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Abstract
The Hypotension Prediction Index (HPI) is a commercially available machine-learning algorithm that provides warnings 
for impending hypotension, based on real-time arterial waveform analysis. The HPI was developed with arterial waveform 
data of surgical and intensive care unit (ICU) patients, but has never been externally validated in the latter group. In this 
study, we evaluated diagnostic ability of the HPI with invasively collected arterial blood pressure data in 41 patients with 
COVID-19 admitted to the ICU for mechanical ventilation. Predictive ability was evaluated at HPI thresholds from 0 to 
100, at incremental intervals of 5. After exceeding the studied threshold, the next 20 min were screened for positive (mean 
arterial pressure (MAP) < 65 mmHg for at least 1 min) or negative (absence of MAP < 65 mmHg for at least 1 min) events. 
Subsequently, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and time to event 
were determined for every threshold. Almost all patients (93%) experienced at least one hypotensive event. Median number 
of events was 21 [7–54] and time spent in hypotension was 114 min [20–303]. The optimal threshold was 90, with a sensi-
tivity of 0.91 (95% confidence interval 0.81–0.98), specificity of 0.87 (0.81–0.92), PPV of 0.69 (0.61–0.77), NPV of 0.99 
(0.97–1.00), and median time to event of 3.93 min (3.72–4.15). Discrimination ability of the HPI was excellent, with an area 
under the curve of 0.95 (0.93–0.97). This validation study shows that the HPI correctly predicts hypotension in mechani-
cally ventilated COVID-19 patients in the ICU, and provides a basis for future studies to assess whether hypotension can be 
reduced in ICU patients using this algorithm.
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1 Introduction

During the first wave of coronavirus disease 2019 (COVID-
19) in the spring of 2020, approximately 5% of infected 
patients with symptoms and up to 24% of hospitalized 
patients were admitted to the intensive care unit (ICU) due 
to respiratory failure requiring invasive ventilation [1–6]. 
Since COVID-19 is primarily a pulmonary disease, attention 
has mainly been drawn to optimal ventilation techniques. 
However, many patients also experience circulatory failure, 
reflected by the majority requiring vasopressors to correct 
arterial hypotension [6–9].

Hypotension in general ICU patients is associated with 
acute kidney injury (AKI), myocardial injury, and mortal-
ity [10–14]. While similar research is not yet available for 
COVID-19 patients admitted to the ICU, the disease can 
manifest with myocardial infarction, heart failure, and 
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cardiogenic shock [15], which could directly influence organ 
perfusion. The Surviving Sepsis Campaign recommends 
maintaining mean arterial pressure (MAP) in COVID-19 
patients admitted to the ICU at 60–65 mmHg, to preserve 
adequate tissue perfusion [16]. This can, however, be chal-
lenging in rapidly changing respiratory and circulatory con-
ditions, and hypotension in COVID-19 patients may there-
fore not always be prevented during routine care.

Prevention of hypotension may be realized using predic-
tive algorithms, providing early warnings for impending 
events, which offers the opportunity for intervention before 
the actual event occurs. In 2018, the Hypotension Prediction 
Index (HPI) was presented, a predictive algorithm created 
with machine-learning. The algorithm is trained on invasive 
arterial waveform data of 1334 patients that were admitted to 
the ICU or who underwent surgery [17]. Predictions of the 
HPI are based on arterial waveform changes over time, and 
are displayed as a continuously changing number between 
0 and 100, reflecting the probability of impending hypoten-
sion. According to the developers, hypotensive events were 
accurately predicted 5–15 min in advance, with sensitivity 
and specificity of 0.87–0.92 [17].

Although the HPI was developed using data from ICU 
patients too, external and clinical validation has, thus far, 
only been conducted in surgical patients [17]. Therefore, 
performance of the HPI remains unknown for general ICU 
patients, and COVID-19 patients in particular. This study 
assesses the diagnostic ability of the HPI applied to inva-
sively collected arterial blood pressure data of COVID-19 
patients admitted to the ICU for mechanical ventilation.

2  Methods

This was a single-center, prospective, observational study in 
COVID-19 patients admitted to the ICU for mechanical ven-
tilation at the Amsterdam UMC, location Academic Medical 
Center (AMC). Data were collected from the 10th of April 
2020 until the 29th of May 2020. The study was approved 
by the Ethics Committee of the Amsterdam UMC, location 
AMC (Date: April 8th, 2020/No. W20_160#20.181), prior 
to data collection. All patients surviving their ICU stay or 
their legal representatives provided written consent. Patients 
were eligible if they had a confirmed infection with severe 
acute respiratory syndrome coronavirus 2, had an arterial 
catheter in the radial artery and were expected to receive 
mechanical ventilation for at least eight h onwards. To obtain 
sufficient data for validation, we intended to collect data 
continuously for three consecutive days in all patients. The 
arterial catheter was connected to an Acumen IQ pressure 
transducer (Edwards Lifesciences, Irvine, CA, USA), placed 
at the level of the right atrium and zeroed before start of 
measurements and every eight h afterwards. Fast flush tests 

were performed to ensure that the system was not over- or 
underdamped [18]. The transducer measured arterial blood 
pressure and derived advanced hemodynamic parameters 
from the arterial waveform every 20 s, which were sub-
sequently displayed on EV1000 or HemoSphere monitors 
(Edwards Lifesciences, Irvine, CA, USA). The monitors 
were blinded for treating ICU personnel throughout the 
measurement period. Interventions were at the discretion of 
the treating intensivist and were not influenced by this study. 
After measurements were finished, data were downloaded 
and HPI values were calculated at 20-s intervals post hoc. 
Study conduct and reporting were done in accordance with 
the STROBE and STARD guidelines [19, 20].

2.1  Statistical analysis

Normally distributed data are presented as mean with stand-
ard deviation (SD), non-normally distributed data as median 
[25th–75th percentiles], and categorical data as n (%). Hypo-
tension was defined as a MAP < 65 mmHg for at least 1 min. 
For each patient, monitoring time, number of hypotensive 
events, time spent in hypotension, area under the thresh-
old and the time-weighted average (TWA) of hypotension 
were determined. The TWA of hypotension is a function 
that incorporates both hypotension duration and severity, 
corrected for the total monitoring time [21].

The predictive ability of the HPI was determined using 
a forward analysis similar to Wijnberge et al. [22], starting 
with an HPI value exceeding the studied threshold for at 
least 1 min, after which the next 20 min following the cross-
ing of the threshold were screened for positive (hypotensive) 
events. Positive events were defined as a MAP < 65 mmHg 
for at least 1 min. If the HPI remained below the studied 
threshold for more than 1 min, the next 20-min timeframe 
was screened for negative (non-hypotensive) events, which 
were defined as the absence of a MAP < 65 mmHg for at 
least 1 min. Consequently, timeframes were labeled as true 
positive (TP), false positive (FP), true negative (TN), or false 
negative (FN). After TP, FP, or FN timeframes, the win-
dow was shifted 20 min forward in time, to avoid that events 
would be counted multiple times. To correct for an over-
representation of TNs, these timeframes were counted with 
a maximum of one event every 20 min. Events were consid-
ered to have ended when in the first 20-s sample following 
the event, the MAP reached a value of at least 65 mmHg 
again.

We excluded measurements that were most likely influ-
enced by clinical interventions, such as administration of 
vasopressors (mainly norepinephrine in our institution) or 
application of positional changes (for instance Trendelen-
burg position), resulting in a rapid rise in blood pressure. 
These measurements would otherwise have been classified as 
false positives, unjustly reducing the predictive ability of the 
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HPI. Therefore, data with an increase in MAP of ≥ 5 mmHg 
within 20 s or an increase in MAP of ≥ 8 mmHg within 
2 min, starting from a baseline MAP < 70 mmHg, were cen-
sored, in accordance with earlier studies [17, 22–24].

From the TPs, FPs, TNs, and FNs, sensitivity ( #TPs

(#TPs+#FNs)
 ), 

specificity ( #TNs

(#TNs+#FPs)
 ), positive predictive value (PPV; 

#TPs

(#TPs+#FPs)
 ), and negative predictive value (NPV; #TNs

(#TNs+#FNs)
 ) 

were calculated at every HPI threshold from 0 to 100 with 
incremental intervals of 5. Youden’s J statistic was calcu-
lated to determine the optimal HPI threshold [25]. A receiver 
operating characteristic (ROC) curve was plotted and the 
area under the curve (AUC) was calculated. Furthermore, 
median time-to-event and event rate were determined for 
every HPI threshold. The event rate is computed as the num-
ber of hypotensive events that follow an HPI alarm. To com-
pensate for repeated measurements in this relatively small 
sample size, a bootstrapping procedure was performed with 
100,000 repetitions, resulting in bootstrap-corrected sample 
estimates with a 95% confidence interval (CI) for sensitivity, 
specificity, PPV, NPV, time to event, and event rate. Statisti-
cal analyses were performed with RStudio (R Foundation 
for Statistical Computing, Vienna, Austria) and MATLAB 
(MathWorks, Natick, MA, USA). Graphs were made with 
GraphPad Prism (GraphPad Software, San Diego, CA, 
USA).

3  Results

Data were collected in 41 patients whose characteristics 
are reported in Table 1. Mean age was 60 (9) years and 
61% were male. Median BMI was 28 [26–31], 73% of the 
patients had underlying diseases, primarily chronic arterial 
hypertension and diabetes. Median ICU length of stay was 
18 [11–25] days and 44% of the patients died in the ICU. 
More than half of the population developed AKI, and 20% 
required renal replacement therapy. The majority (71%) 
experienced thrombotic events, such as venous thrombo-
embolism (54%) and pulmonary embolism (44%).

Hypotension statistics of the patients are reported in 
Table 2. Cumulative monitoring time of all patients was 
2822 h (118 days). Median monitoring time per patient 
was 70 [45–77] h. Almost all patients (93%) experienced 
at least one hypotensive event. In total, 1,454 hypoten-
sive events were recorded. Median number of hypoten-
sive events per patient was 21 [7–54] and ranged from 0 
to 177. Median time spent in hypotension was 114 min 
[20–303], which translates to 3% [1–9] of case time. The 
area under the threshold (MAP of 65 mmHg) per patient 
was 286.44 mmHg·min [41.52–998.42]. Median TWA of 
hypotension was 0.08 mmHg [0.01–0.26].

Table 3 lists sensitivity, specificity, Youden’s J statistic, 
PPV, NPV, time to event, and event rate for HPI thresholds 
between 0 and 100 at incremental intervals of 5. While sen-
sitivity and NPV remained equal (1.00) from thresholds 0 up 
to 60, specificity and PPV showed a gradual increase (0.01 
to 0.70 and 0.30 to 0.55, respectively). Median time to event 

Table 1  Baseline characteristics

Data presented as number (%), mean (standard deviation) or median 
[25th–75th percentiles]. Antidiabetic includes both oral antidiabetics 
and insulin
BMI body mass index, COPD chronic obstructive pulmonary disease, 
CKD chronic kidney disease, ACE angiotensin-converting enzyme, 
ICU intensive care unit, AKI acute kidney injury, RRT  renal replace-
ment therapy, DVT deep vein thrombosis, US ultrasound, PE pulmo-
nary embolism, CT computed tomography, LOS length of stay

Variable Value (n = 41)

Age, (yr)
 Min–max

60 (9)
34–76

Male sex 25 (61)
Weight, (kg) 82 [76–94]
Height, (cm) 173 (10)
BMI, (kg·m−1) 28 [26–31]
Current smoker 7 (17)
Comorbidities
Chronic arterial hypertension 20 (49)
Diabetes (type 1 and 2) 13 (32)
Stroke 3 (7)
COPD 3 (7)
Asthma 3 (7)
Myocardial infarction 2 (5)
CKD 1 (2)
Home medication
Antidiabetic 12 (29)
Cholesterol lowering drug 11 (27)
ACE inhibitor 8 (20)
Beta blocker 8 (20)
Calcium channel blocker 8 (20)
Diuretic 7 (17)
Angiotensin II receptor blocker 4 (10)
Platelet inhibitor 6 (15)
Anticoagulant 2 (5)
Symptom duration before hospital admission, (d) 7 [6–10]
Complications during ICU stay
AKI 23 (56)
AKI requiring RRT 8 (20)
DVT, confirmed with US 22 (54)
PE, confirmed with CT 18 (44)
Tracheostomy 9 (22)
Deceased 18 (44)
ICU LOS, (d) 18 [11–25]
In-hospital LOS, (d) 26 [15–45]
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gradually decreased from lower towards higher HPI thresh-
olds. The HPI threshold of 80 yielded a sensitivity of 0.93 
(95% CI 0.84–0.99), specificity of 0.80 (0.72–0.87), PPV 
of 0.62 (0.53–0.71), and NPV of 0.99 (0.98–1.00). The HPI 
threshold of 85, which is the threshold used in the major-
ity of clinical trials, performed better with a sensitivity of 

0.92 (0.82–0.99), specificity of 0.83 (0.76–0.89), PPV of 
0.64 (0.55–0.72), and NPV of 0.99 (0.97–1.00). The opti-
mal HPI threshold was at 90 (Youden’s J statistic of 0.78), 
demonstrating a sensitivity of 0.91 (0.81–0.98), specific-
ity of 0.87 (0.81–0.92), PPV of 0.69 (0.61–0.77), NPV 
of 0.99 (0.97–1.00) and median time to event of 3.93 min 

Table 2  Hypotension statistics

Data presented as number (%) or median [25th–75th percentiles]. Hypotension is defined a as 
MAP < 65 mmHg for at least 1 min
AUT  area under the threshold, MAP mean arterial pressure, TWA  time-weighted average

Variable Value

Monitoring time of all patients combined, (h)/(min) 2,822/169,342
Monitoring time per patient, (h)/(min) 70 [45–77]/4223 [2723–4615]
Patients with hypotension 38 (93)
Total number of hypotensive events 1,454
Hypotensive events per patient
 Min–max

21 [7–54]
0–177

Total hypotension duration of all patients combined, (min) 8,487
Hypotension duration per patient, (min) 114 [20–303]
Hypotension duration per patient, (% of case time) 3 [1–9]
AUT MAP 65 mmHg per patient, (mmHg·min) 286.44 [41.52–998.42]
TWA of hypotension per patient, (mmHg) 0.08 [0.01–0.26]

Table 3  Bootstrap-corrected discriminative ability, Youden’s J statistic, time to event, and event rate at incremental HPI thresholds

Data presented as median (95% CI)
CI confidence interval, HPI Hypotension Prediction Index, PPV positive predictive value, NPV negative predictive value

HPI threshold Sensitivity Specificity Youden’s 
J statistic

PPV NPV Time to event, (min) Event rate

0 1.00 (1.00–1.00) 0.01 (0.00–0.02) 0.01 0.30 (0.22–0.38) 1.00 (1.00–1.00) 4.96 (4.74–5.17) 0.21 (0.15–0.28)
5 1.00 (1.00–1.00) 0.12 (0.06–0.19) 0.12 0.30 (0.21–0.38) 1.00 (1.00–1.00) 4.85 (4.64–5.07) 0.22 (0.16–0.29)
10 1.00 (1.00–1.00) 0.20 (0.12–0.28) 0.20 0.31 (0.28–0.40) 1.00 (1.00–1.00) 4.76 (4.55–4.97) 0.22 (0.16–0.29)
15 1.00 (1.00–1.00) 0.26 (0.17–0.35) 0.26 0.33 (0.24–0.42) 1.00 (1.00–1.00) 4.74 (4.53–4.96) 0.23 (0.17–0.30)
20 1.00 (1.00–1.00) 0.31 (0.22–0.41) 0.31 0.33 (0.25–0.43) 1.00 (1.00–1.00) 4.69 (4.48–4.90) 0.24 (0.18–0.31)
25 1.00 (1.00–1.00) 0.37 (0.27–0.46) 0.37 0.35 (0.26–0.44) 1.00 (1.00–1.00) 4.68 (4.47–4.89) 0.26 (0.19–0.33)
30 1.00 (1.00–1.00) 0.44 (0.34–0.54) 0.44 0.37 (0.28–0.46) 1.00 (1.00–1.00) 4.60 (4.39–4.81) 0.27 (0.21–0.34)
35 1.00 (1.00–1.00) 0.52 (0.42–0.62) 0.52 0.39 (0.30–0.48) 1.00 (1.00–1.00) 4.61 (4.40–4.82) 0.30 (0.23–0.37)
40 1.00 (1.00–1.00) 0.57 (0.47–0.67) 0.57 0.42 (0.34–0.51) 1.00 (1.00–1.00) 4.51 (4.30–4.73) 0.34 (0.27–0.41)
45 1.00 (1.00–1.00) 0.61 (0.51–0.71) 0.61 0.45 (0.36–0.54) 1.00 (1.00–1.00) 4.47 (4.26–4.68) 0.36 (0.29–0.44)
50 1.00 (1.00–1.00) 0.64 (0.54–0.74) 0.64 0.52 (0.43–0.60) 1.00 (1.00–1.00) 4.41 (4.20–4.62) 0.43 (0.36–0.50)
55 1.00 (1.00–1.00) 0.67 (0.57–0.76) 0.67 0.54 (0.45–0.62) 1.00 (1.00–1.00) 4.41 (4.20–4.62) 0.45 (0.38–0.52)
60 1.00 (1.00–1.00) 0.70 (0.60–0.79) 0.70 0.55 (0.46–0.64) 1.00 (1.00–1.00) 4.36 (4.15–4.57) 0.47 (0.40–0.54)
65 0.99 (0.99–1.00) 0.73 (0.64–0.81) 0.72 0.57 (0.48–0.66) 1.00 (0.99–1.00) 4.29 (4.09–4.50) 0.50 (0.43–0.58)
70 0.99 (0.98–1.00) 0.76 (0.67–0.83) 0.75 0.60 (0.51–0.68) 1.00 (0.99–1.00) 4.22 (4.01–4.43) 0.55 (0.47–0.63)
75 0.94 (0.86–1.00) 0.78 (0.70–0.85) 0.72 0.61 (0.52–0.70) 0.99 (0.98–1.00) 4.23 (4.01–4.45) 0.58 (0.50–0.66)
80 0.93 (0.84–0.99) 0.80 (0.72–0.87) 0.73 0.62 (0.53–0.71) 0.99 (0.98–1.00) 4.20 (3.98–4.43) 0.60 (0.53–0.68)
85 0.92 (0.82–0.99) 0.83 (0.76–0.89) 0.75 0.64 (0.55–0.72) 0.99 (0.97–1.00) 4.10 (3.89–4.33) 0.63 (0.56–0.71)
90 0.91 (0.81–0.98) 0.87 (0.81–0.92) 0.78 0.69 (0.61–0.77) 0.98 (0.97–1.00) 3.93 (3.72–4.15) 0.69 (0.61–0.76)
95 0.80 (0.67–0.90) 0.96 (0.94–0.98) 0.76 0.81 (0.73–0.87) 0.98 (0.96–0.99) 3.54 (3.27–3.82) 0.83 (0.77–0.88)
100 0.00 (0.00–0.00) 1.00 (1.00–1.00) 0.00 - 0.80 (0.74–0.85) - -
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(3.72–4.15). Figure 1 shows the ROC curve with an AUC of 
0.95 (0.93–0.97). Event rate for incremental HPI thresholds 
is presented in Fig. 2.  

4  Discussion

This validation study shows that the HPI correctly predicts 
hypotension prior to the actual event, in mechanically ven-
tilated COVID-19 patients in the ICU. Although analyses 
were performed in a subgroup of ICU patients only, this is 

the first time that the HPI is externally validated in critically 
ill patients. Discrimination ability of the HPI algorithm in 
this cohort can be considered excellent, with an AUC of 
0.95.

Notably, for all HPI thresholds between 0 and 90, sen-
sitivity was > 0.9, while specificity steadily increased and 
reached a value of > 0.8 at HPI thresholds of 80 and above. 
This implies that the HPI is able to rule out hypotensive 
events with great certainty. Furthermore, the higher HPI 
thresholds also demonstrated satisfactory performance at 
identifying impending hypotension. The optimal thresh-
old at which both sensitivity and specificity are at its 
maximum, can be mathematically determined with the 
Youden's J statistic [25], which is a trade-off between the 
two. In this study, the optimal HPI threshold was 90, with 
a sensitivity of 0.91 and specificity of 0.87, a Youden’s J 
statistic of 0.78, and a median time to event of 3.93 min. 
This threshold differs significantly from previous studies, 
reporting optimal HPI thresholds between 22 and 41 [17, 
23, 24]. A possible explanation is that we applied a dif-
ferent type of analysis, compared to previous trials. As 
described in detail by Wijnberge et al. [22], the forward 
analysis also performed in this study, relates better to clini-
cal practice since an increased HPI value is the starting 
point, rather than the hypotensive event itself. Differences 
in the analysis could have led us to label certain time-
frames differently than we would have in the case of a 
backward analysis, which presumably yields other results. 
Furthermore, the vastly different setting of this study and 
the contrasting hemodynamic profile of the COVID-19 
patient, compared to a surgical patient, may have con-
tributed. Although the majority of COVID-19 patients in 
the ICU receive vasopressors [6–9], they are considered 
hemodynamically relatively stable [26]. Surgical patients 
on the other hand, receive frequent interventions and sur-
gical manipulation, resulting in decreased hemodynamic 
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stability. This is supported by the hypotension statistics 
reported in this study. In our cohort, relatively little hypo-
tension was reported (median 3% of case time, versus 
6–11% in surgical patients) [17, 23, 27], which probably 
results in fewer FN predictions of the HPI, thus leading 
to a high sensitivity for almost all studied thresholds. The 
optimal HPI threshold is therefore mainly determined by 
the reported specificity, which gradually increased towards 
higher HPI values, due to fewer FP predictions of the HPI 
in those regions. Our alternative statistical approach and 
the different hemodynamic profile of the patients studied, 
likely resulted in different sensitivity and specificity num-
bers, which makes our results less comparable to some 
previous trials.

To date, performance of the HPI has been externally 
and clinically validated in five observational studies and 
three randomized controlled trials (RCTs) [28]. In non-
cardiac surgical patients, external validation has been 
done on invasive [23] and non-invasive [22, 24] arterial 
waveform data. All these three trials reported sensitivity 
and specificity > 85%, based on HPI values 5 min prior to 
the event (in the case of a backward analysis), or based 
on an HPI value of 85 (in the case of a forward analysis). 
Furthermore, HPI performance has been evaluated dur-
ing cardiac surgery, where it performed moderate to good, 
with sensitivity of 0.62–0.84 and specificity of 0.78–0.84 
[27, 29]. These promising results have provided a basis 
for three randomized clinical trials, to study whether pre-
diction could result in a (clinically relevant) reduction of 
intra-operative hypotension. The first RCT published com-
pared 25 patients, scheduled for hip arthroplasty, treated 
with goal-directed HPI-guided hemodynamic therapy to 
24 patients receiving routine care. Interventions were ini-
tiated at an HPI threshold of 80. Duration of hypotension 
was significantly reduced in the intervention group [30]. 
The second RCT was conducted in a heterogeneous surgi-
cal population consisting of 68 patients who were assigned 
to an HPI-guided treatment protocol, which was initiated 
when a threshold of 85 was exceeded, or to standard care. 
Compared to the controls, the intervention group spent 
less time in hypotension [31]. The third RCT conducted 
in non-cardiac surgery patients, concluded that the HPI 
did not decrease the amount of hypotension, which might 
be explained by low hypotension exposure in the control 
group or insufficient adherence to the treatment protocol 
[32]. In summary, the HPI has been validated in several 
clinical settings with moderate to good results, and showed 
a positive effect on decreasing intraoperative hypotension 
in two out of three RCTs. However, the ICU is a vastly 
different setting and patients present with critical illness, 
compared to relatively healthy patients undergoing sur-
gery. Whether the HPI will decrease hypotension during 
ICU stay is unknown, but the promising findings of this 

study add to previous results from earlier trials and pro-
vides an entry point for prospective HPI-guided trials in 
critically ill patients.

Whether prevention of hypotension in ICU patients leads 
to less morbidity remains unknown, but several retrospec-
tive studies reported that hypotension in ICU patients is 
associated with myocardial injury, AKI, and mortality 
[10–14]. Not only depth, but also duration is an important 
determinant of morbidity in these patients [10–12]. Such 
findings suggest that even short durations of hypotension 
may impair adequate tissue perfusion and oxygenation and 
thus may result in organ damage. Although associations 
between hypotension and complications during or after ICU 
admission in COVID-19 patients have not been reported, 
one could hypothesize that this might be the case in this 
population as well, especially since ICU length of stay in 
this population is relatively long. In our cohort, 93% of the 
patients experienced hypotension and the median TWA of 
hypotension was 0.08 mmHg, which is lower than reported 
in patients undergoing non-cardiac surgery [31, 33], possi-
bly due to the different factors described before. Neverthe-
less, hypotension in this cohort was observed in almost all 
patients, indicating that routine hemodynamic monitoring 
and treatment could be improved in our institution.

This is a single center, external validation study of the 
HPI in mechanically ventilated COVID-19 patients. Valida-
tion of the HPI should be repeated at various institutions and 
preferably with larger sample sizes in order to determine the 
replicability of the current findings. The HPI should also 
be validated on other (non-COVID-19) ICU patients, to 
translate the current results to a more heterogeneous ICU 
population. Furthermore, RCTs with access to HPI data in 
ICU patients with and without COVID-19, with evaluation 
of patient outcome would help to determine clinical appli-
cability. A warning on impending hypotension could have a 
considerable impact on patient care, as predicted hypoten-
sive events could help clinicians to move from a reactive 
towards a proactive state, thereby minimizing or prevent-
ing hypotension exposure. This is especially true during a 
pandemic, when shortages in staffing may be an issue and 
machine-learning algorithms can thus be of assistance in 
monitoring multiple patients at the same time.

4.1  Limitations

There are several limitations of this study that should 
be addressed. Different definitions apply to hypoten-
sion and one definition may not apply to all patients. In 
a recent international survey among ICU personnel, a 
MAP < 65 mmHg has been reported most frequently as 
their currently used definition [34]. Although this defini-
tion is also used in our hospital, we may have included 
patients in this trial where lower or higher blood pressure 
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targets have deliberately been accepted. We did not 
exclude these patients, which might have influenced our 
results. Clinical applicability of the HPI is limited to 
patients requiring a target MAP of 65 mmHg, which is 
a limitation of the algorithm and not this trial per se, but 
reduces generalizability of the current findings to ICU set-
tings with MAP targets other than ours.

Furthermore, we obtained measurements with a median 
duration of 3 [2–3] days per patient, while median length 
of stay in the ICU was 18 [11–25] days. Although we 
included patients consecutively, there were no restrictions 
on when measurements could be obtained during admis-
sion. We only refrained from measurements if the expected 
remaining ventilation period was less than eight h. This 
led to start of measurements at a median of 6 [3–12] days 
after ICU admission, possibly affecting the incidence and 
severity of hypotension.

During measurements, clinical interventions by personnel 
were not registered, since this was not feasible with multi-
ple simultaneous measurements. In the analyses, we have 
tried to correct for clinical interventions influencing blood 
pressure, such as administration of vasopressors, fluids, or 
application of positional maneuvers. Data exclusions based 
on rapid blood pressure changes as described in the methods 
will cover most of these interventions, but we cannot rule 
out the possibility that some were not excluded, affecting the 
reported sensitivity, specificity, PPV, and NPV.

5  Conclusions

In conclusion, this first external validation of the HPI in 
ICU patients showed promising results in prediction of 
impending hypotension. Further studies are warranted to 
evaluate algorithm performance in a different ICU popu-
lation, for example, hemodynamically unstable septic 
patients. We also need to investigate if appropriate clini-
cal intervention following hypotension prediction results 
in hypotension reduction in ICU patients.
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