
Vol.:(0123456789)

Journal of Clinical Monitoring and Computing 
https://doi.org/10.1007/s10877-023-01116-z

ORIGINAL RESEARCH

A novel adaptive filter with a heart‑rate‑based reference signal 
for esophageal pressure signal denoising

Yu Qin1,2 · Zhiwen Huang2 · Xiaoyong Zhou2 · Shuiqing Gui3 · Lihong Xiong3 · Ling Liu4 · Jinglei Liu2

Received: 18 August 2023 / Accepted: 3 December 2023 
© The Author(s) 2024

Abstract
Esophageal pressure (Peso) is one of the most common and minimally invasive methods used to assess the respiratory and 
lung mechanics in patients receiving mechanical ventilation. However, the Peso measurement is contaminated by cardiogenic 
oscillations (CGOs), which cannot be easily eliminated in real-time. The field of study dealing with the elimination of CGO 
from Peso signals is still in the early stages of its development. In this study, we present an adaptive filtering-based method by 
constructing a reference signal based on the heart rate and sine function to remove CGOs in real-time. The proposed technique 
is tested using clinical data acquired from 20 patients admitted to the intensive care unit. Lung compliance ( QUOTE ) and 
esophageal pressure swings (△Pes) are used to evaluate the performance and efficiency of the proposed technique. The CGO 
can be efficiently suppressed when the constructional reference signal contains the fundamental, and second and third har-
monic frequencies of the heart rate signal. The analysis of the data of 8 patients with controlled mechanical ventilation reveals 
that the standard deviation/mean of the  QUOTE  is reduced by 28.4–79.2% without changing the  QUOTE  and the △Pes 
measurement is more accurate, with the use of our proposed technique. The proposed technique can effectively eliminate the 
CGOs from the measured Peso signals in real-time without requiring additional equipment to collect the reference signal.
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1  Introduction

Pleural pressure (Ppl) is the pressure within the pleural cav-
ity. It is an important index for analyzing the respiratory 
mechanism. One of the most common and minimally inva-
sive techniques for indirect estimation of Ppl is based on 
esophageal pressure (Peso) measurements [1–3]. Thus, the 

measurement of Peso can be used to estimate variables of 
clinical importance, such as lung compliance ( QUOTE ), 
work of breathing, transmural vascular pressure [2], intrin-
sic positive end-expiratory pressure, respiratory effort, and 
chest-wall compliance [4]. Furthermore, it facilitates the 
detection of patient-ventilator asynchrony [5–7], thereby 
supporting specific diagnoses and interventions [2].

The method of Peso measurement uses catheters with air-
filled or liquid-filled balloons (primarily in neonates) [8], 
or small transducers placed in the esophagus [9]. The most 
common measurement technique involves the insertion of 
an esophageal balloon, which is coupled to a long and thin 
catheter inflated with an ideal volume of air into the lower 
third of the intrathoracic esophagus [2, 10, 11].

Respiratory activity is the primary cause of change in the 
esophageal pressure. However, as the esophageal balloon 
placement is close to the vicinity of the heart, esophageal 
pressure measurements are sensitive to cardiogenic oscilla-
tions (CGOs). Thus, the accuracy of the Peso measurements 
is affected by cardiac artifacts [12–15]. To obtain accurate 
Peso measurements, the CGOs must be eliminated from the 
detected Peso signals. However, this is very challenging 
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because the bandwidths of the Peso and CGO signals are 
very close.

The Peso signal's bandwidth ranges from 0.17 to 0.67 Hz 
[1], whereas the bandwidth of the CGOs ranges from 0.8 to 
4 Hz [16]. The upper band limit of the Peso signal and the 
lower band limit of the CGO signal differ by only 0.13 Hz. 
Cheng et al. reported that the harmonics of the Peso and 
CGO signals, particularly the second harmonic, were one of 
the main components [17]. Thus, the Peso signal may over-
lap with the CGO signal in the frequency domain. Direct use 
of standard filters on CGO-contaminated Peso signals, such 
as bandpass and band-stop filters with set cut-off frequen-
cies, may not yield adequate denoising performance [1, 17].

Schuessler et al. suggested an approach based on adap-
tive filtering for eliminating CGOs from the Peso signal 
[18]. The method described in [18] used the electrocardio-
gram (ECG) and Peso signals from the same individual and 
employed a linear dynamic filter to produce an artifact-free 
Peso signal. However, their method required a two-sided 
256-order finite impulse response filter, which caused a 
1.28 s delay at a sampling rate of 100 Hz. Additionally, the 
adaptive filters require (1) 60 s to adapt to the heart rate, 
and (2) consecutive 10 stable and clean respiration efforts. 
These findings indicate that their method is unsuitable for 
short-duration Peso signals, and real-time noise reduction 
is not possible.

Cheng et al. proposed a modified adaptive noise cancel-
lation (MANC) technique for denoising the Peso signals 
by utilizing an airflow signal as a reference to estimate the 
CGOs [1, 17]. They demonstrated the effectiveness of the 
MANC technique in separating the CGOs from the Peso 
signals based on Brown–Norway rat experiments. However, 
since the bandwidths of both the Pes and CGO signals in 
humans are lower than those in rats, and the situation in the 
clinic is more complicated as airflow and Pes signals are not 
always coupled, further research is needed to assess the suit-
ability of this method for intensive care unit (ICU) patients.

Graßhoff et al. proposed a template subtraction method 
for the reduction of the amplitudes of the CGOs on Peso 
signals based on the modification of the adaptive filtering 
approach presented by Schuessler et al. [4]. Additionally, 
this approach needs an electromyographic (EMG) signal as 
a reference signal to estimate the CGOs.

Mukhopadhyay et al. recently proposed a singular spec-
trum, analysis-based, and data-driven technique to eliminate 
CGOs from Peso signals; it takes advantage of the intrinsic 
periodicity and morphological characteristics of the Peso 
signal [19]. This method does not require a reference signal. 
Their results revealed that the proposed denoising technique 
can efficiently remove the CGO noise with adequate robust-
ness by testing 75 clinical esophageal pressure signals and 
1800 synthesized signals from pure esophageal pressure and 
real CGOs. It is a singular value decomposition based signal 

denoising technology and can be easily adapted for denois-
ing other biomedical signals such as electrocardiograms and 
photoplethysmograms [20], which exhibit periodic or quasi-
periodic nature.

Blind Signal Separation (BSS) is an effective denoising 
method that has found widespread application in the field 
of biomedical signal processing. It is used to separate and 
eliminate unwanted noise or interference from biomedical 
signals, including ECG [21], electroencephalograms (EEG) 
[22], and EMG [23], without prior knowledge of the noise 
sources. However, this approach requires multiple sensors 
for the application and, independence between the desired 
and undesired components [24]. It's worth mentioning that 
Peso signals are typically acquired using a single sensor, 
making this method less suitable for denoising Peso signals.

All the techniques mentioned above require an additional 
reference signal for estimating the CGOs (with the excep-
tion of the Mukhopadhyay method), such as ECG, EMG, 
or airflow. The acquisition of extra ECG and EMG signals 
requires additional equipment, making the clinical system 
more complicated, increasing the patients’ cost, and pos-
sibly impeding the patients’ comfort. In the Mukhopadhyay 
method, the minimum length of the esophageal pressure 
signal needed to include all the respiratory efforts, i.e., the 
inspiratory and expiratory processes, might limit real-time 
denoising applications.

To overcome the disadvantages of the aforementioned 
methods, herein, we develop a real-time technique to elimi-
nate CGOs from the measured Peso signals based on adap-
tive filtering and heart rate, without requiring additional 
equipment for reference signal acquisition. The performance 
of the proposed technique is tested by using frequency and 
remnant noise analyses on clinical data collected from 20 
patients in a respiratory ICU. Finally, we demonstrate the 
effects of the proposed technique based on the estimates of  
and esophageal pressure swings (△Pes) in these patients.

2 � Materials and methods

2.1 � Adaptive filtering

The schematic of the conventional adaptive noise cancel-
lation system [25, 26] is shown in Fig. 1. It uses a noisy 
signal as the processing object and suppresses or attenuates 
the noise to improve the signal-to-noise ratio quality of the 
output signal. As shown in Fig. 1, the adaptive noise can-
cellation system has two channels, namely the main and the 
reference channels. The main channel’s input is the noisy 
signals (p) detected from the transducer which comprise the 
clean (s) and the noise signals (n0), i.e., the CGO-contami-
nated Peso signals in this study. The reference channel needs 
a reference signal (n1) related to the noise n0 as its input. 
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The reference signal goes through an adaptive filtering pro-
cess, and the signal (y) is the output, which is close to the 
noise n0. To achieve this, the adaptive filter is adjusted by an 
adaptive filtering algorithm, such as the least-mean-squares 
(LMS) algorithm based on the error ε. Thus, we can obtain 
a denoised signal s1 by using the noisy signal p, which is 
subtracted from signal y by a subtractor.

2.2 � Proposed adaptive filter

It is well known that CGOs are correlated to the heart rate 
[1, 4, 17–19]. This can be demonstrated from the frequency 
domain of the CGO-contaminated Peso signals calculated 
based on the Discrete Fourier transform, as shown in Fig. 2b. 
In this sample signal, the heart rate of the patient was 84 beats 
per minute (1.4 Hz). In the frequency domain, the maximum 

peak value, which appeared at 1.4 Hz, was considered as the 
fundamental frequency of the CGO signal. The second and 
third harmonic frequencies of CGO were 2.8 and 4.2 Hz, 
respectively. If we can suppress the frequency, such as the 
fundamental, and the second and third harmonics related to 
the CGO signals in the frequency domain, the CGOs would 
be eliminated from the measure Peso signals. Therefore, we 
proposed the construction of a CGO-related reference signal 
based on the heart rate by using the sine function. The heart 
rate was defined as the average adjacent temporary heart rate 
over 10 s, where the temporary heart rate was obtained by 
measuring the reciprocal of the distance between the peak of 
two adjacent CGO-related noises from the Peso signal. Thus, 
the heart rate could be obtained directly from the Peso signal, 
i.e., no additional equipment was required in this study.

In the conventional adaptive noise cancellation method, the 
adaptive filter was adjusted to make the output signal y close to 
the noise n0 to suppress or attenuate the noise n0. In our study, 
we made some modifications based on the conventional adap-
tive noise cancellation, as shown in Fig. 3. We built an adaptive 
filter to filter out the component of the CGO signal, such as the 
fundamental, and the second and third harmonics. The structure 
in the red-dotted box was the same as that of the conventional 
adaptive noise cancellation. The largest difference between the 
proposed and conventional adaptive noise cancellation methods 
is the choice of the reference signal. The main channel used the 
measured Peso signal as its input (p, CGO-contaminated Peso). 

Fig. 1   Schematic of the conventional adaptive noise cancellation sys-
tem

Fig. 2   a CGO-contaminated 
Peso signal (original signal) and 
b its frequency spectrum



	 Journal of Clinical Monitoring and Computing

However, the superposition of the measured Peso signal (p) and 
constructional signal (ns) was input to the reference channel, 
as shown by the red-dotted box in Fig. 3. The ns signal was 
constructed using the sine function whose frequency was based 
on the heart rate, as mentioned above. From the mechanism 
of the adaptive filter, the output y is expected to be almost the 
same as the signal p. Thus, the adaptive filter could eliminate 
signals that had the same frequency spectrum as the construc-
tional signal (ns). Once the adaptive filter was constructed, the 
measured Peso signal was input into the same adaptive filter. 
Thus, the CGO signals can be eliminated from the measured 
Peso signal as these have the same frequency spectrum as the 
ns signal. Consequently, the denoised Peso signal (Pfilt) can be 
obtained. In this study, the filter order was set to 45.

2.3 � Normalized LMS algorithm

The LMS algorithm was proposed by Widrow and Hoff in 
1959 [27, 28] after studying the pattern recognition scheme 
of adaptive linear elements. The LMS algorithm has the 
advantages of low-computational complexity, good con-
vergence in a stationary environment, convergence of mean 
to the unbiased Wiener solution, stable performance, and 
simple structure. Therefore, it is the most extensively used 
adaptive algorithm.

A typical LMS algorithm is described as follows.

where y is the filtered output signal, X is the input signal of 
the reference channel, W is the definition of a vector of filter 

(1)y(n) = WT (n)X(n)

(2)e(n) = d(n) − y(n)

(3)W(n + 1) = W(n) + �e(n)X(n)

coefficients, e is the error signal, d is the input signal of the 
main channel, μ is the step size for updating the filter coef-
ficients, and the filter order L is assumed to be a sufficiently 
large constant.

The disadvantage of the classical LMS algorithm is 
its slow convergence speed. To improve the convergence 
speed and performance of the LMS algorithm, in this 
study, we used the normalized LMS algorithm [29], which 
employs a variable step size method to shorten the adap-
tive convergence process based on the basic idea of the 
LMS algorithm. It uses the instantaneous squared error 
as a simple estimate of the mean-squared error (MSE). 
Additionally, by controlling the offset, we can obtain the 
iterative formula for modifying the filter coefficient, con-
sidering that the derivative based on the instantaneous 
squared error is not equal to the derivative of the MSE, 
as follows.

The variable step size can be represented by μ(n), as 
follows.

where γ is a constant (0 ≤ γ ≤ 1), which is set to avoid the 
step size μ from being too large when the  is too small. To 
ensure that the adaptive filter can stably work, the relation-
ship 0 < μ < 2 must apply.

2.4 � Heart‑rate‑based reference signal

The reference signal can be constructed by using the fol-
lowing equation.

(4)W(n + 1) = W(n) +
�

� + XT (n)X(n)
e(n)X(n)

(5)�(n) =
�

� + XT (n)X(n)

Fig. 3   Schematic of proposed 
adaptive noise cancellation 
system (p measured Peso signal, 
s clean Peso signal, n0 cardio-
genic oscillation (CGO) signal, 
ns constructional signal, Pfilt 
Denoised Peso signal)
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where m = 1, 2, 3, …., Am is a constant, HH is the heart 
rate, and t is the time. When m = 1, ns contains only the 
fundamental frequency. When m = 2, the ns comprises the 
fundamental and second harmonic frequencies. When m = 3, 
ns comprises the fundamental, second, and third harmonic 
frequencies, and so on. In this study, Am was 10, which is 
the same order of magnitude as the amplitude of the Peso 
signal.

2.5 � Lowpass filter

The lowpass filter was implemented as a linear phase FIR 
digital filter in Matlab. 0.7 Hz was chosen as the cutoff fre-
quency since most of the low frequency spectral content in 
the Peso signal stayed below 0.7 Hz in the patient. The filter 
order was set at 45 which is the same as the proposed method.

2.6 � Retrospective clinical data

Retrospective clinical data were collected from 20 (6 
female) patients who received ventilator support (SV800, 

(6)ns(t) =
∑

Cm(t) =
∑

Am ∗ sin

(

2� ∗ HH ∗ m

60
∗ t

) Mindray, Shenzhen, China) in the ICU of the Shenzhen 
Second People’s Hospital during the period from March 
10, 2022, to August 10, 2022. In our study, we included 
patients with postoperative (abdominal surgery or ortho-
pedic surgery) or acute respiratory failure who were 
receiving invasive mechanical ventilation. The exclu-
sion criteria were as follows: (1) age < 18 or > 85 years; 
(2) sedation level on the Richmond Agitation–Sedation 
Scale ≥ 2; (3) evidence of arrhythmia; (4) contraindica-
tion for nasogastric tube insertion, e.g., history of esoph-
ageal varices, gastroesophageal surgery in the previous 
12 months, or gastroesophageal bleeding in the previ-
ous 7 days, international standard ratio > 1.5, activated 
partial thromboplastin time > 44 s, history of leukemia; 
(5) hemodynamic instability (heart rate > 140 beats/min, 
vasopressors required with ≥ 5 μg/kg/min dopa-mine/
dobutamine, or ≥ 0.2 μg/kg/min norepinephrine). The data 
included the Peso, airflow, heart rate, respiration rate. 
The sample frequency used for collecting and processing 
the data (including Peso signals and airflow) was 50 Hz. 
The correct position of the esophageal balloon (SDY-1, 
Mindray, Shenzhen, China) was verified prior to data col-
lection by a standard occlusion test [12]. We don’t have 
access to information that could identify individual par-
ticipants during or after data collection. Patient informa-
tion is listed in Table 1.

Table 1   Patient characteristics (ARDS acute respiratory distress syn-
drome, COPD chronic obstructive pulmonary diseases, SAH suba-
rachnoid hemorrhage, PSV pressure support ventilation, PEEP posi-

tive end-expiratory pressure, VCV volume control ventilation, PCV 
Pressure Controlled Ventilation, CMV Controlled mechanical ventila-
tion, AV Assisted ventilation)

Patient Diagnosis Gender Ventilator mode Heart rate 
(min−1)

Respiratory 
rate (min−1)

CMV or AV

1 ARDS Male PSV 13 cm H2O + PEEP 6 cm H2O 84 24 AV
2 ARDS Male PCV 14 cm H2O + PEEP 7 cm H2O 118 12 CMV
3 Hemophagocytic syndrome Female PSV 12 cm H2O + PEEP 6 cm H2O 102 21 AV
4 Cerebral infarction Male PCV 9 cm H2O + PEEP 5 cm H2O 119 12 CMV
5 ARDS Female PSV 13 cm H2O + PEEP 6 cm H2O 80 15 AV
6 COPD Male PSV 26 cm H2O + PEEP 12 cm H2O 78 10 AV
7 After surgery Male PSV 14 cm H2O + PEEP 6 cm H2O 84 19 AV
8 After surgery Male PSV 14 cm H2O + PEEP 7 cm H2O 81 21 AV
9 COPD Female PSV 13 cm H2O + PEEP 6 cm H2O 102 18 AV
10 After surgery Male PSV 20 cm H2O + PEEP 9 cm H2O 90 13 AV
11 ARDS Male PSV 22 cm H2O + PEEP 6 cm H2O 106 24 AV
12 After surgery Male PSV 18 cm H2O + PEEP 6 cm H2O 68 17 AV
13 COPD Male PSV 25 cm H2O + PEEP 6 cm H2O 81 17 AV
14 After surgery Male PSV 12 cm H2O + PEEP 6 cm H2O 85 16 AV
15 Sepsis Male VCV 440 mL 79 12 CMV
16 Severe craniocerebral injury Male VCV 450 mL 72 14 CMV
17 Traumatic brain injury Male VCV 460 mL 80 12 CMV
18 SAH Female VCV 400 mL 111 12 CMV
19 Sepsis Female PCV 16 cm H2O + PEEP 6 cm H2O 97 14 CMV
20 Severe pneumonia Female PCV 10 cm H2O + PEEP 16 cm H2O 100 10 CMV
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2.7 � Method used to compute noise intensity

The noise intensity can be quantified by the average peak-
to-peak value of five segments of flat transpulmonary pres-
sure. The transpulmonary pressure was calculated as the 
difference between the airway pressure and the esophageal 
pressure.

2.8 � Method of filter performance verification

The main goal of this section was to evaluate the stability 
and dependability of Peso.  QUOTE  can be used to confirm 
the stability of the Peso measurement and compare directly 
the amplitude shifts and frequency spectra of the original 
Peso with the filtered Peso signal. For each respiratory cycle,  
QUOTE  has a single value, and in patients with controlled 
mechanical ventilation, it is expressed as,

where V is the tidal volume,  is the transpulmonary pressure 
(Ptp) value at the end of inspiration, and  is the Ptp value 

(7)Clung =
V

Ptp_I − Ptp_E

at the end of expiration, as shown in Fig. 4a. The Ptp value 
is calculated using the airway pressure subtracted from the 
Peso.

The stability and dependability of Peso were confirmed 
by using the standard deviation and fluctuation of . The 
mean values of  from the original and processed data were 
compared to prevent signal distortion during the filtering 
process. In theory, the compliance of the lung should be 
relatively constant. The standard deviation of  will be low 
if the value of  does not change considerably. However, the 
value of  will fluctuate considerably if the heartbeat artifact 
in Peso is large. Therefore, the stability of  can be utilized to 
assess the effectiveness of the filter.

The △Pes plays an important role in assessing respira-
tory muscle strength, monitoring intrathoracic pressure, and 
evaluating ventilator settings, which helps determine the 
optimal timing for ventilator support and weaning, and can 
also prevent the occurrence of complications. It is calculated 
by using the Peso value at the beginning of the inspiratory 
phase subtracted from the peak value of the Peso signal in 
the same respiratory cycle in patients with assisted ventila-
tion [30], as shown in Fig. 4b.

Fig. 4   a Schematic of end-
inspiration and end-expiration 
point selection. b Schematic of 
original △Pes and filtered △Pes 
calculation. The beginning of 
the inspiratory phase was identi-
fied at the time of Pes initial 
decay, whereas the end of inspi-
ration was considered at the 
point of Pes that elapsed 25% of 
time from its maximum deflec-
tion to return to baseline. IP 
Inspiratory phase, EP Expira-
tory phase, Ptp Transpulmonary 
pressure, V Tidal volume
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The technique was implemented in MATLAB (The Math-
Works Inc., Natick, MA, USA) with a computer operating on 
a 64-bit Windows 10 Professional operating system, 16 GB 
RAM, and a 3.00 GHz Intel(R) Core (TM) i5-9500 CPU.

2.9 � Statistical analysis method

Statistical analysis of multiple comparisons was performed 
using the Mann–Whitney U test. The student's t-test statistic 
was applied for the analysis of standard deviation (std)/mean 
of  QUOTE  and △Pes, and reduction of std/mean of △Pes, 
in the original and filtered Peso groups. The comparison 
between the proposed method and lowpass filter was also 
analyzed using the Student's t-test statistic. P values < 0.05 
denote statistical significance.

3 � Results

Figure 5 shows one sample of the original Peso signal (green 
color) and the filtered signals (red color) with different refer-
ence signals. We can see that the waveform of the original 
Peso was mixed with other higher-frequency signals. From 
its frequency spectrum, shown by the green color in Fig. 6, 
the frequency of the peak is at 1.4 Hz, and corresponding to 
a heart rate at 84 beats per minute. Therefore, the frequen-
cies of the peak at 2.4 Hz and 4.8 Hz correspond to the 
second and third harmonic frequencies of the CGO signal, 
respectively.

When m = 1, some of the CGO-related noise was sup-
pressed, but noise still existed (amplitude approximately 
equal to 1 cmH2O) in the filtered Peso signal, as shown in 
the red color in Fig. 5a. The frequency domain of the origi-
nal and filtered Peso signals (m = 1), shown in Fig. 6a, reveal 
that the fundamental frequency of the CGO was eliminated, 
but a part of the second and third harmonic frequencies of 
the CGO signal remained. When m = 2, some CGO-related 

Fig. 5   Original Peso (green color) and the filtered Peso signals (red color) with m = 1 (a), m = 2 (b), m = 3 (c), and m = 4 (d) in the time domain
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noise remained (with intensity approximately equal to 0.6 
cmH2O) as shown in Fig. 5b. In its frequency domain, as 
shown in Fig. 6b, both the fundamental and second har-
monic frequencies of the CGO were filtered, but the third 
harmonic frequency still existed. When m = 3, the CGO-
related noise was negligibly eliminated, as shown in Fig. 5c, 
with the remaining noise intensity in the range of 0.2–0.3 
cmH2O. This was also demonstrated in the frequency 
domain, as shown in Fig. 6c. Moreover, when m = 4, the 
same denoising results as those for m = 3 were obtained, as 
shown in Figs. 4d and 5d. In Fig. 7, when m = 1, 2, 3, and 4, 
27.7 ± 9.7%, 19.1 ± 4.4%, 14.3 ± 2.9%, and 14.2 ± 3.2% of 
the original CGO-related noise remained, respectively. The 
P values of m = 1 vs. m = 2, m = 2 vs. m = 3, and m = 3 vs. 
m = 4 are 0.026, 0.014, 0.83 respectively. Evidently, there 
are not considerable differences between the m = 3 and m = 4 
cases observed. This indicates that setting m = 3 is sufficient 
to remove the CGO-related noise. Therefore, in the follow-
ing study, the value of m was set to three to construct the 
reference signal.

When we simply applied a lowpass filter with a 1 Hz 
cutoff frequency and 45 filter order to process the Peso 
signal, it remained with 0.44 ± 0.07 cm H20 fluctuation 
caused by the CGO, as shown in the blue line in Fig. 8a. 
This can be further confirmed by the frequency analysis, as 
it retained a part of the fundamental frequency of the CGO 
signal, as shown in the blue line in Fig. 8b. However, with 
the same filter order, our proposed method can remove the 
CGO more effectively, leaving only 0.19 ± 0.06 cm H20 of 
CGO-related noise, as shown in the red line in Fig. 8a. Its 
frequency spectrum also shows that the CGO component 
was cleanly suppressed, as shown in the red line in Fig. 8b. 
According to the quantitative analysis, only 11.42% ± 2.75% 
of noise is left behind after the Pes signal is processed by 
the proposed method. In the Lowpass filter group, it retained 
26.68% ± 3.03% of CGO-related noise, as shown in Fig. 8b.

Figure 9 shows samples of the original (green color) 
and filtered (red color) Peso signals and the correspond-
ing frequency spectra of four ICU patients with different 
diagnoses and heart rates. In all four graphs, the coefficient 

Fig. 6   Frequency spectra of the original Peso (green color) and the filtered Peso signals (red color) with m = 1 (a), m = 2 (b), m = 3 (c), and 
m = 4 (d)
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of the reference signal was m = 3. Patients A and B were 
diagnosed with acute respiratory distress syndrome, and 
their heart rates were 84 and 80 beats per minute, respec-
tively. Patient C was diagnosed with chronic obstructive 
pulmonary disease with a heart rate of 102 beats per min-
ute. Patient D had a heart rate of 90 beats per minute and 
was in a postsurgical state. All the filtered Pes signals of 
the four studied patients demonstrated effective removal of 
CGO-related noise. Additionally, although the remaining 
frequencies remained intact, the filter reduced the peaks 
of Peso in the Fourier spectrum at integer multiples of 
the heart rate. This demonstrates that our technique can 
effectively denoise the CGO-related noise in different situ-
ations, such as at different patient heart rates and diseases.

Table 2 lists the mean and standard deviation (std) of 
the  for all the patients (patients 2, 4, 15–20) with con-
trolled mechanical ventilation. In all the 8 patients, the 
mean   of the original and filtered data are considered 
the same (P > 0.05) and the std/mean of the filtered data 
is much less than that of the original data. The standard 
deviation of the std/mean of  was reduced by 28.4–79.2%. 
The mean of std/mean of  reduced from 0.069 to 0.029 
(60.0% reduction) after filtering, as shown in Fig. 10. 

Fig. 7   Percentages of filtered noise with the use of different reference 
signals (m = 1, 2, 3, 4) compared with the noise of the original signal 
(n = 5). The P values of m = 1 vs. m = 2, m = 2 vs. m = 3, and m = 3 vs. 
m = 4 are 0.026, 0.014, 0.83 respectively. Herein, the symbol * denotes 
statistically significant difference, “ns” denotes no significant difference

Fig. 8   Three types of Peso signal (green color: original; blue color: 
filtered by lowpass filter; red color: filtered by the proposed method) 
in both the time (a) and frequency domains (b). c The Percentages of 

noise magnitude of the proposed method group and the lowpass filter 
group. The symbol * denotes statistically significant difference
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This suggests that the proposed technique can suppress 
the CGO signal without impairing the Peso signal.

The △Pes of the original Peso was higher than the 
△Pes of the filtered Peso in all 12 patients (patients 1, 3, 
5–14) with assisted ventilation, as shown in Table 3. A 

Fig. 9   Original and filtered (m = 3) Peso signals in both the time 
and frequency domains obtained from the four studied patients. a 
Patient #1 (acute respiratory distress syndrome (ARDS)), b Patient 

#5 (ARDS), c Patient #9 (chronic obstructive pulmonary diseases 
(COPD)), and d Patient #10 (postsurgical state)
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reduction in △Pes of approximately 38.7 ± 11.4% after 
filtering was observed, which suggests that 38.7 ± 11.4% 
of the original △Pes was the error caused by the CGO 
signal. The filtered signal can provide us with a more 
accurate △Pes for the assessment of spontaneous effort. 
However, no significant difference in the std/mean 
of△Pes between the original and filtered signals was 
observed, as shown in Fig. 11. This suggests that the fluc-
tuation of the CGO signal was constant during the Peso 
measurement. This fluctuation will amplify the absolute 
value of △Pes, thereby causing an error in the assessment 
of the spontaneous effort.

Figure 12 shows the original and filtered Pes signals, 
as well as the noise calculated by subtracting the filtered 
Pes signal from the original Pes signal during the filtering 
process. Evidently, the filtering process converged at 11 s.

Table 2   values obtained from the original and filtered Peso signal (mean ± standard deviation (std)) in controlled mechanical ventilation

Patient Number of 
Clung

Clung (original Peso) Clung (filtered Peso) Reduction of 
std/mean (%)

P value (t-test)

Mean ± std, mL/cm H2O Std/mean Mean ± std, mL/cm H2O Std/mean

2 30 36.53 ± 1.82 0.050 36.71 ± 0.47 0.015 69.1 0.606
4 30 78.22 ± 6.94 0.089 77.27 ± 1.42 0.018 79.2 0.466
15 30 31.6 ± 2.35 0.074 30.92 ± 1.08 0.035 53.1 0.153
16 30 54.76 ± 5.37 0.098 54.18 ± 2.23 0.041 58.1 0.587
17 30 29.66 ± 0.53 0.018 29.47 ± 0.38 0.013 28.4 0.131
18 30 27.16 ± 2.59 0.095 27.06 ± 1.27 0.047 50.8 0.859
19 30 36.80 ± 1.58 0.043 36.18 ± 0.81 0.022 47.9 0.064
20 30 11.91 ± 0.96 0.081 11.90 ± 0.47 0.039 51.4 0.951

Fig. 10   Statistical analysis of standard deviation (std)/mean of  in the 
original and filtered Peso groups (n = 8). The symbol * denotes statis-
tically significant difference

Table 3   Esophageal pressure swings (△Pes) of the original and filtered Peso signals (mean ± std) in assisted ventilation

Patient Number of 
Pes

△Pes (original Peso) △Pes (filtered Peso) Reduction of 
mean (%)

Reduction of 
std/mean (%)

P value (t-test)

Mean ± standard 
deviation (std)

Std/mean Mean ± std Std/mean

1 30 − 8.84 ± 2.55 0.289 − 5.89 ± 1.87 0.317 33.36 − 9.81  < 0.001
3 30 − 2.05 ± 0.21 0.102 − 1.09 ± 0.13 0.119 46.83 − 16.67  < 0.001
5 30 − 6.72 ± 1.50 0.223 − 4.25 ± 0.85 0.200 36.69 10.00  < 0.001
6 30 − 6.16 ± 0.73 0.119 − 4.54 ± 0.53 0.116 26.34 2.35  < 0.001
7 30 − 5.20 ± 0.40 0.076 − 2.68 ± 0.17 0.062 48.45 18.41  < 0.001
8 30 − 9.79 ± 0.95 0.097 − 4.34 ± 0.68 0.157 55.61 − 62.52  < 0.001
9 30 − 9.04 ± 0.96 0.106 − 6.23 ± 0.69 0.111 31.15 − 4.05  < 0.001
10 30 − 4.23 ± 0.42 0.099 − 2.72 ± 0.27 0.101 35.64 − 1.50  < 0.001
11 30 − 5.55 ± 0.66 0.119 − 2.36 ± 0.31 0.132 57.57 − 10.60  < 0.001
12 30 − 5.44 ± 1.19 0.218 − 4.39 ± 0.97 0.222 19.45 − 1.72  < 0.001
13 30 − 3.21 ± 0.51 0.157 − 2.06 ± 0.35 0.169 35.72 − 7.09  < 0.001
14 30 − 2.21 ± 0.50 0.225 − 1.38 ± 0.35 0.254 37.51 − 12.85  < 0.001
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4 � Discussion

The current study provided a detailed description of a 
modified adaptive filter that effectively suppressed the 
CGOs that complicated Peso signal processing. Primar-
ily, this technique uses a heart rate-based signal for the 
reference signal instead of the ECG, or EMG, or another 
type of signal, which require additional equipment. The 
CGO signal was effectively suppressed without impairing 
the Peso signal when the reference signal contained the 
fundamental, second, and third harmonic frequencies of 
the CGO. The presence of CGO noise leads to an overes-
timation of the original measurement of △Pes. An over-
estimated △Pes can have misleading effects on predicting 
weaning from non-invasive ventilation, potentially leading 

to premature extubation, an increased risk of patients 
requiring reintubation, worsening patient condition, and 
an elevated risk of mortality. By utilizing the proposed 
technique, a more accurate measurement of △Pes can 
be achieved. The proposed technique can also be easily 
adapted for denoising other biomedical signals, such as 
the ECG and photoplethysmogram, which have either a 
periodic or quasiperiodic nature. In the frequency domain, 
peaks in the Fourier spectrum of Peso at integer multiples 
of the heart rate were suppressed without affecting the 
remaining frequencies. This result corroborates Cheng’s 
research, which indicated that the fourth or higher harmon-
ics had minimal impact on the filter's performance [17]. 
Since the reference signal is based on the heart rate, there 
is a concern that when the respiratory rate and its multiples 
(e.g., 2 × and 3 ×) align with the frequency of the funda-
mental (and the second and third harmonics) of the CGO 
signal, the filtered Peso signal may be somewhat distorted. 
Although the adaptive filter convergence required 11 s, the 
heart rates of most patients were stable most of the time 
during their monitoring in the clinic, and the filtered Peso 
signals were accurate and reliable most of the time. Only 
when the patient's heartbeat significantly fluctuated over a 
specific period, the adaptive filter required additional time 
for convergence during real-time monitoring. To make 
this technique suitable for more complex situations, we 
can work on optimizing the adaptive filtering algorithm 
to shorten the convergence time of the adaptive filter in 
the future. Some researchers have previously developed 
methods that effectively filter out CGO signals. However, 
some of these methods require the use of additional refer-
ence signals for filtering, such as Schuessler et al. [18], 
Cheng et al. [1, 17], and Graßhoff et al. [4]. To achieve 
good filtering results, it is necessary to ensure that the 
reference signal and the esophageal pressure signal are 
synchronized. The introduction of additional reference sig-
nals also increases the cost for patients and the workload 

Fig. 11   Statistical analysis of std/mean of △Pes in original and fil-
tered Peso groups (n = 12). Herein, “ns” denotes no significant differ-
ence

Fig. 12   Real-time filtering of a 
Peso signal
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of healthcare workers. Some methods also require a large 
amount of computing resources and time, such as Muk-
hopadhyay et al. [19], making it impossible to perform 
real-time filtering of the esophageal pressure signal and 
provide timely feedback information to healthcare work-
ers to help adjust the patient's ventilation settings. These 
issues largely limit the clinical application of these meth-
ods. However, our method does not require additional ref-
erence signals and can filter out CGO noise in real-time 
while providing accurate esophageal pressure signals. 
This will provide useful esophageal pressure information 
to healthcare professionals for timely adjustment of the 
patient's ventilation parameters. It is clear that this tech-
nology has great value in clinical applications. With the 
advantages of not requiring additional signals as reference 
signals and compressing the CGO noise in real-time, the 
proposed technology can be easily and effectively used in 
clinical settings before long.

5 � Conclusions

In summary, we have successfully developed a modified 
adaptive filter to suppress the CGO signals, where the refer-
ence signal was constructed based on the heart rate using a 
sine function. When the reference signal included the funda-
mental, second, and third harmonic frequencies of the CGO, 
the CGO signal was effectively eliminated from the original 
Peso signal. However, when the reference signal contained 
the fourth or higher harmonic frequencies of the CGO, there 
was no significant improvement in the filter's performance. 
We validated the clinical performance of our technique 
by assessing lung compliance and △Pes. Our proposed 
technique significantly reduced the std/mean of  QUOTE  
and improved the accuracy of △Pes measurements. These 
findings demonstrate that our technique is highly efficient 
and enhances the precision of lung compliance and △Pes 
measurements.
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