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Abstract The concept of 2-rainbow domination of a graph G coincides with the
ordinary domination of the prism G�K2 (see Brešar et al., Taiwan J Math 12:213–
225, 2008). Hence γr2(Cm�Cn) ≥ mn

3 . In this paper we give full characterization of
graphs Cm�Cn with γr2(Cm�Cn) = mn

3 .
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1 Introduction

For notation and graph theory terminology not given here, we follow Diestel (1997)
and Haynes et al. (1998). Let G = (V (G), E(G)) be a finite, simple and undirected
graph with vertex set V (G) and edge set E(G). The open neighborhood of a vertex
v is N (v) = {u ∈ V (G) : uv ∈ E(G)}. If A ⊂ V (G), then N (A) denotes the
union of open neighborhoods of all vertices of A. For two subsets A, B of V (G),

E(A, B) = {ab ∈ E(G) : a ∈ A, b ∈ B}.
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The Cartesian product G�H of graphs G and H is the graph with vertex set
V (G) × V (H), where two vertices are adjacent if and only if they are equal in one
coordinate and adjacent in the other.

We restrict our attention to the Cartesian product of Cn and Cm, n,m ≥ 3. Let
V (Cn) = {0, 1, . . . , n − 1}, E(Cn) = {i(i + 1), (n − 1)0 : i = 0, 1, . . . , n − 2}.
Hence we will denote vertices of V (Cm�Cn) by (i, j) for i = 0, 1, . . . ,m −1 and
j = 0, 1, . . . , n−1. For the arbitrary integers i and j wewill use the following notation

[i, j] = (i mod m, j mod n).

A function f : V (G) → P({1, . . . , k}) is called a k-rainbow dominating function
of G (for short kRDF ofG) if

⋃
u∈N (v) f (u) = {1, . . . , k}, for each vertex v ∈ V (G)

with f (v) = ∅. By w( f ) we mean
∑

v∈V (G) | f (v)| and we call it the weight of
a function f in G. The minimum weight of a kRDF of G is called the k-rainbow
domination number of G and it is denoted by γrk(G). If f is a kRDF of G and
w( f ) = γrk(G), then f is called a γrk-function. For more information about rainbow
domination we refer the reader to Brešar and Šumenjak (2007), Tong et al. (2009),
Hartnell and Rall (1998), Wu and Rad (2013), Wu and Xing (2010), Šumenjak et
al. (2013) and Xu (2009), where authors consider, in particular, connections between
rainbow domination and Vizing conjecture.

Let f be any 2RDF of Cm�Cn . Define the following sets

V0 = {v ∈ V (Cm�Cn) : f (v) = ∅},
V1 = {v ∈ V (Cm�Cn) : f (v) = {1} or f (v) = {2}},
V2 = {v ∈ V (Cm�Cn) : f (v) = {1, 2}},

Vi1i2 = {v ∈ V0 : |N (v) ∩ Vt | = it , t = 1, 2},
E1 = {uv ∈ E(Cm�Cn) : u, v ∈ V1},
E2 = {uv ∈ E(Cm�Cn) : u, v ∈ V2},
E12 = {uv ∈ E(Cm�Cn) : u ∈ V1, v ∈ V2}.

We need the following technical lemma.

Lemma 1 (Stȩpień and Zwierzchowski 2012) Let f be any 2RDF of Cm�Cn. Then

w( f ) = mn

3
+ β

6
,

where

β = 2 |V2| + |V11| + 3 |V12| + 5 |V13| + 2 |V21| + 4 |V22| + |V30|
+3 |V31| + 2 |V40| + 2 |V02| + 4 |V03| + 6 |V04|
+3 |E12| + 2 |E1| + 4 |E2| .

Corollary 1 Let f be any 2RDF of Cm�Cn. Then w( f ) ≥ mn
3 and equality holds if

and only if β = 0.

In this paper we will use the following form of the Chinese Reminder Theorem.
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Theorem 1 (Chinese Reminder Theorem) Two simultaneous congruences

x ≡ a (mod m),

x ≡ b (mod n)

are solvable if and only if a ≡ b (mod gcd(m, n)). Moreover the solution is unique
modulo lcm(m, n).

2 Results

For any integer s, let Ls = {[k, k − s] ∈ V (Cm�Cn) : k = 0,±1,±2, . . .}. The fol-
lowing theorem is a consequence of the Chinese Reminder Theorem.

Theorem 2 We have

V (Cm�Cn) =
gcd(m,n)−1⋃

s=0

Ls .

The sum is disjoint and |Ls | = lcm(m, n).

Proof By definition of Ls we have
⋃gcd(m,n)−1

s=0 Ls ⊆ V (Cm�Cn). Let (i, j) ∈
V (Cm�Cn) and let s ∈ {0, 1, . . . , gcd(m, n) − 1} be such that s ≡ i − j
(mod gcd(m, n)). By Theorem 1 there exists an integer k such that

k ≡ i (mod m),

k ≡ j + s (mod n).

Consequently, (i, j) = [k, k − s] ∈ Ls .
Next if the above system has any solution for a fixed (i, j) and some s, then again

by Theorem 1 we have s ≡ i − j (mod gcd(m, n)).Hence Ls1 ∩ Ls2 = ∅ for s1 
= s2
and s1, s2 ∈ {0, 1, . . . , gcd(m, n) − 1} . Finally, observe that cardinality of Ls is the
same for each s. Therefore |Ls | = lcm(m, n). ��

For any integer s, let us denote

[[s]] = s mod gcd(m, n).

Corollary 2 The following holds:

1. for any integers i, j we have [i, j] ∈ L [[i− j]],
2. if gcd(m, n) > 1, then for any integer s we have

N
(
L [[s]]

) = L [[s−1]] ∪ L [[s+1]],

3. if gcd(m, n) = 1, then we have

V (Cm�Cn) = L0.
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Now we introduce some definitions. Let f be a 2-rainbow dominating function
of Cm�Cn . We say that f is positive if for any (i, j) ∈ V (Cm�Cn) the following
implication holds:

(i, j) ∈ V1 ⇒ L [[i− j]] ⊂ V1.

Let L−
s = {[k,−k + s] ∈ V (Cm�Cn) : k = 0,±1,±2, . . .}. Note that [i, j] ∈

L−
[[i+ j]]. We say that f is negative if for any (i, j) ∈ V (Cm�Cn) the following impli-

cation holds:

(i, j) ∈ V1 ⇒ L−
[[i+ j]] ⊂ V1.

Lemma 2 Let f be a 2-rainbow dominating function of Cm�Cn such that w( f ) =
mn
3 . Then f is either positive or negative.

Proof Let f be a 2-rainbow dominating function of Cm�Cn such that w( f ) = mn
3 .

By Corollary 1, we get β = 0. Hence |V2| = |E1| = |V30| = |V40| = 0.
Take any vertex (i, j) ∈ Cm�Cn such that (i, j) ∈ V1. Assume, without loss of

generality, that f ((i, j)) = {1} . Since |E1| = 0, we have

N ((i, j)) ⊂ V0. (1)

We claim that also

{[i − 2, j], [i + 2, j], [i, j − 2], [i, j + 2]} ⊂ V0. (2)

To prove (2) suppose the contrary: assume, without loss of generality, that [i, j +2] ∈
V1. Then [i + 1, j + 1], [i + 1, j + 2] ∈ V0 (otherwise |V30 ∪ V40 ∪ E1| 
= 0). Since
the vertex [i + 1, j + 1] must be dominated in the sense of 2-rainbow domination, we
get |V2| 
= 0, a contradiction.

Observe that exactly one of [i + 1, j + 1], [i + 1, j − 1] belongs to V1. Indeed,
on the one hand at most one of [i + 1, j + 1], [i + 1, j − 1] belongs to V1, since
otherwise |V30| 
= 0. On the other hand at least one of [i + 1, j + 1], [i + 1, j − 1]
belongs to V1 and f ([i + 1, j + 1]) = {2} or f ([i + 1, j − 1]) = {2} (otherwise
[i + 1, j] would not be dominated in the sense of 2-rainbow domination). Thus either
f ([i + 1, j + 1]) = {2} or f ([i + 1, j − 1]) = {2} .

Assume that f ([i + 1, j + 1]) = {2} . This assumption combined with (1) and
(2) imply that [i + 2, j + 2] ∈ V1. By induction we get L [[i− j]] ⊂ V1. Similarly, if
f ([i + 1, j − 1]) = {2}, thenwe get L−

[[i+ j]] ⊂ V1.Wehave shown that if (i, j) ∈ V1,

then either L [[i− j]] ⊂ V1 or L
−
[[i+ j]] ⊂ V1. Thus f is positive or negative.

Finally, suppose that f is positive and negative. This means that Ls1 ⊂ V1 and
L−
s2 ⊂ V1 for s1, s2 ∈ {0, 1, . . . , gcd(m, n) − 1} . To eliminate this possiblity, we will

consider the following two cases.

(a) There exists k such that s1 + s2 ≡ 2k (mod gcd(m, n)). Consider the following
system of simultaneous congruences
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l ≡ k (mod m),

l ≡ −k + s1 + s2 (mod n).

By Theorem 1, there exists a solution l. Hence [k, k − s1] = [l,−l + s2], which
means that Ls1 ∩ L−

s2 
= ∅. It is easy to see that this contradicts the fact that
|V30| = 0.

(b) For all k we have s1 + s2 ≡ 2k + 1 (mod gcd(m, n)). Consider the following
system of simultaneous congruences for some fixed k

l ≡ k (mod m),

l ≡ −k + s1 + s2 − 1 (mod n).

By Theorem 1, there exists a solution l. Hence [l,−l + s2 − 1] = [k, k − s1] ∈
Ls1 ⊂ V1. Since vertices [l,−l+s2−1] and [l,−l+s2] ∈ L−

s2 ⊂ V1 are adjacent,
it contradicts the fact that |E1| = 0.

Thus f is either positive or negative. ��
Lemma 3 Let f be a 2-rainbowdominating function ofCm�Cn such thatw( f ) = mn

3
then

1. lcm(m, n) ≡ 0 (mod 2),
2. gcd(m, n) ≡ 0 (mod 3).

Proof Let f be a 2-rainbow dominating function ofCm�Cn such thatw( f ) = mn
3 . By

Lemma 2, f is either positive or negative. Assume, without loss of generality, that f is
positive. Take any vertex (i, j) ∈ Cm�Cn such that (i, j) ∈ V1. Hence L [[i− j]] ⊂ V1.

The same argument as in the proof of Lemma 2 shows that

f ((i, j)) = f ([i + 2, j + 2]) and f ((i, j)) 
= f ([i + 1, j + 1]).

Hence by induction we have |L [[i− j]]| ≡ 0 (mod 2). This together with Theorem 2
proves (1).

Now we will prove (2). If gcd(m, n) = 1, then by Corollary 2(3) we have L0 =
V (Cm�Cn). Since f is positive, we have L0 = V1. Therefore, w( f ) = mn. This
contradicts our assumption that w( f ) = mn

3 . Consequently gcd(m, n) > 1. Suppose
that gcd(m, n) = 2. Then (i, j), [i + 1, j + 1], [i + 2, j] ∈ L [[i− j]] ⊂ V1. This
implies that [i + 1, j] ∈ V30. However, this contradicts the fact that |V30| = 0. Hence
gcd(m, n) ≥ 3. Assume now that gcd(m, n) > 3.

By Corollary 2 and inclusions (1), (2) we get

L [[i− j]] ⊂ V1, L [[i− j+1]] ⊂ V0, L [[i− j+2]] ⊂ V0.

In particular [i + 1, j], [i + 2, j + 1], [i + 2, j] ∈ V0. To dominate [i + 2, j] we
must have [i + 3, j] ∈ V1, and consequently L [[i− j+3]] ⊂ V1. Continuing in this way
we get that for any l ≥ 1 we have

L [[i− j+3l]] ⊂ V1, L [[i− j+3l+1]] ⊂ V0, L [[i− j+3l+2]] ⊂ V0. (3)
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To prove (2) we must eliminate the following two possibilities.

(a) Let gcd(m, n) = 3k+1 for some k ≥ 1.Now L [[i− j+3k]] ⊂ V1 and L [[i− j+3k+1]] =
L [[i− j]] ⊂ V1. This contradicts (3).

(b) Let gcd(m, n) = 3k + 2 for some k ≥ 1. Now L [[i− j+3k]] ⊂ V1, L [[i− j+3k+1]] ⊂
V0 and L [[i− j+3k+2]] = L [[i− j]] ⊂ V1. This contradicts (3). ��

Lemma 4 For k, l ≥ 1

γr2(C6k�C3l) = γr2(C3l�C6k) = 6k · 3l
3

.

Proof By Lemma 1, we have γr2(Cm�Cn) ≥ mn
3 . Hence for the proof it suffices to

find a 2RDF ofC6k�C3l ofweight 6k3l3 . First we define f : V (C6�C3) → P ({1, 2})
as follows

∅ ∅ {1} ∅ ∅ {2}
∅ {2} ∅ ∅ {1} ∅

{1} ∅ ∅ {2} ∅ ∅

.

It is easy to see that f is a 2RDF of C6�C3 of weight 6. The required function on
C6k�C3l one can construct using this segment. Finally, the equality γr2(C6k�C3l) =
γr2(C3l�C6k) follows by the symmetry. ��

We are ready to prove our main result.

Theorem 3 γr2(Cm�Cn) = mn
3 if and only if m = 6k and n = 3l or m = 3k and

n = 6l, k, l ≥ 1.

Proof Let γr2(Cm�Cn) = mn
3 and f be a 2RDF of Cm�Cn such that w( f ) = mn

3 .
By Lemma 3, we have gcd(m, n) ≡ 0 (mod 3) and lcm(m, n) ≡ 0 (mod 2). Hence
m ≡ 0 (mod 3), n ≡ 0 (mod 3) and at least one of m and n is even. This together
with Lemma 4 proves our theorem. ��

The following theorem is the consequence of our considerations.

Theorem 4 Let m = 6k, n = 3l. There are 6 · 2 gcd(m,n)
3 γr2-functions of Cm�Cn and

2
gcd(m,n)

3 γr2-functions up to translations.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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