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deadly outcomes when not recognized in time, and there-
fore threatens patient safety [4, 5]. Continuous monitoring 
allows early detection and intervention of an OIRD and con-
sequently reduces the risk of a fatal outcome [1, 5, 6].

Continuous capnography and pulse oximetry are excel-
lent methods to monitor a patients’ ventilation and oxygen-
ation. However, these monitoring systems are not without 
their limitations. One major problem with continuous moni-
toring in non-intubated persons, is the occurrence of arti-
facts, which falsely trigger the alarm system of the monitor 
[7, 8]. Estimates suggest that over 70% of alarms may be 
false, thereby endangering patient safety because clinicians 
tend to ignore alarms when they are usually false [9–11]. 
This phenomenon is referred to as alarm fatigue. Therefore, 
there is a need for an alarm system that is sensitive enough 

1  Introduction

Opioids are powerful painkillers which are often prescribed 
after surgery to treat severe pain. However, they come with 
several adverse effects such as Opioid-Induced Respiratory 
Depression (OIRD) [2–4]. OIRD can lead to severe and 
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Abstract
Continuous capnography monitors patient ventilation but can be susceptible to artifact, resulting in alarm fatigue. Devel-
opment of smart algorithms may facilitate accurate detection of abnormal ventilation, allowing intervention before patient 
deterioration. The objective of this analysis was to use machine learning (ML) to classify combined waveforms of continu-
ous capnography and pulse oximetry as normal or abnormal. We used data collected during the observational, prospective 
PRODIGY trial, in which patients receiving parenteral opioids underwent continuous capnography and pulse oximetry 
monitoring while on the general care floor [1]. Abnormal ventilation segments in the data stream were reviewed by nine 
experts and inter-rater agreement was assessed. Abnormal segments were defined as the time series 60s before and 30s 
after an abnormal pattern was detected. Normal segments (90s continuous monitoring) were randomly sampled and filtered 
to discard sequences with missing values. Five ML models were trained on extracted features and optimized towards an 
Fβ score with β = 2. The results show a high inter-rater agreement (> 87%), allowing 7,858 sequences (2,944 abnormal) to 
be used for model development. Data were divided into 80% training and 20% test sequences. The XGBoost model had 
the highest Fβ score of 0.94 (with β = 2), showcasing an impressive recall of 0.98 against a precision of 0.83. This study 
presents a promising advancement in respiratory monitoring, focusing on reducing false alarms and enhancing accuracy of 
alarm systems. Our algorithm reliably distinguishes normal from abnormal waveforms. More research is needed to define 
patterns to distinguish abnormal ventilation from artifacts.
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to catch true occurrences of respiratory depression without 
triggering false alarms.

Continuous capnography and pulse oximetry tracings 
are affected by many patient-related factors, such as cough-
ing, talking, moving, or equipment-related factors, such 
as sensor- or calibration errors. Furthermore, there is indi-
vidual variability in both normal respiratory patterns and 
the patterns that may indicate respiratory depression. To 
create an effective alarm system, it is necessary to develop 
an algorithm that can interpret continuous data, filter out 
noise, recognize relevant patterns, and make reliable pre-
dictions of true events. With the rise of machine learning 
(ML) and artificial intelligence (AI), the possibilities to 
accurately analyze capnography data have increased, yet 
we are still dealing with the challenge of imbalanced datas-
ets, as explained below. True respiratory depression events 
are infrequent, as they represent irregularities in a gener-
ally regular breathing pattern. Normal breathing patterns are 
much more common than true respiratory depressions. This 
leads to an inherent class imbalance in the data. This imbal-
ance can bias ML models towards the majority class, result-
ing in increased misclassifications. Therefore, solving these 
challenges is key to improving classification of continuous 
respiratory measurements.

Time series classification (TSC) using a multi-stage 
approach offers a potential solution to the problem of imbal-
anced data sets. By initially focusing on the separation of 
normal breathing and abnormal patterns, we can remedy 
the class imbalance problem. Following initial classifica-
tion, more complex models may be applied to the refined 
‘abnormal’ dataset in a second stage of the analysis. This 
sequential method is known to enhance accuracy in anom-
aly detection and to improve computational efficiency [12, 
13]. This makes multi-stage TSC a practical and effective 
strategy for the classification of continuous capnography 
and pulse oximetry measurements.

With this approach, the first stage model plays a vital 
role. The goal of this study is to determine the performance 
of such a first-stage TSC model. At the same time, the study 
aims to emphasize the significance and challenge of accurate 
data labeling when applying ML to respiratory monitoring.

2  Methods

2.1  Data and study population

This study entails a secondary analysis on data collected 
during the observational, prospective PRODIGY trial 
[1]. After IRB/IEC approval and patient consent, general 
care floor patients receiving parenteral opioids underwent 
blinded, continuous capnography and pulse oximetry 

monitoring with the Capnostream 35 or 20p bedside moni-
tor (Medtronic, Boulder, CO, USA) [1]. The median effec-
tive monitoring time was 24 h (IQR 17–26). The data was 
collected at 16 clinical sites in the United States, Europe 
and Asia. The included subjects are adults (≥ 18, 20, and 
21 years in United States/Europe, Japan, and Singapore, 
respectively) who were able to wear continuous monitoring 
equipment. A total of 1,458 patients were included. Details 
of the PRODIGY study can be found in the article from 
Khanna et al. (2020) [1].

Our study utilized 90s segments of combined capnogra-
phy and pulse oximetry monitoring for each event. An event 
was defined as the exact timestamp where either abnormal or 
normal breathing was identified. Abnormal segments started 
60s before and ended 30s after the abnormal event. These 
abnormal patterns were primarily detected automatically 
via the monitor alarm when certain thresholds limits were 
breached. The abnormal patterns were then reviewed and 
confirmed by 9 anesthesiology experts (see section label-
ing). Normal breathing segments also consisted of 90ss, and 
were randomly identified from the continuous monitoring 
tracing, at least 30 min before and 30 min after detecting an 
abnormal segment. There was no overlap between any of 
the segments. Figure 1 shows an example of how the events 
were identified in a continuous measurement of an individ-
ual patient. A total of 10,145 segments with a 90s duration 
were included.

2.2  Labelling and data quality

A team of adjudicators (n = 9) was randomly selected from a 
group of 30 experienced anesthesiologists. All had at least 6 
years’ experience in the operating room (OR) and post anes-
thesia care unit and were knowledgeable with continuous 
CO2 monitoring outside the OR. The labeling task consisted 
of careful review of the data stream and the adjudication of 
a label. Each event was assigned one of the following four 
labels, which consisted of 3 abnormal labels and one normal 
label:

	● Apnea event (abnormal).
	● Other Respiratory Depression event (abnormal).
	● Artifact (abnormal).
	● Normal pattern.

A respiratory depression was defined, as by Khanna et al. 
as “respiratory rate ≤ 5 breaths/min (bpm), oxygen satura-
tion ≤ 85%, or end-tidal carbon dioxide ≤ 15 or ≥ 60 mm Hg 
for ≥ 3 min.” [1]. An apnea event was defined as a cessation 
of breath for > 15s, and an artefact was any segment that 
showed a prolonged (> 10s) disturbed pattern, and which 
could not be related to a true respiratory depression. Normal 
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breathing were all segments that showed consistent and reg-
ular breathing cycles, where minor deviation with a duration 
up to 10s, which represented non-significant irregularities in 
the breathing pattern, were allowed.

Our digital visualization tool served as a platform for 
data collection, displaying event-specific time sequences, 
consisting of CO2, oxygen saturation (SpO2), Pulse Rate 
(PR) and Respiratory Rate (RR) traces. The tool presented 
those sequences with a duration of four min before, and two 
min after an event. The raters could then reassign one of the 
labels to the presented sequence by selecting one out of the 
four class labels through input options.

To ensure proper learning and address any uncertainties, 
raters underwent comprehensive training prior to adjudicat-
ing the tracings for the study. This training involved two 
key components: firstly, the adjudication of 100 tracings, 
and secondly, an extensive discussion of these tracings in a 
consensus meeting with the entire team.

Following this learning phase, we conducted the first 
official round, during which all nine raters independently 
labeled 300 events. We used the results of this round to ana-
lyze if it would be possible to have fewer votes per label, 
and thereby decrease the workload per rater. We conducted 
a 5-fold bootstrap analysis to evaluate if the label would 
change significantly if the input of only seven raters were 
taken into account, instead of all nine. The Cohen Kappa 
value of 0.80 (std ± 0.02) indicated that consistency in labels 
was maintained when votes per event were reduced from 
nine to seven. As a result, we concluded that having seven 

votes on a single event would produce a trustworthy label. 
This allowed us to lessen the burden on raters by reducing 
the number of events to be labeled per rater. Detailed infor-
mation on the bootstrap analysis can be found in the in the 
supplementary information S1.

In the second official round, the nine raters were tasked 
with revising a total of 3,190 events, where we required 
seven ratings per event. Consequently, each reviewer was 
individually responsible for rating 2,485 events, with their 
individual datasets partially overlapping with those of the 
other raters. The final label for each event was determined 
based on the majority vote.

Thus, the nine raters collectively revised a total of 3,490 
events, inclusive of all primarily abnormal detections and 
168 normal events. These normal segments were selected 
for revision based on an exploratory visualization of a 
small subset of the data, which showed deviations from the 
regular breathing pattern in several segments. It was due 
to workload considerations that we chose not to revise all 
10,145 segments.

The first 300 events were labeled with the consen-
sus of all nine raters, whereas the remaining 3,190 events 
were revised based on the majority vote of the seven raters 
involved in assessing each specific event.

2.3  Evaluation of the label revision

Inter-rater agreement was evaluated using two metrics: 
Fleiss’ Kappa and percent agreement.

Fig. 1  Top panel: Continuous 8-hour recording depicting temporal 
relationship between abnormal events (red arrows) and normal breath-
ing events (green arrows)
Lower panel: Prototypical examples of normal (left) and abnormal 

(right) segments as seen on capnograph (blue), oximetry (green) 
and Respiratory Rate (red). These were confirmed by expert panel 
consensus
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and pulse oximetry segments [15, 16]. Features with high 
correlation (> 0.9), low variance (< 0.005), or above 10% 
missingness were removed, resulting in 208 features for 
modeling. Subsequently, these features were processed 
using Scikit-learn’s IterativeImputer for missing data impu-
tation and MinMaxScaler for feature scaling [17].

2.6  Model development and training

We divided our dataset into training and test subsets, main-
taining an 80:20 split at the individual subject level. The 
class ratios in the training and test sets were comparable, 
with a proportion of 0.63 in the training set and 0.61 in the 
test set for the negative (normal) class label.

Five ML models were trained, including Gaussian Naive 
Bayes, eXtreme Gradient Boosting (XGBoost), Random 
Forest, C-Support Vector (SVC), and K-Nearest Neigh-
bors (KNN). This selection was based on the capability of 
these models to efficiently handle feature-based classifica-
tion tasks, while covering a range of different classification 
methods. These models also have a good balance between 
computational efficiency, performance and explainability. 
The classifiers were trained through subject based stratified 
5-fold cross validation on the train set.

2.7  Model evaluation

The first-stage model developed in this study is an impor-
tant first step towards a more precise clinical alarm system 
for respiratory depression. To assess the performance of the 
model we used the so-called Fβ score, which balances preci-
sion and recall. Precision, also known as positive predictive 
value, measures the proportion of true positive identifica-
tions among all positive identifications made by the model. 
A high precision means that the model has a low rate of 
false positives. On the other hand, recall, also known as 
sensitivity, measures the proportion of true positives that 
were correctly identified by the model out of all actual posi-
tives. Since it can be fatal to miss a patient with an abnormal 

The percent agreement for each item was calculated 
by first determining the label that had the most agreement 
among raters. Then, the proportion of raters that agreed with 
this most frequent label was calculated, in relation to the 
total number of raters. This measure, expressed as a percent-
age, represents the percent agreement for each item. The 
overall percent agreement was then obtained by averaging 
the percent agreement across all items. Fleiss’ Kappa was 
calculated as described by Fleiss [14]. Both metrics were 
calculated separately for the two labeling rounds. Further-
more, these metrics were assessed considering the multi-
class approach as well as the binary class-definition. The 
labels resulting from this revision process were then used to 
create a classification model as described in the next section.

2.4  Development of the classifier

The goal of this study is to create a first-stage ML classifier 
to distinguish between normal and abnormal segments of 
combined capnography and pulse oximetry measurements. 
This classifier is part of a larger concept which applies mul-
tiple sequential classifiers to detect significant respiratory 
depressions, and which can potentially differentiate artifacts 
from true respiratory depressions. A general overview of the 
multi-stage classifier approach is shown in Fig. 2. The rest 
of this section presents the steps taken in the development 
and evaluation of the first-stage model.

2.5  Pre-processing

Segments were removed from the dataset when more than 
20% of the CO2, SpO2, or PR measurement was missing or 
when the CO2 value over the entire 90s period was lower 
than 1.0 mmHg. In cases where less than 20% of the data was 
missing, a linear interpolation was implemented, followed 
by a forward and backward fill to address missing values at 
the beginnings and ends of each segment, respectively.

Using the python packages, TSFresh and NeuroKit2, we 
extracted 300 relevant features from the raw capnography 

Fig. 2  Overview of the multi-stage classifier approach. The current 
study focusses on the development and evaluation of the first stage 
classifier, which distinguishes between normal and abnormal segments 

(green box on the left). Further studies can then focus on the develop-
ment of a second stage classifier that, e.g., differentiates significant 
apneas from other abnormal patterns
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3.1  Model performance

The performances of the ML models evaluated on the test 
set are shown in Table  3. The XGBoost model presented 
the best capability of correctly classifying abnormal events, 
based on the Fβ score with β = 2 of 0.94. This outcome 
corresponds to the remarkably high recall of 0.98 and a 
satisfactory precision of 0.83. The XGBoost model also out-
performed the other models based on the impressive Area 
Under the Receiver Operating Characteristics (AUROC) 
curve score of 0.98 (see Fig. 4). Additionally, when exam-
ining the Precision-Recall (PR) curve shown in Fig. 4, the 
XGBoost model again achieved the highest value, with an 
Area Under the Precision Recall Curve (AUPRC) of 0.97.

The top 3 important features of our XGBoost model were 
‘longest strike below mean CO2’1, ‘First real Fourier coef-
ficient CO2’ and ‘mean SpO2’.

4  Discussion

Our research aimed to develop a classifier to distinguish 
abnormal from normal breathing patterns in continuous 
capnography and pulse oximetry monitoring. An important 
part of this research was the assessment of the data quality, 
which included the revision of a subset of the data. This pro-
cess showed a reliable level of agreement among experts, 
based on the division between normal and abnormal seg-
ments. The focus on data quality strengthens the credibility 
of our findings and forms the basis for the evaluation of our 
model’s performance.

The best performing classifier was an XGBoost model, 
which reached a remarkably high recall while maintaining 
good precision. This demonstrates the model’s capacity for 
correctly identifying abnormal breathing instances at a rela-
tively low rate of false positive alarms. The design decision 
to prioritize recall over precision stems from the classifier’s 
role as a first-stage detector in a multi-stage classification 
system where any missed abnormal events could be dan-
gerous for the patient. Hence, the model presents a very 
promising classifier for the initial stage in the multi-stage 
approach as presented in Fig. 2.

The multi-stage classification approach employed in this 
study plays a key role in the interpretation of our results. 
While the presented model can accurately select abnormal 
patterns, further differentiation of those abnormal patterns is 
crucial for the clinical utility of the final model. Specifically, 
future classifiers should be able to distinguish between arti-
facts or other non-significant events and abnormal respira-
tion, such as apneas, which necessitate an alarm. Despite 
the dependency on those additional steps, this first-stage 
model is an important step towards advanced respiratory 

breathing pattern, the costs of false negative weights higher 
than false positives in this first-stage model. Therefore, we 
chose to train and optimize the models towards an Fβ score 
with β = 2. A β value greater than 1, as in our case with 
β = 2, means that recall is considered more important than 
precision. In addition, we also assessed further performance 
measures including accuracy, precision, recall, specific-
ity, AUPRC (Area Under the Precision-Recall Curve) and 
AUROCc (Area Under the Receiver Operating Character-
istic Curve). Note that the second-stage model, which will 
further classify the abnormal segments as apnea or not, will 
be aimed towards the reduction of false alarms. Therefore, 
the second-stage model will be focused more on optimizing 
the precision score.

Feature importance was calculated with the build in fea-
ture importance function of the XGBoostClassifier python 
package, where importance was based on the number of 
times a feature appears in a tree.

3  Results

Data was derived from 1,458 distinct subjects, with each 
subject contributing between 1 and 17 segments, and a 
median of 6 segments per subject. Figure 3 presents exam-
ples of combined capnography and pulse oximetry measure-
ments for segments which were labeled as normal, apnea 
and artifact.

In the effort of refining our dataset, a total of 3490 seg-
ments underwent a systematic label revision. Table 1 pro-
vides an overview of the number of segments per class 
label after revision and after preprocessing. It is notable that 
2287 segments (22,5% of the total) were discarded during 
preprocessing step due to missing data, with a significant 
2152 (94.1%) of these classified as normal. This shows 
that a large part of the normal segments contained empty 
measurements.

The Inter-rater agreement derived from the label revi-
sion is presented in Table 2. It stands out that the Inter-rater 
agreement for the binary labels is significantly higher than 
for the multi-class labels. Particularly, the percent agree-
ment with the binary labels yields very satisfactory results, 
exhibiting levels above 87%. The Fleiss Kappa value was 
low across all labeling rounds, with the highest value reach-
ing a moderate agreement of 0.48 in the first round of the 
binary class labels. All other rounds only achieved values 
less than 0.2, indicating only a slight agreement between 
raters.
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Fig. 3  Examples of the combined CO2, Oxygen saturation (SpO2) and 
Pule Rate (PR) trace of a. a segment of normal breathing, b. an apnea 
episode and c a segment which is disturbed by artifacts. The y-axis 

on the left shows the CO2 concentration in mmHg, and on the right, 
it shows the SpO2 in percentage and the PR in beats per min (bpm). 
The exact time of each event is defined at the time of the vertical line
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and their model will not be able to deal with any kind of 
capnograph deformity caused by a respiratory depression.

Our study takes a different route by incorporating data 
sourced from a real clinical setting in a hospital clinical trial, 
thereby enhancing the real-world applicability of the algo-
rithm. Moreover, our method tolerates short distortions in 
normal segments, as it is clinically unnecessary to detect all 
minor anomalies. This emphasis on practical clinical imple-
mentation sets our study apart.

Notwithstanding these crucial differences in the data, 
we share a common objective with the work of El Badawy 
et al.; we both aim to develop a classifier to differentiate 
between normal and abnormal capnography segments. 
The latest model created by this group discusses the deli-
cate balance between specificity and recall, and their most 
successful model in terms of recall achieved a rate of 94%, 
against a precision of 80.8% [19]. In comparison, our model 
improves upon this performance by gaining 4% in recall and 
2.2% in precision.

A recent study by Conway et al. presents a classification 
task very similar to ours, also using the PRODIGY dataset 
[20]. Their deep learning algorithm classified 15s capnog-
raphy segments as ‘breath’ or ‘no-breath’ and reached an 
impressive performance with a recall of 0.96 against a pre-
cision of 0.97. Despite many parallels with Conway’s study, 
our methods were different, making direct comparisons in 
the performance metrics difficult. The main difference lies 
in the applied labels. Conway’s study defined a segment as 
a ‘breath’ when it detected at least one complete respira-
tory cycle within the 15s interval, with all other segments 
being classified as ‘no-breath’. Segments were excluded if 
all 15s samples were zero or any CO2 values were missing. 
This choice of class labels allows that a segment classified 
as containing ‘breath’ still includes an abnormal breathing 
pattern, such as hypopnea, and conversely, a ‘no-breath’ 
segment could easily trigger a false alarm by including an 
artifact. Furthermore, the exclusion criteria applied may also 
inadvertently dismiss segments showing significant apnea 
episodes, which can last for more than 30s. In contrast, our 
multi-stage approach aims to detect all potentially danger-
ous respiratory events. Therefore, we focused on capturing 
all segments with abnormal patterns and thus applied a dif-
ferent classification task.

monitoring, the reduction of false alarms and further insights 
in patterns of respiratory depression.

Over the last few years, research on automatic capno-
graph analysis has accelerated. However, no method for 
the automatic detection of abnormal patterns, which could 
indicate respiratory depression, has been developed as to 
our knowledge. Previous research on capnography classi-
fication did focus on binary classification of capnography 
segments, but the classification tasks differ remarkably from 
ours.

El Badawy et al. developed several models to distinguish 
between clean and deformed capnograph segments [18]. 
The most important difference with our study is that they 
collected their data in a controlled setting, involving 35 
healthy subjects, aged between 17 and 33 years, who were 
seated and monitored for 5  min [18]. Consequently, their 
dataset does not include any abnormal respiratory patterns 

Table 1  Overview of the number of labeled segments in the revised 
dataset and in the dataset after preprocessing

Number of labels in the 
Revised dataset

Number of labels 
in the Preprocessed 
dataset

Normal 7066 4914
abnormal 3079 2944
Apnea 406 395
Artifact 2634 2512
RD 39 37
Total 10,145 7858

Table 2  Inter-rater agreement of the different labeling rounds. The first 
labeling round included 300 events and 9 votes per event. The second 
labeling round included 3190 events and 7 votes per event

Multi-class 
classificationa

Binary classificationb

Fleiss’ 
kappa

Percent 
agreement

Fleiss’ 
kappa

Percent 
agreement

First round 0.17 65.6% 0.48 93.6%
Second round 0.01 63.1% 0.03 87.8%
aThese measures of Inter-rater agreement are based on multiple class 
labels. We looked at the agreement on the labels apnea, artifact, RD 
and normal separately
bThese measures of Inter-rater agreement are based on binary class 
labels where we only looked at the agreement based on the normal 
and abnormal class label

Table 3  Overview of performance metrics for the test set of the different classification models at a discriminative threshold of 0.5
F2 score F1 score Accuracy Precision Recall Specificity

GaussianNaiveBayes 0.86 0.84 0.87 0.80 0.88 0.86
XGBoost 0.94 0.90 0.91 0.83 0.98 0.87
RandomForest 0.93 0.90 0.91 0.85 0.95 0.89
SVC 0.93 0.89 0.91 0.84 0.95 0.89
KNeighbors 0.90 0.89 0.91 0.86 0.92 0.90
The ‘longest strike below mean (X)’ is a feature defined by the TSFresh python package. It “returns the length of the longest consecutive sub-
sequence in X that is smaller than the mean of X” [15]. When applied to our data, X represents the CO2 trace of our data segment
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prevalence of the abnormal class, specifically the artifact 
class, was exceptionally high within the dataset used for 
revision, leading to a high chance of agreement, and poten-
tially contributing to the low kappa value. Thus, the kappa 
value may reflect the prevalence of the majority class more 
than the actual inter-rater agreement and should be inter-
preted with care.

The limited number of apnea and respiratory depression 
class labels might have introduced bias in model training. 
As most of our abnormal labels are attributed to artifacts, the 
diversity of abnormal patterns that our model can effectively 
identify in a real-world setting may be limited. Although 
our current model is primarily focused on differentiating 
between normal and abnormal patterns, it is crucial that it 
accurately identifies clinically significant abnormal patterns. 
This limited availability of clinically significant abnormal 
patterns in our dataset may also hinder the development of 
an accurate second-stage model. Therefore, it is important 
for future development to enhance the quality and avail-
ability of capnography and pulse oximetry segments that 
showcase various forms of respiratory depression, includ-
ing apnea episodes.

In our methodology, we used 90s segments for our analy-
sis. Although this duration is longer than applied in many 
similar studies, it is insufficient for capturing all crucial 
temporal events within the data. A visual comparison of a 
single measurement but with different durations is provided 
in Fig. 5. It can be observed that the longer segments are 

Another remarkable observation is that much of the exist-
ing research in capnography classification relies on analysis 
of very short time intervals. Often segments only include 
15s, which on average captures just three full respiratory 
cycles, or the input includes only a single breath [18–23]. 
However, certain abnormal respiratory patterns are more 
clearly observable over extended periods, such as apnea 
episodes which can last more than 60s. Our study used seg-
ments of 90s which more thoroughly capture these respira-
tory patterns.

4.1  Limitations

Although the abnormal segments were revised thoroughly, 
the normal segments were only filtered by a rule-based algo-
rithm to discard any non-valid measurements. This approach 
may unintentionally have allowed non-normal patterns to 
be present within the segments labeled as normal. As part 
of the preprocessing steps, 22.5% of all segments were dis-
carded. The fact that most of these segments were initially 
labeled as normal indicates a high incidence of noise and 
empty measurements within the normal segments. How-
ever, it also shows the efficiency of the filtering algorithm.

The discrepancy between the high percent agreement 
and low Fleiss’ kappa in our results is also important to dis-
cuss since these values correspond to the so-called ‘Kappa 
paradox’. In our study, this paradox could be explained by 
the significant class imbalance present in our dataset. The 

Fig. 4  To the left, the Receiver Operating Characteristic (ROC) curve is presented. To the right, the Precision-Recall (PR) curve is shown. The Area 
Under the Curve (AUC) is presented for each model
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5  Conclusion

Our research builds upon an extensive dataset of continuous 
capnography and pulse oximetry measurements, sourced 
from clinical settings across three continents. We focused 
intensely on using high data quality, as established by expert 
consensus, to reliably differentiate normal from abnormal 
patterns. The XGBoost model was found to be the best per-
forming classifier, demonstrating a high recall rate alongside 
good precision. It effectively identified abnormal breathing 
instances with a relatively low rate of false alarms. Although 
our model performs very well as an initial-stage detector 
in a multi-stage system, the need for subsequent classifiers 
to further differentiate between abnormal patterns remains 
essential. Specifically, distinguishing significant respiratory 
depressions from artifacts is vital. A key challenge in this 

easier to interpret; where the 90s segments leave room for 
doubt between an artifact or a true apnea episode, the seg-
ment based on 600s is highly indicative for movement arti-
facts. Supporting the value of longer segments, Mieloszyk 
et al. showed better performance of their capnograph clas-
sifier when using a higher number of exhalations as input 
data [24]. Their final model was based on 80 consecutive 
exhalations, corresponding on average to a duration of 
4–7 min depending on the respiratory rate. Therefore, we 
recommend subsequent studies to use longer segments as 
input data.

Fig. 5  Visualization of the CO2, SpO2 and Pulse Rate (PR) from the same event, over a duration of (a) 90s, and (b) 600s
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source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.
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