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Abstract
Heart rate variability (HRV) provides an excellent proxy for monitoring of autonomic function, but the clinical utility of 
such characterization has not been investigated. In a clinical setting, the baseline autonomic function can reflect ability to 
adapt to stressors such as anesthesia. No monitoring tool has yet been developed that is able to track changes in HRV in real 
time. This study is a proof-of-concept for a non-invasive, real-time monitoring model for autonomic function via continuous 
Poincaré quantification of HRV dynamics. Anonymized heart rate data of 18 healthy individuals (18–45 years) undergoing 
minor procedures and 18 healthy controls (21–35 years) were analyzed. Patients underwent propofol and fentanyl anesthesia, 
and controls were at rest. Continuous heart rate monitoring was carried out from before aesthetic induction to the end of 
the surgical procedure. HRV components (sympathetic and parasympathetic) were extracted and analyzed using Poincaré 
quantification, and a real-time assessment tool was developed. In the patient group, a significant decrease in the sympa-
thetic and parasympathetic components of HRV was observed following anesthesia (SD1: p = 0.019; SD2: p = 0.00027). No 
corresponding change in HRV was observed in controls. HRV parameters were modelled into a real-time graph. Using the 
monitoring technique developed, autonomic changes could be successfully visualized in real-time. This could provide the 
basis for a novel, fast and non-invasive method of autonomic assessment that can be delivered at the point of care.
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1 Introduction

The autonomic nervous system (ANS) consists of two main 
components, the sympathetic and the parasympathetic 
nervous system (SNS and PSNS respectively), which are 
responsible for a wide variety of multisystem homeostatic 
changes, and play a part in the modulation of heart rate 
variability (HRV). Heart rate variability (HRV) provides 
an potential proxy for characterization of autonomic nerv-
ous system function. Ultimately, variability in heart rate 
results from continuous modulation of the sino-atrial node 
(SAN) by the autonomic nervous system, which varies in 
response to multiple factors such as respiratory rate [1], 
homeostatic reflexes and centrally generated physiological 
patterns. Together, these factors influence the sympatho-
vagal balance; it is this balance that ultimately defines the 
heart rate variability [2]. In a clinical setting, impairments 
in autonomic function [3, 4] may be reflected by changes 
in heart rate variability [2]. As autonomic dysregulation is 
a major risk factor for complications of anesthesia such as 
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bradycardia and hypotension [5–8], information regarding 
the autonomic function of patients both before and during 
anesthesia can be of great value to anesthetists. Thus far, no 
routine, point-of-care monitoring system has been developed 
to assess autonomic function in patients before and during 
anesthesia. Heart rate variability has been shown to mirror 
changes in autonomic function [9, 10], which can be evalu-
ated through the use of Poincaré plots. Poincaré plots are 
non-linear, geometrical representations of HRV dynamics 
over a period of time [11, 12], in which the HR value at a 
given time, HR(t), is plotted against the value of the next HR 
value, HR(t + 1) throughout the duration of the recording 
(Fig. 1) [12]. Each point therefore represents the relationship 
between two consecutive heartbeats, thus providing a visual 
representation of beat-to-beat variability over time. Despite 
the validation of this technique as means of analyzing HRV 
[13, 14], it remains to be applied clinically.

This study sets out to provide an initial proof-of-concept 
for a novel tool that utilizes HRV as a surrogate measure of 
autonomic function to provide real-time, accurate and non-
invasive measurement of autonomic function that can be 
delivered at the point of care.

2  Method

2.1  Ethical approval

Ethical approval for data collection in this study was granted 
by the West Midlands Research Ethics Committee (NHS 
REC ID: 14/WM/0179, IRAS project ID: 156151). It was 
also conducted according to the UK Good Clinical Practice 
in Research (Research Governance Framework for Health 
and Social Care 2005) and Patients Protection Act 1998.

2.2  Patients

Anonymized continuous heart rate data recordings of 18 
young and healthy (18–45 years) patients undergoing propo-
fol anesthesia for arthroscopic surgery were used for analy-
sis. Anesthesia was induced using a standardized protocol of 
propofol (3.5 mg/kg ± 1.3) followed by fentanyl (1.6 mcg/kg 
± 0.7), and a record was made of any further interventions, 
such as fluid challenges and vasoactive drug administration. 
All of the participants received positive pressure ventilation. 
The depth of anesthesia in patients was monitored using a 
BIS™ monitoring system with a target of 40–60.

Control data was extracted from the freely available 
online Fantasia dataset [15] from the Massachusetts insti-
tute of Technology (MIT), that includes anonymized heart 
rate data from healthy young volunteers (21–35 years) at 
rest. Fantasia is an open database created by the Massachu-
setts Institute of Technology in 1999 and was obtained on 
line. It contains the resting ECG recordings of 20 young 
(21–34 years old) and 20 elderly (68–85 years old) healthy 
subjects. We analysed data from 18 young subjects, to match 
the number of the patient dataset. ECG, respiratory rate and 
blood pressure recordings were made while the patients were 
lying supine and fairly still, and watching the Fantasia film.

2.3  Data collection

A 12-lead ECG was used to collect heart rate data in the 
Fantasia group, and a  LiDCOrapidV2  CNAP® Module 
(CNSystems Medizintechnik AG, Graz, Austria) was used 
to record cardiovascular parameter data in the patient group. 
The latter consists of a finger sensor that measures arterial 
diameter by means of infrared light, and an inflatable cuff 
over the proximal phalanx of the middle and index fingers 

Fig. 1  Poincare plots before (‘Stage 1’—left) and after (‘Stage 2’—
right) anesthesia. Stage 1 anesthesia illustrates baseline data and it is 
defined as 5 min of recording prior to induction of anesthesia. Stage 
2 anesthesia illustrates maintenance of anesthesia and it consists of 
5  min taken during anesthesia. Changes in the plot shapes indicate 

changes in parasympathetic (SD2) and sympathetic (SD1) tone. HR(t) 
indicates the HR at the first beat, whereas HR(t + 1) indicates the HR 
of the next heartbeat; each data point therefore represents the rela-
tionship between HR of two successive heart beats
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that monitors blood pressure. The CNAP system recorded 
heart rate and other cardiovascular parameters, with a sam-
pling frequency of 100 Hz; in the control dataset the ECG 
was sampled at 150 Hz. Once the HR data was obtained, the 
HR time series of both patients and controls was resampled 
at 1 Hz for Poincaré plotting and analysis. Standardisation 
of the HR time series frequency was necessary to ensure 
homogeneity across datasets and to avoid artificially low 
HRV as a result of higher sampling frequencies (and vice 
versa). Standardisation is also necessary for Poincaré analy-
sis, which relies on a uniform time difference between each 
time series point. In the patient group this was achieved by 
linear interpolation. In the control group this was achieved 
using the function ‘tach’ (WFDB toolbox for Matlab) [15, 
16], which produces a uniformly sampled and smoothed 
instantaneous heart rate signal from heart-beat annotation 
files (the annotation files are available as part of the Fantasia 
dataset). Poincaré plots and SD1/2 measures were subse-
quently estimated from the HR data.

2.4  Poincaré plot analysis

Data analysis was performed in MatLab r2016b [17] (MAT-
LAB R2016b. Natick, Massachusetts: ©The MathWorks Inc., 
2016).

Poincaré plots are non-linear and geometrical representa-
tions of HRV. The plot is a cluster of points along the line 
x = y (the line of identity), and every point on this line rep-
resents two heart beats of the exact equal rate, or successive 
identical RR intervals. Generally, any deviation above this 
line indicates an acceleration in heart rate form one beat to 
the next, and any deviation below it indicates a deceleration. 
The movement of points along the line represents long-term 
changes in heart rate. A wide, and long plot indicates high 
overall variability, which is indicative of a high level of auto-
nomic tone, whereas narrow, bullet shaped plots indicate 
low HRV, and are typical of patients with a low level of 
autonomic function.

Poincaré plots can be analyzed both visually and geo-
metrically. Visually, large, fan-shaped plots have been shown 
to indicate a prevalence of PSNS activity, whereas narrow 
and long, torpedo-like plots indicate a prevalence of SNS 
activity. Quantitatively, plots can be analyzed by fitting an 
ellipse to the distribution of points, and measuring the width 
of the distribution along (SD2) and perpendicularly to the 
identity line (SD1) [11, 12]. The ‘width’ of a Poincaré plot 
(SD1) has been described as a direct measure of beat-to-beat 
variability, and therefore parasympathetic activity [10, 13], 
with a wider SD1 indicating higher parasympathetic tone. 
Similarly, Brennan et al. [14] linked sympathovagal balance 
to the ‘length’ of the Poincaré plot (SD2) [18]. In this study, 
SD1 and SD2 are used to characterize HRV and, therefore 

autonomic function, in a young cohort of patients during 
surgery under propofol general anesthesia.

2.5  Data extraction

HRV was quantified when patients were awake and during 
anesthesia using Poincaré plots and their respective SD1 and 
SD2 measures based on the subjects’ continuous heart rate 
readings. To this aim, two separate stages were extracted 
from each continuous recording of cardiovascular data:

(1) Stage 1 (before anesthesia), which consists of 150–
300 s window of HR data immediately preceding anes-
thetic induction;

(2) Stage 2 (during anesthesia), which consists of a 300-s 
window of HR data taken between the 15th and 30th 
min of surgery.

Care was taken to extract time segments that did not 
involve the administration of fluid challenges, vasoactive or 
ionotropic drugs for Stage 2 in patients undergoing anesthe-
sia. In the control group, two 300-s intervals were extracted 
at the same time points for comparison: 0 to 5 min, and 
15–20 min. Values of heart rate and mean arterial pres-
sure during Stage 1 and Stage 2 were also extracted for all 
patients.

HRV in each stage was analyzed using MatLab, using 
the Poincaré SD1/SD2 estimation functions described in 
Piskorski et al. [12]. Data was filtered to remove noise and 
ectopic beats, whereby data exceeding a threshold ± 20% 
were excluded, as recommended by Karlsson et al. [19]. The 
SD1 and SD2 parameters at Stage 1 and 2 were then com-
pared. Significance was tested using a Mann–Whitney–Wil-
coxon test (p < 0.05).

Furthermore, the real-time applicability of a Poincaré-
based tool of HRV dynamics was investigated. This analy-
sis was performed on post-hoc data for proof-of-concept. A 
‘sliding window’ model was created in order to sequentially 
analyse data and therefore to build a model for a tool that 
can be applied on continuous, live data. The Poincaré plot 
parameters SD1 and SD2 were estimated over 20 s win-
dows, which were updated every 5 s, therefore analysing 
data sequentially from start to end. Several possible win-
dow lengths for SD1/2 extraction were investigated, ranging 
from 5 to 120 s, to obtain the highest resolution possible 
while preserving accuracy. Through these investigations it 
was found that a 20 s window provided the highest resolu-
tion with lowest levels of noise. Windows of less than 20 s 
resulted in graphs with large amounts of noise, because the 
measurement of SD1 and SD2 was, in such cases, derived 
from 5 consecutive beats or less. On the other hand, win-
dows longer than 20 s did not result in reduction of noise but 
displayed data with less time resolution; the shortest window 
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possible was therefore selected to provide the highest resolu-
tion with minimal noise.

2.6  Outcome measure

1. Estimation of SD1 (sympathetic tone—SNS) and SD2 
(parasympathetic tone—PSNS) Poincaré parameters 
from HRV at baseline and during anesthesia.

2. Real-time modelling of HRV dynamics over the record-
ing period, producing a model for autonomic monitoring 
in real-time.

3  Results

3.1  Poincaré plot quantification: SD1 and SD2

Quantification of Poincaré plots demonstrated visible 
changes in HRV (Fig. 1), which were mathematically quan-
tifiable across the two stages. ‘Stage 1’ (baseline) SD1/2 
were compared with ‘Stage 2’ values (during anesthesia). 
The comparison is shown in Fig. 2 and Table 1. Following 
anesthesia, both SD1 and SD2 values decreased, and these 
differences were significant (p = 0.019 and p = 0.00027), thus 
indicating significant suppression of both SNS and PSNS 
activity. HRV observed in resting controls was unchanged 
between Stage 1 and Stage 2 (Fig. 3) (Table 1).

3.2  Real‑time monitoring: sliding window analysis

SD1 and SD2 were measured sequentially in 20-s windows 
sliding by 5-s, and plotted throughout the surgery for each 

patient. Examples of graphs using varying sampling length 
are provided in Supplementary Figs. 1–5. This was used to 
graphically model HRV and, therefore, autonomic func-
tion dynamically and in real-time. There was a marked 
decrease in, and lower variation of, both SD1 and SD2 
following administration of propofol to patients (Fig. 4). 
Similar trends in SD1 and SD2 were not observed in the 
control group (Fig. 5).

Fig. 2  Boxplots of average SD1 and SD2 before (‘Stage 1’—left) and after (Stage 2’—right) anesthesia, indicating changes in parasympathetic 
and sympathetic tone between the two stages. SD1 sympathetic function, SD2 parasympathetic function

Table 1  HRV quantification before (‘Stage 1’) and after (‘Stage 2’) 
anesthesia

Stage 1 anesthesia illustrates baseline data and it is defined as 5 min 
of recording prior to induction of anesthesia. Stage 2 anesthesia illus-
trates maintenance of anesthesia and it consists of 5 min taken during 
anesthesia. For the control data, Stage 1 consists of data from 0 to 
5 min of the recording, and Stage 2 of data from 15 to 20 min of the 
recording. Significance was tested for using a Mann–Whitney–Wil-
coxon U-test. Statistically significant difference are indicated with an 
asterisk

Mean Median IQR p

Patient SD1
 Stage 1 (baseline) 3.53 3.24 1.86 0.019*
 Stage 2 (maintenance) 1.86 0.96 1.33

Patient SD2
 Stage 1 (baseline) 11.3 12.3 5.80 < 0.001*
 Stage 2 (maintenance) 4.35 3.68 4.02

Control SD1
 Stage 1 (0–5 min) 1.51 1.40 0.69 0.950
 Stage 2 (15–20 min) 1.46 1.46 0.70

Control SD2
 Stage 1 (0–5 min) 5.28 5.29 1.83 0.393
 Stage 2 (15–20 min) 5.22 4.41 2.97
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4  Discussion

This study demonstrates a potential use of Poincaré analy-
sis as a means to non-invasively characterize autonomic 
function in real-time. The shape of the Poincaré plots of 
the patients markedly converged following anesthesia in 
terms of ‘width’ and ‘length’, thus reflecting a decrease 
in both sympathetic and parasympathetic tone. This was 
quantified mathematically and could be visually appreci-
ated on the real-time sliding window graph. Results from 
this study therefore validate the use of Poincaré plots for 

HRV quantification. This has been shown in the literature: 
Kamen et.al. [9] decisively validated Poincaré analysis of 
HRV trends on patients whose autonomic function was 
modulated pharmacologically or orthostatically: the width 
of the Poincaré plots was reduced during SNS-stimulating 
head-up tilt and anticholinergic atropine administration, 
but was increased after scopolamine, a known parasympa-
thetic stimulant. Other than Poincaré plots, further meth-
ods of HRV analysis include time–frequency analysis, 
which is also commonly used. This involves power spec-
tral density (PSD) analysis of electrocardiogram (ECG) 
waveform data, which categorizes HRV values into high 

Fig. 3  Boxplots of SD1 and 
SD2 from the resting controls 
taken at two time points during 
the recording, ‘Stage 1’ (left) 
and ‘Stage 2’ (right). SD1 
sympathetic function, SD2 
parasympathetic function

Fig. 4  Sliding window analysis of SD1 and SD2 of a patient under-
going anesthesia using a 20-s window, indicating parasympathetic 
and sympathetic tone in real-time. SD1 sympathetic function, SD2 
parasympathetic function. HRV is measured in SD, represenitng geo-

metrical measures of distribution of the data points along the iden-
tity line. LMA laryingeal mark airway, Fluclox flucloxacillin, NDAN 
ondansentron
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frequency (HF), medium frequency (MF) and low fre-
quency (LF) components with HF mainly reflecting PSNS 
activity, and LF the sympathovagal balance [20]. However, 
this is not a method that can be applied in real-time, and 
has been shown to be susceptible to high levels of respira-
tory noise [21]. Poincaré plots have been shown to be less 
affected by respiratory noise compared to other methods 
of heart rate variability analysis and correlate directly to 
PSD data [13, 14]: Poincaré width (SD2) reflects parasym-
pathetic activation, and SD1 (length) reflects sympathetic 
antagonism to vagal tone. Furthermore, the SD1/SD2 ratio 
is analogous to the previously used spectral measure of LF/
HF ratio, indicating sympathovagal balance. Hsu et al. [18] 
performed a retrospective study on patients undergoing 
anesthesia to assess Poincaré plots as a means of assessing 
ANS modulation, and compared these to time–frequency 
analysis. Similarly to Brennan et al., a correlation was 
found between Poincaré and spectral measures, but Poin-
caré was deemed more accurate and easily obtainable. Hsu 
et al. reported that the autonomic suppression observed 
using HRV of patients undergoing anesthesia was dynamic 
and reflective of the known autonomic depressant effect 
of propofol in real-time [22, 23], which is in line with 
reported findings of the present study. Despite the numer-
ous validations of its significance, Poincaré analysis of 
HRV has not yet been used as a real-time tool for clinical 
purposes. Our study presents a first proof-of-concept and 
could, therefore, contribute to the development of a means 
to routinely and conveniently measure autonomic function 
in patients at the point of care. This provides a scope for 

personalization of anesthetic protocols and pre-surgical 
risk stratification. This is especially relevant in light of the 
increasing number of studies that have begun to investigate 
and prove the value of HRV in predicting complications of 
anesthesia and surgery [24, 25] (Fig. 6).

There are several limitations to consider. Firstly, the real-
time analysis model was applied to data following, and not 
during, data collection. The designed tool was able to reflect 
changes in autonomic function in real-time graph by analys-
ing data on a window-by-window basis. It therefore analysed 
the data sequentially as if in real-time, but the data used 
for the analysis had been pre-collected. Following positive 
results from this retrospective proof-of-concept data, further 
adjustment of the system will be needed to apply the tool to 
truly real-time data at the point of collection, rather than ret-
rospectively. This study therefore provides a model, and not 
a finished product, for the analysis of data in real-time. How-
ever, it is important to note that the proposed HRV analysis 
model is transferable to live data without the need for devel-
oping a specialized module, via a direct interface between 
the patient monitor and a laptop device, where the HR data 
can be streamed and analysed directly, and an SD1/2-based 
index displayed on the laptop monitor. Software for such 
direct monitor-laptop interface already exist, e.g. VSCapture 
(open source software, https ://sourc eforg e.net/proje cts/vscap 
ture/). Additional software may need to be implemented in 
order to calculate the SD1/2 indices, e.g., in Python (Python 
Software Foundation, https ://www.pytho n.org/). After an 
initial delay of 20-s (to buffer sufficient data as per the anal-
ysis presented in our work) the index can be updated every 

Fig. 5  Sliding window analysis of SD1/2 of a control subject during 
a resting period using a 20-s window, indicating parasympathetic and 
sympathetic tone in real-time. SD1 sympathetic function, SD2 para-

sympathetic function. HRV is measured in SD, represenitng geomet-
rical measures of distribution of the data points along the identity line

https://sourceforge.net/projects/vscapture/
https://sourceforge.net/projects/vscapture/
https://www.python.org/
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second as per the model presented in this study. Secondly, 
the analysis tool that was constructed is based on continu-
ous analysis of Poincaré plots derived from HR data. The 
plots constructed, therefore, reflect the relationship between 
two consecutive HR values. The HRV analysis was therefore 
based on pulse rate variability (PRV); this has been validated 
as a feasible and equivalent alternative to HRV calculation 
by RR-interval analysis for the analysis of HR data derived 
form pletysmography [26–28]. The rationale behind using 
HR estimated by the LidCO CNAP monitoring system and 
not using ECG-derived R–R intervals is mainly for reduc-
ing algorithmic complexity and improving accuracy. Estima-
tion of R–R intervals from ECG requires additional analysis 
to estimate the exact locations of the QRS complexes and 
identification of the fiducial points, which is non-trivial in 
noisy or low amplitude ECGs. This is particularly impor-
tant considering that recordings are performed in the noisy 
environment of the operating theatre where ECG sensors are 
susceptible to artifacts such as electrode movement (which 
introduces baseline wander in the measurements) and noise 
from the use of various surgical equipment. The HR data 
derived from the LiDCO CNAP finger sensor is less noisy 
and using this data directly allows a more flexible, cheaper 
and less complex ‘plug-and-play’ implementation. However, 
a limitation is that the SD1 and SD2 variables obtained from 
HR and RR intervals are not directly comparable. The con-
version of HR data to RR interval data is relatively simple, 
but this would have added a further layer of complexity 
and, subsequently, potential error as the data would still 
reflect HR-derived RR intervals and not true RR intervals. 
It remains important to consider that differences in recording 

methods (12-lead ECG versus LidCO CNAP by finger ple-
thysmography) may have given rise to intrinsic variation 
in the heart rate readings between controls and subjects. A 
further potential limitation of the study rests in the sam-
pling frequencies of the data collection methods. The CNAP 
system records cardiovascular parameters with a sampling 
rate of 100 Hz. Even though sampling frequencies greater 
than 250 Hz are generally recommended for HRV analysis 
(from ECG R–R intervals), Mahdiani and colleagues have 
shown that a sampling rate as low as 50 Hz could be used 
for measuring the ECG signal without compromising the 
accuracy of the calculated time domain HRV parameters 
[29]. Nevertheless, increasing the sampling frequency of 
the input data is a factor that warrants further investigation. 
Furthermore, before its clinical application, comparison to 
other previously validated tools available for assessment the 
ANS (e.g., state entropy, response entropy, Surgical Pleth 
Index [30] or Analgesia Nociception Index [31]), subtraction 
of the respiratory effect on HRV and further refining of the 
noise-reduction filter may also be warranted.

Consideration must be given to how patient morbidity 
may affect HRV. For example, conditions such as heart 
failure [32] and use of some medications [33] are likely to 
change HRV dynamics, and the impact of such variables 
investigated. During anesthesia itself, several factors may 
also affect HRV. Cardioactive agents (atropine, ephedrine), 
fluid boluses, and the effect of operative events on HRV 
must be considered, as these agents exert their effects by 
direct modulation of the autonomic nervous system, and 
are therefore likely to have a profound effect on HRV. 
The operating theatre is an inherently noisy environment, 

Fig. 6  Continuous monitoring data for heart rate and mean arterial pressure corresponding to subject undergoing anaesthesia whose HRV moni-
toring data is depicted in Fig. 4. LMA laryingeal mark airway, Fluclox flucloxacillin, NDAN ondansentron
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with artefacts arising from the procedure itself, such as 
intubation, knife to skin, diathermy etc., that are difficult 
and sometimes impossible (particularly in the case of 
diathermy) to remove. This is an issue even with com-
mercially available systems, e.g., the BIS monitor stops 
displaying an index when diathermy is used. However, any 
measures derived from heart rate variability, such as SD1 
and SD2, reflect the continuous modulation of the sino-
atrial node and are, thus, bound to display some additional 
physiologically-related variation.

The ability to non-invasively and continuously measure 
HRV in real-time can be useful in clinical practice. The pro-
posed tool has the potential to be employed in a continu-
ous real-time monitoring system during anesthesia within 
the operating theatre, providing the anesthetist with direct, 
quantitative information about autonomic tone in real-time. 
Future development of this tool involves its trial on live data 
during collection, and the evaluation of its value as a pre- 
and in-surgical assessor and predictor of complications [34].

Our findings support the feasibility of Poincaré plot anal-
ysis for use in the development of a dynamic, non-invasive 
and real-time autonomic function characterization during 
anesthesia via the HRV. Such a tool would provide a faster, 
easier and more accessible ANS monitoring tool than the 
currently available methods of testing and, pending fur-
ther development, has a wide scope for potential clinical 
applications.
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