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Abstract TU games with two-level communication structure, in which a two-level
communication structure relates fundamentally to the given coalition structure and
consists of a communication graph on the collection of the a priori unions in the coali-
tion structure, as well as a collection of communication graphs within each union, are
considered. For such games we introduce two families of two-step values inspired by
the two-step procedures staying behind the Owen value (Owen, in: Henn, Moeschlin
(eds) Essays in mathematical economics and game theory, Springer, Berlin, pp 76–88,
1977) and the two-step Shapley value (Kamijo in Int Game Theory Rev 11:207–214,
2009) for gameswith coalition structure.Our approach is basedon theunified treatment
of several component efficient values for games with communication structure and it
generates two-stage solution concepts that apply component efficient values for games
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with communication structure on both distribution levels. Comparable axiomatic char-
acterizations are provided.
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1 Introduction

In classical cooperative game theory it is assumed that any coalition of players may
form, and a fair distribution of total rewards amongst the players takes into account
capacities of all coalitions. For example, the most prominent solution of cooperative
games, the Shapley value (Shapley 1953), assigns to each player as a payoff the
average of the player’s marginal contributions to his predecessors with respect to all
possible linear orderings of the players. However, in many practical situations the
collection of feasible coalitions is restricted by some social, economical, hierarchical,
communicational, or technical structure. The study of transferable utility (TU) games
with limited cooperation introduced by means of coalition structures, or in other terms
a priori unions, was initiated in the 1970’s first by Aumann and Drèze (1974) and then
by Owen (1977). In these papers a coalition structure is given by a partition of the set
of players, and both papers introduce as solutions some adaptations of the classical
Shapley value to this situation with restricted cooperation. While Aumann and Drèze
assume that cooperation is possible only within a priori unions and as a solution
they propose the combination of Shapley values in subgames on a priori unions,
Owen admits some cooperation between players of different unions. Similar to the
Shapley value, the Owen value assigns to each player as a payoff the average of the
player’s marginal contributions to his predecessors with respect to linear orderings of
the players. But in case ofOwen not all possible linear orderings are taken into account,
but only those in which the players of the same a priori union appear successively.
Another model of a game with limited cooperation presented by means of undirected
communication graphs was introduced in Myerson (1977). The main assumption of
Myerson is that only connected players are able to cooperate, and the Myerson value
is given by the Shapley value in the Myerson restricted game, in which the worth
of each disconnected coalition is replaced by the sum of the worths of its connected
components. Various studies in both directions were done during the last four decades,
but mostly either within one model or another. Vázquez-Brage et al. (1996) is the
first study that combines both models by considering a TU game endowed with,
independent of each other, both a coalition structure and a communication graph on
the set of players. For this class of games they propose a solution by applying the
Owen value for games with coalition structure to the Myerson restricted game of the
game with communication graph.

Another model of a TU game endowed with both a coalition structure and a com-
munication graph, the so-called game with two-level communication structure, is
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considered in Khmelnitskaya (2014). In contrast to Vázquez-Brage et al. (1996), in
this model a two-level communication structure relates fundamentally to the given
coalition structure and consists of a communication graph on the collection of the
a priori unions in the coalition structure, as well as a collection of communication
graphs within each union. It is assumed that communication is only possible either
among the entire a priori unions or among single players within any a priori union.
No communication and therefore no cooperation is allowed between proper subcoali-
tions, in particular single players, of distinct elements of the coalition structure.1 This
approach allows to model different network situations, in particular, telecommunica-
tion problems, distribution of goods among different cities (countries) along highway
networks connecting the cities and local road networks within the cities, or sharing
an international river with multiple users but without international firms, i.e., when
no cooperation is possible among single users located at different levels along the
river, and so on. Communication structures under scrutiny are given by combinations
of graphs of different types both undirected-arbitrary graphs and cycle-free graphs,
and directed-line-graphs with linearly ordered players, rooted forests and sink forests.
The proposed solution concepts reflect a two-stage distribution procedure when, first,
a priori unions collect their shares through the upper level bargaining based only on
the cumulative interests of all members of every involved entire a priori union, and
second, the players collect their individual payoffs through the lower level bargain-
ing over the distribution of the unions’ shares within the unions. Following Myerson
(1977) it is assumed that cooperation is possible only between connected partici-
pants and different combinations of known component efficient values, such as the
Myerson value, the position value, the average tree solution, etc., are applied on both
communication levels. However, as discussed in Khmelnitskaya (2014), the two-stage
distribution procedure based on the application of component efficient values on both
levels suffers from severe restrictions in cases when some a priori unions are inter-
nally not connected, because each union always has to distribute its total share among
the members. Another solution concept for TU games with two-level communication
structure introduced by means of undirected graphs, the so-called Owen-type value
for games with two-level communication structure, is considered in van den Brink
et al. (2016) under a weaker assumption concerning the communication on the level
of a priori unions, when on the upper level bargaining between a priori unions, similar
as for the Owen value introduced in Owen (1977), one of the a priori unions can be
presented by any of its proper subcoalitions. This solution can be seen as an adapta-
tion of the two-step procedure determining the Owen value for games with coalition
structure which takes into account the limited cooperation represented by two-level
communication structure replacing twice the Shapley value by the Myerson value.2

1 Asimilarmodel, butwith other andquite special assumptions concerning the ability of players to cooperate
under given communication constraints is also studied in Kongo (2011).
2 An extension of the Owen-type value introduced in van den Brink et al. (2016), when the underlying
two-step procedure determining the Owen value for games with coalition structure is replaced by a similar
two-step procedure, in which on both steps the application of the Shapley value is replaced by the τ -value,
is studied recently in Zhang et al. (2017).
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In this paper we assume that a two-level communication structure is given by com-
binations of graphs of different types, both undirected and directed, and we introduce
two families of two-step values for games with two-level communication structure
adapting the two-step procedures staying behind two values for games with coalition
structure, theOwen value and the two-step Shapley value introduced inKamijo (2009).
Our approach is based on the unified treatment of several component efficient values
for games with communication structure and it generates two-stage solution concepts
that apply component efficient values for games with communication structure on
both distribution levels. In fact the newly introduced family of the Owen-type values
is the generalization of the Owen-type value for games with two-level communication
structures of van den Brink et al. (2016), when on both communication levels not only
the Myerson value, but different component efficient values for games with commu-
nication structure can be applied. The incorporation of different solutions for games
with communication structure aims not only to enrich the solution concepts for games
with two-level communication structure, but it also opens a broad diversity of appli-
cations impossible otherwise, because there exists no universal solution concept for
games with communication structure that is applicable to the full variety of possible
undirected and directed graph structures. Moreover, it allows to choose, depending on
types of graph structures under scrutiny, the most preferable, in particular, the most
computationally efficient combination of values among others suitable. We provide
axiomatic characterizations of the introduced two-step values. These axiomatizations
have several common axioms for the both families which allows to compare the two-
step values from different families.

The introduced two families of two-step solution concepts may find application in
different resource allocation problems with two hierarchical distribution levels. For
instance, they may be used for budget allocation within a university, when the budget
has to be distributed first among its departments and then among the individuals within
each department. An example showing advantages of using the Owen-type value for
games with two-level communication structures, in case when on both communication
levels only the Myerson value is applied, is discussed in van den Brink et al. (2016).

The rest of the paper is organized as follows. Basic definitions and notation are
introduced in Sect. 2. Section 3 provides the uniform approach to several known
component efficient values for gameswith communication structure,which allows also
to consider within a unified framework different deletion link properties with respect
to the values for games with two-level communication structure. In Sects. 4 and 5
we introduce correspondingly the families of the Kamijo-type and Owen-type values
axiomatically and present their explicit formula representations. Section 6 concludes.

2 Preliminaries

2.1 TU games and values

A cooperative game with transferable utility, or TU game, is a pair 〈N , v〉, where
N ⊂ IN is a finite set of n players and v : 2N → IR is a characteristic function with
v(∅) = 0, assigning to every coalition S ⊆ N of s players its worth v(S). The set of
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TU games with fixed player set N is denoted by GN . For simplicity of notation and if
no ambiguity appears we write v when we refer to a TU game 〈N , v〉. The subgame
of a TU game v ∈ GN with respect to a player set T ⊆ N is the TU game v|T ∈ GT

defined by v|T (S) = v(S) for every S ⊆ T . A payoff vector is a vector x ∈ IRN with
xi the payoff to player i ∈ N . A single-valued solution, called a value, is a mapping
ξ : GN → IRN that assigns to every finite set N ⊂ IN and every TU game v ∈ GN

a payoff vector ξ(v) ∈ IRN . A value ξ is efficient if
∑

i∈N ξi (v) = v(N ) for every
v ∈ GN and N ⊂ IN. The best-known efficient value is the Shapley value (Shapley
1953) given by

Shi (v) =
∑

S⊆N\{i}

s!(n − s − 1)!
n! (v(S ∪ {i}) − v(S)), for all i ∈ N .

In the sequel we denote the cardinality of a given set A by |A|, along with lower case
letters like n = |N |, m = |M |, nk = |Nk |, s = |S|, c = |C |, c′ = |C ′|, and so on, and
we use the standard notation x(S)=∑

i∈S xi for any x ∈ IRN and S ⊆ N .

2.2 Games with coalition structure

A coalition structure, or in other terms a system of a priori unions, on N ⊂ IN is given
by a partition P = {N1, . . . , Nm} of N , i.e., N1 ∪ . . . ∪ Nm = N and Nk ∩ Nl = ∅ for
k �= l. LetPN denote the set of all coalition structures on N , and let GP

N = GN ×PN .
A pair 〈v,P〉 ∈ GP

N constitutes a game with coalition structure, or simply P-game,
on N . Remark that 〈v, {N }〉 represents the same situation as v itself. A P-value is a
mapping ξ : GP

N → IRN that assigns to every N ⊂ IN and every P-game 〈v,P〉 ∈ GP
N

a payoff vector ξ(v,P) ∈ IRN . A P-value ξ is efficient if
∑

i∈N ξi (v,P) = v(N ) for
every v ∈ GP

N and N ⊂ IN. In what follows, denote by M = {1, . . . ,m} the index set
of all a priori unions in P; for every P-game 〈v,P〉 ∈ GP

N and every k ∈ M let vk
denote the subgame v|Nk ; for every i ∈N , let k(i) be defined by the relation i ∈Nk(i);
and for every x ∈ IRN , let xP =(

x(Nk)
)
k∈M ∈ IRM stand for the vector of total payoffs

to a priori unions.
One of the best-known values for games with coalition structure is the Owen value

(Owen 1977) that can be seen as a two-step procedure in which the Shapley value
applies twice. Namely, the Owen value assigns to player i ∈ N his Shapley value in
the game v̄k(i), i.e.,

Owi (v,P) = Shi (v̄k(i)), for all i ∈ N ,

while for every a priori union Nk , k ∈ M , the game v̄k ∈ GNk on the player set Nk is
given by

v̄k(S) = Shk(v̂S), S ⊆ Nk,
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where for every S ⊆ Nk the game v̂S ∈ GM on the player set M of a priori unions is
defined by

v̂S(Q) =
{

v(∪h∈QNh), k /∈ Q,

v(∪h∈Q\{k}Nh ∪ S), k ∈ Q,
for all Q ⊆ M.

The Owen value is efficient, i.e.,
∑

i∈N Owi (v,P) = v(N ), and satisfies the quotient
game property, i.e., for every a priori union the total payoff to the players within that
union is determined by applying the Shapley value to the so-called quotient game
being the game vP ∈ GM in which the unions act as individual players,

vP (Q) = v(∪k∈QNk), for all Q ⊆ M.

Notice that for every k ∈ M the game v̂Nk is equal to the quotient game vP .
Another value for games with coalition structure that also can be seen as a two-step

procedure in which the Shapley value applies twice is the so-called two-step Shapley
value ψ introduced in Kamijo (2009). The two-step Shapley value first allocates to
player i ∈ N his Shapley value in the subgame on the a priori union Nk(i) he belongs
to and then distributes what remains of the Shapley value of its union in the quotient
game equally among the union’s members, i.e., for any P-game 〈v,P〉 ∈ GP

N ,

Kai (v,P) = Shi (vk(i)) + Shk(i)(vP ) − v(Nk(i))

nk(i)
. (1)

TheKamijo’s two-step Shapley value is efficient andmeets the quotient game property.

2.3 Games with communication structure

A communication structure on N is specified by a graph �, undirected or directed,
on N . A graph on N consists of N as the set of nodes and for an undirected graph a
collection of unordered pairs � ⊆ {{i, j} | i, j ∈ N , i �= j} as the set of links between
two nodes in N , and for a directed graph, or a digraph, a collection of ordered pairs
� ⊆ {(i, j) | i, j ∈ N , i �= j} as the set of directed links from one node to another
node in N . When it is necessary to specify the set of nodes N in a graph �, we write
�N instead of �. LetGN denote the set of all communication structures, undirected or
directed, on N , and let GΓ

N = GN × GN . A pair 〈v, �〉 ∈ GΓ
N constitutes a game with

graph (communication) structure, or simply a graph game, or a Γ -game, on N . A
Γ -value is a mapping ξ : GΓ

N → IRN that assigns to every N ⊂ IN and every Γ -game
〈v, �〉 ∈ GΓ

N a payoff vector ξ(v, �) ∈ IRN .
In a graph � a sequence of different nodes (i1, . . . , ir ), r ≥ 2, is a path in �

from node i1 to node ir if for h = 1, . . . , r−1 it holds that {ih, ih+1} ∈ � when � is
undirected and {(ih, ih+1), (ih+1, ih)} ∩ � �= ∅ when � is directed. In a digraph � a
path (i1, . . . , ir ) is a directed path from node i1 to node ir if (ih, ih+1) ∈ � for all
h = 1, . . . , r−1. In a digraph �, j �= i is a successor of i and i is a predecessor of
j if there exists a directed path from i to j . Given a digraph � on N and i ∈ N , the
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sets of predecessors and successors of i in � we denote correspondingly by P�(i) and
S�(i); moreover, P̄�(i) = P�(i) ∪ {i} and S̄�(i) = S�(i) ∪ {i}.

Given a graph � on N , two nodes i and j in N are connected if either there exists a
path from node i to node j , or i and j coincide. Graph � on N is connected if any two
nodes in N are connected. For a graph � on N and a coalition S ⊆ N , the subgraph
of � on S is the graph �|S = {{i, j}∈� | i, j ∈ S} on S when � is undirected and the
digraph �|S = {(i, j)∈� | i, j ∈ S} on S when � is directed. Given a graph � on N ,
a coalition S ⊆ N is connected if the subgraph �|S is connected. For a graph � on N
and coalition S ⊆ N , C�(S) is the set of all connected subcoalitions of S, S/� is the
set of maximal connected subcoalitions of S, called the components of S, and (S/�)i
is the component of S containing player i ∈ S. Notice that S/� is a partition of S.
For any 〈v, �〉 ∈ GΓ

N , a payoff vector x ∈ IRN is component efficient if x(C) = v(C),
for every C ∈ N/�.

Following Myerson (1977), we assume that for Γ -games cooperation is possible
only among connected players and concentrate on component efficient Γ -values. A
Γ -value ξ is component efficient (CE) if for any 〈v, �〉 ∈ G�

N , for all C ∈ N/�,
∑

i∈C ξi (v, �) = v(C). Below for a Γ -game 〈v, �〉∈GΓ
N we also consider the intro-

duced in Myerson (1977) restricted game v� ∈GN defined as

v�(S) =
∑

C∈S/�

v(C), for all S ⊆ N . (2)

Hereinafter along with communication structures given by arbitrary undirected
graphs we consider also those given by cycle-free undirected graphs and by directed
graphs—linear graphs with linearly ordered players, rooted and sink forests. In an
undirected graph � a path (i1, . . . , ir ), r ≥ 3, is a cycle in � if {ir , i1} ∈ �. An
undirected graph is cycle-free if it contains no cycles. A directed graph � is a rooted
tree if there is one node in N , called a root, having no predecessors in � and there is a
unique directed path in � from this node to any other node in N . A directed graph �

is a sink tree if the directed graph composed by the same set of links as � but with the
opposite orientation is a rooted tree; in this case the root of a tree changes its meaning
to the absorbing sink. A directed graph is a rooted/sink forest if it is composed by a
number of disjoint rooted/sink trees. A linear graph is a directed graph that contains
links only between subsequent nodes. Without loss of generality we may assume that
in a linear graph nodes are ordered according to the natural order from 1 to n, i.e.,
linear graph � ⊆ {(i, i + 1) | i = 1, . . . , n − 1}.

For ease of notation given graph � and link {i, j} ∈ � if � is undirected, or
(i, j) ∈ � if � is directed, the subgraph �\{{i, j}}, correspondingly �\{(i, j)}, is
denoted by �|−i j .

2.4 Games with two-level communication structure

We now consider situations in which the players are partitioned into a coalition
structure P and are linked to each other by communication graphs. First, there is
a communication graph �M on the set of a priori unions determined by the partition
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P . Second, for each a priori union Nk , k ∈ M , there is a communication graph �Nk

between the players in Nk . In what follows for simplicity of notation and when it
causes no ambiguity we denote graphs �Nk within a priori unions Nk , k ∈ M , by
�k . Given a player set N ⊂ IN and a coalition structure P ∈ PN , a two-level graph
(communication) structure on N is a tuple �P = 〈�M , {�k}k∈M 〉. For every N ⊂ IN
and P ∈ PN by GP

N we denote the set of all two-level graph structures on N with
fixed P . LetGP

N = ⋃
P∈PN

GP
N be the set of all two-level graph structures on N , and

let GPΓ
N = GN ×GP

N . A pair 〈v, �P 〉 ∈ GPΓ
N constitutes a game with two-level graph

(communication) structure, or simply a two-level graph game or a PΓ -game, on N .
A PΓ -value is a mapping ξ : GPΓ

N → IRN that assigns to every N ⊂ IN and every
PΓ -game 〈v, �P 〉 ∈ GPΓ

N a payoff vector ξ(v, �P ) ∈ IRN .
Given a PΓ -game 〈v, �P 〉 ∈ GPΓ

N , one can consider the quotient Γ -game
〈vP , �M 〉 ∈ GΓ

M and the Γ -games within a priori unions 〈vk, �k〉 ∈ GΓ
Nk

with
vk = v|Nk , k ∈ M , that model the bargaining between a priori unions for their
total shares and the bargaining within each a priori union for the distribution of its
total worth among the members taking also into account limited cooperation at both
communication levels introduced by the communication graphs �M and �k , k ∈ M .
Moreover, given a Γ -value φ, for any 〈v, �P 〉 ∈ GPΓ

N with a graph structure �M on
the level of a priori unions suitable for application of φ to the corresponding quotient
Γ -game 〈vP , �M 〉, along with a subgame vk within a priori union Nk , k ∈ M , one
can also consider a φk-game v

φ
k defined as

v
φ
k (S) =

{
φk(vP , �M ), S = Nk,

v(S), S �= Nk,
for all S ⊆ Nk,

where φk(vP , �M) is the payoff to Nk given by φ in 〈vP , �M〉. Then a Γ -game
〈vφ

k , �k〉 ∈ GΓ
Nk

models the bargaining within union Nk for the distribution of its
total share among the members taking into account restrictions on cooperation in Nk

given by �k , when the share is obtained by the application of Γ -value φ at the upper
level bargaining between a priori unions.

3 Deletion link properties for two-level graph games

As it is discussed in Khmelnitskaya (2014), a number of known component efficient
Γ -values for games with undirected or directed communication structure such as for
undirected graph games the Myerson value μ (cf., Myerson 1977) and the position
value π (cf., Meessen 1988; Borm et al. 1992; Slikker 2005) for arbitrary undirected
graph games, the average tree solution AT (cf., Herings et al. 2008) and the compen-
sation solution CS (cf., Béal et al. 2012) for undirected cycle-free graph games, or for
directed graph games the upper equivalent solution UE, the lower equivalent solution
LE and the equal loss solution EL for linear graph games (cf., van den Brink et al.
2007), the tree value t for rooted forest and the sink value s for sink forest digraph
games (cf., Khmelnitskaya 2010), can be approached within the unified framework.
Indeed, each one of these Γ -values is defined for Γ -games with suitable graph struc-
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ture and is characterized by two axioms, CE and one or another deletion link (DL)
property (axiom), reflecting the relevant reaction of a Γ -value on the deletion of a
link in the communication graph. The corresponding DL properties are fairness (F),
balanced link contributions (BLC), component fairness (CF), relative fairness (RF),
upper equivalence (UE), lower equivalence (LE), equal loss property (EL), successor
equivalence (SE), and predecessor equivalence (PE), and the characterization results
are as follows:

CE + F for all undirected Γ -games ⇐⇒ μ(v, �),

CE + BLC for all undirected Γ -games ⇐⇒ π(v, �),

CE + CF for undirected cycle-free Γ -games ⇐⇒ AT (v, �),

CE + RF for undirected cycle-free Γ -games ⇐⇒ CS(v, �),

CE + UE for linear graph Γ -games ⇐⇒ UE(v, �),

CE + LE for linear graph Γ -games ⇐⇒ LE(v, �),

CE + EL for linear graph Γ -games ⇐⇒ EL(v, �),

CE + SE for rooted forest Γ -games ⇐⇒ t (v, �),

CE + PE for sink forest Γ -games ⇐⇒ s(v, �).

This observation allows to identify each of the listed above Γ -values with the corre-
sponding DL axiom. Given a DL axiom, let GDL

N ⊆ GΓ
N denote a set of all 〈v, �〉 ∈ GΓ

N
with � suitable for DL application. Then

CE + DL on GDL
N ⇐⇒ DL(v, �).

Whence it simply follows that F(v, �) = μ(v, �) and BLC(v, �) = π(v, �) for
all undirected Γ -games, CF(v, �) = AT (v, �) and RF(v, �) = CS(v, �) for all
undirected cycle-free Γ -games,UE(v, �), LE(v, �), and EL(v, �) are UE, LE, and
EL solutions correspondingly for all linear graphΓ -games, SE(v, �) = t (v, �) for all
rooted forest Γ -games, and PE(v, �) = s(v, �) for all sink forest Γ -games. Remark
that all just discussed values are additive.

Next notice that every discussed DL axiom can be equivalently defined by an
equality

	DL(ξ(v, �), �′) = 0, (3)

where 	DL is an operator which for a Γ -value ξ defined on GDL
N and applied to a

Γ -game 〈v, �〉 ∈ GDL
N assigns a real number representing the numerical evaluation

of players’ payoff reaction on the deletion of links in � from a chosen set of links
�′ ⊆ � according to the considered DL axiom. For the above mentioned DL-axioms,
we have �′ = �, and the corresponding operators of the DL-axioms are:

Fairness (F) For any player set N ⊂ IN, for every Γ -game 〈v, �〉 ∈ GΓ
N ,

	F (ξ(v, �), �′)=
∑

i, j∈N |{i, j}∈�′

∣
∣
∣
(
ξi (v, �)−ξi (v, �|−i j )

)
−
(
ξ j (v, �)−ξ j (v, �|−i j )

)∣
∣
∣,

(4)
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Balanced link contributions (BLC) For any player set N ⊂ IN, for every Γ -game
〈v, �〉 ∈ GΓ

N ,

	BLC (ξ(v, �), �′) =
∑

i, j∈N

∣
∣
∣
∣
∣
∣

∑

h∈N |{i,h}∈�′

(
ξ j (v, �) − ξ j (v, �|−ih)

)

−
∑

h∈N |{ j,h}∈�′

(
ξi (v, �) − ξi (v, �|− jh)

)
∣
∣
∣
∣
∣
∣
, (5)

Component fairness (CF) For any player set N ⊂ IN, for every cycle-free Γ -game
〈v, �〉 ∈ GΓ

N ,

	CF (ξ(v, �), �′) =
∑

i, j∈N |{i, j}∈�′

∣
∣
∣

1

|(N/�|−i j )i |
∑

h∈(N/�|−i j )i

(
ξh(v, �) − ξh(v, �|−i j )

)

− 1

|(N/�|−i j ) j |
∑

h∈(N/�|−i j ) j

(
ξh(v, �) − ξh(v, �|−i j )

)∣∣
∣, (6)

Relative fairness (RF) For any player set N ⊂ IN, for every cycle-free Γ -game
〈v, �〉 ∈ GΓ

N ,

	RF (ξ(v, �), �′) =
∑

i, j∈N |{i, j}∈�′

∣
∣
∣
(
ξi (v, �) − 1

|(N/�|−i j )i |
∑

h∈(N/�|−i j )i

ξh(v, �|−i j )
)

−
(
ξ j (v, �) − 1

|(N/�|−i j ) j |
∑

h∈(N/�|−i j ) j

ξh(v, �|−i j )
)∣
∣
∣, (7)

Upper equivalence (UE) For any player set N ⊂ IN, for every linear graph Γ -game
〈v, �〉 ∈ GΓ

N ,

	UE (ξ(v, �), �′) =
n−1∑

i=1

i∑

j=1

∣
∣ξ j (v, �) − ξ j (v, �|−i,i+1)

∣
∣. (8)

Lower equivalence (LE) For any player set N ⊂ IN, for every linear graph Γ -game
〈v, �〉 ∈ GΓ

N ,

	LE (ξ(v, �), �′) =
n−1∑

i=1

n∑

j=i+1

∣
∣ξ j (v, �) − ξ j (v, �|−i,i+1)

∣
∣. (9)
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Equal loss property (EL) For any player set N ⊂ IN, for every linear graph Γ -game
〈v, �〉 ∈ GΓ

N ,

	EL(ξ(v, �), �′)

=
n−1∑

i=1

∣
∣
∣
∣
∣
∣

i∑

j=1

(
ξ j (v, �) − ξ j (v, �|−i,i+1)

)
−

n∑

j=i+1

(
ξ j (v, �) − ξ j (v, �|−i,i+1)

)
∣
∣
∣
∣
∣
∣
.

(10)

Successor equivalence (SE) For any player set N ⊂ IN, for every rooted forest Γ -
game 〈v, �〉 ∈ GΓ

N ,

	SE (ξ(v, �), �′) =
∑

i, j∈N |{i, j}∈�′

∑

h∈S̄�( j)

∣
∣ξh(v, �) − ξh(v, �|−i j )

∣
∣. (11)

Predecessor equivalence (PE) For any player set N ⊂ IN, for every sink forest
Γ -game 〈v, �〉 ∈ GΓ

N ,

	PE (ξ(v, �), �′) =
∑

i, j∈N |{i, j}∈�′

∑

h∈P̄�( j)

∣
∣ξh(v, �) − ξh(v, �|−i j )

∣
∣. (12)

The definition of deletion link axioms for Γ -values in terms of equality (3) allows
to consider the corresponding deletion link axiomswithin a unified framework also for
PΓ -values with respect to both communication levels, at the upper level with respect
to the quotientΓ -game determining the total payoffs to a priori unions and at the lower
level with respect to Γ -games within a priori unions determining the distribution of
total payoffs within each a priori union. Let ξ be a PΓ -value. By definition ξ is a
mapping ξ : GPΓ

N → IRN that assigns a payoff vector to any PΓ -game on the player
set N ⊂ IN. For every N ⊂ IN a mapping ξ = {ξi }i∈N generates on the domain of
PΓ -games on N a mapping ξP : GPΓ

N → IRM , ξP ={ξPk }k∈M , with ξPk =∑
i∈Nk

ξi ,
k ∈ M , that assigns to every PΓ -game on N a vector of total payoffs to all a priori
unions, and m mappings ξ k : GPΓ

N → IRNk , ξ k = {ξi }i∈Nk , k ∈ M , assigning payoffs
to players within a priori unions. For a given (m + 1)-tuple of deletion link axioms

〈DLP , {DLk}k∈M 〉 for Γ -values, let GDLP ,{DLk }k∈M
N ⊆ GPΓ

N be the set of PΓ -games
composed of PΓ -games 〈v, �P 〉 with graph structures �P = 〈�M , {�k}k∈M 〉 such
that 〈vP , �M 〉 ∈ GDLP

M and 〈vDLP
k , �k〉 ∈ GDLk

Nk
, k ∈ M . Given a (m + 1)-tuple

of deletion link axioms 〈DLP , {DLk}k∈M 〉 for Γ -values and a PΓ -game 〈v, �P 〉 ∈
GDLP ,{DLk }k∈M
N , we may consider the operators (4)–(12) applied to the Γ -value ξP

assigning the total payoffs to a priori unions to evaluate its reaction on deletion of
links in graph �M , or applied to the Γ -values ξ k , k ∈ M , assigning payoffs to single
players within a priori unions to evaluate their reaction on deletion of links in the
corresponding graphs �k . Based on the last observation, we define axioms of Quotient

DL property and Union DL property for PΓ -values defined on GDLP ,{DLk }k∈M
N as

follows:
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Quotient DL property (QDL) For any player set N ⊂ IN and PΓ -game 〈v, �P 〉 ∈
GDLP ,{DLk }k∈M
N , �P = 〈�M , {�h}h∈M 〉,

	DLP
(ξP (v, �P ), �M ) = 0, (13)

where 	DLP
is given by one of the operators (4)–(12) and in the corresponding for-

mulas �P |−kl = 〈�M |−kl , {�h}h∈M 〉 for every link {k, l} ∈ �M if �M is undirected,
or (k, l) ∈ �M if �M is directed.

Union DL property (UDL) For any player set N ⊂ IN, PΓ -game 〈v, �P 〉 ∈
GDLP ,{DLk }k∈M
N , �P = 〈�M , {�h}h∈M 〉, and k ∈ M ,

	DLk
(ξ k(v, �P ), �k) = 0, (14)

where 	DLk
is given by one of the operators (4)–(12) and in the corresponding for-

mulas �P |−i j = �P |k−i j = 〈�M , {�̂h}h∈M 〉with �̂h = �h for h �= k and �̂k = �k |−i j

for every link {i, j} ∈ �k if �k is undirected, or (i, j) ∈ �k if �k is directed.
For example, if we consider the Myerson fairness (F) as a DL axiom, QDL and

UDLk can be denoted QF and UFk correspondingly. In fact in this case QF coincides
with quotient fairness (QF) and m-tuple of axioms (UF1, . . . ,UFm) coincides with
union fairness (UF) employed in van den Brink et al. (2016).

QDL and UDL axioms for PΓ -values provide the uniform approach to various
deletion link properties on both bargaining levels. This allows to introduce within
the unified framework two families of PΓ -values based on the adaptation of the
two-step distribution procedures of Owen and Kamijo respectively for games with
coalition structure to the case when the cooperation between and within a priori
unions is restricted by communication graphs and when different combinations of
known component efficient solution concepts on both communication levels could be
applied. Moreover, this allows to include into consideration not only combinations
of undirected communication graphs but also combinations including some types of
digraphs.

4 Kamijo-type values for two-level graph games

In this section we consider the family of PΓ -values based on the adaptation of the
Kamijo’s two-step distribution procedure for P-games. We introduce these values
axiomatically by means of six axioms among which QDL and UDL as defined in the
previous section. The other four axioms are defined below. To begin with, Quotient
component efficiency requires that each component on the upper level between a priori
unions distributes fully its total worth among the players of the a priori unions forming
this component.
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Quotient component efficiency (QCE) For any N ⊂ N, any 〈v, �P 〉 ∈ GPΓ
N , �P =

〈�M , {�k}k∈M 〉,
∑

k∈K

∑

i∈Nk

ξi (v, �P ) = vP (K ), for all K ∈ M/�M . (15)

The second axiom is a straightforward adaptation of the standard covariance under
strategic equivalence to the case of PΓ -games. Two games v,w ∈ GN are strategically
equivalent if there are a ∈ IR++ and b ∈ IRn such that

w(S) = av(S) + b(S), for all S ⊆ N .

Covariance under strategic equivalence (COV) For any player set N ⊂ IN and
PΓ -game 〈v, �P 〉 ∈ GPΓ

N , �P = 〈�M , {�k}k∈M 〉, for any a ∈ IR++ and b ∈ IRn it
holds that

ξ(av + b, �P ) = aξ(v, �P ) + b,

where the game (av + b) ∈ GN is defined by (av + b)(S) = av(S) + b(S) for all
S ⊆ N .

The next axiom requires equal payoffs to all members of every a priori union Nk ,
k ∈ M , for which all subcoalitions S ⊆ Nk with nonzero worth vk(S) �= 0 are
disconnected. In this case every connected coalition possesses zero worth, i.e., com-
munication between the members of every connected coalition is useless, and so, the
asymmetries among the players created by game vk and by their locations in graph
�k on Nk vanish. Therefore, it makes sense to treat all players of Nk symmetrically.
Remark that the condition that v(S) �= 0 implies S to be disconnected is equivalent
to v

�k
k ≡ 0, i.e., the axiom requires that all players in Nk obtain the same payoffs if

the Myerson restricted game v
�k
k is a null game. The latter observation determines the

name of the axiom.

Union null restricted game property (UNRGP) For any player set N ⊂ IN and
PΓ -game 〈v, �P 〉 ∈ GPΓ

N , �P = 〈�M , {�k}k∈M 〉, if for some k ∈ M , for all S ⊆ Nk ,
vk(S) �= 0 implies S /∈ C�k (Nk), then it holds that for all i, j ∈ Nk , i �= j ,

ξi (v, �P ) = ξ j (v, �P ).

The last axiom determines the distribution of the total shares obtained by internally
disconnected a priori unions at the upper level bargaining between a priori unions
among the components of these unions. Imagine that each a priori union Nk , k ∈ M ,
is a public institution (e.g. university, hospital, or firm) of which every component
C ∈ Nk/�k is an independent unit (e.g. the faculties within a university, medical
departments within a hospital, or production plants within a firm). First public insti-
tutions Nk , k ∈ M compete among themselves for their annual budgets from the
government. Once obtained the budget, institution Nk has to decide how much to give
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to each of its independent units. At this stage the independent units of an institution
compete against each other for the best possible shares from the institution’s budget.
Similarly as in the competition among the public institutions, the total payoff to a
unit depends on the total productivity of each of the units, but not on the productivity
of the smaller collaborating teams within the units. Our last axiom requires the total
payoff to a component of any a priori union to be independent of the so-called internal
coalitions, each of which is a proper subcoalition of some component of one of the
given a priori unions, or more precisely, a coalition ∅ �= S ⊆ N is internal if there
is k ∈ M such that S ⊂ C for some C ∈ Nk/�k . From now on, given a player set
N ⊂ IN, a partition P = {N1, . . . , Nm} of N , and a set of communication graphs
{�k}k∈M on a priori unions Nk , k ∈ M , the set of all internal coalitions we denote
by Int(N ,P, {�k}k∈M ). It is worth to remark that, of course, the worths of internal
coalitions play a crucial role in the redistribution of the total payoff obtained by a
component among its members, but the axiom does not concern this.

Union component payoff independence of internal coalitions (UCPIIC) For any
player set N ⊂ IN and two PΓ -games 〈v, �P 〉, 〈w,�P 〉 ∈ GPΓ

N with the same �P =
〈�M , {�k}k∈M 〉 and such that w(S) = v(S) for all S ⊆ N , S /∈ Int(N ,P, {�k}k∈M ),
it holds that for every k ∈ M , for all C ∈ Nk/�k ,

∑

i∈C
ξi (v, �P ) =

∑

i∈C
ξi (w, �P ).

Our first theorem provides an axiomatic characterization of the a family of PΓ -
values.

Theorem 1 For any (m + 1)-tuple of deletion link axioms 〈DLP , {DLk}k∈M 〉 such
thatDLP is not RF and the set of DLk , k ∈ M, axioms is restricted to F and CF, there

is a unique PΓ -value defined on GDLP ,{DLk }k∈M
N that meets axioms QCE, QDL, UDL,

COV, UNRGP, and UCPIIC, and for every PΓ -game 〈v, �P 〉 ∈ GDLP ,{DLk }k∈M
N it is

given by

ξi (v, �P ) = DLk(i)
i (vk(i), �k(i)) + DLP

k(i)(vP , �M ) − v
�k(i)
k(i) (Nk(i))

nk(i)
, for all i ∈ N .

(16)

Before proving Theorem 1, we formulate some remarks.

Remark 1 It is not difficult to trace a relation between the PΓ -value ξ given by (16)

and the two-step Shapley value (1). Indeed, for a PΓ -game 〈v, �P 〉 ∈ GFP ,{Fk }k∈M
N ,

ξ(v, �P ) = Ka(v�P ,P), where v�P ∈ GN is determined as

v�P (S) =
⎧
⎨

⎩

v
�M
P (Q), Q ⊆ M : S = ∪q∈QNq ,

v
�k
k (S), S ⊆ Nk, k ∈ M,

0, otherwise,
for all S ⊆ N ,
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i.e., when S is the union of number of a priori unions its worth is defined according
to the Myerson restricted quotient game, when S is a subset of some a priori union its
worth is defined according to theMyerson restricted game within the union, otherwise
the worth of S is zero.

Because of the mentioned similarity, from now on we refer to the PΓ -value (16) as
to the Kamijo-type 〈DLP , {DLk}k∈M 〉-value, denoted further by Ka〈DLP ,{DLk }k∈M 〉.

Remark 2 Axiom RF cannot be used at any level in Theorem 1. The reason is that
it gives rise to the compensation solution at the level where RF is applied and the
compensation solution does not satisfy COV on its domain. Furthermore, the PΓ -
value Ka〈DLP ,{DLk }k∈M 〉 violates the UDL property if in the (m + 1)-tuple of deletion
link axioms 〈DLP , {DLk}k∈M 〉 among the axioms DLk , k ∈ M there are axioms BLC,
UE, LE, EL, SE, and PE. The reason is that the second summand in the numerator of
the second term in the right-hand side of (16) is sensitive to the deletion of different
links in graph �k , and therefore, for these cases the equality 	DLk

(ξ k(v, �P ), �k) =
	DLk

(DLk(vk, �k), �k) = 0 in general does not hold.

Proof (Theorem 1) I. [Existence]. We show that under the hypothesis of the theorem

the PΓ -value ξ = Ka〈DLP ,{DLk }k∈M 〉 defined on GDLP ,{DLk }k∈M
N by (16) meets the

axioms QCE, QDL, UDL, COV, UNRGP and UCPIIC. Consider an arbitrary PΓ -

game 〈v, �P 〉 ∈ GDLP ,{DLk }k∈M
N .

QCE By the definition (16) of ξ and component efficiency of each DLk-value for all
k ∈ M it holds that ∑

i∈Nk

ξi (v, �P ) = DLP
k (vP , �M ). (17)

Thus, for any K ∈ M/�M we have

∑

k∈K

∑

i∈Nk

ξi (v, �P ) =
∑

k∈K
DLP

k (vP , �M ) = vP (K ),

where the second equality follows from component efficiency of DLP -value.

QDL From (17) we obtain that ξP (v, �P ) = DLP (vP , �M ). Whence it follows that

	DLP (
ξP (v, �P ), �M

)
= 	DLP (

DLP (vP , �M ), �M

)
= 0,

where the last equality holds true since the DLP -value for Γ -games meets DLP .

UDL We need to show that if the set of axioms DLk , k ∈ M , is restricted to F and CF,
then for all k ∈ M , 	DLk

(ξ k(v, �P ), �k) = 0.
Let for some k ∈ M , DLk = F. Then since by definition for any link {i, j} ∈ �k ,

�P |−i j = �P |k−i j = 〈�M , {�̂h}h∈M 〉 with �̂h = �h for h �= k, and �̂k = �k |−i j , we
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obtain that

	F (ξ k(v, �P ), �k)

(4)=
∑

i, j∈Nk |{i, j}∈�k

∣
∣
∣
(
ξ ki (v, �P ) − ξ ki (v, �P |−i j )

)
−

(
ξ kj (v, �P ) − ξ kj (v, �P |−i j )

)∣
∣
∣

(16)=
∑

i, j∈Nk |{i, j}∈�k

∣
∣
∣
(
Fk
i (vk, �k) + DLP

k (vP , �M ) − v
�k
k (Nk)

nk

− Fk
i (vk, �k |−i j ) + DLP

k (vP , �M ) − v
�k |−i j
k (Nk)

nk

)

−
(
Fk
j (vk, �k) + DLP

k (vP , �M ) − v
�k
k (Nk)

nk
− Fk

j (vk, �k |−i j )

+ DLP
k (vP , �M ) − v

�k |−i j
k (Nk)

nk

)∣
∣
∣

=
∑

i, j∈Nk |{i, j}∈�k

∣
∣
∣
(
Fi (vk, �k) − Fi (vk, �k |−i j )

)
−

(
Fj (vk, �k) − Fj (vk, �k |−i j )

)∣
∣
∣

(4)= 	F (F(vk, �k), �k) = 0,

where the last equality holds true since the F-value for Γ -games (the Myerson value)
meets fairness F. Using the similar arguments as above we prove that for all k ∈ M
for which DLk = CF, 	CF (ξ k(v, �P ), �k) = 0.

COV Pick any a ∈ IR++ and b ∈ IRn . Then, for all i ∈ N ,

ξi (av+b, �P )
(16),(2)= DLk(i)

i ((av + b)k(i), �k(i))

+
DLP

k(i)((av + b)P , �M ) −∑
C∈Nk(i)/�k(i)

(av + b)(C)

nk(i)

= aDLk(i)
i (vk(i), �k(i)) + bi

+
aDLP

k(i)(vP , �M )+b(Nk(i))−∑
C∈Nk(i)/�k(i)

(av(C)+b(C))

nk(i)
= aξi (v, �P ) + bi ,

where the second equality is true because each of the considered DLk-values, k ∈ M ,
and DLP -values meets COV on its domain, and (av+b)P (Q)=avP (Q)+b(∪k∈QNk)

for all Q ⊆ M ; and the third equality is due to the equality
∑

C∈Nk(i)/�k(i)
b(C) =

b(Nk(i)), since Nk(i)/�k(i) forms a partition of Nk(i).

UNRGP Assume that for the chosen PΓ -game 〈v, �P 〉 there exists k ∈ M such that
for all S ⊆ Nk , vk(S) �= 0 implies S /∈ C�k (Nk). Every of the considered DLk-values,
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the Myerson value and the average tree solution, are determined only by worths of
connected coalitions, and therefore, DLk

i (vk, �k) = 0 for all i ∈ Nk . Moreover, as it

was already mentioned earlier, the above assumption is equivalent to v
�k
k ≡ 0, which

implies that v(C) = 0 for every C ∈ Nk/�k . Hence, from (16) it follows that for all
i ∈ Nk ,

ξi (v, �P ) = DLP
k (vP , �M )

nk
,

where the right side is independent of i , from which it follows that PΓ -value ξ meets
UNRGP.

UCPIIC. Take any k ∈ M and C ∈ Nk/�k . The component efficiency of each of the
considered DLk-values implies DLk(vk, �k)(C) = v(C). Then from (16) it follows
that

∑

i∈C
ξ(v, �P ) = v(C) + c

nk

(
DLP

k (vP , �M ) − v�k (Nk)
)
,

where the right side is independent of worths of internal coalitions, i.e. PΓ -value ξ

meets UCPIIC.

II. [Uniqueness]. Assume that a (m + 1)-tuple of deletion link axioms 〈DLP ,

{DLk}k∈M 〉 such that the set of axioms DLk , k ∈ M , is restricted to F and CF, is

given. We show that there exists at most one PΓ -value on GDLP ,{DLk }k∈M
N that satis-

fies axioms QCE, QDL, UDL, COV, UNRGP, and UCPIIC. Let φ be such PΓ -value

on GDLP ,{DLk }k∈M
N . Take an arbitrary PΓ -game 〈v, �P 〉 ∈ GDLP ,{DLk }k∈M

N . Fix some
k ∈ M . We start by determining the union payoffs φP

k (v, �P ), k ∈ M , by induction
on the number of links in �M similarly as it is done in the proof of uniqueness of the
Myerson value for Γ -games, cf., Myerson (1977).

Initialization: If |�M | = 0 then for all k ∈ M the set of neighboring unions
{h ∈ M | {h, k} ∈ �} = ∅, and therefore by QCE and definition of the quotient game
vP , φP

k (v, �P ) = vP ({k}) = v(Nk).
Induction hypothesis: Assume that the values φP

k (v, �′
P ), k ∈ M , have been

determined for all two-level graph structures �′
P = 〈�′, {�h}h∈M 〉 with �′ such that

|�′| < |�M |.
Induction step: Let Q ∈ M/�M be a component in graph �M on M . If Q ⊆ M

is a singleton, let Q = {k}, then from QCE it follows that φP
k (v, �P ) = v(Nk). If

q ≥ 2, then there exists a spanning tree �̃ ⊆ �M |Q on Q with the number of links
|�̃| = q − 1. By QDL it holds that

	DLP
(φP (v, �P ), �M ) = 0. (18)

The above equality in fact provides for each link {k, l} ∈ �M some equality relating
values of φP

h (v, �P ), h ∈ M , with values of distinct φP
h (v, �P |−kl), h ∈ M . Since
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|�M |−kl | = |�M | − 1, from the induction hypothesis it follows that for all links
{k, l} ∈ �M ((k, l) ∈ �M ) the payoffs φP

h (v, �P |−kl), h ∈ M , are already determined.
Thus with respect to q − 1 links {k, l} ∈ �̃, (18) yields q − 1 linearly independent
linear equations in the q unknown payoffs φP

k (v, �P ), k ∈ Q. Moreover, by QCE it
holds that

∑

k∈Q
φP
k (v, �P ) = vP (Q).

All these q equations are linearly independent. Whence it follows that for every Q ∈
M/�, all payoffs φP

k (v, �P ), k ∈ Q, are uniquely determined. Notice that in the
proof of the induction step, every possible spanning tree �̃ yields the same solution
for the values φP

k (v, �P ), k ∈ Q, because otherwise a solution does not exist, which
contradicts the already proved “existence” part of the proof of the theorem.

Next, we show that the individual payoffs φi (v, �P ), i ∈ Nk , are uniquely deter-
mined. This part of the proof is also by induction, now on the number of links in
�k .

Initialization: Assume that |�k | = 0. Let v0 be the 0-normalization of the TU
game v, i.e., v0(S) = v(S) − ∑

i∈S v({i}) for all S ⊆ N , and let (v0)k = v0|Nk .
As already shown above, the union payoffs φP

k (w, �P ), k ∈ M , are uniquely deter-

mined for any PΓ -game 〈w,�P 〉 ∈ GDLP ,{DLk }k∈M
N . In particular, the “union payoffs”

φP
k (v0, �P ), k ∈ M , are uniquely determined. By definition (v0)k({i}) = 0 for every

i ∈ Nk , and therefore, (v0)
�k
k ≡ 0 since |�k | = 0. Then, from UNRGP it follows that

φi (v0, �P ) = φP
k (v0, �P )

nk
, for all i ∈ Nk .

Whence by COV we obtain

φi (v, �P ) = v({i}) + φP
k (v0, �P )

nk
, for all i ∈ Nk,

i.e., for every i ∈ Nk , φi (v, �P ) is uniquely determined.
Induction hypothesis: Let �′

P denote the two-level graph structure 〈�M ,

{�′
h}h∈M 〉 with �′

h = �h if h �= k and �′
k = �′ for some graph �′ on Nk . Assume that

the values φi (v, �′
P ) have been determined for every �′ with |�′| < |�k |.

Induction step: For every S ∈ Int(N ,P, {�k}k∈M ) let CS ∈ Nk/�k be the
unique component such that S ⊂ CS . Consider a game w ∈ GN defined as

w(S) =
{

v(S), S /∈ Int(N ,P, {�k}k∈M ),
s v(CS)

cS
, S ∈ Int(N ,P, {�k}k∈M ),

for all S ⊆ N . (19)

For the 0-normalization w0 of w, (w0)k = (wk)0. The subgame wk is an additive
game and, therefore, (wk)0 ≡ 0. Then, due to UNRGP, similar as in the Initialization
step, it follows that
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φi (w0, �P ) = φP
k (w0, �P )

nk
, for all i ∈ Nk .

Whence by COV we obtain

φi (w, �P ) = w({i}) + φP
k (w0, �P )

nk
, for all i ∈ Nk .

Consider a component C ∈ Nk/�k . From the above equality it follows that

∑

i∈C
φi (w, �P ) =

∑

i∈C
w({i}) + c

nk
φP
k (w0, �P )

(19)= v(C) + c

nk
φP
k (w0, �P ).

By the definition (19) of w, w(S) = v(S) for all S ⊆ N , S /∈ Int(N ,P, {�k}k∈M ).
Whence by UCPIIC it follows that

∑

i∈C
φi (v, �P ) = v(C) + c

nk
DLP

k (w0,P , �M ), for all C ∈ Nk/�k . (20)

Next, if c = 1, then C is a singleton and the payoff φi (v, �P ) of the only player
i ∈ C is uniquely determined by (20). If c ≥ 2, then there exists a spanning tree
�̃ ⊆ �k |C on C with the number of links |�̃| = c − 1. By UDL it holds that

	DLk
(
φk(v, �P ), �k

)
= 0. (21)

The above equality in fact provides for any link {i, j} ∈ �k some equality relating
values of φh(v, �P ), h ∈ Nk , with values of distinct φh(v, �P |k−i j ). Since |�k |−i j | =
|�k | − 1, by the induction hypothesis it follows that for all links {i, j} ∈ �k the
payoffs φh(v, �P |k−i j ), h ∈ Nk , are already determined. Thus with respect to c − 1

links {i, j} ∈ �̃, (21) yields c − 1 linearly independent linear equations in the c
unknown payoffs φi (v, �P ), i ∈ C . These c − 1 equations together with (20) form
a system of c linearly independent equations in the c unknown payoffs φi (v, �P ),
i ∈ C . Hence, for every C ∈ Nk/�k , all payoffs φi (v, �P ), i ∈ C , are uniquely
determined. ��
Logical independence of the axioms

Given a (m + 1)-tuple of deletion link axioms 〈DLP , {DLk}k∈M 〉, such that the set of
DLk , k ∈ M , axioms is restricted to F, CF, and RF, the logical independence of the
axioms in Theorem 1 is demonstrated by the following examples of PΓ -values:

• The PΓ -value ξ (1) assigning in every 〈v, �P 〉 ∈ GDLP ,{DLk }k∈M
N to every player

i ∈ N a payoff

ξ
(1)
i (v, �P ) = DLP

k(i)(vP , �M )

nk(i)
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satisfies all axioms except COV.

• The PΓ -value ξ (2) assigning in every 〈v, �P 〉 ∈ GDLP ,{DLk }k∈M
N to every player

i ∈ N a payoff

ξ
(2)
i (v, �P ) = v({i}) +

DLP
k(i)(vP , �M ) − ∑

j∈Nk(i)
v({ j})

nk(i)

satisfies every axiom except UCPIIC.

• The PΓ -value ξ (3) assigning in every 〈v, �P 〉 ∈ GDLP ,{DLk }k∈M
N to every player

i ∈ N a payoff

ξ
(3)
i (v, �P ) = DLk(i)

i (vk(i), �k(i)) + Shk(i)(v(M/�M )k(i) ) − v�k(i) (Nk)

nk(i)

satisfies every axiom except QDL.

• The PΓ -value ξ (4) assigning in every 〈v, �P 〉 ∈ GDLP ,{DLk }k∈M
N to every player

i ∈ N a payoff

ξ
(4)
i (v, �P ) = ELk(i)

i (vk(i), �k(i)) + DLP
k(i)(vP , �M ) − v�k(i) (Nk)

nk(i)

satisfies every axiom except UDL.

• The PΓ -value ξ (5) assigning in every 〈v, �P 〉 ∈ GDLP ,{DLk }k∈M
N to every player

i ∈ N a payoff

ξ
(5)
i (v, �P ) = DLk(i)

i (vk(i), �k(i)) + v(Nk(i)) − v�k(i) (Nk(i))

nk(i)

satisfies every axiom except QCE.

• The PΓ -value ξ (6) assigning in every 〈v, �P 〉 ∈ GDLP ,{DLk }k∈M
N to every player

i ∈ N a payoff

ξ
(6)
i (v, �P ) = Ka〈DLP ,{DLk }k∈M 〉

i (v, �P ) + ai − 1

nk(i)

∑

j∈Nk(i)

a j ,

where (a j ) j∈N ∈ IRn is any vector of real numbers such that not all coordinates
are equal, satisfies every axiom except UNRGP.

5 Owen-type values for two-level graph games

In this section we consider another family of PΓ -values based on the adaptation of
the Owen’s two-step distribution procedure for P-games. We introduce these values
axiomatically by means of four axioms. The first three axioms are QCE, QDL, and
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UDL already employed in the previous section for characterization of the Kamijo-
type 〈DLP , {DLk}k∈M 〉-values. The fourth axiom of fair distribution of the surplus
within unions was first introduced in van den Brink et al. (2016) where it was used
for the axiomatization of the Owen-type value for PΓ -games which is based on the
application of the Myerson value on both communication levels. This axiom requires
balanced average payoff variation for all components within a priori union in case the
other components leave the game.

Fair distribution of the surplus within unions (FDSU) For any N ⊂ IN, any
〈v, �P 〉 ∈ GPΓ

N , �P = 〈�M , {�k}k∈M 〉, k ∈ M , any C,C ′ ∈ Nk/�k ,

1

c

∑

i∈C

(
ξi (v, �P ) − ξi

(
vkC , �Pk

C

))
= 1

c′
∑

i∈C ′

(
ξi (v, �P ) − ξi

(
vkC ′ , �Pk

C ′

))
, (22)

where for k ∈ M and component C ∈ Nk/�k , vkC denotes the subgame v|(N\Nk)∪C of
v with respect to the coalition (N \ Nk)∪C , Pk

C denotes the partition on (N \ Nk)∪C
consisting of unionC and all unions Nh inP , h �= k, and �Pk

C
= 〈�M , {�̃h}h∈M 〉with

�̃k = �k |C and �̃h = �h for all h ∈ M \ {k}, denotes the two-level communication
structure that is obtained from 〈�M , {�h}h∈M 〉 by replacing the communication graph
�k by its restriction on C ⊆ Nk .

The next theorem extends the Owen-type value for PΓ -games studied in van den
Brink et al. (2016) by allowing the application of different combinations of known
component efficient solution concepts for Γ -games on both communication levels.

Theorem 2 For any (m + 1)-tuple of deletion link axioms 〈DLP , {DLk}k∈M 〉 such
that the set of DLk , k ∈ M, axioms is restricted to F, CF, and RF, there is a unique

PΓ -value defined on GDLP ,{DLk }k∈M
N that meets axioms QCE, FDSU, QDL, and UDL.

For every PΓ -game 〈v, �P 〉 ∈ GDLP ,{DLk }k∈M
N it is given by

ξi (v, �P ) = DLk(i)
i (ṽk(i), �k(i))+

DLP
k(i)(vP , �M ) − ∑

C∈Nk(i)/�k(i)

ṽk(i)(C)

nk(i)
, i ∈ N ,

(23)
where for all k ∈ M, ṽk ∈ GNk is defined as

ṽk(S) = DLP
k (v̂S, �M ), for all S ⊆ Nk,

and for every S ⊆ Nk, v̂S ∈ GM is given by

v̂S(Q) =
{

v(∪h∈Q Nh), k /∈ Q,

v(∪h∈Q\{k} Nh ∪ S), k ∈ Q,
for all Q ⊆ M.

The proof strategy is similar to that applied in van den Brink et al. (2016), a careful
reader may find the proof in “Appendix”. We skip the proof of logical independence
of axioms since it can be easily obtained by modification of the examples used for the
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proof in van den Brink et al. (2016) in case of 〈DLP , {DLk}k∈M 〉 = 〈FP , {Fk}k∈M 〉,
i.e., when the Myerson fairness F is applied on both levels.

Note that in case when 〈DLP , {DLk}k∈M 〉 = 〈FP , {Fk}k∈M 〉, the statement of
Theorem 2 coincides with the statement of both Proposition 4.1 and Theorem 4.2
proved in van den Brink et al. (2016) together and the PΓ -value ξ given by (23)
coincides as well with the Owen-type PΓ -value introduced there. Because of the
latter coincidence, from now on we refer to the PΓ -value (23) as to the Owen-type
〈DLP , {DLk}k∈M 〉-value denoted further by Ow〈DLP ,{DLk }k∈M 〉.

Observe also that the Owen-type 〈DLP , {DLk}k∈M 〉-value admits the similar two-
step construction procedure as the Owen value for games with coalition structure. The
difference is that instead of two applications of the Shapley value used in the case of
the classical Owen value, in the Owen-type 〈DLP , {DLk}k∈M 〉-value different known
component efficient Γ -values can be applied on both communication levels.

Remark 3 Note that different from Theorem 1, in Theorem 2 RF can be used at
any level due to the fact that COV employed in Theorem 1 is replaced by FDSU
in Theorem 2, and the latter axiom is compatible with the compensation solution char-
acterized by RF. By the reasons similar to those mentioned in Remark 2, the PΓ -value
Ow〈DLP ,{DLk }k∈M 〉 violates the UDL property when there are axioms BLC, UE, LE,
EL, SE, and PE among the axiomsDLk , k ∈ M in the (m+1)-tuple 〈DLP , {DLk}k∈M 〉.

6 Conclusion

We conclude by a final comparison of the two families of values introduced by The-
orems 1 and 2. Observe that all considered PΓ -values meet QCE, QDL, UDL,
and COV (the last one only if RF is not involved). However, while the Owen-
type 〈DLP , {DLk}k∈M 〉-values satisfy FDSU, but violate UNRGP and UCPIIC, the
Kamijo-type 〈DLP , {DLk}k∈M 〉-values vice versa satisfy UNRGP and UCPIIC, but
violate FDSU. The summary of the properties is given in the following table, where
the axioms needed for our axiomatizations are marked by ∗.

Value QCE QDL UDL COV FDSU UNRGP UCPIIC

Owen-type
〈DLP , {DLk }k∈M 〉-value

+∗ +∗ +∗ + +∗ − −

Kamijo-type
〈DLP , {DLk }k∈M 〉-value

+∗ +∗ +∗ +∗ − +∗ +∗

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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Appendix

Proof (Theorem 2) I. [Existence]. We show that under the hypothesis of the theorem

the PΓ -value ξ = Ow〈DLP ,{DLk }k∈M 〉 defined on GDLP ,{DLk }k∈M
N by (23) meets the

axioms QCE, QDL, FDSU, and UDL. Consider an arbitrary PΓ -game 〈v, �P 〉 ∈
GDLP ,{DLk }k∈M
N .

QCE, QDL, UDL The proof of the fact that the Owen-type 〈DLP , {DLk}k∈M 〉-value
meets these axioms is similar to the proof of same statement for the Kamijo-type
〈DLP , {DLk}k∈M 〉-value in Theorem 1, and so we skip it.
FDSU From (23) we obtain that for every C ∈ Nk/�k it holds that

∑

i∈C
ξi (v, �P )

(23)=
∑

i∈C
DLk

i (ṽk, �k) + c

nk

⎛

⎝DLP
k (vP , �M ) −

∑

H∈Nk/�k

ṽk(H)

⎞

⎠

= ṽk(C) + c

nk

⎛

⎝DLP
k (vP , �M ) −

∑

H∈Nk/�k

ṽk(H)

⎞

⎠ ,

where the second equality is due to component efficiency of DLk-value for Γ -games.
Further,

∑

i∈C
ξi (v

k
C , �Pk

C
)
(23)=

∑

i∈C
DLk

i (
˜(vkC )k, �k |C )

+ c

nk

⎛

⎝DLP
k ((vkC )Pk

C
, �M )−

∑

H∈C/�k |C

˜(vkC )k(H)

⎞

⎠

= ˜(vkC )k(C) + c

nk

(

DLP
k ((vkC )Pk

C
, �M ) − ˜(vkC )k(C)

)

= ṽk(S),

where the second equality is due to component efficiency of DLk-value for Γ -
games and C being the only component in �k |C , and the third equality follows from

equality ˜(vkC )k(C) = ṽk(C) which holds true because v̂C = ̂(vkC )C , and equalities

DLP
k ((vkC )Pk

C
, �M ) = DLP

k (v̂C , �M )
def= ṽk(C) first of which holds true because

(vkC )Pk
C

= ̂(vkC )C = v̂C . Thus,

1

c

∑

i∈C

(
ξi (v, �P ) − ξi (v

k
C , �Pk

C
)
)

= 1

nk

⎛

⎝DLP
k (vP , �M ) −

∑

H∈Nk/�k

ṽk(H)

⎞

⎠ ,

where the right side of the latter equality is independent of C .
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II. [Uniqueness]. Assume that a (m + 1)-tuple of deletion link axioms 〈DLP ,

{DLk}k∈M 〉 such that the set of axioms DLk , k ∈ M , is restricted to F, CF, and RF, is

given.We show that there exists at most one PΓ -value on GDLP ,{DLk }k∈M
N that satisfies

axioms QCE, FDSU, QDL, and UDL. Let φ be such PΓ -value on GDLP ,{DLk }k∈M
N .

Given an arbitrary PΓ -game 〈v, �P 〉 ∈ GDLP ,{DLk }k∈M
N we show that the individual

payoffs φi (v, �P ), i ∈ N , are uniquely determined.
Similar to the proof of Theorem 1 we may show that the union payoffs φP

k (v, �P ),
k ∈ M , are uniquely determined. Applying the same strategy, for every k ∈ M
and any subset C ⊆ Nk we determine the union payoffs φP

k (vkC , �Pk
C
) in the game

(vC , �Pk
C
), in which vkC denotes the subgame v|(N\Nk)∪C of v with respect to the

coalition (N \ Nk) ∪ C , and �Pk
C
denotes the two-level communication structure

〈�M , {�h}h∈M 〉,where�M is the communicationgraphon thepartition (P\{Nk})∪{C}
and the communication graph �k is replaced by its restriction on C . Notice that now
for k ∈ M , the union payoff φP

k (vkC , �Pk
C
) is the total payoff to the players in C in the

game (vkC , �Pk
C
).

Next we determine the individual payoffs in each a priori union Nk , k ∈ M . For
this first we show that for each component C ∈ Nk/�k the total payoff to the players
in C is uniquely determined. The payoff φP

k (v, �P ) to the a priori union Nk has been
already determined, so ∑

i∈Nk

φi (v, �P ) = φP
k (v, �P ). (24)

If Nk is the unique component in Nk/�k , then FDSU does not state any requirement.
When Nk/�k consists ofmultiple components, then for every componentC ∈ Nk/�k ,
from FDSU it follows that

∑
i∈C φi (v, �P ) − φP

k

(
vkC , �Pk

C

)

c
=

φP
k (v, �P ) − ∑

K∈Nk/�k

φP
k

(
vkK , �Pk

K

)

nk
.

(25)
Notice that every payoff φP

k in this equation has already been determined, and there-
fore,

∑
i∈C φi (v, �P ) is uniquely determined.

The rest of the proof we proceed by induction similar to the proof of Theorem 1.
Take some k ∈ M . Let �′

P denote the two-level graph structure 〈�M , {�′
h}h∈M 〉 with

�′
h = �h if h �= k and �′

k = �′ for some graph �′ on Nk .
Initialization: If |�k | = 0 then {i} ∈ Nk/�k for all i ∈ Nk . FDSU implies that

φi (v, �P )−φP
k

(
vk{i}, �Pk{i}

)
=

φP
i (v, �P ) − ∑

j∈Nk

φP
k

(
vk{ j}, �Pk{ j}

)

nk
, for all i ∈ Nk .

(26)
We have already determined φP

k (v, �P ) and φP
k (vk{ j}, �Pk{ j}

), for all j ∈ Nk . So, Eq.

(26) determines φi (v, �P ) for all i ∈ Nk .
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Induction hypothesis: Assume that the values φi (v, �′
P ) have been determined

for every �′ with |�′| < |�k |.
Induction step: Take a component C ∈ Nk/�k . If c = 1, then C is a singleton

and the payoff φi (v, �P ) of the only player i ∈ C is uniquely determined by (25).
If c ≥ 2, then there exists a spanning tree �̃ ⊆ �k |C on C with the number of links
|�̃| = c − 1. By UDL it holds that

	DLk
(
φk(v, �P ), �k

)
= 0. (27)

Similarly to the proof of Theorem2, due to the induction hypothesis, the c−1 equations
(27) associated to the links {i, j} ∈ �̃ together with (24) whenC = Nk , form a system
of c linearly independent equations in the c unknown payoffs φi (v, �P ), i ∈ C . Thus,
for every C ∈ Nk/�k , all payoffs φi (v, �P ), i ∈ C , are uniquely determined. ��
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