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In this narrative review, we revisit the pathophysiologic 
rationale for intraoperative monitoring of haemodynamic 
variables. We further describe the history, current use, and 
future technological developments of monitoring methods. 
Finally, we briefly summarise the evidence that haemody-
namic management can improve patient-centred outcomes.

1.1 Heart rhythm and heart rate

Heart rate, together with stroke volume, is a main determi-
nant of cardiac output (CO). Heart rate regulation is com-
plex and includes neural und humoral control systems for 
short- and long-term adaptation of heart rate to metabolic 
needs. The normal heart rhythm is sinus rhythm, and the 
normal resting heart rate in adults is 60–100 beats per min-
ute. Intraoperative heart rhythm and heart rate monitoring 
allows identifying cardiac arrythmias and abnormal high or 
low heart rates. Heart rhythm and heart rate monitoring are 
essential to ensure patient safety during surgery.

First attempts to monitor intraoperative heart rhythm and 
heart rate date back to 1896 when heart rate was assessed 
using a stethoscope to understand the effects of chloroform 
on cardiac physiology [3]. Later, this method was proposed 
to continuously monitor heart rhythm and rate [4]. In 1918, 
electrocardiography was first used to monitor intraopera-
tive heart rate [5]. Four years later, a prospective study used 

1 Introduction

Haemodynamic monitoring is the serial or continuous mea-
surement of haemodynamic variables. Guiding therapeu-
tic interventions based on haemodynamic monitoring is 
referred to as haemodynamic management. During surgery, 
the core objectives of haemodynamic monitoring and man-
agement are to ensure patient safety and to maintain organ 
perfusion pressure and oxygen delivery. Both adequate per-
fusion pressure and oxygen delivery are essential to main-
tain cellular metabolism of vital organs (Fig. 1) [1, 2]. The 
overarching goal of intraoperative haemodynamic moni-
toring and management is to maintain organ function and 
improve patient outcomes.
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electrocardiography to investigate the effects of anaesthesia 
and surgery on heart rhythm and rate [6]. In 1952, Himmel-
stein and Scheiner used an instrument called cardiotacho-
scope to continuously display the electrocardiogram and 
heart rate on a cathode ray screen [7]. Around 20 years later, 
intraoperative electrocardiography was proposed to detect 
acute myocardial ischemia [8].

Today, intraoperative heart rhythm and rate monitor-
ing with electrocardiography is mandated by the Euro-
pean recommendations for standards of monitoring during 
anaesthesia and recovery [9] and the American Society of 
Anesthesiologists Standards for Basic Anesthetic Monitor-
ing [10]. In the operating room, electrocardiography sys-
tems with three and five electrodes are most commonly 
used. The limb leads are typically placed on the shoulders, 
and the placement of the single precordial lead is variable 
and depends on the surgical procedure. The V5 lead is most 
sensitive to ST-segment changes, capturing 75% of events; 
V4 captures about 60% of ST-segment changes; the other 
precordial locations are significantly less sensitive [11]. 
Most electrocardiography systems use computerised ST-
segment algorithms that compare the ST-segment and the 
iso-electric point from the PR-interval [12]. In addition to 

electrocardiography, photoplethysmography and intraarte-
rial blood pressure waveforms can be used to derive pulse 
rate that equals heart rate when the patient has no pulse 
deficit.

Heart rates during surgery with general anaesthesia are 
usually lower than heart rates during physiologic sleep 
[13]. Patients on chronic beta blocker therapy are espe-
cially prone to develop intraoperative bradycardia [14]. 
Although intraoperative bradycardia can cause a decrease 
in CO and hypotension, it remains unknown what consti-
tutes physiologically important intraoperative bradycardia 
[15]. Whether intraoperative bradycardia is related to organ 
injury is scarcely investigated. However, intraoperative bra-
dycardia should presumably be treated when it is accompa-
nied by profound hypotension or low CO [16, 17].

Intraoperative tachycardia is also common and can indi-
cate hypovolaemia, inadequate depth of anaesthesia, or 
insufficient analgesia. A single-centre cohort study [18] and 
a secondary analysis [19] of the VISION study [20] suggest 
that intraoperative heart rates above 100 beats per minute 
are associated with myocardial injury, myocardial infarc-
tion, and death in patients having noncardiac surgery. In 
contrast, another single-centre cohort study in noncardiac 

Fig. 1 Haemodynamic variables determining perfusion pressure and oxygen delivery
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surgery patients found no association between intraopera-
tive heart rates above 80, 90, and 100 beats per minute and 
a composite outcome of myocardial injury and death [21].

In post-cardiac surgery patients with temporary epicar-
dial pacing, individualised heart rate optimisation can help 
increase CO [22]. However, during noncardiac surgery, 
heart rate is rarely directly targeted and modified. There 
are thus no studies on the effect of intraoperative targeted 
heart rate management and outcomes. Beta blockers – such 
as metoprolol – may prevent intraoperative tachycardia and 
decrease the incidence of perioperative myocardial infarc-
tion but extended-release metoprolol is associated with 
perioperative hypotension and increased postoperative mor-
tality in noncardiac surgery patients [23].

1.2 Arterial pressure

Arterial pressure results from the interaction between CO 
and systemic vascular tone – and is characterised by three 
components, namely, systolic, mean, and diastolic arterial 
pressure. Mean arterial pressure – the mean pressure over 
the cardiac cycle – is the inflow pressure for most organs, 
while the outflow pressure is the higher of either central 
venous pressure (CVP) or extravascular pressure in a spe-
cific tissue, organ, or compartment [24, 25]. Systolic arterial 
pressure is determined by left ventricular stroke volume, 
vascular compliance, backward reflected waves, and pulse 
amplification and reflects left ventricular afterload [24, 25]. 
Diastolic arterial pressure is primarily determined by sys-
temic vascular tone [24, 25]. The difference between sys-
tolic and diastolic arterial pressure is called pulse pressure 
and closely reflects stroke volume.

The beginning of intermittent oscillometric monitor-
ing dates back to the beginning of the 19th century when 
sphygmomanometers were used to measure arterial pres-
sure during surgery [26, 27]. However, it took around 50 
years until arterial pressure gained attention in periopera-
tive medicine. In 1951, shortly after introducing oscillom-
etry during anaesthesia [28], systolic arterial pressures of 30 
mmHg were considered safe in young and healthy patients 
[29]. First attempts to measure arterial pressure with a plas-
tic catheter inserted into a peripheral artery in humans date 
back to 1949 [30]. However, at that time, this method was 
considered to be “unsuitable for routine use during anaes-
thesia” because it “requires the introduction of a thin plastic 
catheter into a peripheral artery” [31]. In 1986, the Ameri-
can Society of Anesthesiologists formulated that arterial 
pressure monitoring is mandatory during anaesthesia [32]. 
Today, the American Society of Anesthesiologists Standards 
for Basic Anesthetic Monitoring mandate the measurement 
of arterial pressure at least every five minutes [10].

Currently, two methods are routinely used to monitor 
arterial pressure during surgery: intermittent oscillometric 
monitoring with an upper-arm cuff and continuous intra-
arterial monitoring with an arterial catheter [33–35]. Con-
tinuous noninvasive monitoring with finger-cuffs is also 
available – but not yet implemented for routine use [33–35].

Automated oscillometry is noninvasive, easy to use, and 
comparatively cheap. An obvious limitation is that oscil-
lometry provides arterial pressures only intermittently. Fur-
thermore, the measurement performance of oscillometry is 
highly dependent on the measurement site [36], appropriate 
cuff size [37], and cuff position [38]. Notably, oscillometry 
overestimates low and underestimates high arterial pres-
sures – and may thus miss hypotension and hypertension 
[39–41].

Intraarterial monitoring with an arterial catheter is the 
clinical reference method to continuously measure arterial 
pressure [42]. Serious complications caused by arterial cath-
eters – such as ischemia or major bleeding – are very rare 
[43]. While intraarterial monitoring is more accurate than 
oscillometry, it does require that the measurement system 
is properly levelled or zeroed and damped to avoid over-
damping or underdamping (Fig. 2) [35, 42]. Intraarterial 
monitoring may help reduce hypotension during and after 
anaesthetic induction as well as during surgery compared to 
intermittent oscillometric monitoring [44, 45].

An alternative to intermittent noninvasive oscillomet-
ric and continuous intraarterial monitoring is continuous 
noninvasive arterial pressure monitoring using the finger-
cuff-based vascular-unloading technique [33]. Validation 
studies investigating the measurement performance of the 
vascular-unloading technique versus intraarterial monitor-
ing revealed heterogeneous results [46]. Several studies 
demonstrated interchangeability between arterial pressure 
measurements with the vascular-unloading technique and 
intraarterial measurements, but only one third of studies 
reported accuracy and precision meeting current interna-
tional standards [46]. Importantly, the vascular-unloading 
technique provides arterial pressures continuously and its 
measurement performance seems to be at least as good 
as that of intermittent oscillometry [36, 47]. However, in 
patients with circulatory shock or high-dose vasopressor 
therapy the vascular-unloading technique becomes unreli-
able because of impaired finger perfusion [48, 49]. While 
the accuracy of the vascular-unloading technique is yet to be 
fully established, continuous monitoring using the vascular-
unloading technique reduces the incidence of post-induction 
and intraoperative hypotension when compared to intermit-
tent oscillometric monitoring [50, 51]. Miniaturised wire-
less systems with sensors integrated in a finger-ring are 
currently being developed [52].
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Fig. 2 Dynamic response of the arterial pressure measurement system. 
This figure illustrates an adequately damped arterial pressure wave-
form and characteristic changes of the arterial pressure waveform 
when underdamping and overdamping is present. The red arterial pres-
sure waveform represents a “normal,” non-distorted waveform with a 
normal fast-flush test, whereas the blue arterial pressure waveforms 

represent an underdamped (upper part of the figure) or overdamped 
(lower part of the figure) arterial pressure waveform. PP, pulse pres-
sure; SAP, systolic arterial pressure; DAP, diastolic arterial pressure. 
“Under- and overdamping of the arterial blood pressure waveform and 
fast-flush test” by Saugel et al. [42] is licensed under CC BY 4.0
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hypotension accrues at profoundly low pressures rather than 
from long exposure to moderately low pressures [74]. While 
the association between intraoperative hypotension and 
organ injury is well established, it remains largely unknown 
whether the association between intraoperative hypotension 
and complications observed in registry studies is indeed 
causal – and thus amenable to interventions. Additionally, 
although intraoperative hypotension at some level causes 
organ injury, harm thresholds for individual patients also 
remain unclear [75–78]. Universally targeting mean arte-
rial pressures higher than 60 mmHg during surgery does not 
reduce postoperative complications in noncardiac surgery 
patients [77, 78]. In contrast, individualising intraopera-
tive arterial pressure targets based on preoperative resting 
arterial pressures reduced postoperative complications 
compared to routine arterial pressure management in a mul-
ticentre trial of 298 noncardiac surgery patients [75]. Ongo-
ing trials will provide more evidence on the effect of using 
fixed (NCT04884802) or individualised [79] intraoperative 
arterial pressure targets on outcomes of high-risk noncar-
diac surgery patients.

1.3 Pulse pressure variation and stroke volume 
variation

PPV and stroke volume variation (SVV) are dynamic 
variables that can be used to predict fluid responsiveness 
in mechanically ventilated patients (Fig. 3) [80, 81]. PPV 
and SVV primarily reflect cyclic changes in left ventricular 
stroke volume that are caused by positive pressure ventila-
tion in mechanically ventilated patients [82].

Cyclic changes in venous return and aortic blood flow in 
mechanically ventilated patients were first reported in 1966 
[83]. First attempts to quantify these changes date back to 
1978 [84]. Research on the relation between systolic pres-
sure variation and blood volume [85, 86] finally lead to the 
use of PPV [87] and SVV [88] to predict fluid responsive-
ness. Today, many regular bedside monitors automatically 
provide PPV. In contrast, SVV naturally requires the esti-
mation of stroke volume with advanced haemodynamic 
monitoring systems. PPV also can be calculated based on 
noninvasively obtained continuous arterial pressure wave-
forms [58, 89]. Recently, it has been shown that the hydrau-
lic coupling method [56] allows the reconstruction of the 
arterial pressure waveform and calculation of PPV [58].

PPV and SVV continuously provide information on 
fluid responsiveness and predict fluid responsiveness more 
accurately than static preload variables – e.g., CVP [90]. 
Additionally, predicting fluid responsiveness with PPV and 
SVV does not require fluid administration (like when per-
forming fluid challenges [91]) or patient positioning (like 
when performing passive leg raising tests [92] that are 

The pulse decomposition method allows continuously 
reconstructing arterial pressure waveforms from a finger-
cuff and a piezo electric sensor [53]. First studies suggest 
that this new noninvasive method meets current interna-
tional standards for arterial pressure monitoring both in sur-
gical [54] and critically ill patients [55].

The hydraulic coupling method has been proposed to 
noninvasively measure arterial pressure [56]. The main 
advantage of this technology is that it increases the signal-
to-noise ratio compared to conventional oscillometry by 
using silicon-oil instead of air to transmit oscillations [56, 
57]. A first validation study performed by the developers 
reported good agreement with intraarterial measurements 
from femoral arterial catheters [56]. In addition, the hydrau-
lic coupling method allows reconstructing arterial pressure 
waveforms [58].

Artificial intelligence can be used to analyse the arte-
rial pressure waveform to predict hypotension or identify 
underlying causes of hypotension. One of the first attempts 
to use artificial intelligence to predict hypotension by ana-
lysing arterial pressure waveform features is the hypoten-
sion prediction index software (HPI-software) (Edwards 
Lifesciences, Irvine, CA, USA) [59]. A registry study sug-
gests that using HPI-software monitoring may help clini-
cians reduce intraoperative hypotension during noncardiac 
surgery [60, 61]. However, trials investigating the effect 
of HPI-software monitoring on intraoperative hypotension 
revealed contradictory results: while a small trial suggested 
that HPI-software monitoring helps reduce hypotension 
[62], a larger trial did not [63]. There are ongoing scien-
tific controversies around HPI-software validation [64] and 
on whether HPI values just reflect mean arterial pressure 
values or provide predictive capabilities beyond changes in 
mean arterial pressure per se [65, 66].

Artificial intelligence can also help identify root causes 
of hypotension. In patients having major abdominal sur-
gery, artificial intelligence was used to identify endotypes 
of intraoperative hypotension [15]. During episodes of 
hypotension, an unsupervised machine learning algorithm 
grouped measurements of stroke volume index, heart rate, 
cardiac index, systemic vascular resistance index, and 
pulse pressure variation (PPV) into hypotension endotypes, 
namely, myocardial depression, bradycardia, vasodilation, 
hypovolaemia, and mixed endotype [15]. It remains to be 
determined if considering hypotension endotypes helps treat 
hypotension causally and improve outcomes.

Although underlying causes of intraoperative hypo-
tension are well described, individual hypotension harm 
thresholds remain largely unknown. On a population basis, 
intraoperative mean arterial pressures below 60–70 mmHg 
are associated with organ injury [67–73]. Organ injury is a 
function of hypotension severity and duration. Harm from 
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onset of systole (Fig. 4) [105]. However, the c wave is not 
always easy to identify and in practice the mean CVP or the 
pressure at the base of the a wave is considered. CVP values 
and waveforms are influenced by numerous factors, includ-
ing blood volume, cardiac function and pathologies, intra-
thoracic pressure, and venous compliance [105]. Although 
CVP is not a good marker of fluid responsiveness [90, 106] 
or volume status [107], it may be useful as a marker of right 
heart function. In addition to the absolute value of the CVP, 
the CVP waveform – which consists of a, c, and v waves, 
as well as x and y descents – may help identify pathophysi-
ologic situations. For example, a loss of the a wave occurs 
in atrial fibrillation, and high v waves occur in patients with 
tricuspid regurgitation. Because absolute mean CVP val-
ues are normally close to zero in spontaneously breathing 
patients, correct levelling or zeroing of the measurement 
system is crucial [108]. Furthermore, considering trans-
mural pressure is essential when interpreting CVP because 
CVP changes during the respiratory cycle and is affected 
by the positive end-expiratory pressure during mechanical 
ventilation.

Recent advances in CVP monitoring include noninvasive 
estimation of CVP using jugular near infrared spectroscopic 
sensors [109, 110]. However, as of today the number of 
validation studies investigating this method is very limited 
and the clinical usefulness remains unknown [109, 110]. 
CVP may be estimated without a central venous catheter 
from peripheral venous pressure as a surrogate for CVP 
[111–114].

During intraoperative haemodynamic management, CVP 
should not be used as a target variable. CVP should rather be 
considered a safety variable – with high (and especially rap-
idly increasing) CVP indicating haemodynamic problems 
such as acute right heart failure or right ventricular out-flow 
tract obstruction. Considering CVP changes in the context 
of other haemodynamic variables may help understand hae-
modynamic alterations.

usually impossible during surgery). However, certain clini-
cal situations preclude the use of dynamic cardiac preload 
variables – including cardiac arrhythmias, tidal volumes of 
less than 7–8 ml/kg, and high intraabdominal pressure (e.g., 
during laparoscopic surgery) [93, 94]. In patients with low 
tidal volume ventilation, a tidal volume challenge may help 
increase the predictive value of PPV and SVV to reliably 
predict fluid responsiveness [95]. Whenever PPV or SVV 
cannot be used, other tests including fluid challenges [91], 
passive leg raising tests [92], and end-expiratory occlu-
sion tests [96] may be used to assess fluid responsiveness. 
For both PPV and SVV thresholds of 11% have been sug-
gested to predict fluid responsiveness [97]. However, PPV 
values in a ‘grey zone’ between 9 and 13% [98] are incon-
clusive regarding fluid responsiveness. PPV and SVV are 
frequently used to titrate fluid administration within periop-
erative goal-directed haemodynamic therapy protocols and 
may help reduce net fluid administration and postoperative 
complications [99, 100] – mainly when fluid management 
based on dynamic cardiac preload variables is combined 
with blood flow optimisation [101].

1.4 Central venous pressure

CVP is the venous pressure in the superior vena cava near 
the right atrium and thus an estimate of right atrial pressure.

The first catheterisation of a central vein was performed 
in 1733 with a glass tube introduced in the jugular vein of 
a horse to measure CVP [102]. About two centuries later, 
Werner Frossman inserted a urinary catheter into his arm 
vein up to his right heart [103]. Thereafter, it again took 
some years before clinicians started measuring CVP to 
guide haemodynamic therapy [104].

CVP can be measured in patients with a central venous 
catheter or a dedicated pulmonary artery catheter with a right 
atrial port. CVP should ideally be measured at end-expira-
tion at the base of the c wave (so called z-point) because 
this point reflects the final pressure in the ventricle before 

Fig. 3 Cyclic changes in arterial 
pressure during mechanical 
ventilation and calculation of the 
dynamic cardiac preload vari-
ables pulse pressure variation and 
stroke volume variation. PP, pulse 
pressure; PPV: pulse pressure 
variation; SV, stroke volume; 
SVV, stroke volume variation
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artery or transpulmonary thermodilution, pulse wave analy-
sis, oesophageal Doppler, and bioreactance/bioimpedance 
techniques (Fig. 5) [123–126]. Thermodilution methods are 
considered clinical reference methods to measure CO [119], 
but – due to their invasiveness – they are rarely used in 
patients having noncardiac surgery. Thermodilution meth-
ods are thus reserved for special indications including liver 
transplant and cardiac surgery [124]. Pulse wave analysis is 
commonly used to measure CO during surgery [127].

Pulse wave analysis algorithms continuously analyse 
the arterial pressure waveform to estimate stroke volume 
and CO [120–122]. Pulse wave analysis systems can be 
classified as invasive/minimally-invasive or noninvasive 
– depending on whether the arterial pressure waveform is 
measured with an arterial catheter or a noninvasive sen-
sor (Fig. 6) [120–122]. The systems can additionally be 
classified considering the type of calibration. Externally 
calibrated systems are calibrated using an external measure-
ment technique that usually is an indicator dilution method 
[120–122]. Internally calibrated systems use biometric, 
demographic, and haemodynamic data to calibrate pulse 
wave analysis-derived CO values [120–122]. Uncalibrated 
systems rely on special algorithms such as the pressure 
recording analytical method allowing beat-to-beat imped-
ance estimations and further calculation of haemodynamic 
variables [120–122]. An advantage of pulse wave analysis 
is the continuous estimation of stroke volume. However, 
the measurement performance of pulse wave analysis can 
be impaired when vascular tone is substantially altered or 
rapidly changing [128]. For pulse wave analysis being able 

1.5 Cardiac output and stroke volume

CO is the product of stroke volume and heart rate. CO – 
together with arterial oxygen content – determines oxygen 
delivery. Tissue hypoperfusion may result in organ injury 
[2]. The rationale to monitor CO during surgery thus is to 
avoid organ injury by maintaining oxygen delivery. Addi-
tionally, knowing stroke volume and CO helps understand 
the underlying mechanisms of haemodynamic instability 
that may include a decrease in blood flow or a decrease in 
vascular tone. Current guidelines suggest that CO or stroke 
volume monitoring may be considered in patients with a 
high risk for complications [115].

First attempts to compute CO in animals date back to 
1870, when Adolf Fick described the Fick’s principle. Fick’s 
original principle was based on the extraction of oxygen 
through the systemic circulation. Later on, the Fick principle 
was adapted and used for the development of indicator dilu-
tion methods in 1897 [116] and thermodilution methods in 
1954 [117]. In parallel, Otto Frank started the first attempts 
to estimate stroke volume and CO using pulse wave analysis 
based on the Windkessel model – a model that assumes that 
at a steady haemodynamic state, the amount of blood enter-
ing a blood vessel is equal to the amount of blood leaving 
the vessel during the cardiac cycle [118]. Based on the ini-
tial research of Fick and Frank, two CO monitoring methods 
that are still routinely used today were developed: thermodi-
lution [119] and pulse wave analysis [120–122].

There are numerous methods to measure stroke volume 
and CO in patients having surgery – including pulmonary 

Fig. 4 Central venous pressure curve
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With the oesophageal Doppler method stroke volume is 
estimated based on blood flow velocity in the descending 
aorta and the aortic cross-sectional area (assuming that blood 
flow distribution between the upper and lower parts of the 
arterial system is constant) [130]. The oesophageal Doppler 
method allows continuous beat-to-beat stroke volume estima-
tion independent from changes in vascular tone, but the mea-
surement performance substantially depends on the correct 

to accurately estimate stroke volume, the analysed arterial 
pressure waveform needs to be correctly damped, i.e. the 
dynamic response of the measurement system needs to be 
adequate [42, 129]. Using mechanical or electronic filters to 
identify and correct abnormal waveform damping can help 
improve pulse wave analysis-derived stroke volume and CO 
measurements [129].

Fig. 5 Cardiac output monitoring methods classified according to their invasiveness into invasive, minimally-invasive, and noninvasive methods
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Fig. 6 Classification of pulse wave analysis according to invasiveness, type of calibration, and need for dedicated equipment
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avoid organ injury and improve patient outcomes. Impor-
tant haemodynamic variables that provide an understanding 
of most pathophysiologic haemodynamic conditions dur-
ing surgery include heart rate, arterial pressure, CVP, PPV, 
SVV, stroke volume, and CO. Future research should focus 
on the development of accessible and sustainable monitor-
ing methods that reliably measure haemodynamic variables 
– preferably in a wireless, interconnected, and noninvasive 
manner.
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estimation of the diameter of the aorta used to calculate the 
aortic cross-sectional area [131]. Additionally, the oesopha-
geal Doppler probe needs to be frequently repositioned and 
thus requires user attention and is operator dependent.

Thoracic bioimpedance/bioreactance are noninvasive 
methods to estimate stroke volume and CO by measuring the 
frequency modulation when an oscillating voltage is applied 
across the thorax [126, 132–134]. In short, these methods 
estimate the volume of electrically conducting blood mov-
ing in and out of the chest as a surrogate for stroke volume 
[126, 132–134]. Bioimpedance/bioreactance measurements 
can be disturbed by motion, electrical interference, arrhyth-
mias, pleural effusion, pulmonary oedema, and mechanical 
ventilation [126, 132–134].

CO is determined by metabolic needs [135]. Therefore, 
there is no “normal CO”. Resting CO varies substantially 
among individuals – but generally decreases with age [136]. 
Although arterial pressure and CO are physiologically cou-
pled, there is no clinically meaningful correlation between 
arterial pressure and CO in patients having surgery [137]. 
Perioperative CO-guided management – often subsumed 
under the umbrella term “goal-directed haemodynamic 
therapy” [138] – was proposed in the 1970s by William 
C. Shoemaker [139]. Since then, numerous – mainly small 
and fragile – trials investigated the effect of different CO-
guided management strategies on patient outcome. While 
CO targets and therapeutic interventions substantially dif-
fer among trials [140, 141], cumulative evidence suggests 
that CO-guided management may help reduce postoperative 
complications and even mortality [99, 142–146]. However, 
in the largest trial so far, the OPTIMISE II trial, maximising 
stroke volume using fluids and dobutamine did not reduce 
the incidence of postoperative infectious complications or 
any other complication (OPTIMISE II trial [147]; Presented 
at EBPOM World Congress of Prehabilitation Medicine 
2023 in London on July 6, 2023).

Recent developments in the field of intraoperative CO 
monitoring focus on accessibility and sustainability [148]. 
To be implemented in routine care, CO monitoring systems 
need to be accessible. Costs of haemodynamic monitoring 
equipment is still perceived as a major barrier to hospital 
adoption [149, 150]. Sustainability is an increasing concern 
in anaesthesiology [151]. Disposable-free monitoring solu-
tions have the advantage to decrease plastic waste, carbon 
dioxide emission, and costs [148].

2 Summary

During surgery, various haemodynamic variables are moni-
tored and optimised to ensure patient safety, maintain organ 
perfusion pressure and oxygen delivery, and eventually 
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