
Vol.:(0123456789)1 3

Journal of Clinical Monitoring and Computing (2023) 37:165–177 
https://doi.org/10.1007/s10877-022-00873-7

ORIGINAL RESEARCH

Using generalized additive models to decompose time series 
and waveforms, and dissect heart–lung interaction physiology

Johannes Enevoldsen1,2  · Gavin L. Simpson3  · Simon T. Vistisen1,2 

Received: 23 March 2022 / Accepted: 2 May 2022 / Published online: 13 June 2022 
© The Author(s) 2022

Abstract
Common physiological time series and waveforms are composed of repeating cardiac and respiratory cycles. Often, the 
cardiac effect is the primary interest, but for, e.g., fluid responsiveness prediction, the respiratory effect on arterial blood 
pressure also convey important information. In either case, it is relevant to disentangle the two effects. Generalized additive 
models (GAMs) allow estimating the effect of predictors as nonlinear, smooth functions. These smooth functions can repre-
sent the cardiac and respiratory cycles’ effects on a physiological signal. We demonstrate how GAMs allow a decomposition 
of physiological signals from mechanically ventilated subjects into separate effects of the cardiac and respiratory cycles. Two 
examples are presented. The first is a model of the respiratory variation in pulse pressure. The second demonstrates how a 
central venous pressure waveform can be decomposed into a cardiac effect, a respiratory effect and the interaction between 
the two cycles. Generalized additive models provide an intuitive and flexible approach to modelling the repeating, smooth, 
patterns common in medical monitoring data.

Keywords Hemodynamic monitoring · Central venous pressure · Mechanical ventilation · Signal processing · Statistical 
modelling

1 Introduction

Medical waveforms of physiological measurements, like 
electrocardiogram (ECG), invasive arterial blood pressure 
(ABP), photoplethysmogram (pleth) and central venous 
pressure (CVP), are ubiquitous in settings with closely moni-
tored patients, notably in intensive care units and operating 
rooms. While waveforms of these signals are often displayed 
on a bedside monitor, they are rarely interpreted directly by 
the clinician (the ECG being a notable exception). Instead, 
simple summary characteristics, e.g. heart rate, respiratory 
rate and standard blood pressure features, are automatically 

calculated by the bedside monitor and presented beside the 
waveforms.

The main signal in these waveforms comes from the 
heart. In addition, respiration impacts the waveform, and 
the cyclic respiratory effect can convey important informa-
tion about patient physiology. This is especially recognised 
in fluid responsiveness research where “dynamic” fluid 
responsiveness indicators such as the pulse pressure varia-
tion (PPV) have repeatedly outperformed “static” indicators 
[1, 2]. However, the details of the cyclic respiratory effects 
can be difficult to disentangle, illustrated by the ventilation-
related limitations to PPV such as tidal volume, respiratory 
rate and respiratory system compliance [3].

Researchers have developed several, methods for analys-
ing medical waveforms and derived time series: e.g. pulse 
pressure variation (PPV), cardiac output estimation, hypo-
tension prediction index, etc. While many of these measures 
are useful and often implemented in commercial monitors, 
they do not always reflect what the clinician expects them 
to (e.g. a high PPV from a patient with a subtle arrhyth-
mia). Generally, these complicated algorithms are difficult to 
understand and typically proprietary. This makes it difficult 
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for the clinician to critically consider the algorithm’s analy-
sis of the waveform.

The task of analysing physiological data both compre-
hensively and transparently seems a perfect fit for general-
ized additive models (GAMs). A recent paper by Wyffels 
et al. demonstrates how GAMs can be used to isolate the 
respiratory component of PPV in subjects with atrial fibrilla-
tion [4]. An elegant solution that may be used to guide fluid 
therapy in this patient group.

The aim of this paper is to demonstrate how GAMs can 
be used to decompose waveforms or time series recorded in 
mechanically ventilated patients into separate, physiologi-
cally relevant, components. This allows analysts to focus 
on each component individually. We give a short introduc-
tion to splines and GAMs, and then demonstrate the method 
using two examples. First, we use a time series of pulse 
pressure measurements to give a robust estimate of PPV in 
mechanically ventilated patients with sinus rhythm (a sim-
plified version of the model presented by Wyffels et al. [4]). 
Second, we decompose the CVP waveform into separate, 
physiologically relevant, effects. Finally, we summarise and 
discuss how GAMs might be used in future research and in 
clinical monitoring.

1.1  What is a GAM?

Generalized additive models are both flexible and interpreta-
ble. In the space of statistical models, they reside somewhere 
between simple but rigid methods like linear regression and 
flexible but complex methods like neural networks. With 
GAMs, we can build transparent models, with components 
that represent known physiology.

Hastie and Tibshirani introduced GAMs in 1986, as 
extensions of generalized linear models [5]. Instead of fit-
ting straight lines, GAMs can fit any smooth function. In 
the basic form of a GAM, a smooth function is fitted for 
each independent variable in the model. These functions are 
added together to give the model’s prediction of the depend-
ent variable:

where � is a constant value and f  can be any smooth func-
tion (continuous and with no kinks). In this paper, we do not 
introduce link functions, and we mainly use models with a 
Gaussian conditional distribution.

1.1.1  Cubic splines

Several types of smooth functions can be used to fit data. In 
this paper, we use one type: the cubic spline. A cubic spline 
is built by combining a number of third-order polynomials. 
Each polynomial fits its individual section of the data (e.g., 
a period of time if time is the independent variable) and is 
constrained to join smoothly to the adjacent polynomial(s). 
The intersections between adjacent polynomials are called 
knots. Smoothness at the knots is ensured by constraining 
adjacent polynomials to align at the knots. Specifically, the 
values of adjacent cubic polynomials’ 0th, 1st and 2nd deriv-
atives must be equal at the knots. The knots can be placed at 
will, but a common choice is to position knots at the quan-
tiles (including at minimum and maximum) of the independ-
ent variable, giving the same number of observations in each 
segment (see Fig. 1a). Cubic splines are often additionally 
constrained by fixing the second and third derivative at the 
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Fig. 1  Splines fitted to simulated data (n = 70). The data-generating 
function is Y = sin(X) with added normally distributed noise. a Verti-
cal dashed lines show the position of the 8 knots. *In the cyclic spline 
there are effectively 7 knots, since the first and last line represent a 
single knot, joining the ends of the spline. b Comparison of a penal-

ised and an unpenalised spline fitted to the same data. The unpenal-
ised spline with 20 knots is clearly too wiggly and overfits the data. 
Penalising the spline on wiggliness reduces the risk of overfitting, but 
keeps the model flexible in case the data demand it
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outer knots to zero (making them linear outside the outer 
knots). This is termed a natural cubic spline [6].

To reduce the risk of overfitting, splines can be penal-
ised according to their wiggliness (by default defined as 
the integral of the squared 2nd derivative). A penalised 
spline is fitted to optimise the tradeoff between goodness 
of fit (e.g. high likelihood) and complexity (measured by 
the wiggliness of the function) (see Fig. 1b). The relative 
weight of fit and wiggliness in this tradeoff is controlled 
with a smoothing parameter. This smoothing parameter can 
be automatically optimised to prevent overfitting (e.g. using 
a restricted maximum likelihood approach [7]) or be chosen 
manually. A manual smoothing parameter can be useful if 
there is prior knowledge about the smoothness of one or 
more splines in the model (e.g. the effect of ventilation is 
expected to be very smooth).

1.1.2  Modelling interaction between variables

Interaction terms can be included in two principal ways. 
In the simplest case, one term is continuous ( X1 ) and one 
is categorical ( X2 ). Individual smooth functions are then 
fit for each category [ f

(

X1

)

 for each X2 ]. If both terms are 
continuous, the interaction can be represented as f

(

X1,X2

)

 : 
a function that takes two values and returns one value. This 
can be visualised as a smooth plane where each combination 
of X1 and X2 corresponds to an output (the elevation of the 
plane) (see Fig. 5e.1).

1.1.3  Modelling cyclic data

Some variables repeat cyclically without a marked distinc-
tion between the end of one cycle and the beginning of the 
next. An example is compass direction, where 0° ≡ 360°. 
Likewise, we expect CVP at the end of one respiratory cycle 
to continue smoothly into the next cycle. We can model the 
effect of a cyclic variable with a cyclic cubic spline. A cyclic 
cubic spline is a special case of the cubic spline where the 
first and last knot are treated as one. The beginning and end 
are effectively adjacent, and the respective splines match up 
to the 2nd derivative (see Fig. 1a).

2  Examples

Examples are analysed using R 4.1.0 [8] with packages: 
mgcv 1.8–36 [7], gratia [9] and tidyverse [10]. While the 
paper aims to be language agnostic, sample data and anno-
tated R code are supplied in Online Resource 1 (https:// doi. 
org/ 10. 5281/ zenodo. 63752 21).

2.1  Example data

The data for these demonstrations are recorded during 
abdominal surgery from three consenting patients on pres-
sure control ventilation (recorded as part of a project reg-
istered on ClinicalTrials.gov, NCT04298931 with regional 
ethical committee approval, case: 1-10-72-245-19). Haemo-
dynamic waveforms (125 Hz) were recorded from a Philips 
MX550 using Vital Recorder [11] and ventilator data 
(timestamps for each inspiration start) were recorded from 
a Dräger Perseus A100 using VSCaputureDrgVent [12].

2.2  Example 1: Pulse pressure

In recent years, more complex waveform analysis is being 
implemented in the monitors. One example is ventilator-
induced pulse pressure variation (PPV): a measure com-
monly used to predict fluid responsiveness [13]. While it is 
possible to manually calculate PPV from an arterial pres-
sure waveform, it is neither trivial nor reproducible. Also, 
manually calculated PPV may differ substantially from the 
PPV automatically calculated by the monitor. This is due to 
a sophisticated analysis of the arterial waveform that takes 
multiple respiratory cycles into account [14, 15]. The PPV 
calculated automatically by, e.g., Philips monitors is robust 
to noise and outliers [14], but the steps between the ABP 
waveform and the automatically calculated PPV are prob-
ably unclear to most clinicians.

In the individual, pulse pressure (PP = systolic pressure 
− diastolic pressure) is highly correlated with stroke volume; 
and like stroke volume, PP varies between heart beats. The 
main cause of the short-term variation in PP is respiration, 
and the effect is especially pronounced during controlled 
mechanical ventilation. A beat’s position in the respiratory 
cycle is associated with a specific effect on PP (see Fig. 2c). 
Around the end of the inspiration, PP is above average; and 
during expiration, it drops below average (the phase depends 
on respiratory cycle length).

Variation in pulse pressure (PP) can be understood as the 
sum of three separate effects. First, the effect of ventilation: 
with each breath, PP rises and then decreases. This is caused 
by the breath’s combined effect of both preload and after-
load on both ventricles [13]. It is the size of this effect that 
is related to the response to fluid therapy. Second, PP var-
ies over longer periods, e.g. with changes in vascular tone. 
Third, there is also a fast, effectively random, variation in 
PP: e.g. measurement noise and subtle ‘random’ fluctuations 
in cardiac contractility). This decomposition of PP into three 
separate effects can be described with the equation:

PP = � + f
(

posventilationcycle
)

+ f (time) + �.

https://doi.org/10.5281/zenodo.6375221
https://doi.org/10.5281/zenodo.6375221
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f
(

posventilationcycle
)

 describes the relationship between a heart 
beat’s position in the respiratory cycle and the produced PP 
at that heart beat. f (time) represents the trend in PP over 
time, and � is the mean PP over the entire sample. � repre-
sents the remainder: noise, ‘random’ fluctuation, etc.

The individual observations in this analysis are heart 
beats. For each heart beat, we need to know the time it 
occurred, its position in the respiratory cycle (time since the 
start of the latest inspiration/respiratory cycle length) and 
the pulse pressure of the beat. The timing of each beat was 
assigned the time of the diastole,1 and pulse pressure was 
calculated as systolic minus diastolic pressure (see Fig. 2a 

and b). With this data, the model can be fitted as a GAM 
where f

(

posventilationcycle
)

 is a cyclic cubic spline and f (time) 
is a natural cubic spline.

Fig. 2  How a generalized additive model (GAM) can be fitted to 
a series of pulse pressure measurements (derived from the arterial 
waveform). a and b For each beat, systolic and diastolic pressure are 
detected, and pulse pressure (PP) is calculated. A GAM with two 
smooths c and d is fitted to the PP time series (b). c This first smooth 
represents the variation in PP explained by the beats’ position in the 
respiratory cycle. Coloured points (beats) correspond between panels 

b and c. d The second smooth represents the trend in PP over time 
with the model constant (α) added. The sum of these two smooths 
(b and c) gives the model prediction. Residuals of the model (ε) are 
the vertical distance from the smooth to the points in panel c (i.e. the 
scatters are partial residuals). Dashed curves represent 95% confi-
dence intervals

1 Alternatively, QRS-complexes from the ECG could be used to 
mark the time of each heart beat. Pulse transit time is around 200 ms 
and it varies approximately 10–20  ms with ventilation [16]. There-
fore, using QRS-complexes to time each heart beat would create a 
slight leftwards phase shift of the respiratory cycle smooth (Fig. 2c) 
and a probably unnoticeable effect of the variation in pulse transit 
time. For patients with cardiac arrhythmia, using QRS-complexes 
could aid the analysis. Both because it may be difficult to identify 
individual heart beats from the ABP waveform alone, and because 
pulse transit time might vary significantly between beats.
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After fitting the model, we can inspect the model by plot-
ting the smooth functions over a relevant interval (usually 
the interval containing the original observations) (see Fig. 2c 
and d). In our model of pulse pressure, f

(

posventilationcycle
)

 
represents the variation in pulse pressure with each respira-
tory cycle. Thus, we can use f

(

posventilationcycle
)

 to calculate 
PPV.

where posventilationcycle is between 0 and 100%.
Since α is the mean PP, this is equivalent to the classic 

formula for PPV:

Calculation of a confidence interval for PPV is described 
in Online Resource 1.

Essentially, a GAM facilitates the “step” from panel b 
to panel c in Fig. 2, where the highly deterministic effect 
of heart–lung interactions on pulse pressure is uncovered. 
Calculating PPV from a GAM model takes every beat in 
our sample into account. This makes the PPV estimate less 
sensitive to outliers (min and max being inherently very 
sensitive to outliers). Also, PPV estimated from individual 

PPV =
max

(

f
(

posventilationcycle
))

− min
(

f
(

posventilationcycle
))

�
,

PPV =
PPmax − PPmin

(

PPmax + PPmin

)

∕2
.

respiratory cycles will tend to be lower than PPV calculated 
from a GAM, by a somewhat random amount. Heart beats 
occur at varying positions in the respiratory cycle; often not 
at the positions giving both the maximum and minimum 
pulse pressure. This is especially important in conditions 
with few beats per ventilation [17] (see Fig. 3). Details about 
the shape and phase of f

(

posventilationcycle
)

 may also contain 
important information about the heart–lung interaction, 
though this has not yet been investigated.

2.3  Example 2: Central venous pressure

Hemodynamic waveforms are affected by both the heart and 
the lungs. The CVP waveform has a fast period with the 
length of one cardiac cycle and a slower period with the 
length of one respiratory cycle. For each cardiac cycle, well-
defined features represent atrial contraction (a), tricuspid 
valve closing (c), ventricular contraction (x’), atrial filling 
during ventricular systole (v) and tricuspid valve opening 
(y) [18, 19] (CVP landmarks are shown in Fig. 4b). If the 
patient is on a ventilator, the entire CVP waveform will rise 
with the inspiration and fall with the expiration (see Fig. 4a). 
A third effect is the interaction between the cardiac cycle 
and the respiratory cycle. A cardiac cycle during inspira-
tion produces a CVP waveform that is different from what 
is produced during expiration. Lastly, a number of factors 

32
33
34

0 10 20 30
Time [s]

 P
P 

[m
m

H
g]

Inspiration start

a - Pulse pressure

-2

-1

0

1

2

0% 25% 50% 75% 100%
Time since inspiration start / cycle length

Pa
rti

al
 P

P 
[m

m
H

g]

b - Position in respiratory cycle

32

33

34

35

0 10 20 30
Time [s]

Pa
rti

al
 P

P 
[m

m
H

g]

c - Trend over time

Fig. 3  This patient has a heart-rate-to-respiratory rate ratio just 
beyond 2:1 (52:24). a From the pulse pressure (PP) plot, it is difficult 
to assess pulse pressure variability (PPV), and it seems to be chang-

ing. b When PP is modelled as a smooth function of each beat’s posi-
tion in the respiratory cycle, a tight relationship between respiration 
and PP is revealed. Dashed curves represent 95% confidence intervals
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influence CVP and can change over longer periods. These 
include, but are not limited to: surgical activity, autonomic 
regulation and medication.

In this example, we model the entire waveform; not just a 
time series of derived measurements as in the above example 
with pulse pressure. The unit observations are individual 
samples of a 125 Hz CVP recording. Each sample has a 
value (CVP) and a time. Using this sample time, the timing 
of P waves from the ECG and the timing of each inspiration 
start, we can compute two additional features: the sample’s 
position in the cardiac cycle (time since the latest P wave) 
and its position in the respiratory cycle (similar to example 

1). Timing of P waves was calculated by subtracting a con-
stant, manually measured, PR interval from algorithmically 
determined QRS complex timings. The exact length of the 
subtracted interval is not very important. It simply ensures 
that the atrial contraction is placed in the beginning of a 
cardiac cycle rather than in the end of the previous cycle. 
We model the effect of the cardiac cycle with a non-cyclic 
spline, since cardiac cycles vary slightly in length (due to 
respiratory sinus arrhythmia).

A first approach to modelling CVP from these three fea-
tures could be a simple extension of the PP model proposed 
in example 1:
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This is a strictly additive model and therefore assumes 
no interaction between the effect of ventilation and heart 
beat on CVP; i.e. this model assumes that every heartbeat 
produces the same CVP pattern. This pattern is simply raised 
and lowered with ventilation (see Fig. 4).

This model describes most of the variation in CVP, but 
the depth of the x’ descent (corresponding to the ventricular 
contraction) is systematically off at specific places in the 
respiratory cycle. Clearly, the pattern in CVP produced by 
a heart beat depends on its position in the respiratory cycle. 
To address this, we introduce a smooth interaction term to 
the model.

f
(

poscardiac, posventilation
)

 is a smooth function that represents 
the interaction between the cardiac and respiratory cycles. 
It is based on a non-cyclic spline in the x-direction (car-
diac cycle) and a cyclic spline in the y-direction (respiratory 
cycle). It can be visualised as a surface (or more specifically, 
a cylinder, since it is cyclic in the Y direction), where the 
x-axis represents the cardiac cycle, the y-axis represents the 
respiratory cycle, and the z-axis represents the effect of the 
interaction on CVP (see Fig. 5).

To aid comprehension of the model—CVP as the inter-
action of two repeating cycles—we attach an animation of 
the model’s prediction, simultaneously on a time scale and 
projected onto a plane with cardiac cycle position and res-
piratory cycle position as independent variables (see Online 
Resource 2). The plane is equivalent to the contour plot in 
Fig. 6b, before 250 ml fluid.

2.3.1  Autocorrelation

Like other regression models, a GAM assumes that obser-
vations are independent, conditional on the model (i.e. that 
the residuals are independent). First, if there is some pattern 
remaining in the residuals, it is important to consider that 
the model may have underfitted the data (as in the example 
without an interaction term; shown in Fig. 4). But, even with 
an “optimal” fit, models of high resolution waveforms will 
likely have a high degree of autocorrelation in the residuals, 
as noise itself is often autocorrelated in these waveforms. 
To correct for this, we have included in the CVP models 
a first-order autoregressive model [AR(1)] for the residu-
als (see Online Resource 1 for details). Failure to deal with 

CVP = � + f
(

poscardiac
)

+ f
(

posventilation
)

+ f (time) + �

CVP = � + f
(

poscardiac
)

+ f
(

posventilation
)

+ f
(

poscardiac, posventilation
)

+ f (time) + �.

autocorrelation will give too narrow confidence intervals and 
can cause overfitting [20, 21].

2.3.2  How the CVP waveform changes after a fluid bolus

To illustrate the type of responses that can be estimated, we 
fitted a GAM to two one-minute sections of a CVP record-
ing: the first section before administration of a 250 ml fluid 
bolus and the other after. Separate splines were fitted to each 
section:

where �s is an additional constant, that is zero for the pre-
fluid section, and fs is a spline for each section of data (before 
or after 250 ml fluid). This model also extends the previous 
model (Fig. 5) by using an adaptive smoothing spline to esti-
mate fs

(

posventilation
)

 . An adaptive smoothing spline allows 
the spline’s smoothing parameter to vary across the range of 
the independent variable. This allows the spline to adapt to 
the sharp transition between inspiration and expiration, and 
to fit a subtle disturbance at the beginning of the expiration2 
while remaining smooth in areas where there is no change 
in the effect of the independent variable on the response. 
The model is visualised in Fig. 6. We see that after fluid, 
this subject’s CVP varies more over a cardiac cycle, but less 
over a respiratory cycle, compared to before fluid. This is 
clearest in Fig. 6d. In Fig. 6c, we show the predicted CVP at 
end expiration and at end inspiration before and after fluid. 
This lets us compare how the interaction between the cardiac 
cycle and the respiratory cycle changes with fluid adminis-
tration. The pressure during atrial contraction (a wave in 
Fig. 6c) increases with fluid, but the effect of ventilation on 
this pressure is lower after fluid. Another interesting differ-
ence is the shape of the v wave, representing the pressure in 
the right atrium before the tricuspid valve opening. Before 
fluid, the v wave has a flat peak, but after fluid, it increases 
gradually and reaches a higher pressure. This difference dis-
appears at end-inspiration.

CVP = � + �s + fs
(

poscardiac
)

+ fs
(

posventilation
)

+ fs
(

poscardiac, posventilation
)

+ fs(time) + �,

2 The small disturbance at the beginning of the inspiration corre-
sponds to the closing of the ventilator solenoid valve at end-inspira-
tion. The sudden drop in pressure makes the ventilator tubing move 
and disturb the adjacent CVP line. It is most visible in Fig.  6d, but 
can also be recognized in the residuals in Fig. 5f.
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Fig. 5  How a generalized additive model (GAM) can be fitted to 
a CVP waveform. a Each sample from a 125 Hz CVP waveform is 
represented with three predictor variables: position in cardiac cycle, 
position in respiratory cycle and time (seconds since sample start). 
A GAM is fitted giving the smooth functions b to e (the model con-

stant (α) is added to the smooth function in d. f Model fit including 
residuals that are markedly reduced compared to the model without 
an interaction term, visualised in Fig. 4. Grey shades in panel b, c and 
e represent 95% confidence intervals (often too narrow to be visible)
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2.3.3  Dealing with signal noise

In the examples above, we have fitted data on the assumption 
that errors (residuals) are normally distributed. In practice, 
extreme outliers are much more common than expected from 
a normal distribution. Most of the time, the measured signal 
(e.g. CVP) will reflect the true state with very little noise. 
However, temporary large deflections of the waveform are 
common (e.g. due to manipulation of transducer or tubing). 
Together, these two sources of noise give rise to errors that 
are both non-normal and heteroscedastic (with non-constant 
spread). If we try to fit this data with a model that assumes 
homoscedastic, normally distributed errors, we will likely 
encounter overfitting. This is illustrated in Fig. 7a, where the 
noise at 12 s is also predicted one respiratory cycle earlier—
a least squares regression will prioritise being a little wrong 
twice over being doubly wrong once (since the errors are 
squared).

To remedy the problem with noise having a high impact 
on the fit, an effective approach is to fit the median of the 
signal with a quantile GAM. When fitting the median, there 

is no assumption about the conditional distribution of the 
dependent variable, and outliers (e.g. from noise) have a 
much lower impact on the model fit (see Fig. 7c). The qgam 
package by Fasiolo et al. extends mgcv to allow fitting quan-
tile models [22].

3  Discussion

In this methodological paper, we demonstrate how GAMs 
can be used as a flexible tool for modelling cyclic medical 
time series and waveforms. We give two heart–lung inter-
action examples: The first is a specific use-case: a robust 
calculation of pulse pressure variation from a time series of 
pulse pressure measurements. The second is a demonstra-
tion of how we can use a relatively simple model to fit the 
CVP waveform, with very little preconception of the shape 
of the waveform.

c - Quantile (median) GAM
The same signal as in a, but modelled with at quantile GAM (fitting the median). The remaning model parameters are equal.
The temporary noise has very little effect on the model fit.

b - Gaussian GAM
The same model as in a, but the signal is cropped to exclude the noise.

a - Gaussian GAM
A signal with temporary noise is modelled with a normal, gaussian, GAM. It is clear how the noise is partially fitted
by a respiratory, cyclic, effect, and therefore affects the fit in the remaining respiratory cycles (respiratory rate = 10 min-1).
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Fig. 7  Quantile generalized additive models (QGAM) robustly fit medical signals with non-normal errors. The models correspond to the model 
shown in Fig. 5



175Journal of Clinical Monitoring and Computing (2023) 37:165–177 

1 3

3.1  Possible applications of GAMs

Currently, GAMs are research tools that may aid investiga-
tion of complex, yet deterministic patterns in medical time 
series and waveforms. Respiratory variation in hemody-
namic variables is often just regarded as a potential source of 
error, sometimes dealt with by reporting only end-expiatory 
measurements. There may be clinically relevant information 
in the respiratory variation of measurements and GAMs give 
researchers a powerful tool for visualising and describing 
the effects of ventilation on their measurement of interest. It 
would be interesting to see GAMs like those demonstrated 
here for the CVP waveform and its changes during a respira-
tory cycle correlated to echocardiographic measurements 
like tricuspid annular plane systolic excursion (TAPSE) or 
other measures of right ventricular function. In particular, 
one hypothesis is that the x’ descent and its dynamics dur-
ing a respiratory cycle reflect right ventricular contraction 
against varying afterload [23]. Another CVP feature of inter-
est is the y descent, whose magnitude is related to the rate 
of right ventricular filling during diastole. A large y descent 
has been proposed to indicate a non-fluid-responsive heart 
[24]. This hypothesis, and the respiratory variation in the 
y descent, could be further investigated using GAMs of 
CVP waveforms. CVP morphology has not had a promi-
nent place in the scientific literature for decades, although 
venous return and mean systemic filling pressure are gain-
ing more interest [25, 26]. The detailed dynamics of the 
CVP waveform during mechanical ventilation may reflect 
“upstream aspects” of venous return, mean systemic filling 
pressure and conditions for outflow of organs such as the 
kidneys. These might be elucidated by the diastolic parts of 
the CVP waveform.

A GAM of the arterial blood pressure waveform (and not 
just PPs) could give a more nuanced picture of the variation 
in left ventricular contraction.

As a clinical tool, estimation of PPV using a GAM could 
be implemented in a bedside monitor. The PPV could be 
presented along with a visualisation of the model fit (similar 
to Fig. 2c and d) for a clinician to decide if, e.g., a high PPV 
should be interpreted as noise or a true respiratory variation. 
Such interpretation, however, may require more than basic 
understanding of the physiologic determinants of PPV.

Another intriguing use case is that by Wyffels et al. They 
use a GAM to separate the seemingly random PPV from 
patients with atrial fibrillation into variation caused by ven-
tilation and variation caused by the atrial fibrillation [4]. In 
this regard, both the respiratory component as well as the 
atrial fibrillation component may offer insights concerning 

fluid responsiveness, because blood pressure changes 
induced by filling time changes (induced by extrasystoles) 
have also predicted fluid responsiveness with acceptable 
accuracy in the intensive care unit [27, 28].

3.2  Limitations

In the examples, we use synchronised data from both the 
ventilator and the bedside monitor. This is rarely available 
in data that is not recorded specifically to study heart–lung 
interactions. It is possible to fit these models if only the 
respiratory rate is known (by using the modulo operation 
of time over respiration length), though the phase of the 
respiratory effect will be arbitrary [4]. In many cases, the 
respiratory rate can be assessed by frequency analysis; 
fourier analysis for recordings with a constant sample rate 
(e.g. CVP) or Lomb-Scargle analysis for irregular time 
series (e.g. pulse pressure).

The models presented here assume that all respiratory 
cycles are equivalent. This requires deeply sedated, mechan-
ically ventilated subjects. Therefore, the models presented 
here are most suitable in the setting of general anaesthesia. 
It is possible that the models could be extended to account 
for spontaneous ventilation efforts, e.g., by including esoph-
ageal- or airway pressure as independent variables in the 
model.

The CVP model uses a non-cyclic spline to model the 
effect of a cardiac cycle. We expect that the CVP at the end 
of one cardiac cycle continues smoothly into the following 
cycle, but this expectation is not enforced in our model. We 
cannot simply use a cyclic spline, as they require a fixed 
cycle length, while the cardiac cycle length varies with res-
piration. We could use the relative position in the cardiac 
cycle (from 0 to 1) as the independent variable in a cyclic 
spline, but this assumes that the cardiac cycle effect scales 
linearly with cardiac cycle length (i.e. if the cardiac cycle 
length is 10% longer, the time from, e.g., the ‘a peak’ to 
the ‘v peak’ should be 10% longer), which is not the case. 
Using non-cyclic splines to model the cardiac cycle gives 
the model some “unnecessary” degrees of freedom, and a 
better solution may exist.

It can be computationally expensive to fit GAMs, espe-
cially with large, high-resolution data sets and when inter-
action terms are introduced. The CVP model used in Fig. 5 
takes ~ 60 s to fit on a modern laptop, currently making it 
infeasible for real time implementation. The quantile model 
used in Fig. 7 takes ~ 300 s for just 15 s of signal (1875 sam-
ples). The PP model in Fig. 2 takes only ~ 30 ms.
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4  Conclusion

Generalized additive models provide an intuitive and flex-
ible approach to modelling the repeating signals common to 
medical monitoring data. We hope researchers will use this 
introduction as a starting point for including GAMs in their 
data analyses. Both to answer specific research questions, 
and as a tool to explore and visualise the cardiac effects and 
respiratory effects on hemodynamic measurements and the 
effect of heart–lung interactions.

5  Recommended reading

Generalized Additive Models, An Introduction with R by 
Simon Wood [29].

GAMs in R by Noam Ross, A Free, Interactive Course 
using mgcv (https:// noamr oss. github. io/ gams- in-r- course/).

Modelling Palaeoecological Time Series Using General-
ised Additive Models [20]. An introduction to GAMs with 
a more detailed description of the statistical considerations 
related to modelling time series and the inferences that can 
be drawn from the models.

Hierarchical generalized additive models in ecology: 
an introduction with mgcv [30]. The present paper only 
describes models fitted to data from one individual. A rele-
vant next step is to fit one model across multiple individuals.
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