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human intervention, including decision-making, data analy-
sis, complex problem-solving, event prediction, speech rec-
ognition, and visual perception [2]. It is believed that when 
data extraction, storage, access, and quality processes have 
been fully optimized, the potential of AI techniques will be 
able to drive a new technological paradigm, making it an 
excellent tool to apply on medical areas since it involves 
large volumes of biometric data with highly complex inter-
relationships [3].

AI includes several sub areas that are capable of extract-
ing knowledge from a large dataset faster and more accu-
rately than traditional methods, including machine learning, 
deep learning and robotics. Machine learning can analyze an 
extensive quantity of information and create an algorithm or 
model to detect patterns and perform prediction tasks with-
out explicit instructions [4]. Neural networks, also known as 
artificial neural networks (ANNs) are a subset of machine 
learning and the basis of deep learning algorithms. It dis-
tinguishes itself because of the multiple layers that allow 
this technology to simulate the behavior of the human brain, 

1 Introduction

Artificial Intelligence (AI) refers to computer science that 
enables machines to think and act rationally and it has 
become a part of the scientific development of many areas, 
including Medicine and particularly Anesthesiology [1].

AI employs a variety of theories, algorithms, and compu-
tational resources to carry out intelligent tasks with minimal 

  Sara Lopes
lopes.sara91@gmail.com

Gonçalo Rocha
gmgr12@gmail.com

Luís Guimarães-Pereira
lgp@med.up.pt

1 Department of Anesthesiology, Centro Hospitalar 
Universitário São João, Porto, Portugal

2 Surgery and Physiology Department, Faculty of Medicine, 
University of Porto, Porto, Portugal

Abstract
Purpose Application of artificial intelligence (AI) in medicine is quickly expanding. Despite the amount of evidence and 
promising results, a thorough overview of the current state of AI in clinical practice of anesthesiology is needed. Therefore, 
our study aims to systematically review the application of AI in this context.
Methods A systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines. We searched Medline and Web of Science for articles published up to November 2022 using 
terms related with AI and clinical practice of anesthesiology. Articles that involved animals, editorials, reviews and sample 
size lower than 10 patients were excluded. Characteristics and accuracy measures from each study were extracted.
Results A total of 46 articles were included in this review. We have grouped them into 4 categories with regard to their 
clinical applicability: (1) Depth of Anesthesia Monitoring; (2) Image-guided techniques related to Anesthesia; (3) Predic-
tion of events/risks related to Anesthesia; (4) Drug administration control. Each group was analyzed, and the main findings 
were summarized. Across all fields, the majority of AI methods tested showed superior performance results compared to 
traditional methods.
Conclusion AI systems are being integrated into anesthesiology clinical practice, enhancing medical professionals’ skills of 
decision-making, diagnostic accuracy, and therapeutic response.

Keywords Artificial Intelligence · Anesthesiology · Deep learning · Neural networks

Received: 11 June 2023 / Accepted: 4 October 2023 / Published online: 21 October 2023
© The Author(s) 2023

Artificial intelligence and its clinical application in Anesthesiology: a 
systematic review

Sara Lopes1  · Gonçalo Rocha2 · Luís Guimarães-Pereira1,2

1 3

http://orcid.org/0000-0003-1966-6024
http://orcid.org/0000-0003-2256-0335
http://crossmark.crossref.org/dialog/?doi=10.1007/s10877-023-01088-0&domain=pdf&date_stamp=2023-10-17


Journal of Clinical Monitoring and Computing (2024) 38:247–259

making it possible to learn from multiple data and optimize 
accuracy. As for robotics, they stand for a mechanical sys-
tem that is capable of interacting with the environment, 
automating tasks and offering pertinent recommendations 
based on the clinical scenario to aid decision-making [5] 
There are multiple applications of robotics in anesthesia, 
especially in conscious sedation using closed loop systems, 
but as well for the maintenance of anesthesia, hemodynamic 
management or to support decision making [6].

Searches in medical databases show that the amount of 
literature on AI is expanding quickly, indicating a remark-
able academic focus in this field. There are several articles 
where different AI methods are successfully applied in 
screening, diagnostic and therapeutic techniques in various 
specialties [7–10]. Anesthesiology could benefit from this 
application as it is an area which requires clinical decision 
based on several continuous real-time variables. In this field, 
existing literature can be grouped into subareas concerning 
their clinical application, namely: depth of anesthesia moni-
toring, visually guided techniques using computer vision, 
prediction of risk of events during and after anesthesia, and 
control of anesthesia.

According to researchers, the next generation of doctors 
will need to be familiar with machine-learning methods for 
large data analysis [11]. It is crucial for clinicians in all spe-
cialties to understand these technologies and realize how to 
use them to provide safer, more effective, and more afford-
able treatment as the development and deployment of AI 
technology in medicine continue to expand [12].

Despite the exponential amount of evidence and promis-
ing results, a thorough overview of the current state of AI in 
anesthesiology clinical practice is lacking. There is a clear 
need to summarize the existing evidence in the form of a 
systematic review capable of serving as a guide.

This study aims to systematically review the application 
of AI methods in anesthesiology clinical practice of anes-
thesiology and discuss its future challenges and limitations.

2 Methods

This systematic review was conducted in accordance with 
the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) guidelines and registered on an 
international database of prospectively registered system-
atic reviews (PROSPERO) (CRD42023402952).

We searched Medline, through PubMed, and Web of 
Science for all English-language articles that were pub-
lished up to November 2022 while using combinations of 
the following terms: “anesthesia, anesthesiology, artificial 
intelligence, neural network computer, machine learning, 
humans” (Table 1).

Studies were included if the primary aim was the applica-
tion of AI–based algorithms in clinical practice of anesthe-
siology. Articles that involved animals, editorials, reviews, 
sample size lower than 10 patients or had the inappropriate 
study design (including studies with inappropriate compara-
tor, outcome, or setting, etc.) were excluded.

Two reviewers, GR and SL, screened articles for inclu-
sion or exclusion using the online platform Covidence®. 
Each article was screened independently by two reviewers. 
Any disagreement among the two screeners would be solved 
by a third reviewer - LG. One reviewer extracted data from 
articles using a Microsoft Excel® spreadsheet, and the other 
one checked the extracted data. The extracted data included 
study aim, study design, AI method used, control or/and 
comparator used, number of population studied, measures 
of effect and main conclusions.

The Joanna Briggs Institute (JBI) critical appraisal 
checklist for analytic cross-section and case-control studies 
were used to assess the risk of bias of studies. The risk of 
bias was rated according to the percentage of positive items 
in the checklist: low (higher than 70%) moderate (50–69%) 
and high (lower than 50%).

Due to variable design and methods of reporting results, 
a meta-analysis was not able to perform; as a result, the find-
ings of the included papers were descriptively outlined.

Table 1 Strategy search used in Medline and replicated in Web of Sci-
ence
Search number Query
#1 artificial intelligence [MeSH Terms]
#2 anesthesia [MeSH Terms]
#3 anesthesiology[MeSH Terms]
#4 machine learning[MeSH Terms]
#5 neural network computer[MeSH Terms]
#6
#7
#8

((neural network computer[MeSH Terms]) 
OR (machine learning[MeSH Terms])) 
OR (artificial intelligence[MeSH Terms])
deep learning [MeSH Terms]
neural network [MeSH Terms]

#9 humans[MeSH Terms]
#10 (anesthesiology[MeSH Terms]) OR 

(anesthesia[MeSH Terms])
#11 review[Publication Type]
#12 editorial[Publication Type]
#13 comment[Publication Type]
#14 ((comment[Publication table Type]) 

OR (editorial[Publication Type])) OR 
(review[Publication Type])

#15 #6 AND #8
#16 #13 NOT #12
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3 Results

A total of 478 records were identified from databases, 127 
duplicates were removed. The remaining 351 articles were 
submitted to abstract screening and 234 were excluded. The 
last 110 reports were full-text reviewed and after the appli-
cation of the exclusion criteria, 46 studies were selected for 
final analysis. Figure 1 shows the PRISMA 2020 flow dia-
gram used for the selection of the articles.

We identified the risk of bias as low in 25 studies, mod-
erate in 25, and high in 6 (Supplementary Information 1). 
The majority of papers with a high or moderate risk of bias 

lacked identification of confounding factors and solutions 
for addressing them.

In order to clarify the description and extraction of results 
from the articles, we have grouped them into 4 categories 
with regard to their clinical applicability: (1) Depth of Anes-
thesia Monitoring; (2) Image-guided techniques related to 
Anesthesia; (3) Prediction of events/risks related to Anes-
thesia; (4) Drug administration control.

Despite the wide variety of subjects covered, all of the 
articles founded shared a common goal: that of maximizing 
the newly discovered potential of AI approaches in order to 

Fig. 1 PRISMA flow chart outlining the selection of studies for review
Ref: http://prisma-statement.org/prismastatement/flowdiagram.aspx

 ¹Articles which were unable to find the full text
 ²Not anesthesia related or without clinical applicability
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utility value, in a way the best set of parameters is defined. 
The findings demonstrate that among all the algorithms con-
sidered, SVM produces the highest prediction probability 
(PK) and, as supposed, the EEG and AEP parameter combi-
nation performs better than both “pure” parameter sets. The 
highest PK values produced with algorithms utilizing only 
AEP or EEG-parameters were 0.880 +/- 0.14 and 0.916 +/- 
0.11, respectively, while the highest value with the combi-
nation of both was 0.935 +/- 0.11.

This is corroborated by Zhan et al. [16] who used four 
parameters (including the HRV high-frequency power, 
low-frequency power, high-to-low-frequency power ratio, 
and sample entropy) extracted from 23 patient electrocar-
diograms to predict their anesthetic state. The accuracy of 
the model was 90.01%, using the clinical evaluation of five 
anaesthesiologists as control.

3.2 Image-guided techniques related to Anesthesia

Our search found 8 articles where AI techniques are applied 
to improve image-guided techniques in anesthesiology, as 
described in Table 3.

Convolutional neural networks (CNNs) were used to 
help identify important features in ultrasonography (US) 
imaging which is an extremely helpful tool in anesthesia, 
used for peripheral nerve blocks, point of care assessment or 
vascular access. The majority of publications in this group 
aim to increase the precision of needle target identification 
for epidural anesthesia since the current clinical method of 
blindly manual palpation of the spine has an associated low 
accuracy. Hetherington et all [17] develop a CNN-based 
system to identify lumbar vertebral levels in ultrasound 
(US) images with an accuracy of 85%, while InChan et all 
[18] specified this identification in a particular challenging 
group, obese patients (with an index of body mass supe-
rior than 30 kg/m2), with a success rate on first attempt of 
79.1%. On a similar approach, Yusong et al. [19]l obtained 
the higher accuracy (0.94) of the group with a support vec-
tor machine model that determine the needle entry site for 
epidural anesthesia (EA) in 53 volunteer patients. The sys-
tem guides the anesthesiologists to rotate and modify the 
position of the ultrasound probe to find the ideal puncture 
site. According to the findings, even anesthesiologists with 
limited experience in interpreting ultrasound images could 
find the ideal puncture site quickly and accurately.

Since it is a practical, safe, efficient, and affordable 
option, ultrasonography is used in many anesthesiology 
techniques, however, US images are frequently challenging 
to interpret because they are frequently affected by artifacts 
and shadowing. Liu et all [20] design a deep learning model 
to guide, from US images, the anesthesia of 100 patients 
with scapula fracture who underwent regional nerve block. 

enhance a variety of anesthesiologists clinical abilities and 
responsibilities.

3.1 Depth of Anesthesia Monitoring (DoA)

We obtained 13 articles regarding the application of AI in 
DoA monitoring, as described in Table 2.

Most of them focus on efforts to find a new DoA moni-
toring index capable of improving the acuity of the current 
means.

Our research has shown that most of the literature on this 
topic uses electroencephalograms (EEG) signals as input to 
an ANN as the preferred AI method for the purpose of esti-
mating DoA. Due to its wide use on anesthesia, bispectral 
index (BIS) was mainly used as a control or comparator of 
the studies to assess the effectiveness of the chosen model, 
as shown in detail in Table 2.

Afshar et al. [13] proposed a new deep learning structure 
that uses multiple features from 35 patients EEG signals to 
continuously predict the BIS value, achieving an accuracy 
of 88.71% and an improvement in area under the curve 
(AUC) of 15% on average, when compared to traditional 
DoA estimation methods. On a different approach, Jiang 
et al. [14] uses EEG signals, pre-analysed through sample 
entropy as an input to train an ANN model that tries to pro-
vide a valuable reference to DoA. What sets the article apart 
from the rest of the subgroup is having used a score based 
on the clinical opinion of five experienced anesthesiologists 
– Expert Assessment of Conscious Level (EACL) - as the 
gold standard, contrary to most literature that tends to use 
the BIS index as the control. This allows the obtained model 
performance to be compared to the BIS itself. The results 
show that the mean correlation coefficient of the proposed 
model versus EACL on testing data is 0.73 ± 0.17, while the 
results of BIS index versus EACL are only 0.62 ± 0.19. This 
means that the proposed model is not only successful in esti-
mating the anesthetic state, but also, does it more similarly 
to the clinical consensus than the BIS itself.

Whether the combination of different sources of clinical 
monitoring, in addition to the information normally col-
lected from the EEG, could benefit the discriminative capac-
ity of a DoA predictor algorithm is questioned by Tacke et 
al. [15]. To do so, they collect EEG and auditory evoked 
potentials (AEP) parameters used to test and compare the 
predictive power of several different AI methods, including 
support vector machine (SVM) and ANN, and given a dif-
ferent number and set of inputs. In this article, an algorithm 
was specially created with the objective of evaluating each 
parameter collected from the EEG signal (Spectral Entropy, 
Permutation entropy etc.) and AEP (Wavelet coefficients, 
amplitudes and latencies of wavelet, signal energies based 
on wavelet coefficients etc.) and define each predictive 

1 3

250



Journal of Clinical Monitoring and Computing (2024) 38:247–259

anesthesia positioning as the control group and the results 
showed that patients submitted to the system had higher 
positioning accuracy, better anesthesia effect, and fewer 
postoperative complications, with a significant difference.

CNNs are not exclusively applied to US images. Yoo 
et all [21] propose a CNN model to discriminate video 

The model is consisted of a CNN capable of image enhance-
ment. The principle is classifying the image into two parts, 
the high-frequency and low-frequency components are 
separated, and different operations and processing are per-
formed. In the end, the image is present with more detail and 
quality. It was used the traditional body surface anatomy for 

Table 2 The application of AI in DoA monitoring
Study Aim Population AI method n Accuracy methods Conclusions
Afshar 
2021 [13]

Predict BIS values 
from EEG

Subjects who received 
vascular surgery

CNN 35 Accuracy 88,71%; 
Sn 77.62%; AUC 
81,11%; RMSE 
5.59; MAE 
4.3 ± 0.87

The model outperforms the com-
petitive methods particularly, for 
large EEG datasets.

Gu 2019 
[33]

Using EEG signals 
to estimate different 
anesthetic states

Adult patients under 
general anesthesia with 
propofol

ANN 16 Sn 79.1%; CC 
between BIS, 0.892

This method is promising and 
feasible for a monitoring system to 
assess the DoA.

Jiang 2015 
[14]

Using EEG signals 
and Sample Entropy 
analysis to estimate 
DoA

Aged 22–79 years under 
surgery with general 
anesthesia

ANN 24 CC, 0.73; MSE, 
10.19; AUC, 0.953

Purpose method is closer to 
experienced anesthesiologists than 
BIS index.

Lee 2018 
[34]

Predict BIS index Patients who under-
went general surgery 
under propofol and 
remifentanil

ANN 100 CC 0.561 The model predicted BIS more 
accurately compared to the tradi-
tional model

Madanu 
2021 [35]

Predict DoA form 
EEG signals

Adults who underwent 
ear, nose and throat 
surgery

CNN 50 Accuracy of the best 
trained model 83.2%

The proposed method provides a 
robust and reliable benchmark for 
DOA level classification

Ortolani 
2002 [36]

Index of DoA from 
processed EEG data

Adults, ASA I score, 
who underwent general 
abdominal surgery

ANN 50 CC with BIS, 0.94 The developed model correlates 
very well with the BIS during 
anaesthesia with propofol.

Ranta 
2002 [37]

Predict awareness 
with recall from intra-
operative data

Adult patients under 
general anesthesia

ANN 544 Sn 23%; Sp 98%, 
Pk 0.66

 A prediction indicating awareness 
by the network is very suggestive 
of true awareness and recall.

Shalbaf 
2018 [38]

Predict state of DoA 
(qualitatively) from 
EEG features

Patients who underwent 
propofol and volatile 
anesthesia

Neuro-
Fuzzy 
System

67 Accuracy, 92% in 
sevoflurane data-
base; 93% propofol 
database

This method is applicable to a new 
real time monitoring system to 
assessment of DoA accurately.

Shalbaf 
2020 [39]

Distinguish four levels 
of anesthesia from 
EEG data

Adults scheduled for 
orthopedic, gynecologi-
cal or general surgery

SVM 17 Accuracy, 94.11% The model is able to estimate level 
of hypnosis into awake, light, gen-
eral and deep anesthetic states.

Tacke 
2020 [15]

Index that predicts 
responsiveness from 
EEG and AEP signals

ASA status of I or II 
who underwent elective 
operations

SVM, ANN, 
Bayesian 
Algorithms

39 Highest PK (predic-
tion probability), 
0.935

The models can successfully 
develop an improved combined 
EEG and AEP parameter to predict 
DoA.

Zhan 2021 
[16]

Heart rate variability 
to distinguish different 
anaesthesia states

Adult patients under 
general anaesthesia

DNN 23 Accuracies: 90.1% 
(DNN), 86.2% (LR), 
87.5% (SVM) and 
87.2% (decision 
tree)

The model could accurately distin-
guish between different anaesthe-
sia states.

Zhang 
2001 [40]

Predict states of anes-
thesia from AEP

Aged 21–77 years 
scheduled for elective 
abdominal surgery

ANN 21 Best identifica-
tion accuracy was 
obtained using the 
five latencies model

AEP has useful information for 
identifying different anesthetic 
states.

Tosun 
2010 [41]

Determining DoA 
during maintenance 
period for estimate 
anesthetic gas level

Patients undergoing 
general anesthesia with 
sevoflurane maintenance

ANN 250 Average accuracy 
94%

The design system had success-
ful results in the prediction of the 
anesthetic gas according to the 
anesthesia level.

EEG electroencephalography, AEP Auditory evoked potential, BIS bispectral index monitoring, ANN artificial neural networks CNN convolu-
tional neural network, SVM support vector machine, AUC area under curve, Sn sensitivity, Sp specificity, CC correlation coefficient, PK Predic-
tion Value, MSE Mean square error, RMSE Root mean square error, MAPE Median absolute error
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and ANN) with an area under the receiver operating char-
acteristic curve of 0.842. Lowest systolic blood pressure, 
lowest mean blood pressure, and mean systolic blood pres-
sure before tracheal intubation were the three factors that 
had the biggest impact on the accuracy of machine learning 
prediction. On a similar attempt, a neural networks model 
was used to identify patients with high risk of hypotension 
during spinal anesthesia (sensitivity of 75.9%; specificity of 
76.0%; AUC of 0.796) and was found to exceed predictions 
of all five senior anesthesiologists (sensitivity 16.1 − 36.1%; 
specificity 64.0 − 87.0%) [23].

On a more practical and clinical-oriented approach, 
Wijnberg et all [24] made a randomized controlled trial to 
evaluate if a machine learning early warning system would 
reduce hypotension during noncardiac surgery. The algo-
rithm uses 23 parameters extracted from an arterial pressure 
waveform measured continuously to detect deteriorations in 
cardiovascular compensatory mechanisms that could lead to 
hypotension. The performance of this system had already 
been analyzed in an observational study Hatib [25] and it 
was shown to predict a hypotensive event within the next 
15 s with a likelihood of 85%. This study intended to go 
further and determine whether the improvement in timely 
detection would also have an impact on clinical indicators. 
The median time of hypotension per patient was 8.0 min in 
the group where the early warning system was implemented 

bronchoscopy images of the carina and main bronchi 
regardless of rotation or covering. This system could be 
useful since orientation in the bronchial tree can often be 
confused and lead to accidental extubating or endobronchial 
intubation. The results were compared with 3 anesthesiolo-
gists and 3 pulmonologists with different time experiences 
and showed that the CNN model performed better (accu-
racy of 0.84) than nearly all human experts (0.38, 0.44, 0.51, 
0.68, and 0.63) with only the most experienced pulmonolo-
gist displaying a similar performance (0.82).

3.3 Prediction of events related to Anesthesia

A total of seventeen studies were found to use AI to predict 
anesthesia-related events. Six of them address post induc-
tion hypotension, three studies address hypoxia prevention, 
while the remaining ones span a wide range of other circum-
stances described on Table 4.

Kang et al. [22] tested the effectiveness of machine learn-
ing models in predicting late post induction hypotension 
(PIH), defined as hypotension occurring from tracheal intu-
bation to incision. The inputs to develop the model were, 
not only the clinical records of 126 patients, but also intra-
operative monitoring data from the early anesthetic induc-
tion phase, such as general anesthesia monitor signals. The 
random-forest model performed best among the four stud-
ied systems (naive bayes, logistic regression, random forest, 

Table 3 The application of AI in image-guided techniques
Study Aim AI method N Acuraccy results Conclusions
Alkhatib 
2019 [42]

Median and sciatic nerve tracking in 
ultrasound images.

CNN 42 Accuracy, 0.87 Models showed superior performance 
and handled noise suppression without 
pre-filtering the images

Hethering-
ton 2017 
[17]

Identify lumbar vertebral levels in US 
images and display it with augmented 
reality.

CNN 20 Accuracy, 85% The system successfully identifies 
lumbar vertebral levels.

InChan 
2021 [18]

Determine the needle insertion point in 
obese patients using US image.

Machine-learning 48 Success rate for spi-
nal anesthesia on first 
attempt 79.1%

The program is able to provide assis-
tance to needle insertion point identifi-
cation in obese patients.

Liu 2021 
[20]

Locate, from US images, the anes-
thesia point of patients with regional 
nerve block.

CNN 100 Higher position-
ing accuracy and 
lower postoperative 
complications

The model can effectively improve the 
accuracy of US images.

Pesteie 
2018 [43]

Automatically localize the needle 
target for epidural needle placement in 
US of the spine.

CNN 20 Average lateral and 
vertical error 1 mm, 
0.4 mm, respectively.

The algorithm average errors are infe-
rior to the clinically acceptable error.

Yoo 2021 
[21]

Interpret video bronchoscopy images 
of the carina and main bronchi

CNN 180 Accuracy, 0.84; AUC 
0.9752

This model can be a basis for designing 
a clinical decision support system with 
video bronchoscopy

Yu 2015 
[44]

Identify the bone/interspinous region 
for US images obtained from pregnant 
patients.

SVM 20 Accuracy, 93.2 PPV, 
94.17 Sensitivity, 
93.05 AUC 97.55

Proposed method can process the 
ultrasound images of lumbar spine in 
an automatic manner.

Yusong 
2016 [19]

Determine the needle entry site for 
epidural anesthesia in real time

SVM 53 Accuracy 0.94 Even the anesthetists with little experi-
ence in US could determine the suitable 
puncture site accurately and efficiently.

US ultrasonography, CNN convolutional neural network, SVM support vector machine
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Table 4 The application of AI in prediction of events
Study Aim AI 

method
n Accuracy results Conclusions

Prediction of Hypotension
Gratz 2020 
[45]

Predict the likelihood of post 
spinal hypotension from arterial 
stiffness

ANN 45 AUC, 0.89; Sn, 0.84; 
Sp, 0.91

This study demonstrated that arterial stiffness vari-
ability is an effective predictor of postinduction 
hypotension.

Lin 2008 
[46]

Identify patients with high risk 
of hypotension during spinal 
anesthesia

ANN 375 AUC, 0.796; Sn, 
75.9%; Sp, 76.0%

The model should be useful in increasing vigi-
lance in those patients most at risk for hypotension 
during spinal anesthesia.

Kang 2020 
[7]

Predict postinduction hypoten-
sion from intraoperative data

Random 
Forest; 
ANN

222 AUC of Random 
Forest model 0.842; 
Accuracy 76.28%;

Models can predict hypotension occurring dur-
ing the period between tracheal intubation and 
incision.

Kendale 
2018 [47]

Prediction for the risk of postin-
duction hypotension

Gradient 
boosting 
machine

13.323 AUC 0.74 The model can forecast postinduction hypoten-
sion, with performance dependent on model 
choice and proper tuning.

Lin 2011 
[48]

Identify patients at high risk for 
postinduction hypotension

ANN 294 Accuracy 82.3%; 
AUC 0.893; Sn 
76.4%; Sp 85.6%;

The model has good discrimination of risk of 
postinduction hypotension.

Wijnberge 
2020 [24]

Early warning system of hypoten-
sion during noncardiac surgery.

Machine 
Learning

68 Median time of 
hypotension 8.0 min 
intervention group 
vs. 32.7 in control 
group

The use of AI early warning system compared 
with standard care resulted in less intraoperative 
hypotension.

Prediction of Hypoxemia
Geng 2019 
[49]

Prediction of hypoxemia during 
sedation for gastrointestinal 
endoscopy

ANN 220 Accuracy 90%; 
AUC 0.80; Sn 14%; 
Sp 98%

The model was useful for prediction of 
hypoxemia.

Lundberg 
2018 [26]

Predic the risk of hypoxemia and 
provides explanations of the risk 
factors.

Machine 
Learning

53.126 For initial predic-
tion, AUC 0.83; For 
real-time prediciton 
AUC 0.81

The system can help improve the clinical under-
standing of hypoxemia risk during anaesthesia 
care.

Sippl 2017 
[50]

Model perioperative hypoxia ANN 124 Sn 74%; Sp 93% The model is able to classify oxygen desatura-
tion on a level similiar to the mutual agreement 
between human experts.

Prediction of different events
Huang 
2022 [51]

Prediction of surgery and anes-
thesia emergence duration

ANN 4.285 Accuracy, 0.9552 Prediction accuracies of the proposed serial pre-
diction systems are acceptable in comparison to 
separate systems.

Huang 
2003 [52]

Predict response during isoflurane 
anaesthesia from time series of 
EEGs

ANN 98 Accuracy 91.84% The technique outperforms competing techniques, 
is computationally fast, and offers acceptable real-
time clinical performance.

Knorr 
2006 [53]

Distinguish between normal 
breathing and obstructed airway 
events.

ANN 10 Accuracy 86.1%; Sn 
72.9%; Sp 93.0%

The model has potential to distinguishing between 
normal and obstructed airway events.

Mansoor 
Baig 2013 
[54]

Detection of absolute 
hypovolaemia

Fuzzy 
Logic

20 Kappa value of the 
best FL model, 0.75

FLMS-2 model has shown to accurately detect 
differences between the levels of hypovolaemia

Peng 2007 
[27]

Predict postoperative nausea and 
vomiting in patients who received 
general anaesthesia.

ANN 430 Accuracy, 83.3%; 
AUC, 0.814; Sn, 
77.9%; Sp 85.0%

The ANN model appears to be a suitable model 
for clinicians to use cost-effective antiemetic 
treatments.

Ren 2022 
[55]

Predict the amount of blood 
transfusion during cesarean 
section.

XGB 
classifier

150 Accuracy 0.953: 
AUC 0.881

The XGB model has a strong prediction perfor-
mance, can offer precise individual predictions for 
patients, and has a promising future in clinical use.

Santanen 
2003 [56]

Predict the recovery of a neuro-
muscular block during general 
anaesthesia

ANN 66 CC 0.91; Mean 
absolute prediction 
error 6.75

Model could predict individual recovery times sig-
nificantly better than the average-based method.

Zhang 
2018 [57]

Predicts a patient’s ASA using the 
patient’s home medications and 
comorbidities.

RF 41.932 AUC 0.884; Cohen’s 
Kappa 0.456;

RF algorithm can predict ASA with agreement 
identical to that of anesthesiologists described in 
literature.

EEG electroencephalography, ANN artificial neural networks CNN convolutional neural network, SVM support vector machine, RF Random 
Forest, AUC area under curve, Sn sensitivity, Sp specificity, CC correlation coefficient
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hypertension - and the correct algorithm to solve them. They 
reached over 50% of total maintenance time in optimal level 
of hypnosis without significant adverse effects, overcoming 
the 37.62% obtained in the control group.

In another perspective, Zaouter et al. [29] created a pro-
spective observational study with the aim of understanding 
if automated sedation using hybrid sedation systems (HSS) 
is successful when used in frail and old patients, like those 
proposed for transcatheter aortic valve implantation (TAVI). 
This study with 20 patients reveals that robotic sedation 
with HSS was successful in 95% of the population, meaning 
that in none of the procedures was necessary manual control 
by the anesthesiologist. Moreover, none of the patients in 
the study developed right ventricular failure, which could 
be a potential complication in this population due to critical 
respiratory events related to the overshooting of propofol. 
Nevertheless, the author claims critical respiratory events 
in 79% of the studied population despite the lower doses of 
propofol infused and the ability of the robot to decrease the 
infusion rate by 50%.

Another area where conscious sedation plays a big role is 
the endoscopic procedures. Cheng Xu et al [30] developed a 
randomized, single-blinded trial using an AI digestive endo-
scope that could help improve the quality of sedation during 
gastrointestinal endoscopic procedures. The trial involved 
154 patients, classified with American Society of Anesthesia 
(ASA) I to III, that were proposed to do endoscopy proce-
dures with ENDOANGEL system – computer-aided quality 
control system based on deep convolutional neural network 
models used in parallel with routine endoscopic equipment. 
This system creates a virtual anatomical model of the gas-
trointestinal system, showing the areas that still need to be 
evaluated, reducing the blind spots and the time till the end 
of the procedure, as it records the examination time and 
inaccurate scope movement. With this technology the anes-
thesiologists have a real time controller when to administer 
or withdraw the medication, improving the induction, emer-
gency and recovery times. Cheng Xu et al. concluded that 
emergence time and recovery time was shorter in the group 
of patients with the ENDOANGEL technology, as well the 
incidence of adverse events - as for cough, hiccup, hypox-
emia, hypotension, arrhythmia - although the total dosage 
of propofol was not statistically different between the two 
groups. Regardless of being a system designed for gastro-
intestinal procedures, it allows the anesthesiologists to sup-
plement the dose of anesthetic at proper time, ensuring a 
proper sedation status.

On another perspective, Syed et al. [31] used a machine 
learning model to predict the level of sedation required for 
the endoscopic procedure. This retrospective study, ana-
lyzed over ten thousand colonoscopies and concluded that 
machine learning models can accurately (over 80%) predict 

versus 32.7 min in the standard care group, being signifi-
cantly different (P < 0.001).

Anticipating hypoxemia before it occurs would allow 
anesthesiologists to act proactively in order to prevent 
hypoxemia and minimize patient harm. With this in mind, 
Lundberg et all [26] presents a machine learning model 
named, Prescience, that uses standard operating room sen-
sors to predict, in real time during general anesthesia, the 
risk of hypoxemia and provides explanations of the risk fac-
tors. It differs from previous attempts because it provides an 
explanation of why predictions are made and information 
on the probable causes in a more clinically relevant way. 
These explanations are based on information from elec-
tronic medical records of more than 50,000 surgeries and 
are consistent with existing literature and anesthesiologists’ 
knowledge. The physicians ‘prediction performance with 
help from Presecience improved from AUC 0.60 to 0.76 
(P < 0.0001) for initial risk prediction, and from AUC 0.66 
to 0.78 (P < 0.0001) for intraoperative real-time (next 5 min) 
risk prediction of hypoxemia.

AI application was also studied in the prediction of addi-
tional complications, Peng [27] evaluated the accuracy and 
discriminating power of an artificial neural network to pre-
dict postoperative nausea and vomiting (PONV). Nausea 
and vomiting have an incidence of 20–30% in patients under 
general anesthesia and are associated with several compli-
cations, therefore, a model capable of identifying high-risk 
patients who could benefit from preventive pharmacologi-
cal interventions can be advantageous. The ANN showed 
an accuracy of 83.3% using 7 variables—gender, type of 
surgery, ASA status, duration of anesthesia, smoking habits, 
history of previous PONV and use of postoperative opioid 
- as inputs to the prediction. This was the best predictive 
performance among all the tested models (Naıve Bayesian 
classifier, logistic regression) with a significantly superior 
discriminatory power (P < 0.05).

3.4 Drug administration control

The appropriate dosage of drugs during anesthesia is 
extremely important in order to avoid physiological con-
sequences, such as hypotension, hypertension, hypoxia 
and arrhythmias that can have a great impact on patients 
outcomes. In this group, 8 articles were included and are 
described in Table 5.

Mendez et al. [28] has developed an observational study 
with 81 patients to test a fuzzy logic algorithm with the 
purpose of controlling propofol infusion and optimal levels 
of hypnosis (set up as BIS index of 45–55), comparing it 
with a manual infusion controlled by a senior anesthesiolo-
gist. The author claims that his model takes into account all 
possible complications during surgery - as for hypotension, 
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is crucial to reduce complications associated with anesthetic 
overdose (such as cardiac complications, delayed recovery 
and cognitive dysfunction) without interfering with patient 
safety. The current state-of-art is largely done by systems 
based on EEGs, such as BIS, which is the most used system 
to assess DoA during surgery. It is derived primarily from 
EEG signals to give a quantitative indication of DoA rang-
ing from 0 to 100. However, it may not be the ideal system, 
because EEG signals only show the functions of the central 
nervous system and even in its signals there is a large amount 
of information present that is not considered into the model, 
meaning there is possible meaningful data not being fully 
utilized. Therefore, AI can make a difference by overcom-
ing the limitations of traditional methods and optimizing the 
already existing advantages. These articles described a lot 
of different strategies to achieve it, by expansion of the EEG 
parameters used, covering all its raw possibilities, addition 
of other clinical monitoring signals capable of maximizing 
information and optimizing the measurement of anesthetic 
depth in real time or by finding a new index robust enough 
to eliminate all the frequently artefactual signals.

which procedures can be successfully done with moderate 
sedation. Physician performance, total procedure time and 
patients age were the main influential features.

4 Discussion

This study attempted to identify the areas in which AI over-
laps clinical anesthesiology, how it can affect its future, the 
obstacles anesthesiologists must be aware of, and how to 
approach it. The current literature about AI in clinical prac-
tice of anesthesiology is mainly divided in 4 topics: DoA 
monitoring, image-guided techniques related to Anesthesia, 
prediction of events/risks related to Anesthesia and drug 
administration systems.

Most of the current research is at an early stage in the 
development of AI solutions and focuses primarily on 
evaluating the accuracy of the models in specific scenarios, 
achieving promising results. The relevance of DoA monitor-
ing area is related to the quality of the anesthetic protocol 
being intimately dependent on precise control of the anes-
thetic target. Finding the optimal form of DoA monitoring 

Table 5 The application of AI in drug administration control
Study Aim Population AI 

method
N Accuracy results Conclusions

Mendez 
2018 [28]

Automatic drug delivery ASA I and II undergoing 
general anesthesia for 
ambulatory surgery

FL closed 
loop 
system

85 MDAPE 9,67% (AI) 
vs. 13,5% (control); 
MDPE − 3,13% vs. 
-9,83%;

The system showed better 
performance parameter values 
than the manual standard pro-
cedure and PID algorithms.

Zaouter 
2017 [29]

Closed loop sedation 
without manual override

Patients undergoing elec-
tive Transcatheter Aortic 
Valve Implantation

Hybrid 
sedation 
system

20 MDAPE 23,8%; 
MDPE − 2,4%;

The System maintained seda-
tion in 95% of cases with no 
manual override.

Xu 2022 
[30]

Computer aided diagnosis 
system on anesthesia 
quality control

ASA I to III undergoing 
sedative EGD and/or 
colonoscopy

CNN 154 Emergence and 
recovery time were 
significantly shorter 
than that in the con-
trol group (p < 0.01)

Satisfaction scores were 
significantly higher and the 
emergence and recovery time 
was significantly shorter.

Syed 
2021 [31]

Prediction if a colonos-
copy can be successfully 
completed with moderate 
sedation

Patients undergoing 
colonoscopy

Machine 
learning

10.025 AUC 0,762 The model achieved reli-
able accuracy in predicting 
procedures.

Wei 2021 
[58]

Assessing intrathecal 
hyperbaric bupivacaine 
dose during cesarean 
section

Term parturient (ASA 
II to III) presented for 
elective cesarean section 
under spinal anesthesia

Machine 
learning

684 MSE 0,0087; Coeffi-
cient of determination 
0.807

The model created showed a 
coefficient of determination 
of 0.807 to predict intrathecal 
hyperbaric bupivacaine dose

Marrero 
2017 [59]

Predict the hypnotic effect 
in general anesthesia

Patients undergoing 
general anesthesia using 
intravenous hypnotic 
agent (propofol)

FL 20 RMSE for AFM 36,13 
vs. 50,29 for the FM 
vs. 45,69 for the com-
partmental model.

The model had significantly 
better results than fuzzy 
model and compartment 
model.

Shieh 
2000 [60]

Controller for neuro-
muscular block with 
rocuronium

ASA I and II undergoing 
general anesthesia

FL 10 Standard deviation of 
the T1%² error 1,82% 
and the mean T1% 
error − 0,18%.

The performance is better 
in intermediate duration of 
action neuromuscular block-
ing agents.

Lin 2002 
[61]

Predict the hypnotic 
effect of propofol based 
on clinical parameters

Patients undergoing elec-
tive surgery under total 
intravenous anesthesia

ANN 270 Sn 82,35%; Sp 
64,38%; AUC 0.7552

The model had the ability to 
predict the hypnotic effect 
of propofol bolus induction 
superiorly than the clinician.
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The application of AI in health is not restricted to the 
improvement of traditional clinical methods, but also has 
the opportunity to boost new ways of providing procedures 
in cases where traditional one’s don´t extend to. New CNN-
based models capable of identifying the best site for neu-
roaxis blockade are a new solution to patients with specific 
conditions, especially obese or with spinal pathology. Since 
it’s a technique requiring high precision, it could be really 
helpful in certain patients in which the classic method is 
quite difficult and may even determine the size of the nee-
dle that is used. In these cases, AI is not only optimizing a 
solution, but rather creating a new approach capable of con-
siderable better results. Furthermore, it has the advantage 
that many models can be developed with different data sets 
from various institutions that are specific to the characteris-
tics and demographics of their patients. This technological 
driving force has the potential to standardize globally pro-
vided health care by increasing the speed of the experience-
efficiency curve of some technical procedures and enabling 
user-independent levels of acuity that would take a physi-
cian years of experience to achieve [19].

In the short to medium term, the idea of AI replacing 
humans in medicine does not appear to pose a significant 
threat. In most of the selected papers, AI elements have the 
primary goal of optimizing skills that require human inter-
vention, restricting themselves to the role of auxiliary tools 
in a clinical process that is intrinsically human. Within the 
category of image-guided procedures, the optimization pro-
cess was centred on enhancing picture quality, identifying 
elements (vessels/nerves) and instructing or showing the 
optimal approach, such as the precise puncture location. In 
this field it becomes explicit that all the optimized compe-
tencies have in common the fact they still require a final 
human intervention. Furthermore, it was humans’ responsi-
bility to set the target that algorithms should be trained for, 
since the gold standard used in most studies consisted in the 
opinion of experienced physicians, for example, the label-
ling of elements in an image, underscoring the co-depen-
dency of AI on human intelligence.

We did find some limitations. Contrary to science-based 
evidence in the health field, where the size of the population 
studied is used mostly with the purpose of results analy-
sis, machine learning consumes data to be trained. This data 
must be only used specifically for this step - the learning 
of the algorithm. Later its performance needs to be tested 
on a different set that should be independent enough to 
discriminating the ability of the resulting decision surface 
otherwise, we would be inducing a bias called “overfitting” 
which means we may be overestimating the predictive effect 
of the model since it was trained and tested on sets with 
more similarities than the existing ones in real clinical prac-
tice. To avoid this, the available data must be divided into 

Some literature is already a step further and had evalu-
ated the models in a real-world setting, obtaining better out-
comes than those of conventional methods, measured by the 
improvement of clinical parameters. This fact suggests that 
there is, at least in part, translation of the results obtained 
in experimental studies to real clinical environments. That’s 
the case of Wijnberg’s [24], a randomized control trial, 
which concluded that a machine learning early warning 
system had lower median time of hypotension when com-
pared with standard care. In fact, despite being an integral 
part of healthcare, surgery and anesthesia carry a significant 
risk of complications and death. The use of AI to identify 
patients with a higher risk of developing anesthetic compli-
cations may shorten the time for medical action, improve 
therapeutic efficacy and reduce associated morbidities. In 
this group, we can see two preponderant approaches: some 
systems have been demonstrated to accurately identify 
patients at high risk of development of hypotension, hypox-
emia, and other conditions; while others showed capability 
of predicting and alarming that an event is going to hap-
pen minutes before it happens. The first one allows for pro-
phylactic measures to be taken in these patients, preventing 
the development of these complications with a more cost-
effective approach. The second one is that if these events do 
occur, the clinical team will be able to recognize them more 
quickly, with a more prompt and targeted therapeutic action 
and, consequently, reducing morbidity and mortality.

In the vast majority, the methods created were able to 
demonstrate superior results compared to current clinical 
practice which can be explained by their ability to identify 
complex nonlinear relationships between dependent and 
independent variables and finding patterns in complex data-
sets, with less needing of formal statistical training. One of 
the great advantages of AI, particularly of deep learning, is 
that they are capable of selecting themselves, through com-
putational learning, the best possible set of customized fea-
tures. As a result, the proposed model can uncover complex 
relations that would not seem obvious when using conven-
tional statistics.

Many technologies have been developed to control drug 
administration during anesthesia with the aim of adapting 
the dosage to the patients’ needs and health status. Target 
control infusion (TCI) was the first step in this direction, but 
AI models are a potentially game-changing tool that could 
supplant TCI current performance. This is as a result of its 
capabilities of integrating many clinical variables as inputs, 
which makes it possible for the system to make automatic 
adjustments that are still tailored to the specific needs of the 
patient at that particular time. This strategy can prevent over 
or undershooting of drugs, reducing its hemodynamic con-
sequences, and providing the clinician more time to focus 
on other aspects of the procedure.
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between variables. In a field such as medicine, where it is 
crucial to understand the physiological concepts underlying 
a particular intervention in a clinical setting, this constraint 
has the potential to create trust and transparency issues 
between the physician and artificial intelligence. There have 
already been efforts to develop AI capable of explaining its 
results. Lundberg et al [26] machine-learning’s model can 
help improve the clinical understanding of hypoxemia risk 
by providing general insights into the precise changes in 
risk induced by certain patient or procedure characteristics. 
For instance, it can demonstrate that a patient’s increased 
risk is attributable to variations in the patient’s tidal volume 
or pulse rate. This procedure typically implies finding a bal-
ance between increasing the interpretability of the predic-
tions and reducing the complexity of the machine-learning 
model, at the expense of accuracy. However, the authors 
incorporated in their model recent advances in the area 
with “model-agnostic prediction explanation methods” 
[32] that allow it to be able to provide theoretically justi-
fied explanation without having to reduce its complexity. 
These advancements have the potential to control the black 
box bias, improving the machine learning suitability in the 
medical field.

As future challenges, there is a need for further quantita-
tive investigation with larger and more variable datasets, as 
well as supplementary research focusing on the impact that 
this application can have on patients’ and physicians’ trust, 
satisfaction, and eventual moral or ethical dilemmas.

5 Conclusion

Early efforts to integrate AI systems into anesthesiology 
clinical practice have shown promising results and are 
expected to expand in the near future.

In anesthesiology, it is clear that AI will complement 
or even replace some of the traditional methods, as a tool 
to enhance medical professionals’ decision-making skills, 
diagnostic accuracy and therapeutic response. It is funda-
mental to establish multidisciplinary collaboration between 
physicians and data scientists to strengthen the clinical 
interpretation that is critical for the implementation of this 
technological transition.
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a training set used for the learning phase, and a test set for 
the performance evaluation; most articles used a strategy of 
splitting data in a 3:1 or 4:1 ratio. Even so, the scarcity of 
data prevented an extraction of results as robust as desired.

Despite being described as one limitation of the found arti-
cles, the lack of enough data is indicative of a structural problem 
that can be noted as the greatest current barrier to achieving the 
full potential of AI in health: the lack of a method that enables 
the collection, storage, and standardization of large-scale 
data. Today, the healthcare sector generates large quantities of 
data, but only a fraction of it is accessible for analysis. Prior 
to concentrating efforts on extracting knowledge from data, 
it is imperative to define a strategy for how to efficiently col-
lect it. With Europe as the vanguard, many countries are mak-
ing changes to their laws about data protection and privacy. 
For example, on 3 May 2022, The European Commission 
(EC) released a proposal for the European Health Data Space 
(EHDS), a protocol of a first attempt at a new uniformized and 
shared system that intends to give researchers access to high-
quality health data across borders while protecting patient pri-
vacy. This ambitious project, if implemented correctly, might 
help AI overcome its current bias related to insufficiency data 
in the health field.

A further limitation of several articles is that they are con-
ducted and evaluated in highly controlled environments and 
with stringent exclusion criteria that do not permit evaluating 
the performance of the methods in the face of outliers and the 
vast clinical diversity that exists in hospital clinical environ-
ments. In the bias assessment the principal reason for moder-
ate or high risk was lacking identifying confounding factors 
and stated strategies to deal with them. This is common to all 
groups but especially evident around drug administration con-
trol, where drug variability was largely ignored as the anes-
thesia protocol was defined as only a propofol infusion. In the 
actual surgical environment, patients frequently receive con-
tinuous infusions of multiple drugs, such as opioids and muscle 
relaxants, which can interfere with the hypnotic status, adverse 
intraoperative events and, ultimately, with drug control infu-
sion. Other limitation is that patients with severe comorbidi-
ties were excluded from the greater part of the trials, especially 
those with kidney or liver disease, which are conditions that 
can interfere with drug pharmacokinetic and probably would 
change the developed algorithms, as well as complications dur-
ing surgery (blood loss for instance) that can have great impact 
on drug levels, since it causes dynamic and multiple hemody-
namic changes. All these compromises the generalization of 
the results.

“Black box” refers to the difficulty of AI systems, par-
ticularly deep learning, to explain the clinical rationale of 
the reason that leads to their predictions. Intelligent sys-
tems can, in fact, recognize patterns and make predictions, 
but they are incapable of explaining clinical relationships 
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