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Abstract Continuous electronic monitoring of patient

respiratory status frequently includes PetCO2 (end tidal

CO2), RR (respiration rate), SpO2 (arterial oxygen satura-

tion), and PR (pulse rate). Interpreting and integrating these

vital signs as numbers or waveforms is routinely done by

anesthesiologists and intensivists but is challenging for

clinicians in low acuity areas such as medical wards, where

continuous electronic respiratory monitoring is becoming

more common place. We describe a heuristic algorithm

that simplifies the interpretation of these four parameters in

assessing a patient’s respiratory status, the Integrated Pul-

monary Index (IPI). The IPI algorithm is a mathematical

model combining SpO2, RR, PR, and PetCO2 into a single

value between 1 and 10 that summarizes the adequacy of

ventilation and oxygenation at that point in time. The

algorithm was designed using a fuzzy logic inference

model to incorporate expert clinical opinions. The algo-

rithm was verified by comparison to experts’ scoring of

clinical scenarios. The validity of the index was tested in a

retrospective analysis of continuous SpO2, RR, PR, and

PetCO2 readings obtained from 523 patients in a variety of

clinical settings. IPI correlated well with expert interpre-

tation of the continuous respiratory data (R = 0.83,

p\\\ 0.001), with agreement of -0.5 ± 1.4. Receiver

operating curves analysis resulted in high levels of sensi-

tivity (ranging from 0.83 to 1.00), and corresponding

specificity (ranging from 0.96 to 0.74), based on IPI

thresholds 3-6. The IPI reliably interpreted the respiratory

status of patients in multiple areas of care using off-line

continuous respiratory data. Further prospective studies are

required to evaluate IPI in real time in clinical settings.

Keywords Respiratory compromise � Respiratory
monitoring � IPI � Capnography � Composite index

1 Introduction

Accurate assessment of patient respiratory status is an

essential requirement of good patient care in all clinical

settings: from pre-hospital and emergency care, through the

spectrum of acute care within the hospital, and finally on

the general medical surgical ward, respiratory status is a

cornerstone of patient management. Spot checks of respi-

ratory rate and SpO2 cannot provide a complete picture of

respiratory status [4]. Continuous monitoring of oxygena-

tion and ventilation using capnography and pulse oximetry

allows providers to review trends in respiratory parameters

not captured by intermittent monitoring, and promotes

timely medical intervention that may prevent a respiratory

arrest [1]. Recent publications have highlighted the added

value of continuous capnography monitoring particularly

when supplemental oxygen is being administered. Sup-

plemental oxygen is often administered to patients under-

going procedural sedation and those receiving post-

operative opioids, thus compromising the effectiveness of

pulse oximetry monitoring alone in the timely recognition

of respiratory insufficiency [2, 3]. The Anesthesia Patient

Safety Foundation [4], American Society for Pain Man-

agement Nursing [5], and Joint Commission [3] recom-

mend continuous monitoring of oxygenation and

ventilation for patients at risk for respiratory compromise
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who receive opioids and sedatives [6], and the American

Society of Anesthesiologists recommends the same for

patients undergoing moderate to deep sedation calling for

monitoring for the presence of exhaled carbon dioxide [7].

However, not all healthcare professionals are trained in

interpreting four continuous channels of capnography and

oximetry data, and ‘information overload’ may lead to

erroneous conclusions rather than being helpful [8].

Research has shown that individuals have difficulty inter-

preting the overall significance of more than three param-

eters monitored concurrently [9]. In addition, high nursing

staff turnover requires repeated training as new clinicians

join a ward. There exists a need for simple, objective

monitoring tools that may be easily deployed in hospital

wards and do not require prolonged training to be used

effectively.

We have developed a tool that simplifies the interpre-

tation of continuous oximetry and capnography monitor-

ing, allowing for expansion of this important monitoring

modality into the ward space. The Integrated Pulmonary

Index (IPI), an index score based on the integration of

SpO2, PetCO2, RR and PR resulting in a single value

representing respiratory status on a scale of 1 (critical

respiratory insufficiency) to 10 (optimal respiratory status).

This is the first commercially available tool incorporating

ventilation and oxygenation into a single respiratory index

score. Other indexes made use of vital sign parameters

providing an early warning of patient deterioration and

were developed using a ‘‘departure from normality’’

approach [11] as reported by Tarrasenko et al. In this report

we present the design, development and validation of the

IPI tool. We believe this to be the first example of a fused

respiratory vital signs index based on implementing an

expert rule system using fuzzy logic.

2 Methods

2.1 The IPI algorithm

IPI is a mathematical model that integrates four vital signs:

end-tidal carbon dioxide (PetCO2), respiratory rate (RR),

peripheral oxygen saturation (SpO2), and pulse rate (PR). A

questionnaire was presented to 22 clinicians with expertise

in respiratory monitoring, including nurses, doctors, anes-

thesiologists, and respiratory therapists. The questionnaire

consisted of 85 combinations of the four parameters

(PetCO2, RR, SpO2, and PR). The clinicians were asked to

assign an IPI value from 1 to 10 to each combination of

values, with a ‘1’ denoting ‘immediate intervention

required’ to a ‘10’ denoting ‘no action required’ (Table 1).

A fuzzy logic inference model [12] was then built using

MATLAB� Fuzzy Logic ToolboxTM software

(Mathworks, Inc). Fuzzy logic is a model mimicking a

human’s way of logical thinking, in that it deals with

reasoning that is approximate rather than precisely

deduced. Fuzzy logic uses verbal descriptors to define

variables such as normal, high, low, and logical functions

such as ‘‘If—then’’, ‘‘Or’’ and ‘‘And’’. Membership func-

tions were assigned for each parameter based on the results

of the clinician questionnaires and on commonly accepted

tables in the literature. With these functions, vital-sign

measurements were assigned membership in a set. For PR

and SpO2, sets were high (H), normal (N), and low (L). For

PetCO2 and RR, the sets were very high (VH), high (H),

normal (N), low (L), and very low (VL).

A rule set was created to relate the inputs to an output

matrix, using a verbal descriptor of the membership func-

tions. For example, if (PetCO2 is VH) and (RR is VH) and

(SpO2 is N) and (PR is H) then (IPI is 2). The rules are

summarized in table format (Figs. 1, 2). The fuzzy logic

operators used were: min for AND, max for OR, max for

aggregation, and centroid of area for ‘de-fuzzification’. The

fuzzy rules and membership functions were fine-tuned

using an iterative process in which the experts were pre-

sented with additional sample cases and with the generated

rules. The algorithm was designed as non-adaptive to

patient pre-existing conditions or to trends over time pro-

viding absolute values requiring no customized setup by

the clinician.

IPI is calculated by simultaneously evaluating the values

of the four parameters. The final algorithm rules are

illustrated in the following Figs. 1, 2. The rules matrix

reflects the interactions between PetCO2 and RR and their

effect on the IPI (Fig. 1). The effect of SpO2 is described

demonstrating the decrease in IPI value as SpO2 decreases

(Fig. 2). Pulse rates (PR) outside of the normal range will

affect the IPI score as a secondary parameter as follows: If

PR is L, and PetCO2 is H/VH, and RR is H/VH, then one is

subtracted from the calculated IPI value. If PR is H, and

PetCO2 is L/VL, and RR is L/VL, then one is subtracted

Table 1 IPI Patient Status Descriptors
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from the IPI calculated value. All rules are applied

simultaneously, yet the calculation of IPI can be demon-

strated step by step. For example, in a case where

RR = 12 BPM, PetCO2 = 26 mmHg, SpO2 = 90 % and

PR = 70 BPM, we first use the table in Fig. 1, and assign

IPI value according to the relations between RR and

PetCO2, IPI = 8. Next we use the table in Fig. 2, where

SpO2 effect on the previously calculated IPI is presented, to

find that IPI drops from 8 to 5. PR does not affect IPI value

in this example, according to the rule set.

2.1.1 Pediatric modes

In pediatric patients, normal vital sign ranges are age

dependent. Three pediatric age ranges were used to cal-

culate develop the pediatric IPI modes: ages 1-3 years,

3-6 years and 6-12 years. RR and PR membership

functions were defined following literature review and

discussion with eight pediatric experts (MDs and respira-

tory therapists) following the same methodology used for

the adult data. The PetCO2 and SpO2 membership func-

tions and the rules matrix were the same for adult and

pediatric modes. IPI is not intended for children less than

1 year of age because the parameter ranges depend heavily

on body weight and gestational age [13, 14].

2.2 Model verification

A group of 22 clinicians independently scored 85 different

combinations of the four parameters on the IPI scale from 1

to 10. We evaluated the correlation between the clinician

derived IPI scores and calculated IPI scores using linear

regression analysis and assessed the agreement between

these measurements [bias (mean difference) and precision

(standard deviation of the differences)] by the Bland–Alt-

man technique for multiple observations [15].

2.3 Reliability analysis

We hypothesized the IPI would recognize actionable res-

piratory events with a high level of sensitivity and therefore

direct the clinician to rapidly assess the patient and inter-

vene. The reliability of the IPI algorithm was evaluated

against prospectively defined clinically significant events at

different IPI thresholds. Events were divided into two

categories for analysis: clinically significant events and

If RR=4 BPM (VL) and PetCO2=72 mmHg (VH) and
PR=60 BPM (N) and SpO2=96% (N) then IPI=2

If RR=17 BPM (N) and PetCO2=48 mmHg (N/H) and PR=60 BPM
(N) and SpO2=96% (N) then IPI=8

Fig. 1 IPI algorithm rules. IPI is the intersection point of RR and

EtCO2 values, assuming Normal PR and SpO2. Gray areas reflect

partial membership in the adjacent range

Sp
O
2
(%

)

IPI according to PetCO2 and RR rules

IPI=8 based on RR-PetCO2 table. With Normal SpO2 (e.g.96%), it
will stay 8, when SpO2=90% IPI drops to 5, if SpO2=87% IPI
drops to 3 (see arrows)

Fig. 2 IPI algorithm rules—IPI

values adapt to changing SpO2

patient values
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severe events. The rationale of this approach was that not

all respiratory events have equal importance and would

trigger the same level of urgency in clinician response.

Severe events were considered to warrant immediate

intervention. Clinically significant events were considered

actionable but not requiring immediate intervention. The

goal of the analysis was to establish the sensitivity and

specificity levels of the algorithm in detecting events that

would trigger clinical interventions.

2.3.1 Event definition

Severe and clinically significant events were prospectively

defined by clinicians based on published criteria for acute

life-threatening events [16–19]:

Severe events

• Apnea—PetCO2 = 0 mmHg, RR = 0 bpm for at least

30 s.

• Severe hypoxia—SpO2 B 85 % for at least 15 s.

Clinically significant events

• Central or obstructive apnea: PetCO2 = 0 mmHg,

RR = 0 bpm for at least 15 s.

• Bradypnea and hypoventilation with hypoxia:

PetCO2[ 50, RR\ 8, SpO2\ 90 % for at least 15 s.

• Non bradypneic hypoventilation with hypoxia:

PetCO2\ 30, RR 8-12, SpO2\ 90 % for at least

15 s.

• Hypoxia: SpO2\ 90 %, any PetCO2 and RR values for

at least 15 s.

2.3.2 Data

Datasets of continuous recordings (sample rate at least 1 s)

of PetCO2, RR, SpO2, and PR in a variety of clinical

environments were used to create a clinical database

(Table 2). This data was obtained from previous clinical

trials in humans sponsored by the company and all had

approval of ethics committees. IPI values were then cal-

culated for each patient data set throughout the data

recording. Inclusion criteria into the new database were the

continuous recording of all four parameters for at least 10

consecutive minutes. This new database was then subjected

to further analysis.

2.3.3 Analysis

Prospectively defined severe and clinically significant

events as defined above were identified in the compre-

hensive recorded database. Similarly, we identified ‘‘IPI

events’’ for each threshold of IPI (where IPI event is

defined as IPI B threshold value (1-9) for at least 15 s.).

Then the continuous data was divided into 1-min epochs

with overlap of 15 s. Epochs with events were identified

and counted with the assumption of no interdependence of

events. Sensitivity and specificity were calculated per each

IPI threshold (Table 3), followed by receiver operating

curve (ROC) analysis.

3 Results

3.1 Model verification

The fuzzy logic inference IPI model was compared to

experts’ IPI assessments (Fig. 3). The final model produced

very similar results to those of the experts’ assigned IPI

scores (Bias = -0.5, SD = 1.4) with high correlation

(R = 0.83, p\ 0.001). Across all experts and cases, the

average absolute difference between experts and the model

was 1.00 ± 0.35. Agreement between the model and the

experts’ views is also apparent in the distribution of dif-

ferences; where the absolute difference was less than 2 for

70 % of the data tested, and less than 3 for 92 % of the

data.

3.2 Reliability assessment

The database consisted of recordings of 556 cases and 33

were excluded due to short time duration. The remaining

523 cases constituted a total of 2563.3 h of valid patient

data recordings with a median case duration of 1.5 h

(0.2-45.2 h) per patient. The breakdown of the areas of

care is presented in Table 4.

ROC analysis for detection of severe events at different

thresholds of IPI demonstrated high sensitivity of IPI. At

all thresholds tested, the sensitivity was above 0.99

(AUC = 0.995, CI 0.9994-0.9996, p � 0.0001). The

specificity decreased with the decrease in IPI threshold.

For the set of clinically significant events, ROC analysis

(Fig. 4) demonstrated a very high sensitivity for IPI B 6

(AUC = 0.977, CI 0.9767-0.9778, p � 0.0001). At an

IPI threshold of 3, sensitivity of 0.83 and specificity of 0.96

were calculated for clinically significant events. We eval-

uated false negative events at an IPI threshold of 3 and

found that most of these events were transient hypoxia

events in which short episodes of SpO2 values between 88

and 90 % occurred and were quickly resolved whenever

hypoxic events progressed to severe events as defined

above, the IPI recognized all events with a sensitivity of 1.

The ROC demonstrates that the textual descriptors are well

aligned with the actual performance of the algorithm. All
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Table 2 Studies comprising clinical data used in the retrospective analysis

Studies comprising clinical

database

Study description

1. Quantitative and Qualitative Assessment of the Frequency and Validation of Alarms on the Alaris Medical PCA

system with Oridion EtCO2 module, conducted at St Joseph’s Candler Health System, Savannah GA

Principal investigator: Ray Maddox, PharmD

Area of care: General Floor

2. Smart Respiratory index—Clinical Evaluation Plan conducted at Hadassah University Medical Center in

Jerusalem, Israel

Principal investigator: Dr. David Gozal. MD

Area of care: Pediatric Gastroenterology under procedural sedation

3. Quantitative and Qualitative Assessment During an Upper Endoscopy Procedure of the Oxygen Delivery and

EtCO2 sampling with the Smart Bite Bloc Mark III with oral O2 Delivery conducted at Bikur Holim Medical

Center in Jerusalem, Israel

Principal investigator: Prof. Samuel Adler

Area of care: Adult Gastroenterology under procedural sedation

4. Validation of the Oridion Capnography System in the PrehosPital and Emergency Department Setting

Conducted at U.S. Army Institute of Surgical Research, Texas, USA

Principal investigator: Dr. Jose Salinas, PhD

Area of care: Adult trauma—EMS

5. Smart ResPiratory index—Clinical Evaluation Plan (Hadassah), conducted at Hadassah University Medical

Center in Jerusalem, Israel

Principal investigator: Dr. David Gozal MD

Area of care: Procedural Sedation

6. Quantitative and Qualitative Assessment of the IPI set in Sha’are Zedek Medical Center, conducted at Sha’are

Zedek Medical Center in Jerusalem, Israel

Principal investigator: Prof. Yaacov Gozal MD

Area of care: Post Anesthesia Care

7. Comparison of the efficacy and safety of intravenous remifentanil PCA and epidural PCEA for labor analgesia.

Conducted at the EPidural PCEA for labor analgesia, Jerusalem, Israel

Principal investigator: Dr. Carolyn F Weiniger MD MRCA.

Area of care: labor analgesia

8. Capnography Library-data collection in the critical care environment, conducted at Shaare-Zedek Medical

Center in Jerusalem, Israel

Principal investigator: Dr. Sharon Einav MD

Area of care: ICU

9. A Pilot investigation to investigate the influence of CO2 sampling site on measured exhaled carbon dioxide during

non-invasive pressure ventilation (NPPV)’. Conducted at Medical College of Georgia, Augusta, GA, USA

Principal investigator: Arthur A. Taft, PhD., RRT

Area of care: ICU

10. Prospective Observational Clinical Trial to Investigate the Clinical Utility of the Integrated Pulmonary Index TM

(IPITM) to Predict Ability to Wean from Mechanical Ventilation’. Conducted at the Rush University Medical

Center, Chicago, IL, USA

Principal investigator: David Vines, MHS, RRT

Area of care: ICU

11. A Pilot investigation to investigate the influence of CO2 sampling site on measured exhaled carbon dioxide during

non-invasive pressure ventilation (NPPV)’. Conducted at The University of Alabama at Birmingham,

Birmingham, AL, USA

Principal investigator: Arthur A. Taft, PhD., RRT

Area of care: ICU
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severe and clinically significant events were correlated

with low IPI values (Fig. 4).

The results demonstrate that the reliability of the algo-

rithm in the detection of clinically significant events

depends on the IPI threshold selected. At IPI settings of

3-6, a high level of reliability was demonstrated for both

severe events and clinically significant events.

4 Discussion

Continuous respiratory monitoring using both capnography

and pulse oximetry can reduce the number of severe res-

piratory events and provide an early warning to clinicians

when a patient’s status is deteriorating [1, 10, 16, 18, 20].

The analysis demonstrates high levels of sensitivity

(0.83 for clinically significant events and 0.977 for severe

events with IPI equal to or less than 3), for the IPI recog-

nizing correctly clinically significant and severe events. In

doing so, the IPI may be able to alert staff to patient events

using a simple single digit algorithm, easy for the general

ward staff to recognize. When patients experience pre-de-

fined severe or clinically significant events, the index

indicates that attention or immediate intervention is

required. The textual descriptors presented in Table 1

provide appropriate guidance to the attending clinicians

and could be particularly valuable for the less experienced

clinician attending patients on a general ward.

The high specificity of the IPI for these events indicate

the potential utility of the algorithm in preventing ‘‘cry

wolf’’ scenarios, in which clinicians fail to respond to

actionable device alarms due to high proportion of nui-

sance alarms from multiple devices in the hospital, with

sometimes dire consequences [20]. When the IPI values are

low, our analysis demonstrates the patient is experiencing a

significant or severe respiratory event with a high level of

probability. In cases when IPI values were equal to or

lower than 3, yet the criteria for severe or clinically sig-

nificant events were not met, we speculate whether these

cases could still be indicating imminent deterioration due

to the combination of changes in multiple parameters and

this is a direction for future research. These cases may also

highlight a known phenomenon of SpO2 being a lagging

indicator of respiratory depression.

It is important to note that if clinicians select monitoring

thresholds or definitions of events requiring intervention

that are not consistent with the expert user definitions that

were the basis for the algorithm assumptions, sensitivity

will suffer [21]. This was the main reason the study by

Berkenstadt et al., perceived lack of sensitivity, since they

defined hypoxemia requiring clinician attention as SpO2

Fig. 3 Cluster diagram

showing the distribution of IPI

value assignments for 85 cases

by 18 medical experts reviewing

the adult data, the average of

their scores (Avg) and the fuzzy

logic inference (FL model).

Columns are cases, rows are

expert or model. Color range:

blue IPI = 10; red IPI = 1

Table 3 Truth table used for calculation of sensitivity and specificity

per IPI threshold

Clinical event

detected in epoch—

positive

No-clinical event

detected in epoch—

negative

IPI event detected in

epoch—positive

TP FP

No-IPI event

detected in

epoch—negative

FN TN

Sensitivity was calculated as TP/(TP ? FN) and specificity as TN/

(TN ? FP)
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values below 92 % which is inconsistent with the algo-

rithm. In the small scale study of 52 patients by Berken-

stadt et al., no events requiring clinical intervention

occurred which limits the applicability of this study for

evaluating the general validity of the algorithm.

In our analysis we present ROC graphs for different IPI

thresholds and distinguish between severe and clinically

significant events, cognizant of the different needs across

varying areas of care and patient types. Each institution

would qualify the appropriate settings that would best

address the clinical needs and the hospital policies the IPI

alarm threshold should be set according to these principles.

A future research direction would be the evaluation of the

IPI as an alarm reduction tool through the use of the IPI

alarm as a substitute for single parameter alarms.

We reiterate that although the reliability of IPI was

tested using data streams from actual patients, the clinical

events against which the algorithm was tested were not

actual, but synthetically defined by the thresholds listed

above for ‘clinically significant’ and ‘severe’ events. It

stands to reason that the absence of CO2 for greater than

30 s on the capnograph should raise an alarm for an apneic

patient. However, we have no clinical correlation from the

site that the patient was actually apneic during the event.

The sampling cannula may have been dislocated or

removed. Thus the predictive values of the algorithm

assume the signal is intact, free of noise, and accurately

sampled and this may be considered a study limitation.

Respiratory events are a major cause of pre-

ventable deaths and simple tools to facilitate continuous

patient monitoring and early identification of respiratory

compromise are in need to address this challenge [1]. The

IPI has been demonstrated to accurately detect and present

respiratory events in a simple and clear manner and

therefore could have a valuable role in improving respira-

tory monitoring practices. A potential application of this

algorithm could be in the simplification of respiratory

monitoring of post-operative patients receiving PCA anal-

gesia as part of their treatment and may have value in

controlling these pumps as part of a closed loop feedback

system. These patients are typically found on the general

wards in hospitals with the nurse being tasked with the care

of multiple patients. Tools that may simplify the manage-

ment of these patients and help prevent respiratory

depression through a simple notification (e.g. IPI value fell

beneath a certain threshold or a change in trend of IPI over

time) are needed as hospitals seek to improve patient out-

comes through prevention. Future studies will be required

to assess the use as a predictive tool for early warning and

the clinical utility of the IPI algorithm in different clinical

environments including the application as a tool to reduce

non-actionable alarms.

5 Conclusions

The objective of the IPI algorithm is to simplify patient

monitoring through real-time analysis of PetCO2, RR,

SpO2, and PR, providing a single number that accurately

indicates a patient’s respiratory status in a simple and

objective manner. This simplification can extend the safety

net of continuous respiratory monitoring far beyond the

OR, ICU and PACU areas and onto the wards. The algo-

rithm reflects the assessment of an expert group of

clinicians.

Table 4 Breakdown of clinical data by areas of care used in the

retrospective analysis

Area of care Number of valid

cases

Post-operative analgesia1 18

Gastroenterology procedural sedation2,3 84

Trauma EMS4 94

Procedural sedation5 57

Post-anesthesia care unit6 43

Labor analgesia7 39

Intensive care unit8-11 188

Total 523

1–11 The references to Table 4: The names of the clinical studies from

which the clinical data used in the analysis was gathered

Fig. 4 ROC plot for detection of clinically significant events using

IPI (o—IPI threshold)
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The IPI accurately identified all prospectively defined

severe events and identified clinically significant events at

high levels of sensitivity and specificity.
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