
J Comb Optim (2017) 34:554–573
DOI 10.1007/s10878-016-0089-6

Recoverable robust spanning tree problem under
interval uncertainty representations

Mikita Hradovich1 · Adam Kasperski2 ·
Paweł Zieliński1

Published online: 24 October 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract This paper deals with the recoverable robust spanning tree problem under
interval uncertainty representations. A strongly polynomial time, combinatorial algo-
rithm for the recoverable spanning tree problem is first constructed. This problem
generalizes the incremental spanning tree problem, previously discussed in litera-
ture. The algorithm built is then applied to solve the recoverable robust spanning tree
problem, under the traditional interval uncertainty representation, in polynomial time.
Moreover, the algorithm allows to obtain several approximation results for the recov-
erable robust spanning tree problem under the Bertsimas and Sim interval uncertainty
representation and the interval uncertainty representation with a budget constraint.

Keywords Robust optimization · Interval data · Recovery · Spanning tree

1 Introduction

Let G = (V, E), |V | = n, |E | = m, be an undirected graph and let � be the set of all
spanning trees ofG. In theminimum spanning tree problem, a cost is specified for each

B Adam Kasperski
adam.kasperski@pwr.edu.pl

Mikita Hradovich
mikita.hradovich@pwr.edu.pl

Paweł Zieliński
pawel.zielinski@pwr.edu.pl

1 Faculty of Fundamental Problems of Technology, Wrocław University of Technology,
Wrocław, Poland

2 Faculty of Computer Science and Management, Wrocław University of Technology,
Wrocław, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-016-0089-6&domain=pdf

J Comb Optim (2017) 34:554–573 555

edge, and we seek a spanning tree in G of the minimum total cost. This problem is
well known and can be solved efficiently by using several polynomial time algorithms
(see, e.g., Ahuja et al. 1993, Papadimitriou and Steiglitz 1998).

In this paper, we first study the recoverable spanning tree problem (Rec ST for
short). Namely, for each edge e ∈ E , we are given a first stage cost Ce and a second
stage cost ce (recovery stage cost). Given a spanning tree X ∈ �, let �k

X be the set
of all spanning trees Y ∈ � such that |Y \ X | ≤ k (the recovery set), where k is a
fixed integer in [0, n−1], called the recovery parameter. Note that �k

X can be seen as
a neighborhood of X containing all spanning trees which can be obtained from X by
exchanging up to k edges. The Rec ST problem can be stated formally as follows:

Rec ST : min
X∈�

(∑
e∈X

Ce + min
Y∈�k

X

∑
e∈Y

ce

)
. (1)

We thus seek a first stage spanning tree X ∈ � and a second stage spanning tree
Y ∈ �k

X , so that the total cost of X and Y for Ce and ce, respectively, is minimum.
Notice that Rec ST generalizes the following incremental spanning tree problem,
investigated in Şeref et al. (2009):

Inc ST : min
Y∈�k

X̂

∑
e∈Y

ce, (2)

where X̂ ∈ � is a given spanning tree. So, we wish to find an improved spanning
tree Y with the minimum cost, within a neighborhood of X̂ determined by �k

X̂
. Sev-

eral interesting practical applications of the incremental network optimization were
presented in Şeref et al. (2009). It is worth pointing out that Inc ST can be seen as the
Rec ST problem with a fixed first stage spanning tree X̂ , whereas in Rec ST both the
first and the second stage trees are unknown. It has been shown in Şeref et al. (2009)
that Inc ST can be solved in strongly polynomial time by applying the Lagrangian
relaxation technique. On the other hand, no strongly polynomial time combinatorial
algorithm for Rec ST has been known to date. Thus proposing such an algorithm for
this problem is one of the main results of this paper.

The Rec ST problem, beside being an interesting problem per se, has an important
connection with a more general problem. Namely, it is an inner problem in the recov-
erable robust modelwith uncertain recovery costs, discussed in Büsing (2011), Büsing
(2012), Büsing et al. (2011), Chassein and Goerigk (2015), Liebchen et al. (2009) and
Nasrabadi and Orlin (2013). Indeed, the recoverable spanning tree problem can be
generalized by considering its robust version. Suppose that the second stage costs ce,
e ∈ E , are uncertain and let U contain all possible realizations of the second stage
costs, called scenarios. We will denote by cSe the second stage cost of edge e ∈ E
under scenario S ∈ U , where S = (cSe)e∈E is a cost vector. In the recoverable robust
spanning tree problem (Rob Rec ST for short), we choose an initial spanning tree X
in the first stage, with the cost equal to

∑
e∈X Ce. Then, after scenario S ∈ U reveals,

X can be modified by exchanging at most k edges, obtaining a new spanning tree
Y ∈ �k

X . The second stage cost of Y under scenario S ∈ U is equal to
∑

e∈Y cSe . Our

123

556 J Comb Optim (2017) 34:554–573

goal is to find a pair of trees X and Y such that |X \ Y | ≤ k, which minimizes the
sum of the first and the second stage costs

∑
e∈X Ce +∑

e∈Y cSe in the worst case. The
Rob Rec ST problem is defined formally as follows:

RobRec ST : min
X∈�

(∑
e∈X

Ce + max
S∈U

min
Y∈�k

X

∑
e∈Y

cSe

)
. (3)

If Ce = 0 for each e ∈ E and k = 0, then Rob Rec ST is equivalent to the
following min-max spanning tree problem, examined in Aissi et al. (2007), Kouvelis
and Yu (1997) and Kasperski and Zieliński (2011), in which we seek a spanning tree
that minimizes the largest cost over all scenarios:

Min- Max ST : min
X∈�

max
S∈U

∑
e∈X

cSe . (4)

IfCe = 0 for each e ∈ E and k = n−1, then Rob Rec ST becomes the following
adversarial problem (Nasrabadi and Orlin 2013) in which an adversary wants to find
a scenario which leads to the greatest increase in the cost of the minimum spanning
tree:

Adv ST : max
S∈U

min
Y∈�

∑
e∈Y

cSe . (5)

We now briefly recall the known complexity results on Rob Rec ST. It turns out
that its computational complexity highly relies on the way of defining the scenario
set U . There are two popular methods of representing U , namely the discrete and
interval uncertainty representations. For the discrete uncertainty representation (see,
e.g., Kouvelis and Yu 1997), scenario set, denoted by UD , contains K explicitly listed
scenarios, i.e. UD = {S1, S2, . . . , SK }. In this case, the Rob Rec ST problem is
known to be NP-hard for K = 2 and any constant k (Kasperski et al. 2014). Further-
more, it becomes strongly NP-hard and not at all approximable when both K and k are
a part of the input (Kasperski et al. 2014). It is worthwhile to mention that Min- Max
ST is NP hard even when K = 2 and becomes strongly NP-hard and not approximable
within O(log1−ε n) for any ε > 0 unless NP ⊆ DTIME(npoly log n), when K is a part
of input (Kouvelis and Yu 1997; Kasperski and Zieliński 2011). It admits an FPTAS,
when K is a constant (Aissi et al. 2007) and is approximable within O(log2 n), when
K is a part of the input (Kasperski and Zieliński 2011). The Adv ST problem, under
scenario set UD , is polynomially solvable, since it boils down to solving K traditional
minimum spanning tree problems.

For the interval uncertainty representation, which is considered in this paper, one
assumes that the second stage cost of each edge e ∈ E is known to belong to the closed
interval [ce, ce + de], where ce is a nominal cost of e ∈ E and de ≥ 0 is the maximum
deviation of the cost of e from its nominal value. In the traditional case U , denoted by
U I , is the Cartesian product of all these intervals (Kouvelis and Yu 1997), i.e.

U I =
{
S = (cSe)e∈E : cSe ∈ [ce, ce + de], e ∈ E

}
. (6)

123

J Comb Optim (2017) 34:554–573 557

In Büsing (2011) a polynomial algorithm for the recoverable robust matroid basis
problem under scenario setU I was constructed, provided that the recovery parameter k
is constant. In consequence, Rob Rec ST under U I is also polynomially solvable
for constant k. Unfortunately, the algorithm proposed in Büsing (2011) is exponential
in k. Interestingly, the corresponding recoverable robust version of the shortest path
problem (� is replaced with the set of all s − t paths in G) has been proven to be
strongly NP-hard and not at all approximable even if k = 2 (Büsing 2012). It has been
recently shown in Hradovich et al. (2016) that Rob Rec ST underU I is polynomially
solvable when k is a part of the input. In order to prove this result, a technique called
the iterative relaxation of a linear programming formulation, whose framework was
described in Lau et al. (2011), has been applied This technique, however, does not
imply directly a strongly polynomial algorithm for Rob Rec ST, since it requires the
solution of a linear program.

In Bertsimas and Sim (2003) a popular and commonly used modification of the
scenario set U I has been proposed. The new scenario set, denoted as U I

1 (�), is a
subset of U I such that under each scenario in U I

1 (�), the costs of at most � edges
are greater than their nominal values ce, where � is assumed to be a fixed integer in
[0,m]. Scenario set U I

1 (�) is formally defined as follows:

U I
1 (�) =

{
S = (cSe)e∈E : cSe ∈ [ce, ce + δede], δe ∈ {0, 1}, e ∈ E,

∑
e∈E

δe ≤ �

}
.

(7)
The parameter � allows us to model the degree of uncertainty. When � = 0, then we
get Rec ST (Rob Rec ST with one scenario S = (ce)e∈E). On the other hand, when
� = m, then we get Rob Rec ST under the traditional interval uncertainty U I . It
turns out that theAdv ST problem underU I

1 (�) is stronglyNP-hard (it is equivalent to
the problem of finding � most vital edges) (Nasrabadi and Orlin 2013; Lin and Chern
1993; Frederickson and Solis-Oba 1999). Consequently, the more general Rob Rec
ST problem is also strongly NP-hard. Interestingly, the correspondingMin- Max ST
problem with U I

1 (�) is polynomially solvable (Bertsimas and Sim 2003).
Yet another interesting way of defining scenario set, which allows us to control

the amount of uncertainty, is called the scenario set with a budget constraint (see,
e.g,. Nasrabadi and Orlin 2013). This scenario set, denoted as U I

2 (�), is defined as
follows:

U I
2 (�) =

{
S = (cSe)e∈E : cSe = ce + δe, δe ∈ [0, de], e ∈ E,

∑
e∈E

δe ≤ �

}
, (8)

where � ≥ 0 is a a fixed parameter that can be seen as a budget of an adversary, and
represents the maximum total increase of the edge costs from their nominal values.
Obviously, if � is sufficiently large, then U I

2 (�) reduces to the traditional interval
uncertainty representation U I . The computational complexity of Rob Rec ST for
scenario set U I

2 is still open. We only know that its special cases, namely Min- Max
ST and Adv ST, are polynomially solvable (Nasrabadi and Orlin 2013).

123

558 J Comb Optim (2017) 34:554–573

In this paper we will construct a combinatorial algorithm for Rec STwith strongly
polynomial running time. We will apply this algorithm for solving Rob Rec ST
under scenario set U I in strongly polynomial time. Moreover, we will show how the
algorithm for Rec ST can be used to obtain several approximation results for Rob
Rec ST, under scenario sets U I

1 (�) and U I
2 (�). This paper is organized as follows.

Section 2 contains the main result of this paper—a combinatorial algorithm for Rec
ST with strongly polynomial running time. Section 3 discusses Rob Rec ST under
the interval uncertainty representations U I , U I

1 (�), and U I
2 (�).

2 The recoverable spanning tree problem

In this section we construct a combinatorial algorithm for Rec ST with strongly
polynomial running time. Since |X | = n − 1 for each X ∈ �, Rec ST (see (1)) is
equivalent to the following mathematical programming problem:

min
∑
e∈X

Ce +
∑
e∈Y

ce

s.t. |X ∩ Y | ≥ L ,

X,Y ∈ �,

(9)

where L = n − 1 − k. Problem (9) can be expressed as the following MIP model:

Opt = min
∑
e∈E

Cexe +
∑
e∈E

ce ye (10)

s.t.
∑
e∈E

xe = n − 1, (11)

∑
e∈E(U)

xe ≤ |U | − 1, ∀U ⊂ V, (12)

∑
e∈E

ye = n − 1, (13)

∑
e∈E(U)

ye ≤ |U | − 1, ∀U ⊂ V, (14)

xe − ze ≥ 0, ∀e ∈ E, (15)

ye − ze ≥ 0, ∀e ∈ E, (16)∑
e∈E

ze ≥ L , (17)

xe, ye, ze ≥ 0, integer ∀e ∈ E, (18)

where E(U) stands for the set of edges that have both endpoints in U ⊆ V . We first
apply the Lagrangian relaxation (see, e.g., Ahuja et al. 1993) to (10–18) by relaxing the
cardinality constraint (17)with a nonnegativemultiplier θ .We also relax the integrality
constraints (18). We thus get the following linear program (with the corresponding
dual variables which will be used later):

123

J Comb Optim (2017) 34:554–573 559

φ(θ) = min
∑
e∈E

Cexe +
∑
e∈E

ce ye − θ
∑
e∈E

ze + θL (19)

s.t.
∑
e∈E

xe = n − 1, [μ],

−
∑

e∈E(U)

xe ≥ −(|U | − 1), ∀U ⊂ V, [wU],
∑
e∈E

ye = n − 1, [ν],

−
∑

e∈E(U)

ye ≥ −(|U | − 1), ∀U ⊂ V, [vU],

xe − ze ≥ 0, ∀e ∈ E, [αe],
ye − ze ≥ 0, ∀e ∈ E, [βe],
xe, ye, ze ≥ 0, ∀e ∈ E .

For any θ ≥ 0, the Lagrangian function φ(θ) is a lower bound on Opt . It is well-
known that φ(θ) is concave and piecewise linear. By the optimality test (see, e.g.,
Ahuja et al. 1993), we obtain the following theorem:

Theorem 1 Let (xe, ye, ze)e∈E be an optimal solution to (19) for some θ ≥ 0, feasible
to (11–18) and satisfying the complementary slackness condition θ(

∑
e∈E ze−L) = 0.

Then (xe, ye, ze)e∈E is optimal to (10–18).

Let (X,Y), X,Y ∈ �, be a pair of spanning trees of G (a pair for short). This pair
corresponds to a feasible 0− 1 solution to (19), defined as follows: xe = 1 for e ∈ X ,
ye = 1 for e ∈ Y , and ze = 1 for e ∈ X ∩ Y ; the values of the remaining variables
are set to 0. From now on, by a pair (X,Y) we also mean a feasible solution to (19)
defined as above. Given a pair (X,Y) with the corresponding solution (xe, ye, ze)e∈E ,
let us define the partition (EX , EY , EZ , EW) of the set of the edges E in the following
way: EX = {e ∈ E : xe = 1, ye = 0}, EY = {e ∈ E : ye = 1, xe = 0},
EZ = {e ∈ E : xe = 1, ye = 1} and EW = {e ∈ E : xe = 0, ye = 0}.
Thus equalities: X = EX ∪ EZ , Y = EY ∪ EZ and EZ = X ∩ Y hold. Our goal
is to establish some sufficient optimality conditions for a given pair (X,Y) in the
problem (19). The dual to (19) has the following form:

φD(θ)=max−
∑
U⊂V

(|U | − 1)wU + (n − 1)μ −
∑
U⊂V

(|U | − 1)vU + (n − 1)ν + θL

s.t. −∑{
U⊂V : e∈E(U)

} wU + μ ≤ Ce − αe, ∀e ∈ E,

−∑{
U⊂V : e∈E(U)

} vU + ν ≤ ce − βe, ∀e ∈ E,

αe + βe ≥ θ, ∀e ∈ E,

wU , vU ≥ 0, U ⊂ V,

αe, βe ≥ 0, ∀e ∈ E .

(20)

123

560 J Comb Optim (2017) 34:554–573

Lemma 1 The dual problem (20) can be rewritten as follows:

φD(θ) = max{αe≥0,βe≥0 :αe+βe≥θ, e∈E}

(
min
X∈�

∑
e∈X

(Ce − αe) + min
Y∈�

∑
e∈Y

(ce − βe)

)
+ θL .

(21)

Proof Fix some αe and βe such that αe + βe ≥ θ for each e ∈ E in (20). For
these constant values of αe and βe, e ∈ E , using the dual to (20), we arrive to
minX∈�

∑
e∈X (Ce − αe) + minY∈�

∑
e∈Y (ce − βe) + θL and the lemma follows.

�
Lemma 1 allows us to establish the following result:

Theorem 2 (Sufficient pair optimality conditions) A pair (X,Y) is optimal to (19)
for a fixed θ ≥ 0 if there exist αe ≥ 0, βe ≥ 0 such that αe + βe = θ for each e ∈ E
and

(i) X is a minimum spanning tree for the costs Ce − αe, Y is a minimum spanning
tree for the costs ce − βe,

(ii) αe = 0 for each e ∈ EX , βe = 0 for each e ∈ EY .

Proof By the primal-dual relation, the inequality φD(θ) ≤ φ(θ) holds. Using (21),
we obtain

φD(θ) ≥
∑
e∈X

(Ce − αe) +
∑
e∈Y

(ce − βe) + θL

=
∑
e∈EX

Ce +
∑
e∈EY

ce +
∑
e∈EZ

(Ce + ce − θ) + θL

=
∑
e∈EX

Ce +
∑
e∈EZ

Ce +
∑
e∈EY

ce +
∑
e∈EZ

ce − θ |EZ | + θL

=
∑
e∈X

Ce +
∑
e∈Y

ce − θ |EZ | + θL = φ(θ).

TheWeak Duality Theorem implies the optimality of (X,Y) in (19) for a fixed θ ≥ 0.

Lemma 2 A pair (X,Y), which satisfies the sufficient pair optimality conditions for
θ = 0, can be computed in polynomial time.

Proof Let X be a minimum spanning tree for the costs Ce and Y be a minimum
spanning tree for the costs ce, e ∈ E . Since θ = 0, we set αe = 0, βe = 0 for each
e ∈ E . It is clear that (X,Y) satisfies the sufficient pair optimality conditions.
�

Assume that (X, Y) satisfies the sufficient pair optimality conditions for some θ ≥
0. If, for this pair, |EZ | ≥ L and θ(|EZ | − L) = 0, then we are done, because by
Theorem 1, the pair (X,Y) is optimal to (10–18). Suppose that |EZ | < L ((X,Y) is
not feasible to (10–18). We will now show a polynomial time procedure for finding a
new pair (X ′,Y ′), which satisfies the sufficient pair optimality conditions and |EZ ′ | =

123

J Comb Optim (2017) 34:554–573 561

|EZ | + 1. This implies a polynomial time algorithm for the problem (10–18), since
it is enough to start with a pair satisfying the sufficient pair optimality conditions for
θ = 0 (see Lemma 2) and repeat the procedure at most L times, i.e. until |EZ ′ | = L .

Given a spanning tree T in G = (V, E) and edge e = {k, l} /∈ T , let us denote by
PT (e) the unique path in T connecting nodes k and l. It is well known that for any
f ∈ PT (e), T ′ = T ∪ {e} \ { f } is also a spanning tree in G. We will say that T ′ is the
result of a move on T .

Consider a pair (X,Y) that satisfies the sufficient pair optimality conditions for
some fixed θ ≥ 0. Set C∗

e = Ce − αe and c∗
e = ce − βe for every e ∈ E , where αe

and βe, e ∈ E , are the numbers which satisfy the conditions in Theorem 2. Thus, by
Theorem 2(i) and the path optimality conditions (see, e.g., Ahuja et al. 1993), we get
the following conditions which must be satisfied by (X,Y):

for every e /∈ X C∗
e ≥ C∗

f for every f ∈ PX (e), (22a)

for every e /∈ Y c∗
e ≥ c∗

f for every f ∈ PY (e). (22b)

We now build a so-called admissible graph GA = (V A, E A) in two steps. We first
associate with each edge e ∈ E a node ve and include it to V A, |V A| = |E |. We then
add arc (ve, v f) to E A if e /∈ X , f ∈ PX (e) andC∗

e = C∗
f . This arc is called an X-arc.

We also add arc (v f , ve) to E A if e /∈ Y , f ∈ PY (e) and c∗
e = c∗

f . This arc is called

an Y -arc. We say that ve ∈ V A is admissible if e ∈ EY , or ve is reachable from a node
vg ∈ V A, such that g ∈ EY , by a directed path in GA. In the second step we remove
from GA all the nodes which are not admissible, together with their incident arcs. An
example of an admissible graph is shown in Fig. 1. Each node of this admissible graph
is reachable from some node vg , g ∈ EY . Note that the arcs (ve7, ve6) and (ve7, ve10)

are not present in GA, because ve7 is not reachable from any node vg , g ∈ EY . These
arcs have been removed from GA in the second step.

Observe that each X -arc (ve, v f) ∈ E A represents a move on X , namely X ′ =
X ∪ {e} \ { f } is a spanning tree in G. Similarly, each Y -arc (ve, v f) ∈ E A represents
a move on Y , namely Y ′ = Y ∪ { f } \ {e} is a spanning tree in G. Notice that the cost,
with respect to C∗

e , of X
′ is the same as X and the cost, with respect to c∗

e , of Y
′ is

the same as Y . So, the moves indicated by X -arcs and Y -arcs preserve the optimality
of X and Y , respectively. Observe that e /∈ X or e ∈ Y , which implies e /∈ EX . Also
f ∈ X or f /∈ Y , which implies f /∈ EY . Hence, no arc in E A can start in a node
corresponding to an edge in EX and no arc in E A can end in a node corresponding
to an edge in EY . Observe also that (ve, v f) ∈ E A can be both X -arc and Y -arc only
if e ∈ EY and f ∈ EX . Such a case is shown in Fig. 1 (see the arc (ve1, ve2)). Since
each arc (ve, v f) ∈ E A represents a move on X or Y , e and f cannot both belong to
EW or EZ .

We will consider two cases: EX ∩ {e ∈ E : ve ∈ V A} �= ∅ and EX ∩ {e ∈ E :
ve ∈ V A} = ∅. The first case means that there is a directed path from ve, e ∈ EY ,
to a node v f , f ∈ EX , in the admissible graph GA and in the second case no such a
path exists. We will show that in the first case it is possible to find a new pair (X ′,Y ′)
which satisfies the sufficient pair optimality conditions and |EZ ′ | = |EZ | + 1. The

123

562 J Comb Optim (2017) 34:554–573

(a) (b)

Fig. 1 A pair (X, Y) such that X = {e2, e3, e4, e6, e10} and Y = {e1, e3, e5, e9, e10}. The admissible
graph GA for (X, Y)

e1

e2

e3

f1

f2
f3

f4

f5

f6 f7

ve1 ve2

ve3

vf1 vf2 vf3 vf4vf5vf6 vf7

(a) (b)

Fig. 2 A graph G with a spanning tree T (the solid lines). The cycle graph G(T)

idea will be to perform a sequence of moves on X and Y , indicated by the arcs on
some suitably chosen path from ve, e ∈ EY , to v f , f ∈ EX in the admissible graph
GA. Let us formally handle this case.

Lemma 3 If EX ∩ {e ∈ E : ve ∈ V A} �= ∅, then there exists a pair (X ′,Y ′) with
|EZ ′ | = |EZ | + 1, which satisfies the sufficient pair optimality conditions for θ .

Proof We begin by introducing the notion of a cycle graph G(T) = (V T , AT), corre-
sponding to a given spanning tree T of graph G = (V, A). We build G(T) as follows:
we associate with each edge e ∈ E a node ve and include it to V T , |E | = |V T |; then
we add arc (ve, v f) to AT if e /∈ T and f ∈ PT (e). An example is shown in Fig. 2.

Claim 1 Given a spanning tree T of G, letF = {(ve1, v f1), (ve2 , v f2), . . . , (ve� , v f�)}
be a subset of arcs of G(T), where all vei and v fi (resp. ei and fi), i ∈ [�], are distinct.
If T ′ = T ∪ {e1, . . . , e�} \ { f1, . . . , f�} is not a spanning tree, then G(T) contains a
subgraph depicted in Fig. 3, where { j1, . . . , jκ } ⊆ [�].

Let us illustrate Claim 1 by using the sample graph in Fig. 2. Suppose that F =
{(ve1, v f5), (ve2 , v f2), (ve3 , v f3)}. Then T ′ = T ∪ {e1, e2, e3, } \ { f5, f2, f3} is not a
spanning tree and G(T) contains the subgraph composed of the following arcs (see
Fig. 2):

(ve1, v f2), (ve2 , v f2), (ve2 , v f3), (ve3 , v f3), (ve3 , v f5), (ve1 , v f5).

123

J Comb Optim (2017) 34:554–573 563

Fig. 3 A subgraph of G(T)

from Claim 1 vej1
vej2

vej3
vejκ

vfj1
vfj2

vfj3
vfjκ

(a) (b)

Fig. 4 Illustration for the proof of Claim 1. The bold lines represent paths in T (not necessarily disjoint);
f1 ∈ PT (e2) ∪ PT (e3) ∪ PT (e4). The subgraph G′(T) with the corresponding cycle

Proof of Claim 1 We form T ′ by performing a sequence ofmoves consisting in adding
edges ei and removing edges fi ∈ PT (ei), i ∈ [�]. Suppose that, at some step, a cycle
appears, which is formed by some edges from {e1, . . . , e�} and the remaining edges
of T (not removed from T). Such a cycle must appear, since otherwise T ′ would be a
spanning tree. Let us relabel the edges so that {e1, . . . , es} are on this cycle, i.e. thefirst s
moves consisting in adding ei and removing fi create the cycle, i ∈ [s]. An example of
such a situation for s = 4 is shown inFig. 4. The cycle is formedby the edges e1, . . . , e4
and the paths Pv2v3 , Pv4v5 and Pv1v6 in T . Consider the edge e1 = {v1, v2}. Because
T is a spanning tree, PT (e1) ⊆ Pv2v3 ∪ PT (e2) ∪ PT (e3) ∪ Pv4v5 ∪ PT (e4) ∪ Pv1v6 .
Observe that f1 ∈ PT (e1) cannot belong to any of Pv2v3 , Pv4v5 and Pv1v6 . If it would
be contained in one of these paths, then no cycle would be created. Hence, f1 must
belong to PT (e2) ∪ PT (e3) ∪ PT (e4). The above argument is general and, by using it,
we can show that for each i ∈ [s], fi ∈ PT (e j) for some j ∈ [s] \ {i}.

We are now ready to build a subgraph depicted in Fig. 3. Consider a sub-
graph G ′(T) of the cycle graph G(T) built as follows. The nodes of G ′(T) are
ve1, . . . , ves , v f1 , . . . , v fs . Observe thatG

′(T) has exactly 2s nodes, since all the edges
e1, . . . , es, f1, . . . , fs are distinct by the assumption of the claim. For each i ∈ [s]
we add to G ′(T) two arcs, namely (vei , v fi), fi ∈ PT (ei) and (ve j , v fi), fi ∈ PT (e j)
for j ∈ [s] \ {i} (see Fig. 4). The resulting graph G ′(T) is bipartite and has exactly

123

564 J Comb Optim (2017) 34:554–573

2s arcs. In consequence G ′(T) (and thus G(T)) must contain a cycle which is of the
form depicted in Fig. 3.
�

After this preliminary step, we can now return to the main proof. If EX ∩ {e ∈
E : ve ∈ V A} �= ∅, then, by the construction of the admissible graph, there exists
a directed path in GA from a node ve, e ∈ EY , to a node v f , f ∈ EX . Let P be a
shortest such a path from ve to v f , i.e. a path consisting of the fewest number of arcs,
called an augmenting path. We need to consider the following cases:

1. The augmenting path P is of the form:

EY EX

ve → v f

If (ve, v f) is X -arc, then X ′ = X ∪ {e} \ { f } is an updated spanning tree of G
such that |X ′ ∩ Y | = |EZ | + 1. Furthermore X ′ is a minimum spanning tree
for the costs C∗

e and the new pair (X ′,Y) satisfies the sufficient pair optimality
conditions (EX ′ ⊆ EX , so condition (ii) in Theorem 2 is not violated). If (ve, v f)

is Y -arc, then Y ′ = Y ∪ { f } \ {e} is an updated spanning tree of G such that
|X ∩ Y ′| = |EZ | + 1. Also Y ′ is a minimum spanning tree for the costs c∗

e and
the new pair (X, Y ′) satisfies the sufficient pair optimality conditions. An example
can be seen in Fig. 1. There is a path ve1 → ve2 in the admissible graph. The arc
(ve1 , ve2) is both X -arc and Y -arc. We can thus choose one of the two possible
moves X ′ = X ∪ {e1} \ {e2} or Y ′ = Y ∪ {e2} \ {e1}, which results in (X ′,Y) or
(Y ′, X).

2. The augmenting path P is of the form:

EY EZ EW EZ EW EZ EW EZ EX

(a) ve1
X→ v f1

Y→ ve2
X→ v f2

Y→ ve3
X→ v f3

Y→ · · · Y→ ve�
X→ v f�

Y→ ve�+1

EX

(b)
X→ v f�

Let X ′ = X∪{e1, . . . , e�}\{ f1, . . . , f�}. Let Y ′ = Y ∪{e2, . . . , e�+1}\{ f1, . . . f�}
for case (a), and Y ′ = Y ∪ {e2, . . . , e�} \ { f1, . . . f�−1} for case (b). We now have
to show that the resulting pair (X ′,Y ′) is a pair of spanning trees. Suppose that
X ′ is not a spanning tree. Observe that the X -arcs (ve1 , v f1), . . . , (ve� , v f�) belong
to the cycle graph G(X). Thus, by Claim 1, the cycle graph G(X) must contain a
subgraph depicted in Fig. 3, where { j1, . . . , jκ } ⊆ [�]. An easy verification shows
that all edges ei , fi , i ∈ { j1, . . . , jκ } must have the same costs with respect to
C∗
e . Indeed, if some costs are different, then there exists an edge exchange which

decreases the cost of X . This contradicts our assumption that X is a minimum
spanning tree with respect to C∗

e . Finally, there must be an arc (vei ′ , v fi ′′) in the
subgraph such that i ′ < i ′′. Since C∗

ei ′ = C∗
fi ′′ , the arc (vei ′ , v fi ′′) is present in the

admissible graphGA. This leads to a contradictionwith our assumption that P is an
augmenting path. Now suppose that Y ′ is not a spanning tree.We consider only the
case (a) since the proof of case (b) is just the same. For a convenience, let us number
the nodesvei on P from i = 0 to �, so thatY ′ = {e1, . . . , e�}\{ f1, . . . , f�}. The arcs

123

J Comb Optim (2017) 34:554–573 565

(ve1 , v f1), . . . , (ve� , v f�), which correspond to theY -arcs (v f1 , ve1), . . . , (v f� , ve�)

of P , belong to the cycle graph G(Y). Hence, by Claim 1, G(Y) must contain a
subgraph depicted in Fig. 3, where {i1, . . . , iκ } ⊆ [�]. The rest of the proof is
similar to the proof for X . Namely, the edges ei and fi for i ∈ {i1, . . . , iκ } must
have the same costs with respect to c∗

e . Also, there must exist an arc (vei ′ , v fi ′′) in
the subgraph such that i ′ > i ′′. In consequence, the arc (v fi ′′ , vei ′) belongs to the
admissible graph, which contradicts the assumption that P is an augmenting path.
An example of the case (a) is shown in Fig. 5. Thus X ′ = X ∪ {e1, e2, e3, e4} \
{ f1, f2, f3, f4} and Y ′ = Y ∪ {e2, e3, e4, e5} \ { f1, f2, f3, f4}. An example of the
case (b) is shown in Fig. 6. In this example X ′ is the same as in the previous case
and Y ′ = Y ∪ {e2, e3, e4} \ { f1, f2, f3}.
It is easy to verify that |EZ ′ | = |X ′ ∩Y ′| = |EZ | + 1 holds (see also the examples
in Figs. 5, 6). The spanning trees X ′ and Y ′ are optimal for the costs C∗

e and
c∗
e , respectively. Furthermore, EX ′ ⊆ EX and EY ′ ⊆ EY , so (X ′,Y ′) satisfies
the sufficient pair optimality conditions (the condition (ii) in Theorem 2 is not
violated).

3. The augmenting path P is of the form

EY EW EZ EW EZ EW EZ EW EX

(a) ve1
Y→ v f1

X→ ve2
Y→ v f2

X→ ve3
Y→ v f3

X→ . . .
X→ ve�

Y→ v f�
X→ ve�+1

EX

(b)
Y→ v f�

Let X ′ = X ∪ { f1, . . . , f�} \ {e2, . . . , e�+1} for the case (a) and X ′ = X ∪
{ f1, . . . , f�−1}\{e2, . . . e�} for the case (b). LetY ′ = Y∪{ f1, . . . , f�}\{e1, . . . e�}.
The proof that X ′ andY ′ are spanning trees follows by the same arguments as for the
symmetric case described in point 2. An example of the case (a) is shown in Fig. 7.
Thus X ′ = X ∪ { f1, f2, f3, f4} \ {e2, e3, e4, e5} and Y ′ = Y ∪ { f1, f2, f3, f4} \
{e1, e2, e3, e4}. An example for the case (b) is shown in Fig. 8. The spanning tree
Y ′ is the same as in the previous case and X ′ = X ∪ { f1, f2, f3} \ {e2, e3, e4}.
The equality |EZ ′| = |X ′ ∩ Y ′| = |EZ | + 1 holds. Also, the trees X ′ and Y ′ are
optimal for the costs C∗

e and c∗
e , respectively, EX ′ ⊆ EX , EY ′ ⊆ EY , so (X ′,Y ′)

satisfies the sufficient pair optimality conditions.
�
We now turn to the case EX ∩ {e ∈ E : ve ∈ V A} = ∅. Fix δ > 0 (the precise

value of δ will be specified later) and set:

Ce(δ) = C∗
e − δ, ce(δ) = c∗

e ve ∈ V A, (23a)

Ce(δ) = C∗
e , ce(δ) = c∗

e − δ ve /∈ V A. (23b)

Lemma 4 There exists a sufficiently small δ > 0 such that the costs Ce(δ) and ce(δ)
satisfy the path optimality conditions for X and Y , respectively, i.e:

for every e /∈ X Ce(δ) ≥ C f (δ) for every f ∈ PX (e), (24a)

for every e /∈ Y ce(δ) ≥ c f (δ) for every f ∈ PY (e). (24b)

123

566 J Comb Optim (2017) 34:554–573

Fig. 5 A pair (X, Y) and the corresponding admissible graph for the case 2a

Fig. 6 A pair (X, Y) and the corresponding admissible graph for the case 2b

Fig. 7 A pair (X, Y) and the corresponding admissible graph for the case 3a

Proof If C∗
e > C∗

f (resp. c
∗
e > c∗

f), e /∈ X, f ∈ PX (e) (resp. e /∈ Y, f ∈ PY (e)), then
there is δ > 0, such that after setting the new costs (23) the inequality Ce(δ) ≥ C f (δ)

(resp. ce(δ) ≥ c f (δ)) holds. Hence, one can choose a sufficiently small δ > 0 such that

123

J Comb Optim (2017) 34:554–573 567

Fig. 8 A pair (X, Y) and the corresponding admissible graph for the case 3b

after setting the new costs (23), all the strong inequalities are not violated. Therefore,
for such a chosen δ it remains to show that all originally tight inequalities in (22) are
preserved for the new costs. Consider a tight inequality of the form:

C∗
e = C∗

f , e /∈ X, f ∈ PX (e). (25)

On the contrary, suppose that Ce(δ) < C f (δ). This is only possible when Ce(δ) =
C∗
e − δ and C f (δ) = C∗

f . Hence and from the construction of the new costs, we have

v f /∈ V A (see (23b)) and ve ∈ V A (see (23a)). By (25), we obtain (ve, v f) ∈ E A.
Thus v f ∈ V A, a contradiction. Consider a tight inequality of the form:

c∗
e = c∗

f , e /∈ Y, f ∈ PY (e). (26)

On the contrary, suppose that ce(δ) < c f (δ). This is only possible when ce(δ) = c∗
e −δ

and c f (δ) = c∗
f . Thus we deduce that ve /∈ V A and v f ∈ V A (see (23)). From (26),

it follows that (v f , ve) ∈ E A and so ve ∈ V A, a contradiction.
�
We are now ready to give the precise value of δ. We do this by increasing the value of δ
until some inequalities, originally not tight in (22), become tight. Namely, let δ∗ > 0
be the smallest value of δ for which an inequality originally not tight becomes tight.
Obviously, it occurs when C∗

e − δ∗ = C∗
f for e /∈ X , f ∈ PX (e) or c∗

f − δ∗ = c∗
e for

f /∈ Y , e ∈ PY (f). By (23), ve ∈ V A and v f /∈ V A. Accordingly, if δ = δ∗, then at
least one arc is added to GA. Observe also that no arc can be removed from GA - the
admissibility of the nodes remains unchanged. It follows from the fact that each tight
inequality for ve ∈ V A and v f ∈ V A is still tight. This leads to the following lemma.

Lemma 5 If EX ∩ {e ∈ E : ve ∈ V A} = ∅, then (X,Y) satisfies the sufficient pair
optimality conditions for each θ ′ ∈ [θ, θ + δ∗].
Proof Set θ ′ = θ + δ, δ ∈ [0, δ∗]. Lemma 4 implies that X is optimal for Ce(δ)

and Y is optimal for ce(δ). From (23) and the definition of the costs C∗
e and c∗

e ,

123

568 J Comb Optim (2017) 34:554–573

it follows that Ce(δ) = Ce − α′
e and ce(δ) = ce − β ′

e, where α′
e = αe + δ and

β ′
e = βe for each ve ∈ V A, α′

e = αe and β ′
e = βe + δ for each ve /∈ V A. Notice that

α′
e + β ′

e = αe + βe + δ = θ + δ = θ ′ for each e ∈ E . By (23), ce(δ) = ce for each
e ∈ EY (recall that e ∈ EY implies ve ∈ V A), and thus βe = 0 for each e ∈ EY . Since
EX ∩ {e ∈ E : ve ∈ V A} = ∅, Ce(δ) = C∗

e = Ce holds for each e ∈ EX , and so
αe = 0 for each e ∈ EX . We thus have shown that there exist α′

e, β
′
e ≥ 0 such that

α′
e +β ′

e = θ ′ for each e ∈ E satisfying the conditions (i) and (ii) in Theorem 2, which
completes the proof.
�

We now describe a polynomial procedure that, for a given pair (X,Y) satisfying
the sufficient pair optimality conditions for some θ ≥ 0, finds a new pair of spanning
trees (X ′,Y ′), which also satisfies the sufficient pair optimality conditionswith |E ′

Z | =
|EZ | + 1. We start by building the admissible graph GA = (V A, E A) for (X,Y). If
this graph contains an augmenting path, then by Lemma 3, we are done. Otherwise, we
determine δ∗ and modify the costs by using (23). Lemma 5 shows that (X,Y) satisfies
the sufficient pair optimality conditions for θ + δ∗. For δ∗ some new arcs are added to
the admissible graph GA (all the previous arcs must be still present in GA). Thus GA

is updated and we set C∗
e := Ce(δ

∗), c∗
e := ce(δ∗) for each e ∈ E , and θ := θ + δ∗.

We repeat this until there is an augmenting path in GA = (V A, E A). Note that such a
path must appear after at most m = |E | iterations, which follows from the fact that at
some step a node ve such that e ∈ EX must appear in GA.

Sample computations are shown in Fig. 9.We start with the pair (X,Y), where X =
{e2, e4, e5, e6, e9, e10} and Y = {e2, e3, e5, e8, e9, e11}, which satisfies the sufficient
pair optimality conditions for θ = 0 (see Fig. 9a). Observe that in this case it is
enough to check that X is optimal for the costs C∗

e = Ce and Y is optimal for the costs
c∗
e = ce, e ∈ E . For θ = 0, the admissible graph does not contain any augmenting
path. We thus have to modify the costs C∗

e and c∗
e , according to (23). For δ∗ = 1,

a new inequality becomes tight and one arc is added to the admissible graph (see
Fig. 9b). The admissible graph still does not have an augmenting path, so we have to
again modify the costs. For δ∗ = 1 some new inequalities become tight and three arcs
are added to the admissible graph (see Fig. 9c). Now the admissible graph has two
augmenting paths (cases 1 and 3a, see the proof of Lemma 3). Choosing one of them,
and performing the modification described in the proof of Lemma 3 we get a new pair
(X ′,Y ′) with |EZ ′ | = |EZ | + 1.

Let us now estimate the running time of the procedure. The admissible graph has
at most m nodes and at most mn arcs. It can be built in O(nm) time. The augmenting
path in the admissible graph can be found in O(nm) time by applying the breath first
search. Also the number of inequalities which must be analyzed to find δ∗ is O(nm).
Since we have to update the cost of each arc of the admissible graph at most m times,
until an augmenting path appears, the required time of the procedure is O(m2n). We
thus get the following result.

Theorem 3 TheRec ST problem is solvable in O(Lm2n) time, where L = n−1−k.

123

J Comb Optim (2017) 34:554–573 569

(a)

(b)

(c)

Fig. 9 Sample computations, X = {e2, e4, e5, e6, e9, e10} and Y = {e2, e3, e5, e8, e9, e11}

3 The recoverable robust spanning tree problem

In this section we are concerned with the Rob Rec ST problem under the interval
uncertainty representation, i.e. for the scenario sets U I , U I

1 (�), and U I
2 (�). Using the

polynomial algorithm forRec ST, constructed in Sect. 2,wewill provide a polynomial
algorithm for Rob Rec ST under U I and some approximation algorithms for a wide
class of Rob Rec ST under U I

1 (�) and U I
2 (�). The idea will be to solve Rec ST for

a suitably chosen second stage costs. Let

F(X) =
∑
e∈X

Ce + max
S∈U

min
Y∈�k

X

f (Y, S),

123

570 J Comb Optim (2017) 34:554–573

where f (Y, S) = ∑
e∈Y cSe . It is worth pointing out that under scenario sets U I and

U I
2 (�), the value of F(X), for a given spanning tree X , can be computed in polynomial

time (Şeref et al. 2009;Nasrabadi andOrlin 2013).On the other hand, computing F(X)

underU I
1 (�) turns out to be stronglyNP-hard (Nasrabadi andOrlin 2013; Frederickson

and Solis-Oba 1999). Given scenario S = (cSe)e∈E , consider the following Rec ST
problem:

min
X∈�

(∑
e∈X

Ce + min
Y∈�k

X

f (Y, S)

)
. (27)

Problem (27) is equivalent to the formulation (1) for S = (ce)e∈E and it is polynomially
solvable, according to the result obtained in Sect. 2. As in the previous section, we
denote by pair (X,Y) a solution to (27), where X ∈ � and Y ∈ �k

X . Given S, we call
(X,Y) an optimal pair under S if (X,Y) is an optimal solution to (27).

The Rob Rec ST problem with scenario set U I can be rewritten as follows:

min
X∈�

(∑
e∈X

Ce + max
S∈U I

min
Y∈�k

X

∑
e∈Y

cSe

)
= min

X∈�

(∑
e∈X

Ce + min
Y∈�k

X

∑
e∈E

(ce + de)

)
. (28)

Thus (28) is (27) for S = (ce + de)e∈E ∈ U I . Hence and from Theorem 3 we
immediately get the following theorem:

Theorem 4 For scenario set U I , the Rob Rec ST problem is solvable in O((n −
1 − k)m2n) time.

We now address Rob Rec ST under U I
1 (�) and U I

2 (�). Suppose that ce ≥ α(ce +
de) for each e ∈ E , where α ∈ (0, 1] is a given constant. This inequality means that
for each edge e ∈ E the nominal cost ce is positive and ce + de is at most 1/α greater
than ce. It is reasonable to assume that this condition will be true in many practical
applications for not very large value of 1/α.

Lemma 6 Suppose that ce ≥ α(ce + de) for each e ∈ E, where α ∈ (0, 1], and let
(X̂ , Ŷ) be an optimal pair under S = (ce)e∈E . Then for the scenario sets U I

1 (�) and

U I
2 (�) the inequality F(X̂) ≤ 1

α
F(X) holds for any X ∈ �.

Proof We give the proof only for the scenario set U I
1 (�). The proof for U I

2 (�) is the
same. Let X ∈ �. The following inequality is satisfied:

F(X)=
∑
e∈X

Ce+ max
S∈U I

1 (�)

min
Y∈�k

X

f (Y, S)=
∑
e∈X

Ce + f (Y ∗, S∗) ≥
∑
e∈X

Ce + f (Y ∗, S).

Clearly, (X,Y ∗) is a feasible pair to (27) under S. From the definition of (X̂ , Ŷ) we
get

F(X) ≥
∑
e∈X̂

Ce + f (Ŷ , S) =
∑
e∈X̂

Ce +
∑
e∈Ŷ

ce ≥
∑
e∈X̂

Ce +
∑
e∈Ŷ

α(ce + de)

=
∑
e∈X̂

Ce + α f (Ŷ , S), (29)

123

J Comb Optim (2017) 34:554–573 571

where S = (ce + de)e∈E . Hence

F(X) ≥
∑
e∈X̂

Ce + α max
S∈U I

1 (�)

f (Ŷ , S) ≥
∑
e∈X̂

Ce + α max
S∈U I

1 (�)

min
Y∈�k

X̂

f (Y, S)

≥ α

⎛
⎝∑

e∈X̂
Ce + max

S∈U I
1 (�)

min
Y∈�k

X̂

f (Y, S)

⎞
⎠ = αF(X̂)

and the lemma follows.
�
The condition ce ≥ α(ce + de), e ∈ E , in Lemma 6, can be weakened and, in
consequence, the set of instances to which the approximation ratio of the algorithm
applies can be extended. Indeed, from inequality (29) it follows that the bounds of the
uncertainty intervals are only required to meet the condition

∑
e∈Ŷ ce ≥ α

∑
e∈Ŷ (ce +

de). This condition can be verified efficiently, since Ŷ can be computed in polynomial
time.

We now focus on Rob Rec ST for U I
2 (�). Define D = ∑

e∈E de and suppose that
D > 0 (if D = 0, then the problem is equivalent to Rec ST for the second stage
costs ce, e ∈ E). Consider scenario S′ under which cS

′
e = min{ce + de, ce + � de

D }
for each e ∈ E . Obviously, S′ ∈ U I

2 (�), since
∑

e∈E δe ≤ ∑
e∈E � de

D ≤ �. The
following theorem provides another approximation result for Rob Rec ST with
scenario set U I

2 (�):

Lemma 7 Let (X̂ , Ŷ) be an optimal pair under S′. Then the following implications
are true for scenario set U I

2 (�):

(i) If � ≥ βD, β ∈ (0, 1], then F(X̂) ≤ 1
β
F(X) for any X ∈ �.

(ii) If � ≤ γ F(X̂), γ ∈ [0, 1) then F(X̂) ≤ 1
1−γ

F(X) for any X ∈ �.

Proof Let X ∈ �. Since S′ ∈ U I
2 (�), we get

F(X) =
∑
e∈X

Ce + max
S∈U I

2 (�)

min
Y∈�k

X

f (Y, S) ≥
∑
e∈X

Ce + min
Y∈�k

X

f (Y, S′). (30)

We first prove implication (i). By (30) and the definition of (X̂ , Ŷ), we obtain

F(X) ≥
∑
e∈X̂

Ce + f (Ŷ , S′) =
∑
e∈X̂

Ce +
∑
e∈Ŷ

min

{
ce + de, ce + �

de
D

}

≥
∑
e∈X̂

Ce +
∑
e∈Ŷ

min {ce + de, ce + βde} =
∑
e∈X̂

Ce

+
∑
e∈Ŷ

(ce + βde) ≥
∑
e∈X̂

Ce + β f (Ŷ , S),

123

572 J Comb Optim (2017) 34:554–573

where S = (ce +de)e∈E . The rest of the proof is the same as in the proof of Lemma 6.
We now prove implication (i i). By (30) and the definition of (X̂ , Ŷ), we have

F(X) ≥
∑
e∈X̂

Ce + f (Ŷ , S′) ≥
∑
e∈X̂

Ce + f (Ŷ , S) ≥
∑
e∈X̂

Ce + max
S∈U I

2 (�)

f (Ŷ , S) − �

≥
∑
e∈X̂

Ce + max
S∈U I

2 (�)

min
Y∈�k

X̂

f (Y, S) − � = F(X̂) − �.

If � ≤ γ F(X̂). Then F(X) ≥ F(X̂) − γ F(X̂) = (1 − γ)F(X̂) and F(X̂) ≤
1

1−γ
F(X).
�

Note that the value of F(X̂) under U I
2 (�) can be computed in polynomial

time (Nasrabadi and Orlin 2013). In consequence, the constants β and γ can be effi-
ciently determined for every particular instance of the problem.Clearly, we can assume
that de ≤ � for each e ∈ E , which implies D ≤ m�, where m = |E |. Hence, we can
assume that � ≥ 1

m D for every instance of the problem. We thus get from Lemma 7

(implication (i)) that F(X̂) ≤ mF(X) for any X ∈ � and the problem is approximable
within m. If α, β and γ are the constants from Lemmas 6 and 7, then the following
theorem summarizes the approximation results:

Theorem 5 Rob Rec ST is approximable within 1
α
under scenario set U I

1 (�) and it
is approximable within min{ 1

β
, 1

α
, 1
1−γ

} under scenario set U I
2 (�).

Observe that Lemmas 6 and 7 hold of any sets � and �k
X (the particular structure

of these sets is not exploited). Hence the approximation algorithms can be applied to
any problem for which the recoverable version (27) is polynomially solvable.

4 Conclusions

In this paper we have studied the recoverable robust spanning tree problem (Rob
Rec ST) under various interval uncertainty representations. The main result is the
polynomial time combinatorial algorithm for the recoverable spanning tree. We have
applied this algorithm for solving Rob Rec ST under the traditional uncertainty
representation (see, e.g., Kouvelis and Yu 1997) in polynomial time. Moreover, we
have used the algorithm for providing several approximation results for Rec ST
with the scenario set introduced by Bertsimas and Sim (2003) and the scenario set
with a budged constraint (see, e.g,. Nasrabadi and Orlin 2013). There is a number
of open questions concerning the considered problem. Perhaps, the most interesting
one is to resolve the complexity of the robust problem under the interval uncertainty
representation with budget constraint. It is possible that this problem may be solved
in polynomial time by some extension of the algorithm constructed in this paper. One
can also try to extend the algorithm for the more general recoverable matroid base
problem, which has also been shown to be polynomially solvable in Hradovich et al.
(2016).

123

J Comb Optim (2017) 34:554–573 573

Acknowledgements The second and the third authors were supported by the National Center for Science
(Narodowe Centrum Nauki), Grant 2013/09/B/ST6/01525.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows: theory, algorithms, and applications. Prentice
Hall, Englewood Cliffs

Aissi H, Bazgan C, Vanderpooten D (2007) Approximation of min-max and min-max regret versions of
some combinatorial optimization problems. Eur J Oper Res 179:281–290

Bertsimas D, Sim M (2003) Robust discrete optimization and network flows. Math Program 98:49–71
Büsing C (2011) Recoverable robustness in combinatorial optimization. PhD thesis, Technical University

of Berlin, Berlin
Büsing C (2012) Recoverable robust shortest path problems. Networks 59:181–189
Büsing C, Koster AMCA, Kutschka M (2011) Recoverable robust knapsacks: the discrete scenario case.

Optim Lett 5:379–392
Chassein A, Goerigk M (2015) On the recoverable robust traveling salesman problem. Optim Lett. doi:10.

1007/s11590-015-0949-5
Frederickson NG, Solis-Oba R (1999) Increasing the weight of minimum spanning trees. J Algorithm

33:244–266
Hradovich M, Kasperski A, Zieliński P (2016) The recoverable robust spanning tree problem with interval

costs is polynomially solvable. Optim Lett. doi:10.1007/s11590-016-1057-x
Kasperski A, Kurpisz A, Zieliński P (2014) Recoverable robust combinatorial optimization problems. Oper

Res Proc 2012:147–153
Kasperski A, Zieliński P (2011) On the approximability of robust spanning problems. Theor Comput Sci

412:365–374
Kouvelis P, Yu G (1997) Robust discrete optimization and its applications. Kluwer Academic, Norwell
Lau LC, Ravi R, Singh M (2011) Iterative methods in combinatorial optimization. Cambridge University

Press, Cambridge
Liebchen C, LübbeckeME,Möhring RH, Stiller S (2009) The concept of recoverable robustness, linear pro-

gramming recovery, and railway applications. In: Robust and online large-scale optimization. Lecture
notes in computer science, vol 5868. Springer, New York, pp 1–27

Lin K, Chern MS (1993) The most vital edges in the minimum spanning tree problem. Inf Process Lett
45:25–31

Nasrabadi E, Orlin JB (2013) Robust optimization with incremental recourse. CoRR, abs/1312.4075
PapadimitriouCH, SteiglitzK (1998)Combinatorial optimization: algorithms and complexity.Dover,Mine-

ola
Şeref O, Ahuja RK, Orlin JB (2009) Incremental network optimization: theory and algorithms. Oper Res

57:586–594

123

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/s11590-015-0949-5
http://dx.doi.org/10.1007/s11590-015-0949-5
http://dx.doi.org/10.1007/s11590-016-1057-x

	Recoverable robust spanning tree problem under interval uncertainty representations
	Abstract
	1 Introduction
	2 The recoverable spanning tree problem
	3 The recoverable robust spanning tree problem
	4 Conclusions
	Acknowledgements
	References

