usquares(T ) can be reported in O(nk3) time.

Proof We construct a family of sealed fragments that consists of the solid p-squares
ssquares(T ) and an S-family F . By Corollary 4.5 and Lemma 4.9, this family can
be constructed inO(nk2) time. We compute Lyndon roots of all the sealed fragments
in O(nk3) time using Corollary 4.15. For each solid p-square we may compute its
Lyndon root in O(k2) time using Lemma 4.14; we can also use the Lyndon roots as
computed in Crochemore et al. (2014).

The constructed family satisfies the assumption of Lemma 4.2 with N = O(nk).
(Actually, if for any sealed factor (Wi , qi ) of the S-family F we have |Wi | = 2qi ,
we need to check if it equals any of the solid squares of the same length and, if so,
remove it, so that no two short words repeat.) This lemma lets us report all the distinct
representatives of u-squares in O(nk3 + |SQ|) time. The total number of u-squares
that will be generated is O(nk) due to Theorem 6.6. This gives the final complexity
of the algorithm. ��

5 Combinatorial bounds for ambiguous p-squares

Let T be a partial word of length n with k holes. The upper bound in the case of
a-squares is straightforward.

Theorem 5.1 If T is a partial word of length n with k holes, then asquares(T ) =
O(nk2).
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Proof The number of possible lengths of a-squares is at most
(k
2

)
, since we have

(k
2

)

possible distances between the k holes. Consequently, the number of p-squares with
such lengths is at most nk2. ��

Let us proceed to the lower bound proof. We say that a set A of positive integers is
an (m, t)-cover if the following conditions hold:

(1) For each d ≥ m, A contains at most one pair of elements with difference d;
(2) | { | j − i | ≥ m : i, j ∈ A } | ≥ t .

Example 5.2 {1, 2, 3, 6, 9, 12} is a (3, 9)-cover.
{1, 2, 3, 11, 14, 17} is a (8, 9)-cover.

For a set A ⊆ [1..n] we denote by WA,n the partial word of length n over the
alphabet Σ such that WA,n[i] = ♦ ⇔ i ∈ A, and WA,n[i] = a otherwise.

Lemma 5.3 Assume that A ⊆ [1..n] is an (m, t)-cover such that m = Θ(n), |A| = k,
and t = Ω(k2). Let Σ = {a, b} be the alphabet. Then

asquares(an−2 · WA,n · an−2) = Ω(n · k2).

Proof Each even-length factor of an−2 ·WA,n · an−2 is a p-square. Let Z be the set of
these factors X which contain two positions i < j containing holes with j − i ≥ m
and |X | = 2( j − i). As A is an (m, t)-cover, i and j are determined uniquely by
d = j − i . Then all elements of Z are pairwise non-equivalent a-squares. The size of
Z is Ω(mt) which is Ω(n · k2). ��
Theorem 5.4 For every positive integer n and k ≤ √

2n, there is a partial word of
length n with k holes that contains Ω(nk2) non-equivalent a-square factors.

Proof Due to Lemma 5.3, it is enough to construct a suitable set A. By monotonicity,
we may assume that k and n are even. We take:

A = [
1.. k2

] ∪ {
j · k

2 + n
2 : 1 ≤ j ≤ k

2

}
.

We claim that A is an ( n2 , t)-cover for t = Ω(k2). Indeed, take any i, j ∈ [1.. k2 ]. Then
j · k

2 + n
2 − i ≥ n

2 and all such values are distinct; hence, t = k2
4 . The thesis follows

from the claim. ��
Example 5.5 Let us consider the (8, 9)-cover from Example 5.2, which is a subset of
[1..n] for n = 17, and the partial word an−2 · WA,n · an−2:

a15♦♦♦aaaaaaa♦aa♦aa♦a15.

This partial word contains all a-squares with representatives being cyclic shifts of
(♦ai ) for i = 7, . . . , 15.
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Fig. 6 The u-square factors of
half length 4 with the letter b in
Wm = am−1bam−k♦kam−1

for m = 4, k = 2

b a a ♦ ♦ a a a
a b a a ♦ ♦ a a

a a b a a ♦ ♦ a
a a a b a a ♦ ♦

Wm: a a a b a a ♦ ♦ a a a

6 Combinatorial bounds for unambiguous p-squares

The following theorem shows a lower bound construction. Afterwards we design an
upper bound that asymptotically matches this lower bound.

Theorem 6.1 For every positive integers n and k, k ≤ 1
3n, there is a partial word of

length n with k holes that contains Ω(nk) non-equivalent u-square factors.

Proof Let us consider the following partial word over the alphabet {a, b}:

Wm = am−1bam−k♦kam−1.

Then for every i ∈ [1..k], Wm has m − k + i u-square factors of half length m − k + i
containing the letter b; see also Fig. 6. Altogether the number of such u-squares is:

k∑

i=1

m − k + i = Ω(nk),

where n = 3m − 1 = |Wm |. If n gives a different remainder modulo 3, we can pad
Wm with the letter a. ��

If X is a partial word, then by LONG(X)we denote the set of all p-squares of length
at least 1

2 |X | which occur in X as a prefix.
If A is a set of numbers, |A| ≥ 2, then we denote

mingap(A) = min{|b − a| : a, b ∈ A, a 	= b}.

If Z is a set of partial words, then mingap(Z) denotes mingap({|S| : S ∈ Z}).
Lemma 6.2 (Three p-Squares Lemma) Let X be a partial word with k holes.
Assume that the set LONG(X) contains at least three elements. Then δ =
mingap(LONG(X))/2 is a 12k-approximate quantum period of the longest p-square
in LONG(X).

Proof Let B,C ∈ LONG(X) be p-squares such that |B| − |C | = 2δ. Also let A and
D be the longest and the shortest element of LONG(X), respectively. Let |A| = 2a,
|B| = 2b, |C | = 2c, |D| = 2d. We aim to show that Misδ(A) ≤ 12k. We consider
two cases, depending on whether B 	= A or B = A.
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C

B

A

I1

I2

I3

I4

I5

δ

δ

≥ δ

c − δ c b a 2c b + c 2b 2a

Fig. 7 B 	= A

Case B 	= A: Let us consider the following intervals (see Fig. 7):

I1 = (0..c] I2 = (c − δ..b] I3 = (c..b + c] I4 = (2c..2b] I5 = (b + c..2a].

Let mq = |{i ∈ Iq : i − δ ∈ Iq , Xi−δ 	≈ Xi }|. We show the following inequalities:

(I) m1 ≤ k:
Assume that i ∈ Misδ(A) ∩ I1. Note that Xi ≈ Xi+c ≈ Xi+c−b = Xi−δ due to
p-squares B andC , respectively. Hence, Xi 	≈ Xi−δ may hold only if Xi+c = ♦.

(II) m3 ≤ k:
Assume that i ∈ Misδ(A) ∩ I3. Note that b < i ≤ b + c. Hence, Xi ≈
Xi−b ≈ Xi−b+c = Xi−δ due to p-squares B and C , respectively. Consequently,
Xi 	≈ Xi−δ may hold only if Xi−b = ♦.

(III) m4 ≤ m1 + k:
Assume that i ∈ Misδ(A) ∩ I4. Note that a < i − δ < i ≤ 2a. Let J =
(2c − a..2b − a]. Note that X [I4] ≈ X [J ] due to p-square A and that J ⊆ I1.
We apply Lemma 2.3(c) to X [I4] and X [J ] to conclude.

(IV) m2 ≤ m4 + k:
Assume that i ∈ Misδ(A) ∩ I2. Note that c − δ < i − δ < i ≤ b. Note that
X [I2] ≈ X [I4] due to p-square B. We apply Lemma 2.3(c) to X [I2] and X [I4]
to conclude.

(V) m4 + m5 ≤ m1 + m2 + m3 + 2k:
Assume that i ∈ Misδ(A) ∩ (I4 ∪ I5). Note that a < i − δ < i ≤ 2a. Let
J = (2c − a..a]. Note that X [I4 ∪ I5] ≈ X [J ] due to p-square A and that
J ⊆ I1 ∪ I2 ∪ I3. We apply Lemma 2.3(b) to X [I4 ∪ I5] and X [J ] to conclude.

We conclude that |Misδ(A)| = m1 +m2 +m3 + (m4 +m5) ≤ k+3k+k+7k = 12k.

Case B = A: Let us consider the following intervals (see Fig. 8):

I ′
1 = (0..c] I ′

2 = (c − δ..b] I ′
3 = (c..b + c] I ′

4 = (2c..2b].
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D

C

A = B

I1

I2

I3

I4

δ

≥ δ

δ

d c − δ c b 2c b + c 2b

Fig. 8 B = A

Let m′
q = |{i ∈ I ′

q : i − δ ∈ I ′
q , Xi−δ 	≈ Xi }|. We show the following inequalities:

(I) m′
1 ≤ k:

Assume that i ∈ Misδ(A) ∩ I ′
1. Note that Xi ≈ Xi+c ≈ Xi+c−b = Xi−δ due to

p-squares B andC , respectively. Hence, Xi 	≈ Xi−δ may hold only if Xi+c = ♦.
(II) m′

3 ≤ k:
Assume that i ∈ Misδ(A) ∩ I ′

3. Note that b < i < b + c. Hence, Xi ≈
Xi−b ≈ Xi−b+c = Xi−δ due to p-squares B and C , respectively. Consequently,
Xi 	≈ Xi−δ may hold only if Xi−b = ♦.

(III) m′
2 ≤ m′

1 + k:
Assume that i ∈ Misδ(A) ∩ I ′

2. Note that d < c − δ < i − δ < i ≤ b ≤ 2d. Let
J = (c − δ − d..b − d]. Note that X [I ′

2] ≈ X [J ] due to p-square D and that
J ⊆ I ′

1. We apply Lemma 2.3(c) to X [I ′
2] and X [J ] to conclude.

(IV) m′
4 ≤ m′

2 + k:
Assume that i ∈ Misδ(A) ∩ I ′

4. Note that X [I ′
4] ≈ X [I ′

2] due to p-square B. We
apply Lemma 2.3(c) to X [I ′

4] and X [I ′
2] to conclude.

We conclude that |Misδ(A)| = m′
1 + m′

2 + m′
3 + m′

4 ≤ k + 2k + k + 3k = 7k. ��
Recall that a deterministic period of a partial word X is an integer q such that there

exists a (solid) word W such that W ≈ X and W has a period q. In the following
lemma we show that if the set LONG(X) is large enough, then the majority of its
elements have strong periodic properties.

Lemma 6.3 Let X be a partial word with k holes. Assume that the set LONG(X)

contains at least 16k+3 elements. Then δ = mingap(LONG(X))/2 is a deterministic
period of all p-squares from LONG(X) excluding possibly the 2k + 1 longest ones.

Proof Let LONG′(X) be the set LONG(X) without the 2k + 1 longest elements, A be
the longest p-square in LONG(X), and B be the longest p-square in LONG′(X). We
start by a proof of a weaker property. In the proof we will use the fact that |Misδ(A)| ≤
12k (Lemma 6.2).
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Claim δ is a quantum period of B.

Proof Assume to the contrary that B does not have quantum period δ, i.e., that
Misδ(B) 	= ∅. Let i be the minimum index in Misδ(B).

1. Let us count the p-squares from LONG(X) that contain the position i in the first
half. Let C ∈ LONG(X), |C | = 2c, be such a p-square. Then Xi+c ≈ Xi 	≈
Xi−δ ≈ Xi+c−δ . Hence, either at least one of the positions Xi+c and Xi+c−δ

contains a hole (2k possibilities), or Xi+c 	≈ Xi+c−δ whichmeans that i ∈ Misδ(A)

(12k possibilities due to Lemma 6.2). Therefore, there can be at most 14k such
p-squares.

2. Let us count the p-squares from LONG(X) that contain i − δ in the first half and
i in the second half. There can be at most one such p-square. Otherwise there
would be two p-squares in LONG(X) whose halves’ lengths differ by less than δ,
contradicting the definition of δ.

3. Let us count the p-squares from LONG(X) that contain both positions i − δ and
i in the second half. Let C ∈ LONG(X), |C | = 2c, be such a p-square. Then
Xi−c ≈ Xi 	≈ Xi−δ ≈ Xi−c−δ . Hence, at least one of the positions Xi−c and
Xi−c−δ contains a hole (they cannot form a mismatch, as i was selected as the
minimal index). This gives 2k possibilities for such a p-square.

4. We will show that there are no p-squares from LONG(X) that do not contain the
position i . If such a p-square existed, thenwewould have |X |/2 < i−δ < i ≤ |B|,
so i − δ and i would be contained in right halves of all p-squares that are at least
as long as B. There are 2k + 1 of them, which contradicts point 3.

Each p-square in LONG(X) accounts to one of the categories 1-4. We have shown that
there can be at most 16k+1 p-squares in LONG(X)which contradicts the assumptions
of the lemma. This completes the proof of the claim. ��

Now we strengthen the previous claim and prove that δ is a deterministic period of
B. This will conclude the proof since all the p-squares in LONG′(X) are prefixes of
B.

Assume that this is not true and let d be minimal such that Bi−dδ 	≈ Bi and let i be
the minimal such index i . Hence, Bi−δ = . . . = Bi−(d−1)δ = ♦. Therefore, d ≤ k+1,
and by the claim, d ≥ 2. Moreover, k > 0.

1. Let us count the p-squaresC ∈ LONG(X), |C | = 2c, that contain i in the first half.
Let j = i + c. If j > |B|, then C ∈ LONG(X) \ LONG′(X) and there are 2k + 1
such p-squares. Otherwise, there can be at most 3k p-squares C ∈ LONG′(X) for
which any of the positions j − dδ, j − δ, j contains a hole. Assume otherwise.
Then Bj−dδ = Bi−dδ 	≈ Bi = Bj and Bj−δ 	= ♦. Hence, Bj−δ 	≈ Bj−dδ or
Bj−δ 	≈ Bj , either of which contradicts the way d was selected. In total, there can
be 5k + 1 of the considered p-squares.

2. Let us count the p-squares from LONG(X) that contain i −dδ in the first half and i
in the second half. There can be at most d of them, as otherwise there would be two
p-squares in LONG(X)whose halves’ lengths differ by less than δ, a contradiction.
Hence, the number of such p-squares is at most k + 1.

3. Let us count the p-squares C ∈ LONG(X), |C | = 2c, that contain both positions
i − dδ and i in the second half. Let j = i − c. There can be at most 2k such
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p-squares C for which any of the positions j − dδ, j contains a hole. Assume
otherwise. Then Bj−dδ 	≈ Bj which contradicts the definition of i .

4. Let us count the p-squares that contain the position i − dδ in the second half and
do not contain the position i . Using the same argument as in 2, we see that there
are at most k + 1 of them.

5. Finally, we will show that there are no p-squares in LONG(X) that do not contain
the position i − dδ. If such a p-square existed, then both positions i − dδ and i
would be contained in right halves of all p-squares from LONG(X) \ LONG′(X).
There are 2k + 1 of them, which contradicts point 3.

Each p-square in LONG(X) accounts to one of the categories 1-5. We have shown that
there can be at most 9k+3 p-squares in LONG(X)which contradicts the assumptions
of the lemma, as k > 0. This completes the proof of the lemma. ��

ByU-Pref (X)we denote the set of unambiguous p-squares in LONG(X) that occur
in X only as a prefix.

Lemma 6.4 Let X be a partial word with k holes. Then |U-Pref (X)| < 16k + 3.

Proof Assume to the contrary that |U-Pref (X)| ≥ 16k + 3. Let us recall that
U-Pref (X) ⊆ LONG(X) so the assumptions of Lemma 6.3 are satisfied.

Let U-Pref ′(X) be the set U-Pref (X) without the 2k + 1 longest elements.
By Lemma 6.3, each p-square in U-Pref ′(X) has a deterministic period δ =
mingap(LONG(X))/2.

Let us assume that B = X [1..2a] ∈ U-Pref ′(X) and let W 2 be its (solid) repre-
sentative. Then C = X [1 + δ..2a + δ] is a p-square, as it matches W 2 due to the
deterministic period δ. If X [2a + 1..2a + δ] did not contain a hole, then C would be
another occurrence of a u-square with representative W 2. This would contradict the
assumption that B ∈ U-Pref (X).

Note that the fragments of the form X [2a + 1..2a + δ] for X [1..2a] ∈ U-Pref ′(X)

are pairwise disjoint due to the definition of δ. What follows is that |U-Pref ′(X)| ≤ k
and |U-Pref (X)| ≤ 3k + 1, a contradiction. ��

We say that a solid square W 2 has a solid occurrence in T if T contains a factor
equal to W 2. By the following fact, there are at most 2n non-equivalent p-square
factors of T with solid occurrences.

Fact 6.5 (Fraenkel and Simpson 1998; Ilie 2005; Deza et al. 2015) Every position of
a (solid) word contains at most two rightmost occurrences of squares.

In the proof of the upper bound on the number of u-squares we separately count
u-squares that have a solid occurrence and those that do not. In the latter case, we use
Lemma 6.4, which lets us bound |U-Pref (X)| by 19k in case that k > 0.

Theorem 6.6 If T is a partial word of length n with k holes, then usquares(T ) =
O(nk).

Proof Let us recall that by B(T ) we denote the set of all basic factors of T . If T [i..
i + � − 1] is a rightmost occurrence of a u-square V , then V ∈ U-Pref (W ) for some
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W ∈ B(T ). (In particular,W = Ti,q for q = �log ��.) This lets us bound usquares(T )

as follows:

usquares(T ) ≤
∑

W∈B(T )

|U-Pref (W )|

{Fact 6.5} ≤ 2n +
∑

W∈B(T ):#♦(W )>0

|U-Pref (W )|

{Lemma 6.4} < 2n + 19
∑

W∈B(T )

#♦(W )

{Lemma 2.1} ≤ 2n + 38nk.

This concludes the proof. ��
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