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Abstract We address a variant of the single item lot sizing problem affected by
proportional storage (or inventory) losses and uncertainty in the product demand. The
problem has applications in, among others, the energy sector, where storage losses (or
storage deteriorations) are often unavoidable and, due to the need for planning ahead,
the demands can be largely uncertain.We first propose a two-stage robust optimization
approachwith second-stage storage variables, showing how the arising robust problem
can be solved as an instance of the deterministic one. We then consider a two-stage
approachwhere not only the storage but also the production variables are determined in
the second stage. After showing that, in the general case, solutions to this problem can
suffer from acausality (or anticipativity), we introduce a flexible affine rule approach
which, albeit restricting the solution set, allows for causal production plans. A hybrid
robust-stochastic approach where the objective function is optimized in expectation,
as opposed to in the worst-case, while retaining robust optimization guarantees of
feasibility in the worst-case, is also discussed. We conclude with an application to
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heat production, in the context of which we compare the different approaches via
computational experiments on real-world data.

Keywords Lot sizing · Storage losses/deterioration · Uncertain demand · Two-stage
robust optimization · Affine rules · Stochastic programming

Mathematics Subject Classification 90C10 · 90C11 · 90C90

1 Introduction

Lot Sizing (LS) is a fundamental problem in a large part ofmodern production planning
systems. In its basic version, given a demand for a single goodover afinite timehorizon,
the problem calls for a production plan which minimizes storage, production, and set-
up costs, while keeping production and storage levels within the prescribed lower and
upper bounds.

In the paper, we focus on a variant of LSwhere the storage suffers from proportional
losses and the product demands are subject to uncertainty.1 This variant suits the case
of many applications in the energy sector where a small portion of the energy that
is stored is lost over time and the demands (of, e.g., heat, as in the application that
we will consider) are often not known in advance. This is especially relevant when
the decision maker has to commit to a production plan ahead of when it becomes
operational.

To cope with uncertainty, we develop a robust optimization approach. After observ-
ing that a fully first-stage approach is not viable, we adopt an approach with first-stage
set-up and production variables and second-stage storage variables. For it, we establish
a reduction showing that this problem can be solved as an instance of its deterministic
counterpart with suitably (re)defined demands and storage upper bounds. Then, we
consider the case where the second-stage decisions comprise not just the storage but
also the production variables, while still retaining first-stage set-up variables. After
showing that solutions to this problem may be acausal (or anticipative), i.e., that they
may contain production variables whose value, at time t , can only be determined by
knowing the realization of the demand at time t ′ > t , we introduce an affine rule
approach. This technique, although restricting the solution set, allows for causal pro-
duction plans. We then illustrate a set of computational experiments in the context of
an application to heat production.

The paper, which is an extended version of Coniglio et al. (2016), is organized as
follows. In Sect. 2, we summarize some key results on the deterministic version of
LS and present some relevant previous work on robust optimization. The version of
LS with storage losses that we tackle in this paper is formally introduced in Sect. 3,
together with its uncertainty aspect. In Sect. 4, we introduce the robust counterpart
of the problem with second-stage inventory variables and present our reduction. The
approach with second-stage production and storage variables is proposed in Sect. 5,

1 The variant admits the classical version of LS as a special case.
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while, in Sect. 6, we present a hybrid stochastic-robust extension. Computational
results are reported and illustrated in Sect. 7. Concluding remarks are drawn in Sect. 8.

2 Previous work

We give a brief account of the most relevant works on different versions of LS, some
also encompassing the uncertain case.

2.1 Deterministic LS

In the deterministic setting, LS has been extensively studied in many variants. Among
the different versions, we mention that with backlogging, in which shortages in the
inventory are allowed (or, said differently, unmet demand can be postponed to the
future, at a cost), the uncapacitated one, in which production has no predefined
bounds, and that with production capacities, either static (constant over time) or time-
dependent, where lower and upper bounds on the production are present. The storage
is usually assumed to have either a zero or a static lower bound—in the latter case, the
problem can be often brought to the case of a zero lower bound with a reformulation.
Storage upper bounds are often assumed to be static, although many algorithms can be
easily adapted to the time-dependent case. For an extensive account on LS and many
of its variants, we refer the reader to the monograph (Pochet and Wolsey 2006).

LS is known to be inP for the case with linear costs, complete conservation (i.e., no
losses in the storage), zero or a static storage lower bounds, possibly nonzero and time-
dependent storage upper bounds, and no production bounds, as shown in Atamtürk
and Küçükyavuz (2008). A similar result holds for nonnegative and nondecreasing
concave cost functions, complete conservation, production bounds that are constant
over time, and unrestricted storage, as shown in Hellion et al. (2012). For a polynomial
time algorithm for the case with storage losses and nondecreasing concave costs, but
no storage or production bounds, see Hsu (2000). As to NP-hard cases, a number
of examples are provided in Florian et al. (1980). These include the case of linear as
well as fixed production costs, no inventory costs, no storage bounds, and no lower
production bounds, but time-dependent production upper bounds.

2.2 LS with uncertain demands

Classical approaches to handle uncertainties inLS are, historically, stochastic in nature,
dating back as early as 1960 (Scarft 1960). The idea is to first assign a probability
distribution to the uncertain demands and, then, to tackle the problem by looking for
a solution of minimum expected cost, which is feasible with high probability.

Unfortunately, as pointed out in Liyanage and Shanthikumar (2005), even when the
distribution is estimated within sufficient precision from historical data, such methods
can yield solutionswhich,when implementedwith the demand that realizes in practice,
can be substantially more costly than those that were predicted with the stochastic
approach (or infeasible, depending on how the problem is formulated). Moreover, and
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regardless of the accuracy of the estimation, such stochastic techniques are, in many
cases, intrinsically doomed to suffer from the curse of dimensionality (Bertsimas and
Thiele 2006). This is because they usually require a computing time which is, at
least, linear in the size of the probability space (assumed to be discrete) to which
the realized demand belongs—such space is, typically, exponential in the length of
the time horizon. For an alternative way of modeling stochastic demands, via so-
called service-level constraints, see Bookbinder and Tan (1988), Tempelmeier and
Herpers (2011), and Tempelmeier (2013). Also see Calafiore (2008) for a stochastic
programming approach where feasibility is enforced in expectation.

A different option, oftenmore affordable from a computational standpoint, is resort-
ing to a robust optimization approach. The idea is of looking for a solution which is
feasible for every realization of the uncertain demand belonging to a given uncertainty
set and which, among all such feasible solutions, is of minimum cost in theworst case.
Two-stage robust optimization is an extension of this approach in which the variables
are partitioned in two sets. The first-stage (or here-and-now) variables are required
to take a value independent of the realization of the uncertain parameters, while the
second-stage (or wait-and-see) variables are allowed to vary as a function of the spe-
cific realization that takes or has taken place, depending on whether the problem has
a dynamical aspect or not.

Two seminal papers applying a robust optimization approach to LS are Bertsimas
and Thiele (2004) and Bertsimas and Thiele (2006). The authors address the unca-
pacitated version of LS with backlogging, static storage, and production costs, with
demands subject to a so-called �-robustness model of uncertainty (Bertsimas and
Sim 2003, 2004). When applied to LS, the idea of �-robustness is of assuming that
the uncertain parameters, i.e., the product demand for LS, (i) belong to symmetric
intervals and (ii) given an integer �, the total number of time steps in which the uncer-
tain demand deviates from its nominal value to one of the extremes of the interval is
bounded by �, in any constraint of the problem.

Among other results, the authors of Bertsimas and Thiele (2004, 2006) show that
the �-robust counterpart of the variant of LS they consider (with backlogging) can
be solved as an instance of the deterministic problem with modified demands, also
for the case where production bounds are in place. Notice that, for this result to hold,
bounds on the storage cannot be enforced. Unfortunately, such bounds are necessary
in many applications, such as, e.g., those in the energy sector, where backlogging is
not tolerable as the demand of energy (e.g., heat) must be typically satisfied when
issued.

3 The problem: LS with storage losses and uncertain product demands

Consider a single product and a time horizon T = {1, . . . , n}. For each time step
t ∈ T , let dt ≥ 0 be the product demand, qt ≥ 0 the production variable, and ut ≥ 0
the storage variable corresponding to the value of the storage at the end of time step
t . Let zt ∈ {0, 1} be an indicator variable equal to 1 if production is active at time
t ∈ T , that is, if qt > 0, and let the constant u0 ≥ 0 represent the initial storage value.
Let also cit , c

v
t , and c

c
t be, respectively, the inventory, production, and fixed set-up cost
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(the latter is incurred when production is active) at time t ∈ T . We consider time-
dependent bounds Ut ≤ ut ≤ Ut on the storage, as well as time-dependent bounds
Q

t
≤ qt ≤ Qt on production, when active.

3.1 The deterministic case

The (DETerministic) variant of LS with storage losses tackled in this paper can be cast
as the following Mixed-Integer Linear Programming (MILP) problem:

(LS-DET) min η (1a)

s.t. η ≥
∑

t∈T

(
cv
t qt + cct zt + cit ut

)
(1b)

αt ut−1 + qt = ut + dt ∀t ∈ T (1c)

Ut ≤ ut ≤ Ut ∀t ∈ T (1d)

zt Qt
≤ qt ≤ zt Qt ∀t ∈ T (1e)

η ∈ R (1f)

zt ∈ {0, 1} ∀t ∈ T (1g)

ut , qt ≥ 0 ∀t ∈ T . (1h)

For notational consistency with the remainder of the paper, the problem is written in
epigraph form,with the objective functionmoved intoConstraint (1b).Constraints (1c)
are balance constraints, which only differ from those in the standard LS problem for the
(possibly time-dependent) conservation factor αt ∈ (0, 1]. They account for the fact
that, at the beginning of each time period t ∈ T , a fraction (1 − αt ) of the previously
stored product is lost, whereas, at the end of time period t , the remaining product is
conserved. Constraints (1d) and (1e) impose lower and upper bounds on storage and
production. Constraints (1f)–(1h) specify the nature of the decision variables.

3.2 The uncertain case

Let us assume an uncertain product demand d, belonging to an uncertainty set D—as
better illustrated in Sect. 7, we will construct this set from a mixture of historical data
and forecasts.

In the combinatorial optimization literature, two types of uncertainty sets are pre-
dominantly employed: finite uncertainty sets and polyhedral uncertainty sets. In the
former case, D is assumed to be a finite set, albeit possibly extremely large.2 In the
latter, D is assumed to be a bounded polyhedron. The �-robustness approach used
in Bertsimas and Sim (2004) falls into this category. Its uncertainty set, the � uncer-
tainty set, corresponds to assuming, for each time period t ∈ T , that the uncertain
demand dt belongs to a symmetric interval [d̄t − d̂t , d̄t + d̂t ] centered around a nom-

2 Some authors adopt the expression discrete, as opposed to finite. See, e.g., Büsing et al. (2011).
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inal value d̄t and that, in each constraint of the problem, the demand could deviate
from d̄t by ±d̂t for, at most, � time steps.

4 Robust LS with first-stage production and second-stage storage

As a first approach to the problem, we assume, as natural in a number of applications,
that the storage variables u could be determined in await-and-see fashion as a function
of the realization of the uncertain demand d, while all the other variables are required
to a take a here-and-now value independently of the realization. This corresponds to
adopting a two-stage setting with second-stage storage variables, as better explained
in the following.3 In terms of the production and set-up variables, this approach can
be regarded as an open-loop approach (see Calafiore 2008), in which the value of the
production variables at time t does not depend on the realization of d up to time t .
Although we will consider more flexible approaches in the next section, this one is of
interest since, as shown in this section, it allows for solving the corresponding robust
problem very efficiently, as an instance of the deterministic problem, obtained after
modifying a few of its givens.

The problem with second-stage u, which we report in full for notational conve-
nience, reads:

(LS-2ROu) min η (2a)

s.t. η ≥
∑

t∈T

(
cv
t qt + cct zt + cit ut (d)

)
∀d ∈ D (2b)

αt ut−1(d) + qt = ut (d) + dt ∀t ∈ T, d ∈ D (2c)

Ut ≤ ut (d) ≤ Ut ∀t ∈ T, d ∈ D (2d)

zt Qt
≤ qt ≤ zt Qt ∀t ∈ T (2e)

η ∈ R (2f)

zt ∈ {0, 1} ∀t ∈ T (2g)

qt ≥ 0 ∀t ∈ T (2h)

ut (d) ≥ 0 ∀t ∈ T, d ∈ D. (2i)

It only differs from LS-DET in that, here, we have a vector u(d) for each realization
d ∈ D.

As for the classical version of LS without storage losses, see, e.g., Bertsimas and
Thiele (2006), Gaussian elimination shows that, in any feasible solution, the storage
variables u are uniquely defined as a function of d and q:

3 Note that a completely first-stage approach, calling for a solution (η, z, q, u) which is feasible for all
realizations of the uncertain demand d ∈ D, which is obtainable by solving the formulation for LS-DET
after imposing Constraints (1c) for all realizations d ∈ D, yields an infeasible problem as soon as |D| > 1,
even with a single time period.
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ut (d) = α0t u0 +
t∑

i=1

αi t (qi − di ) ∀t ∈ T, (3)

with:

αmn :=
n∏

k=m+1

αk .

Acompact formulation for this problem is thus obtained by substituting, in the previous
formulation, the right-hand side of Eq. (3) for u(d).

With the next theorem, we show how LS-2ROu can be reduced to an instance of
LS-DET with identical givens except for a different demand d ′ and different storage
upper bounds U

′
, defined as follows:

d ′
t := max

d∈D

{
dt −

t−1∑

i=1

αi t
(
d ′
i − di

)
}

∀t ∈ T (4a)

�t := max
d∈D

{
t∑

i=1

αi t
(
d ′
i − di

)
}

∀t ∈ T . (4b)

U
′
t := Ut − �t ∀t ∈ T (4c)

The idea is that, with this definition, the newly introduced demand d ′
t specifies a lower

bound on the product which has to be available at time t ∈ T to ensure that every
demand d ∈ D can be met. The value �t reduces the storage upper bounds of the
transformed problem to prevent that, if a large production is realized but a large deficit
in demand occurs (an event which would result in an overflow of storage), the storage
upper bound Ut is not exceeded. Formally:

Theorem 1 Assuming d ′
t and �t are well defined for each t ∈ T , LS-2ROu can be

reduced, with respect to the first-stage variables (η, z, q), to an instance of LS-DET
with d = d ′ and U = U

′
, as defined in Eq. (4).

Proof First note that, due to the assumptions on D, the values for d ′
t and U

′
t can be

computed iteratively from t = 1 to t = |T |. Let ut (d) be defined as in Eq. (3) and let:

η :=
∑

t∈T

(
cv
t qt + cct zt

) + max
d∈D

{
∑

t∈T
cit ut (d)

}
. (5a)

For a given (z, q), adopting d = d ′ and U = U
′
, we now show that (η, z, q, u(d)),

with u(d) and η defined as above, is feasible for LS-2ROu if and only if it is feasible
for LS-DET with demand d ′ and storage upper bounds U ′

. Following the derivations
reported in “Appendix A”, we deduce:

d ′
t ≥ 0 ∀t ∈ T (6a)
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ut = min
d∈D {ut (d)} ∀t ∈ T (6b)

ut + �t = max
d∈D {ut (d)} ∀t ∈ T (6c)

η =
∑

t∈T

(
cv
t qt+cct zt +cit ut

)
+ max

d∈D

{
∑

t∈T
cit

t∑

i=1

αi t
(
d ′
i − di

)
}

︸ ︷︷ ︸
const

. (6d)

What remains to be shown is that Constraints (2d) are satisfied by u(d) if and only if
Constraints (1d) are satisfied by u. This is done by observing that, for all t ∈ T , the
following holds true:

Ut ≤ ut (d) ∀d ∈ D ⇔ Ut ≤ mind∈D{ut (d)} ⇔ Ut ≤ ut
ut (d) ≤ Ut ∀d ∈ D ⇔ maxd∈D{ut (d)} ≤ Ut ⇔ ut + �t ≤ Ut ⇔ ut ≤ U

′
t .

Since the objective functions moved to Constraints (2b) and (1b) are equal up to a
constant additive term, as highlighted in Eq. (6d), we deduce that (η, z, q) is optimal
for LS-2ROu if and only if it is optimal for LS-DET. �	

We remark that the reduction in Theorem 1 allows us to cast LS-2ROu as an instance
of LS-DET with static lower bounds on u. This can be quite relevant as, to the best of
our knowledge, most of the algorithms for LS-DET, such as the one by Atamtürk and
Küçükyavuz (2008), require a storage with either zero or static lower bounds.

From a computational complexity perspective, Theorem 1 allows us to establish a
direct relationship between LS-2ROu and LS-DET:

Corollary 1 Given an uncertainty set D over which a linear function can be optimized
in polynomial time, the reduction in Theorem 1 is a polynomial reduction. As such,
LS-ROB2-u is in P (respectively, NP-hard) if and only if the corresponding version
of LS-DET is in P (respectively, NP-hard).

As a consequence of Corollary 1, LS-ROB2-u is inP for all the polynomially solvable
cases of LS-DET that we reported in Sect. 2, provided that their algorithm allows for
the introduction of time-dependent upper boundsU on u. This is, for instance, the case
of the problem studied in Hellion et al. (2012). Note that the result still holds if we
introduce additional constraints on z and q or assumptions on the givens (except for
d andU ). It is also valid forUt = ∞ and for not necessarily nonnegative demands d.

The assumptions on the uncertainty set in Corollary 1 subsume the cases of many
robustness models, including finite uncertainty sets, polyhedral uncertainty sets (such
as the �-robustness one), and ellipsoidal uncertainty sets, such as those employed
in Ben-Tal et al. (2009). The advantages in terms of computing times of this robust
optimization approach are better illustrated in Sect. 7.
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5 Robust LS with second-stage production and storage variables

In a number of applications, it is reasonable to assume that not only the storage
variables but also the production variables could be adjusted (possibly, in real time)
in a second-stage fashion, after the uncertain demand reveals.

Still retaining first-stage set-up variables, we can cast the problem with explicit
second-stage variables u(d) and q(d), for all d ∈ D, as this (infinite, for a continuous
D) MILP:

(LS-2ROq,u) min η (7a)

s.t. η ≥
∑

t∈T

(
cv
t qt (d) + cct zt + cit ut (d)

)
∀d ∈ D (7b)

αt ut−1(d) + qt (d) = ut (d) + dt ∀t ∈ T, d ∈ D (7c)

Ut ≤ ut (d) ≤ Ut ∀t ∈ T, d ∈ D (7d)

zt Qt
≤ qt (d) ≤ zt Qt ∀t ∈ T, d ∈ D (7e)

η ∈ R (7f)

zt ∈ {0, 1} ∀t ∈ T (7g)

ut (d), qt (d) ≥ 0 ∀t ∈ T, d ∈ D. (7h)

LS-2ROq,u suffers from an important drawback: acausality (or anticipativity).
Indeed:

Proposition 1 In the general case, optimal solutions to LS-2ROq,u can be acausal,
with qt (d) depending, for some t ∈ T , from dt ′ for t ′ > t .

Proof Let us consider a finite uncertainty set case with D = {d1, d2}, where d1 =
(1, 3, 1) and d2 = (1, 1, 3), with u0 = 0, ci = (1, 1, 1), U = Q = (0, 0, 0),

U = (2, 2, 2), Q = (2, 2, 2), cv = (1, 1, 1), and cc = (0, 0, 0). Since the set-up
costs are identically zero, we can assume w.l.o.g. zt = 1 for all t ∈ T . It follows that
LS-2ROq,u can be solved by solving two independent instances of LS-DET, one for
d = d1 and one for d = d2:

– for d1 = (1, 3, 1), the unique optimal production vector is q1 = (2, 2, 1);
– for d2 = (1, 1, 3), the unique optimal production vector is q2 = (1, 2, 2).

Note that q11 �= q21 , even though d11 = d21 = 1. To be able to decide whether, at time
t = 1, q1 := q11 = 2 or q1 := q21 = 1, we need to know d2 (so to be able to determine
whether d = d1 or d = d2). The (unique) optimal solution to the problem is, thus,
acausal. �	

5.1 Affine decision rules

To prevent acausality, we resort to affine rules, a techniquewhich has been successfully
adopted in a number of optimization and control problems, see, e.g., Ben-Tal et al.
(2004), Calafiore (2008), and Bertsimas and Georghiou (2015).
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While still allowing q(d) to be a function of d, the idea is to restrict the feasible
region of the problem by requiring qt (d) to be, for each t ∈ T , an affine function of
the uncertain demand vector d. We impose:

qt (d) :=
∑

j∈T : j≤t

ξ j t d j + �t , (8)

which stipulates that qt (d) be composed of two parts: a first-stage part �t , which,
as in LS-2ROu , does not depend on the realization of d, and a second-stage part∑

j∈T : j≤t ξ j t d j , which does, but only for components of d up to time t .
Notice that, with this approach, the coefficients ξi t and �t must be determined as

first-stage variables. As it is clear, this approach generalizes the case of LS-2ROu with
a first-stage q, as the latter is obtained when requiring ξ j t = 0 for all j, t ∈ T .

Overall, we obtain the following (infinite, for a nonfinite D) MILP with Affine
Rules (AR):

(LS-2ROq,u-AR)

min η (9a)

s.t. η ≥
∑

t∈T

(
cv
t qt (d) + cct zt + cit ut (d)

)
∀d ∈ D (9b)

αt ut−1(d) + qt (d) = ut (d) + dt ∀t ∈ T, d ∈ D (9c)

Ut ≤ ut (d) ≤ Ut ∀t ∈ T, d ∈ D (9d)

zt Qt
≤ qt (d) ≤ zt Qt ∀t ∈ T, d ∈ D (9e)

qt (d) =
∑

j∈T : j≤t

ξ j t d j + �t ∀t ∈ T, d ∈ D (9f)

η ∈ R (9g)

zt ∈ {0, 1} ∀t ∈ T (9h)

ξ j t , �t ∈ R ∀t, j ∈ T (9i)

qt (d), ut (d) ≥ 0 ∀t ∈ T, d ∈ D. (9j)

To arrive at a finite MILP, we can first derive a semi-infinite formulation by sub-
stituting the right-hand sides of Eq. (3) and Constraints (9f) for variables u(d) and
q(d). For finite scenario uncertainty sets, the problem thus obtained can be rewritten
as a finite MILP by duplicating the constraints involving the demand vector d exactly
|D| times. For the case of �-robustness, we can obtain a reformulation of polynomial
size via the dualization procedure introduced by Bertsimas and Sim (2004). We report
the formulation thus obtained in “Appendix B”. Note that, since the feasible region of
the problem belongs to a higher-dimensional space than that of LS-2ROu , we cannot
hope for a result similar to that of Theorem 1.
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5.2 A regularization approach

As mentioned in Caramanis (2006), affine rules add an affine regression subproblem
to the robust counterpart of a deterministic problem.

Let q∗
t (d) be the (assumed unique, for simplicity) optimal production value at time

t for LS-2ROq,u (in which the second-stage q is not restricted by affine rules and,
thus, it can be anticipative), expressed as a function of the realization d ∈ D. If
LS-2ROq,u-AR admits a solution with coefficients ξ j t and �t satisfying:

∑

j∈T : j≤t

ξ j t d j + �t

︸ ︷︷ ︸
qt (d)

= q∗
t (d) ∀t ∈ T,∀d ∈ D, (10)

qt (d) can then take the same value that it takes in LS-2ROq,u and, thus, the affine rules
pose no restriction to the problem. If Eq. (10) cannot be satisfied for all t ∈ T and
d ∈ D, LS-2ROq,u-AR calls for coefficients which minimize the objective function
loss that is incurred when adopting qt (d) = ∑

j∈T ξ j t d j + �t instead of q∗
t (d).

As typical inmany applications, D is usually an estimate of the “hidden” uncertainty
set, let us call it D̃, to which the realizations of the uncertain demand belong. In that
case, one should look for coefficients which, rather than just minimizing the worst-
case objective function value on demands d ∈ D, are also likely to achieve a good
objective function value on realizations d ∈ D̃ \D, thus enjoying good generalization
properties. In a number of machine learning works, see Bishop (2006), it is observed
that, both in theory and in practice, a better generalization is obtained by introducing
a regularization term which limits the magnitude of the coefficients of the function
that is being learned—those in Eq. (8) in our case.

For these reasons, we also consider, in the computational experiments, an alter-
native approach encompassing a restriction on the norm of the vector of coefficients
ξt = (ξ1t , . . . , ξ j t , . . . , ξt t ). More precisely, we consider, together with the original
approach with unrestricted ξt , a version where the coefficients ξ j t are restricted to the
interval [−1, 1]. This corresponds to introducing, for all t ∈ T , the∞-norm constraint
||ξt ||∞ ≤ 1 on the vector of coefficients ξt adopted in each affine rule.

6 Hybrid robust-stochastic approach

A robust approach is, arguably, bound not to be viable in a free market where the
decision maker is facing a number of not risk-averse competitors. While interested in
solutions which are feasible even in the worst-case (which is particularly relevant in
the energy sector, as in the application considered in the next section), minimizing the
objective function in expectation, as opposed to in the worst-case, is likely to offer
solutions which, by being less risk-averse, can be more profitable in practice.

As customary in many results in robust optimization, such as, e.g., those in Bert-
simas and Sim (2004) on �-robustness, let us assume that d ∈ D is a symmetrically
distributed random variable with E[d] = d̄ . With this, the following holds:
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Proposition 2 Let D ⊆ R
n be a set centrally symmetric about d̄, d ∈ D a random

variable with density function p : D → [0, 1] symmetric about d̄, and g : D → R an
affine function. Then, E[g(d)] = ∫

x∈D p(x)g(x)dx = g(d̄).

Proof Let D′ := {d− d̄ : d ∈ D}. Since D′ is centrally symmetric about 0, D′ = −D′
holds. Let p′(x) := p(x + d̄) for x ′ ∈ D′. Then, p′ is symmetric about 0. Let f be a
linear function. We have:

∫

x ′∈D′
p′(x ′) f (x ′)dx ′ = −

∫

x ′∈D′
−p′(x ′) f (x ′)dx ′

= −
∫

x ′∈D′
p′(x ′) f (−x ′)dx ′ (by the linearity of f )

= −
∫

(−x ′)∈(−D′)
p′(−x ′) f (x ′)dx ′ (subs. −x ′ for x ′)

= −
∫

(−x ′)∈(−D′)
p′(x ′) f (x ′)dx ′ (by the symm. of p′)

= −
∫

x ′∈D′
p′(x ′) f (x ′)dx ′ (due to −D′ = D′).

Thus, we conclude:
∫
D′ p(x ′)g(x ′)dx ′ = 0. Since g(x)− g(0) is a linear function, we

deduce:

E[g(d)] =
∫

x∈D
p(x)g(x)dx

=
∫

x∈D
p(x)

(
g(x) − g(0)

)
dx +

∫

D
p(x)g(0)dx

=
∫

x ′∈D′
p
(
d̄ + x ′)(g(d̄ + x ′) − g(0)

)
dx ′ + g(0)

=
∫

x ′∈D′
p′(x ′)

(
g(d̄ + x ′) − g(0)

)
dx ′ + g(0)

=
∫

x ′∈D′
p′(x ′)

(
g(x ′) − g(0))dx ′

︸ ︷︷ ︸
=0

+
∫

x ′∈D′
p′(x ′)(g(d̄) − g(0)

)
dx ′

︸ ︷︷ ︸
=g(d̄)−g(0)

+g(0)

= g(d̄),

which concludes the proof. �	

For LS-2ROq,u (the problemwith second-stage u and q and affine rules), the objec-
tive function constraint of the hybrid stochastic-robust formulation reads:
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η ≥ E

⎡

⎣
∑

t∈T

⎛

⎝cct zt + cv
t

⎛

⎝
∑

j∈T
ξ j t d j + �t

⎞

⎠

+ cit

⎛

⎝αt u0+
t∑

i=1

αt−i

⎛

⎝
∑

j∈T
ξ j id j +�i −di

⎞

⎠

⎞

⎠

⎞

⎠

⎤

⎦

=
∑

t∈T

(
cct zt + cv

t

⎛

⎝
∑

j∈T
ξ j t d̄ j + �t

⎞

⎠+ cit

⎛

⎝αt u0+
t∑

i=1

αt−i

⎛

⎝
∑

j∈T
ξ j id̄ j +�i −d̄i

⎞

⎠

⎞

⎠.

In the next section, we will apply this approach for the case of �-robustness.
For a finite D and assuming a uniformdistributionwith firstmoment d̄ , the objective

can be restated as:

η ≥ E

⎡

⎣
∑

t∈T

⎛

⎝cct zt + cv
t

⎛

⎝
∑

j∈T
ξ j t d j + �t

⎞

⎠

+ cit

⎛

⎝αt u0+
t∑

i=1

αt−i

⎛

⎝
∑

j∈T
ξ j i d j +�i −di

⎞

⎠

⎞

⎠

⎞

⎠

⎤

⎦

= 1

|D|
∑

d∈D

∑

t∈T

⎛

⎝cct zt + cv
t

⎛

⎝
∑

j∈T
ξ j t d j + �t

⎞

⎠

+ cit

⎛

⎝αt u0+
t∑

i=1

αt−i

⎛

⎝
∑

j∈T
ξ j i d j +�i −di

⎞

⎠

⎞

⎠

⎞

⎠

=
∑

t∈T

⎛

⎝cct zt + cv
t

⎛

⎝
∑

j∈T
ξ j t d̄ j + �t

⎞

⎠

+ cit

⎛

⎝αt u0+
t∑

i=1

αt−i

⎛

⎝
∑

j∈T
ξ j i d̄ j +�i −d̄i

⎞

⎠

⎞

⎠

⎞

⎠ .

In the next section, we adopt this approach for the case of finite uncertainty sets which,
by construction (see further), are not symmetric in our application.

We remark that the hybrid approach is different from applying affine rules in
a stochastic optimization setting, as, here, all constraints, except for the objec-
tive function one, are enforced in the worst case. We also remark that the hybrid
stochastic-robust approach differs from the purely robust one only when affine rules
are employed. This is because, if q is first-stage, the objective function reads:∑

t∈T (cv
t qt + cct zt + cit (α0t u0 + ∑t

i=1 αi t (qi − di ))). After rearranging the terms,
it becomes:

∑
t∈T (cv

t qt + cct zt + citα0t u0 + cit
∑t

i=1 αi t qi − cit
∑t

i=1 αi t di ). Since
this function only depends on d in the additive term cit

∑t
i=1 αi t di which involves

no variables, the additive term can be dropped without affecting the optimality of the
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solutions that are found. The same holds in expectation over d, where, by linearity,
we have:

∑
t∈T (cv

t qt + cct zt + citα0t u0 + cit
∑t

i=1 αi t qi − cit
∑t

i=1 αi t E[di ]), with d,
here a random vector, only appearing in the additive term cit

∑t
i=1 αi t E[di ]. Since the

latter does not involve any variables, it can be dropped.

7 Computational results

We report on a set of computational results obtained with the models and methods that
we have proposed and discussed. As an application, we consider a problem arising
within the project Robuste Optimierung der Stromversorgungsysteme (Robust Opti-
mization of Power Supply Systems), funded by the German Bundesministerium für
Wirtschaft und Energie (Federal Ministry for Economic Affairs and Energy, BMWi).
Originally, this is a Coproduction of Heat and Power (CHP) problem in which fuel
is transformed into heat and power (at a fixed heat-to-power ratio) by a CHP device.
When assuming that there is no internal power demand and that all the power which
is produced can be sold to the market, the problem reduces to an instance of LS with
heat as the unique good. Since heat can be stored (as hot water) for free, we set cit = 0
for all t ∈ T . The cost of fuel is transferred to the static costs cv , together with the
profit generated by the amount of power that is sold. More precisely, given a static
fuel cost c f per unit of heat, a heat-to-fuel ratio ν, a heat-to-power ratio ρ, and a static
market profit cm per unit of power, cv is set to cv := c f ν − cmρ.

7.1 Instances and setup

We consider a dataset spanning a period of 2years (with some missing months) with
hourly time steps. The first half of the data set (338 days) is used as training set, the
second half (232 days) as testing set. The heat demand is taken from historical data of
a portion of Frankfurt (of around 50000 households). For all t ∈ T , the storage bounds
are set to Ut = 0 MWh and Ut = 120 MWh, while we set the production bounds to
Q

t
= 37.5 MWh and Qt = 125 MWh. We also set u0 = 36 MWh. The market prices

for the power market are taken from EPEX SPOT (the European Power Exchange).
We consider two cases: finite uncertainty sets and �-robustness, with � uncertainty

sets. Both sets are built based on the training set as well as on a heat demand forecast
provided by our industrial partner ProComGmbH. This forecast is generated in a two-
stage fashion, with an autoregressive component and a neural network one, relying on
temperature and calendar events as main influence factors.

The finite uncertainty sets D are constructed as follows. From the original forecast
d̄ for the current day, we single out the (up to 70) days from the set of historical
time series (the training set) in which demand and forecast are closest in 1-norm.
After computing the forecast error between the two, we create a realization where
such error is added to the forecast of the current day (for which the problem is being
solved).

For the �-robustness approach, the hours of the training set days are partitioned
into three groups: morning, midday, and evening. Similarly, the demand forecasts are
partitioned in the groups low, medium, and high. This way, we can associate each
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pair (t, dt ) with a category in {morning,midday, evening} × {low,medium, high}.
We consider all the hours in a given category over all the training days and look at
their deviation (i.e., the forecast error) between the historical demand and the forecast
d̄t . We then take the 95%-quantiles w.r.t. positive and negative deviations and let the
deviation d̂t at time t be equal to their maximum.

In our experiments, we do not introduce constraints on the end-of-horizon value of
u|T |. If required by the application though, it is possible to introduce a lower and/or
upper bound on u|T |, solve the problem thus obtained and, in case of infeasibility,
adjust those values, iterating until two values yielding a feasible solution are found.4

See Calafiore (2008) for more details on a similar procedure.
The experiments are run on an Intel i7-3770 3.40GHz machine with 32 GB RAM

using CPLEX 12.6 and AMPL as modeling language. All the instances are solved to
optimality within default precision.

7.2 Realized robustness

While we optimize over uncertainty sets built with a combination of training set and
forecast for the current day, we evaluate the quality of the results on the testing set
(i.e., out of sample) in terms of realized robustness, simulating a real-world situation
in which a solution found via robust optimization is implemented with a realized
demand d̃ not necessarily belonging to the uncertainty set D. For a given d̃ , we first
transfer any violation occurring in the lower and upper bound constraints imposed on
u and q to the balance constraints. This is achieved by redefining q(d̃) and u(d̃), for
all t ∈ T , as follows:

q ′
t (d̃) := min

{
max

{ ∑

j∈T
ξ j t d̃ j + �t , zt Qt

}
, zt Qt

}
(11a)

u′
t (d̃) := min

{
max

{
αt u

′
t−1 + q ′

t (d̃) − d̃t ,Ut

}
,Ut

}
, (11b)

where u′
0 := u0. This way, the lower and upper bound constraints on storage and

production are always satisfied.We then define the violation of the balance constraints
for the newly introduced q ′(d̃) and u′(d̃) as:

v′
t (d̃) := αt u

′
t−1(d̃) + q ′

t (d̃) − d̃t − u′
t (d̃).

For the case of a first-stage q, we simply let:

4 Empirically, we observe that the solutions that we obtain tend to reduce the value of the storage at time
t = |T | to a small nonzero quantity, produced in previous periods t < |T | with low production costs,
which is then used to cope with potential positive deviations in the demand due to uncertainty—if no such
deviations realize, the remaining unutilized product is stored in u|T |.
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q ′
t (d̃) := qt ,

for all t ∈ T , while adopting the same definition as in Eq. (11b) for u′(d̃).
We remark that, if v′(d̃) ≤ 0 and d̃ + v′(d̃) ≥ 0, the solution with q ′(d̃) and u′(d̃)

corresponds to what a practitioner would arguably dowhen an infeasibility is detected:
production and storage are adjusted so to staywithin their prescribed bounds, while the
infeasibility is transferred, if possible, to the customer, by satisfying only the reduced
demand d̃ + v′(d̃) (remember that v′(d̃) ≤ 0 is assumed to hold here), as opposed to
the original d̃.

For each instance of the problem (i.e., for each realization d̃), we evaluate the
quality of a robust solution in terms of how it performs when implemented with the
given realization d̃ in terms of (total) realized violation:

v(d̃) :=
∑

t∈T

∣∣∣v′
t (d̃)

∣∣∣ ,

and realized cost:

c(d̃) =
∑

t∈T

(
cv
t q

′
t (d̃) + cct zt (d̃) + cit u

′
t (d̃)

)
.

Note that the realized cost can, in general, be quite different from the objective function
value achieved by an optimal robust solution. Indeed, the latter accounts for either the
worst-case or the expected cost over D (depending on whether a worst-case or a
stochastic objective function is employed), as opposed to the former, which amounts
to the cost that realizes for a given d̃.

The adoption of affine rules, although advantageous in terms of the extra flexibility it
offers, introduces an element of so-called nervousness to the solutions as, for different
realizations of d̃, the realized production values q ′

t (d̃) are likely to be quite different.
As mentioned in Tempelmeier and Herpers (2011), a large nervousness can have a
negative impact on other managerial decisions which are taken after the lot sizing
problem has been solved. To quantify this phenomenon, we also report a cumulated
measure of nervousness, defined as:

n(d̃) =
∑

t∈T

∣∣∣qt (d̄) − q ′
t (d̃)

∣∣∣ ,

where d̄ is the nominal value of d (the forecast).

7.3 Computational study

When affine rules are in place, all the experiments with either |D| = 0 or � = 0 (that
is, those relying only on the forecast) are obtained by letting ξ j t = 0 for all j, t ∈ T .

When presenting our results, we report the sum over all the instances in our data set
of the realized violation, realized nervousness, and realized cost, for each value of |D|
or�. The charts that we report show the violation-versus-cost and nervousness-versus-
cost curves, thus allowing for, visually, assessing the tradeoff between these quantities
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that is achieved with the different approaches. The curves are obtained by joining each
pair of points obtained with two consecutive values of |D| or �. Computing times are
reported in Tables 1, 2, and 3.

Table 1 Results for LS-2ROu with finite uncertainty sets and �-robustness, obtained by the application of
Theorem 1

Finite uncertainty set

|D| 0 10 20 30 40 50 60 70

Viol. 3802 1562 1226 1097 1017 999 969 965

Costs 2675 2900 2953 2996 3017 3037 3054 3063

Time 15 15 15 15 15 15 15 15

�-robustness

� 0 1 2 3 4 5 6

Viol. 3802 2635 1982 1507 1202 972 882

Costs 2675 2741 2807 2877 2951 3026 3105

Time 15 15 15 15 15 15 14

Table 2 Results for LS-2ROq,u -AR with finite uncertainty sets

|D| 0 10 20 30 40 50 60 70

Worst-case objective: restricted coefficients ξt j

Viol. 3802 1600 1136 874 629 612 481 425

Nerv. 0 7241 7319 6889 6866 6717 6652 6682

Costs 2675 2759 2758 2773 2788 2793 2800 2806

Time 16 1541 7108 12026 19424 27493 34566 41562

Worst-case objective: unrestricted coefficients ξt j

Viol. 3802 9841 6635 3205 1857 1347 1383 1242

Nerv. 0 28417 27549 20714 17819 16205 15309 14718

Costs 2675 2788 2810 2803 2811 2801 2811 2813

Time 15 862 4580 11247 19564 27369 34417 39647

Stochastic objective: restricted coefficients ξt j

Viol. 3802 1376 851 582 456 378 329 271

Nerv. 0 6552 6303 6359 6378 6357 6315 6385

Costs 2675 2697 2711 2720 2726 2730 2734 2737

Time 15 1445 5885 12117 16543 23101 29357 35916

Stochastic objective: unrestricted coefficients ξt j

Viol. 3802 3854 3157 946 684 540 441 402

Nerv. 0 9612 10854 7933 7427 7317 7192 7332

Costs 2675 2689 2694 2705 2712 2714 2719 2721

Time 15 767 2842 6975 9971 13792 17358 21161
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Fig. 1 Results for LS-2ROu ,
obtained by the application of
Theorem 1, comparing finite
uncertainty sets to �-robustness
with increasing values of |D|
and �
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7.3.1 First-stage production and second-stage storage variables (LS-2ROu)

The results for LS-2ROu (the approach with first-stage production variables q and
second-stage storage variables u) are obtained by solving the problem as an instance
of LS-DET, relying on Theorem 1.We let |D| = 0, 10, 20, 30, 50, 60, 70 for the finite
uncertainty set case and � = 0, 1, 2, 3, 4, 5, 6 for �-robustness. We do not go beyond
� = 6 as, for larger values, the problem becomes infeasible for at least a few instances.
The results are reported in Table 1, with an illustration in terms of realized violations
and costs provided in Fig. 1. Nervousness is not reported as, due to q being first-stage,
it is equal to zero for all instances.

Overall, we observe that the adoption of �-robustness provides slightly better
results, with a curve, as seen in Fig. 1, which dominates that for finite scenarios,
providing smaller realized violations and costs, especially for small values of |D| and
�. Interestingly, as these two parameters increase, the two approaches become almost
equivalent.

Although, as we will see in the remainder of the section, this approach is limited
in terms of quality of the solutions, it comes at the advantage of being very fast from
a computational standpoint and, by definition, of not suffering from nervousness.

7.3.2 Second-stage storage and production variables with affine rules
(LS-2ROq,u-AR)

We consider LS-2ROq,u-AR (the two stage approach with second-stage u and q). We
illustrate the results with finite uncertainty sets and�-robustness, considering both the
cases of a worst-case objective function and a stochastic one, with either unrestricted
coefficients ξt j or coefficients restricted to ξt j ∈ [−1, 1] for all j, t ∈ T .

The results for the case of finite uncertainty sets are reported in Table 2 and illus-
trated in Fig. 2.

Considering violations and costs, when adopting a worst-case objective, we register
highly “unstable” solutions when no restrictions are imposed in ξ j t . The solutions that
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Fig. 2 Violation and nervousness VS realized costs for LS-2ROq,u with finite scenarios and affine rules,
with a worst-case or stochastic objective

are obtained when imposing ξt j ∈ [−1, 1] for all j, t ∈ T are much more stable and
largely dominate the previous ones. The introduction of a stochastic objective yields
very large improvements w.r.t. both realized cost and violation, while also introducing
a good deal of stability even for small values of |D|. The restriction of the coefficients
provides an improvement also with a stochastic objective, but not as substantial as
with a worst-case one.

Notice that, with |D| = 10, 20, the results are substantially worse than those
obtained for larger values of |D|. This is a consequence of overfitting. Indeed, if
|D| � |T |, there are infinitely many (with |D| − |T | degrees of freedom) affine func-
tions satisfying Eq. (10) and, as such, we are likely to obtain solutions with a large
fitting error on demand vectors d̃ /∈ D, such as all those in the testing set.

We remark that, although |D| = 30 > 24 = |T |, and, thus, the fitting subproblem
(assuming the vectors d ∈ D are in general position) is well-posed, |D| = 30 seems
to be still insufficient to suitably capture the structure of the “hidden” uncertainty set
D̃ as, for |D| ≥ 40, much better results are obtained. Overall, as expected, the quality
of the results on the testing set increases with the size of the finite uncertainty set D.

As to nervousness, we observe larger values when unrestricted coefficients are
used, as opposed to the restricted case, and when the objective function is minimized
in the worst-case, as opposed to in expectation. Not surprisingly, higher values of
nervousness are observed in presence of overfitting (|D| < |T |), which then start
declining for |D| ≥ 30. Overall, the values of nervousness tend to decrease for larger
values of |D| in all the configurations, although not completely monotonically. In
all approaches but the worst-case unrestricted one, the nervousness levels seem to
converge for larger |D|. Although it is unclear whether the nervousness values are
converging for the worst-case unrestricted approach, they are clearly getting smaller
for larger values of |D|.

Analogous experiments for the case of �-uncertainty sets and �-robustness are
reported in Table 3 and illustrated in Fig. 3.
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Fig. 3 Violation and nervousness VS realized costs for LS-2ROq,u with �-robustness and affine rules,
with a worst-case or stochastic objective

Considering violations and costs, the results seem quite stable, even with unre-
stricted coefficients. This is possibly due to the fact that � uncertainty sets are
continuous and full-dimensional and, as a consequence, the set of points on top of
which the affine rules are constructed always contains (except for � = 0) sufficiently
many data points in general position and, thus, overfitting cannot happen. What is
more, we see that, in this case, restricting the coefficients hinders the quality of the
solutions. As expected, we also observe that the results with a stochastic objective
function dominate those with a worst-case one.

As to nervousness, we observe that, although its value increases substantially with
small values of �, it seems to converge to a constant for a larger �. This value is com-
parable to that obtainedwith the threemore “stable” approaches with finite uncertainty
sets (worst-case restricted, stochastic unrestricted, and stochastic restricted).

7.3.3 A note on computing times

We remark that, for each setting, the hybrid stochastic-robust approach requires, for
bigger uncertainty sets (larger |D| or larger �), much shorter computing times as
opposed to the approach with a worst-case objective. For �-robustness and with the
largest values of �, the difference in computing time can amount to a factor as large
as eight.

We also observe that the�-robustness approach is much faster than the finite uncer-
tainty sets one. This is, most likely, due to the fact that, with a finite D, we have to
replicate each constraint containing d exactly |D| times whereas, with �-robustness,
we can employ the compact reformulation reported in “Appendix B”.

As it is clear when comparing Tables 1, 2, and 3, the method with first-stage pro-
duction is faster than the other ones employing affine rules by almost two orders of
magnitude.
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Fig. 4 Hybrid stochastic-robust
approaches with unrestricted
coefficients with either finite
uncertainty sets or �-robustness,
also compared to the approach
with first-stage q and
second-stage u with
�-robustness
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7.3.4 Comparison of the best methods

We conclude with a final comparison of the best method, the one with second-stage
production and affine rules employing a stochastic objective with unrestricted coef-
ficients in the two cases of finite uncertainty sets and �-robustness. For the sake
of comparisons, we also consider LS-2ROu (that with first-stage production) with
�-robustness (which performs better than the one with finite uncertainty sets).

The results are reported in Fig. 4. Here, LS-2ROu with �-robustness is clearly
dominated by the other two. While, with finite uncertainty sets, the affine rules fare
rather well in terms of costs, the approach with �-robustness yields solutions with
substantially smaller violations, differently from the method with a finite uncertainty
set, whose solutions converge, experimentally, to a total violation of 400, without
further improvements for a larger |D|. Assuming the larger computational effort that
is required to construct solutions with this method can be undertaken, it should be
preferred due to offering higher quality solutions.

8 Concluding remarks

We have considered a variant of the lot sizing problem with storage losses sub-
ject to demand uncertainty. We have developed two two-stage robust optimization
approaches, both with first-stage set-up variables, one with second-stage storage vari-
ables but first-stage production variables, and another one in which production and
storage variables are both second-stage. For greater tractability, we have introduced
affine rules to tackle the second problem, also encompassing a regularization aspect.
We have then proposed a hybrid stochastic-robust approach with a stochastic objective
function and robustness in all its constraints, arguably less conservative than the purely
robust method with a worst-case objective.

Computational experiments on a heat production problem have shown that the two-
stage approach with second-stage production and storage variables outperforms that
with first-stage production variables. The solutions that we have obtained in this set-
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ting with �-robustness are better in terms of cost and violations than those obtained
with a finite uncertainty set, and are also much faster to be computed from a computa-
tional perspective.We have found that the hybrid stochastic-robust approach yields the
overall best results, resulting in smaller costs and smaller violations when compared
to the one with a worst-case objective, and also being, with �-robustness, much faster
than the former.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix A: Derivations in the proof of Theorem 1

For t > 1, define ď ∈ D such that the following holds:

d ′
t−1 = max

d∈D

{
dt−1 −

(
t−2∑

i=1

αi,t−1
(
d ′
i − di

)
)}

= ďt−1 −
(

t−2∑

i=1

αi,t−1

(
d ′
i − ďi

))
.

As a consequence, we deduce:

d ′
t =max

d∈D

{
dt −

t−1∑

i=1

αi,t
(
d ′
i − di

)
}

=max
d∈D

{
dt − αt

(
t−2∑

i=1

αi,t−1
(
d ′
i − di

) + d ′
t−1 − dt−1

)}

=max
d∈D

{
dt − αt

(
d ′
t−1 −

(
dt−1 −

t−2∑

i=1

αi,t−1
(
d ′
i − di

)
))}

≥ďt − αt

(
d ′
t−1 −

(
ďt−1 −

t−2∑

i=1

αi,t−1

(
d ′
i − ďi

)))

= ďt − αt
(
d ′
t−1 − d ′

t−1

)

= ďt ≥ 0.

With this, we can then show:

min
d∈D {ut (d)} = min

d∈D

{
α0t u0 +

t∑

i=1

αi,t (qi − di )

}

= min
d∈D

{
α0t u0 +

t−1∑

i=1

αi,t (qi − di ) + (qt − dt )

}
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= min
d∈D

{
α0t u0 +

t−1∑

i=1

αi,t qi −
t−1∑

i=1

αi,t di + qt − dt +
t−1∑

i=1

αi,t d
′
i −

t−1∑

i=1

αi,t d
′
i

}

= min
d∈D

{
α0t u0 +

t−1∑

i=1

αi,t qi −
t−1∑

i=1

αi,t d
′
i + qt − dt +

t−1∑

i=1

αi,t d
′
i −

t−1∑

i=1

αi,t di

}

= min
d∈D

{
α0t u0 +

t−1∑

i=1

αi,t
(
qi − d ′

i

) + qt − dt +
t−1∑

i=1

αi,t
(
d ′
i − di

)
}

= α0t u0 +
t−1∑

i=1

αi,t
(
qi − d ′

i

) + qt + min
d∈D

{
−dt +

t−1∑

i=1

αi,t
(
d ′
i − di

)
}

= α0t u0 +
t−1∑

i=1

αi,t
(
qi − d ′

i

) + qt − max
d∈D

{
dt −

t−1∑

i=1

αi,t
(
d ′
i − di

)
}

= α0t u0 +
t−1∑

i=1

αi,t
(
qi − d ′

i

) + (
qt − d ′

t

)

= α0t u0 +
t∑

i=1

αi,t
(
qi − d ′

i

) = ut .

Similarly, we deduce:

max
d∈D {ut (d)} =max

d∈D

{
α0t u0 +

t∑

i=1

αi,t (qi − di )

}

=max
d∈D

{
α0t u0 +

t∑

i=1

αi,t qi −
t∑

i=1

αi,t di

}

=max
d∈D

{
α0t u0 +

t∑

i=1

αi,t qi −
t∑

i=1

αi,t di +
t∑

i=1

αi,t d
′
i −

t∑

i=1

αi,t d
′
i

}

=max
d∈D

{
α0t u0 +

t∑

i=1

αi,t qi −
t∑

i=1

αi,t d
′
i +

t∑

i=1

αi,t d
′
i −

t∑

i=1

αi,t di

}

=max
d∈D

{
α0t u0 +

t∑

i=1

αi,t (qi − d ′
i ) +

t∑

i=1

αi,t (d
′
i − di )

}

= α0t u0 +
t∑

i=1

αi,t (qi − d ′
i ) + max

d∈D

{
t∑

i=1

αi,t (d
′
i − di )

}
= ut + u′

t .

Lastly, we compute η:
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η =max
d∈D

{
∑

t∈T
cit ut (d)

}

=max
d∈D

{
∑

t∈T
cit

(
α0t u0 +

t∑

i=1

αi,t (qi − di )

)}

=max
d∈D

{
(
∑

t∈T
cit

(
α0t u0 +

t∑

i=1

αi,t qi −
t∑

i=1

αi,t di +
t∑

i=1

αi,t d
′
i −

t∑

i=1

αi,t d
′
i

)}

=max
d∈D

{
∑

t∈T
cit

(
α0t u0 +

t∑

i=1

αi,t qi −
t∑

i=1

αi,t d
′
i +

t∑

i=1

αi,t d
′
i −

t∑

i=1

αi,t di

)}

=max
d∈D

{
∑

t∈T
cit

(
α0t u0 +

t∑

i=1

αi,t (qi − d ′
i ) +

t∑

i=1

αi,t (d
′
i − di )

)}

=max
d∈D

{
∑

t∈T
cit

(
α0t u0 +

t∑

i=1

αi,t (qi − d ′
i )

)
+

∑

t∈T
cit

t∑

i=1

αi,t (d
′
i − di )

}

=
∑

t∈T
cit

(
α0t u0 +

t∑

i=1

αi,t (qi − d ′
i )

)
+ max

d∈D

{
∑

t∈T
cit

t∑

i=1

αi,t (d
′
i − di )

}

=
∑

t∈T
cit ut + const.

Appendix B: MILP formulation for LS-2ROq,u-AR and �-robustness

The MILP formulation with uncertainty intervals [d̄t − d̂t , d̄t + d̂t ] reads:

min η

s.t. η ≥
∑

t∈T

⎛

⎝cvt �t + cct zt + cit

⎛

⎝α0t u0 +
t∑

i=1

α j t (�i − d̄i )

⎞

⎠

⎞

⎠ +
∑

t∈T
πt + �π0 ∀t ∈ T

π0 + πt ≥
⎛

⎝
|T |∑

i=t

cvi ξti +
∑

k∈T
cik

k∑

i=t

αikξti −
|T |∑

j=t

α j t c
i
j

⎞

⎠ d̂t ∀t ∈ T

π0 + πt ≥ −
⎛

⎝
|T |∑

i=t

cvi ξti +
∑

k∈T
cik

k∑

i=t

αikξti −
|T |∑

j=t

α j t c
i
j

⎞

⎠ d̂t ∀t ∈ T

Ut ≤ α0t u0 +
t∑

i=1

αi t (�i − d̄i ) −
t∑

k=1

ρtk − �ρt0 ∀t ∈ T

Ut ≥ αt u0 +
t∑

i=1

αi t (�i − d̄i ) +
t∑

k=1

ρtk + �ρt0 ∀t ∈ T

ρt0 + ρtk ≥ −
⎛

⎝
t∑

i=k

αi t ξki − αkt

⎞

⎠ d̂t ∀t, k ∈ T : k ≤ t
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ρt0 + ρtk ≥
⎛

⎝
t∑

i=k

αi t ξki − αkt

⎞

⎠ d̂t ∀t, k ∈ T : k ≤ t

zt Qt ≤ �t −
t∑

k=1

φtk − �φt0 ∀t ∈ T

zt Qt ≥ �t +
t∑

k=1

φtk + �φt0 ∀t ∈ T

φt0 + φtk ≥ ξkt d̂t ∀t, k ∈ T : k ≤ t

φt0 + φtk ≥ −ξkt d̂t ∀t, k ∈ T : k ≤ t

zt ∈ {0, 1} ∀t ∈ T

η, ξ j t , �t ∈ R ∀t, j ∈ T

π0, πt , ρt0, ρtk , φt0, φtk ≥ 0 ∀t, k ∈ T : k ≤ t.
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