Skip to main content
Log in

Preparation, Characterization, and Application of Novel Ternary PPS/PVA/Fe3O4 Nanocomposite for Enhanced Visible Light Photocatalytic Degradation of Methylene Blue

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This study used a simple co-precipitation method to fabricate a novel polymer-based photocatalyst that displayed effective photocatalytic activity towards the degradation of methylene blue (MB) solution under visible light irradiation. Due to its excellent properties, intrinsic polarization, and asymmetric structure, polyphenylene sulfide (PPS) was utilized in the magnetic ternary PPS/PVA/Fe3O4 nanocomposite. The analytical techniques confirmed the desirable combination of the photo-initiated Fe3O4 nanoparticles as the strong oxidizers with the high adsorption capacity of PPS and the binding and conductive effects of polyvinyl alcohol (PVA). Binary nanocomposites of PPS/Fe3O4 and PVA/Fe3O4 were also prepared to compare their photocatalytic activities with that of the PPS/PVA/Fe3O4 sample. The optimum degradation occurred in PPS/PVA/Fe3O4, reaching 83% after 120 min. Its superior activity was attributed to the synergistic interactions, such as broader absorption of visible light, suppression of electron-hole pair recombination, and increment in the surface area of the mesoporous catalyst. Based on the effects of scavengers, it was concluded that hydroxyl radicals had a vital role in the photodegradation of methylene blue. Kinetically, the photocatalytic activity of PPS/PVA/Fe3O4 followed the pseudo-first-order kinetic model, which was about 3.9 and 3.1 times greater than those of PPS and PPS/Fe3O4, respectively. More specifically, the superparamagnetic behavior of PPS/PVA/Fe3O4 helped to be recovered with an external magnetic field and showed good reusability and stability after four successive runs. The current work suggests that PPS-based photocatalysts can provide promising opportunities for the photocatalytic degradation of organic pollutants and opens up a new perspective on water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Not applicable. All of the mentioned data including XRD, FT-IR, XPS, VSM, UV-Vis, PL, EIS, BET, BJH, FESEM, EDX, TEM, DLS and TOC have obtained in Payame Noor University’s chemistry lab and they didn’t publish previously. Also, the quotes have been cited with the DOI code in the Reference section.

References

  1. M. Sumathi, A. Prakasam, and P. M. Anbarasan (2019). J. Clust. Sci. 30, 757–766. https://doi.org/10.1007/s10876-019-01535-6.

    Article  CAS  Google Scholar 

  2. C. Yavuz and S. Erten-Ela (2022). J. Alloys Compd. 908, 164584. https://doi.org/10.1016/j.jallcom.2022.164584.

    Article  CAS  Google Scholar 

  3. X. Liu, L. Wang, X. Zhou, X. He, M. Zhou, K. Jia, and X. Liu (2021). J. Phys. Chem. Solids 154, 110094. https://doi.org/10.1016/j.jpcs.2021.110094.

    Article  CAS  Google Scholar 

  4. M. Atashkadi, A. Mohadesi, M. A. Karimi, S. Z. Mohammadi, and V. Haji-Aghaei (2022). Environ Technol. https://doi.org/10.1080/09593330.2022.2138558.

    Article  PubMed  Google Scholar 

  5. M. A. Karimi, M. Atashkadi, M. Ranjbar, and A. Habibi-Yangjeh (2020). Arab. J. Chem. 13, 5810–5820. https://doi.org/10.1016/j.arabjc.2020.04.018.

    Article  CAS  Google Scholar 

  6. C. Wang, G. Zhang, H. Zhang, Z. Li, and Y. Wen (2021). Diam. Relat. Mater. 116, 108416. https://doi.org/10.1016/j.diamond.2021.108416.

    Article  CAS  ADS  Google Scholar 

  7. X. S. Nguyen, T. D. Pham, H. T. Vo, and K. D. Ngo (2019). Environ. Technol. 42, 1292–1301. https://doi.org/10.1080/09593330.2019.1665110.

    Article  CAS  PubMed  Google Scholar 

  8. Y. Fan, H. Ben, L. Li, S. Meng, S. Zhang, X. Zheng, and S. Chen (2020). Appl. Catal. B: Environ. 274, 119073. https://doi.org/10.1016/j.apcatb.2020.119073.

    Article  CAS  Google Scholar 

  9. M. A. Karimi, M. Iliyat, M. Atashkadi, M. Ranjbar, and A. Habibi-Yangjeh (2020). J. Chin. Chem. Soc. 67, 2032–2041. https://doi.org/10.1002/jccs.202000068.

    Article  CAS  Google Scholar 

  10. H. Mirzaei, M. H. Ehsani, A. Shakeri, M. R. Ganjali, and A. Badiei (2022). Pollution 8, 779–791. https://doi.org/10.22059/POLL.2022.331685.1202.

    Article  CAS  Google Scholar 

  11. A. M. Díez-Pascual and A. L. Díez-Vicente (2014). ACS Appl. Mater. Interfaces 6, 10132–10145. https://doi.org/10.1021/am501610p.

    Article  CAS  PubMed  Google Scholar 

  12. Y. Du, Q. Zhao, R. Liu, and T. Jiang (2023). J. Clust. Sci. 34, 273–283. https://doi.org/10.1007/s10876-022-02221-w.

    Article  CAS  Google Scholar 

  13. Z. Cao, Y. I. Hsu, A. Koizumi, H. Asahara, T. A. Asoh, and H. Uyama (2021). Polym. J. 53, 1231–1239. https://doi.org/10.1038/s41428-021-00544-5.

    Article  CAS  Google Scholar 

  14. X. Di, L. Fang, Q. Lin, T. Zhang, and X. Zhou (2014). High Perform. Polym. 26, 97–105. https://doi.org/10.1177/0954008313499802.

    Article  CAS  Google Scholar 

  15. H. Ding, Y. Zeng, X. Meng, Y. Tian, Y. Shi, Q. Jiao, and S. Zhang (2006). J. Appl. Polym. Sci. 102, 2959–2966. https://doi.org/10.1002/app.24535.

    Article  CAS  Google Scholar 

  16. X. Wang, Z. Li, M. Zhang, T. Fan, and B. Cheng (2017). RSC Adv. 7, 10503–10516. https://doi.org/10.1039/c6ra28762j.

    Article  CAS  ADS  Google Scholar 

  17. P. Zuo, A. Tcharkhtchi, M. Shirinbayan, J. Fitoussi, and F. Bakir (2019). Macromol. Mater. Eng. 304, 1800686. https://doi.org/10.1002/mame.201800686.

    Article  CAS  Google Scholar 

  18. A. Joseph and A. Vijayanandan (2021). Sustain. Chem. Pharm. 22, 100453. https://doi.org/10.1016/j.scp.2021.100453.

    Article  CAS  Google Scholar 

  19. S. Sunaryono, D. R. Fitriana, L. R. Novita, M. F. Hidayat, H. Hartatiek, N. Mufti, and A. Taufiq (2020). J. Phys. Conf. Ser. 1595, 012003. https://doi.org/10.1088/1742-6596/1595/1/012003.

    Article  CAS  Google Scholar 

  20. C. Yang, N. Han, W. Zhang, W. Wang, W. Li, B. Xia, and X. Zhang (2019). Chem. Eng. J. 374, 1382–1393. https://doi.org/10.1016/j.cej.2019.05.215.

    Article  CAS  Google Scholar 

  21. M. Hassannezhad, M. Hosseini, M. R. Ganjali, and M. Arvand (2019). Anal. Methods 11, 2064–2071. https://doi.org/10.1039/C9AY00146H.

    Article  CAS  Google Scholar 

  22. T. Saleem, R. A. Sarfaraz, I. Ahmed, H. Zulfiqar, Y. Iqbal, I. Saeed, and U. Anwar (2022). Dig. J. Nanomater. Biostruct. 17, 1203–1210. https://doi.org/10.15251/DJNB.2022.174.1203.

    Article  Google Scholar 

  23. J. Gu, H. Jia, S. Ma, Z. Ye, J. Pan, R. Dong, and J. Xue (2020). ACS Omega 5, 30980–30988. https://doi.org/10.1021/acsomega.0c03905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. O. Długosz, K. Szostak, M. Krupiński, and M. Banach (2021). Int. J. Environ. Sci. Technol. 18, 561–574. https://doi.org/10.1007/s13762-020-02852-4.

    Article  CAS  Google Scholar 

  25. A. Taufiq, A. D. Iswatin, R. E. Saputro, C. I. Yogihati, N. Hidayat, and M. Diantoro (2021). Mater. Res. 24, 20200232. https://doi.org/10.1590/1980-5373-MR-2020-0232.

    Article  Google Scholar 

  26. S. Kumar, B. Kumar, A. Baruah, and V. Shanker (2013). J. Phys. Chem. C 117, 26135–26143. https://doi.org/10.1021/jp409651g.

    Article  CAS  Google Scholar 

  27. A. M. Ismail and R. A. Nasr (2022). J. Appl. Polym. Sci. 139, 51847. https://doi.org/10.1002/app.51847.

    Article  CAS  Google Scholar 

  28. Z. Wahab, M. Nawaz, M. Khan, A. Bahader, A. Niaz, A. Rahim, and R. Jin (2021). Desalin. Water Treat. 209, 155–169. https://doi.org/10.5004/dwt.2021.26507.

    Article  CAS  Google Scholar 

  29. S. M. El-Dafrawy, M. Tarek, S. Samra, and S. M. Hassan (2021). Sci. Rep. 11, 1–11. https://doi.org/10.1038/s41598-021-90846-8.

    Article  CAS  Google Scholar 

  30. M. M. Rahman-Khan, S. Pal, M. M. Hoque, M. R. Alam, M. Younus, and H. Kobayashi (2019). ACS Omega 4, 6144–6153. https://doi.org/10.1021/acsomega.8b02807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. A. Sabarudin, R. Wahid, F. C. Nalle, R. A. Shobirin, and D. J. D. H. Santjojo (2017). J. Chem. 10, 1261–1270. https://doi.org/10.7324/RJC.2017.1041906.

    Article  CAS  Google Scholar 

  32. M. J. Kadhim, F. Allawi, M. A. Mahdi, and S. N. Abaas (2022). Iran J Mater Sci Eng. https://doi.org/10.22068/ijmse.2461.

    Article  Google Scholar 

  33. T. He, Y. Wu, C. Jiang, Z. Chen, Y. Wang, G. Liu, and Y. Zhao (2020). PLoS ONE 15, 0237389. https://doi.org/10.1371/journal.pone.0237389.

    Article  CAS  Google Scholar 

  34. C. Modrogan, S. Cǎprǎrescu, A. M. Dǎncilǎ, O. D. Orbuleț, A. M. Grumezescu, V. Purcar, and R. C. Fierascu (2021). Polymers 13, 3911. https://doi.org/10.3390/polym13223911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. S. Wang, C. Wang, B. Zhang, Z. Sun, Z. Li, X. Jiang, and X. Bai (2010). Mater. Lett. 64, 9–11. https://doi.org/10.1016/j.matlet.2009.09.043.

    Article  CAS  Google Scholar 

  36. M. Dehghani and M. Delnavaz (2022). Res Sq. https://doi.org/10.21203/rs.3.rs-1858836/v1.

    Article  Google Scholar 

  37. A. Jiang, X. Huang, G. Zhang, and W. Yang (2022). Catalysts 12, 1336. https://doi.org/10.3390/catal12111336.

    Article  CAS  Google Scholar 

  38. H. Xiao and R. H. Li (2012). Adv. Mater. Res. 550, 757–761. https://doi.org/10.4028/www.scientific.net/AMR.550-553.757.

    Article  CAS  Google Scholar 

  39. F. Zhou, J. Mao, X. Peng, B. Hong, J. Xu, Y. Zeng, Y. Han, H. Ge, and X. Wang (2022). Diam. Relat. Mater. 126, 109070. https://doi.org/10.1016/j.diamond.2022.109070.

    Article  CAS  ADS  Google Scholar 

  40. A. Akhundi and A. Habibi-Yangjeh (2015). Ceram. Int. 41, 5634–5643. https://doi.org/10.1016/j.ceramint.2014.12.145.

    Article  CAS  Google Scholar 

  41. N. Kumar, R. Gusain, S. Pandey, and S. S. Ray (2022). Adv. Mater. Interfaces 10, 2201375. https://doi.org/10.1002/admi.202201375.

    Article  CAS  Google Scholar 

  42. L. Zhu, Y. Zhou, L. Fei, X. Cheng, X. Zhu, L. Deng, and X. Ma (2022). Chemosphere 309, 136721. https://doi.org/10.1016/j.chemosphere.2022.136721.

    Article  CAS  PubMed  Google Scholar 

  43. G. Palanisamy, G. Venkatesh, M. Srinivasan, K. Bhuvaneswari, N. Elavarasan, S. Vignesh, and J. Lee (2022). J. Alloys Compd. 922, 166147. https://doi.org/10.1016/j.jallcom.2022.166147.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Payame Noor University is gratefully acknowledged for its support of this work.

Funding

Payame Noor University provided financial support to Dr. Alireza Mohadesi and Dr. Mohammad Ali Karimi.

Author information

Authors and Affiliations

Authors

Contributions

We confirm that all the authors named in the manuscript have read and approved it. Professor MAK and Associate Professor AM: oversaw all experiments and research activities, including experiment design, data interpretation, and manuscript preparation. MA: author of the manuscript, preparing figures and tables, graphical design, synthesis of nanoparticies and nanocomposites, conducting experiments and research, and data interpretation. SZM and VHA: conducting experiments and research and data collection.

Corresponding authors

Correspondence to Alireza Mohadesi or Mohammad Ali Karimi.

Ethics declarations

Conflict of interest

We confirm that all authors named in the manuscript have read and approved it. In addition, there are no other individuals who meet the criteria for authorship are not listed. Further, we confirm that all authors have agreed on the order of authors listed in our manuscript. Throughout the Editorial process (including communication with the Editorial Manager and directly with the office), the Corresponding Author is the sole point of contact. Mohammad Ali Karimi is responsible for communicating with the other authors about progress, revisions, and final approvals of proofs. It has been confirmed that the Corresponding Author's emails address are current and accurate.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable. The manuscript does not contain data from any person.

Ethical Approval

Not applicable.

Research Involving Human and Animal Participants

The reported research does not have any animal or human data or tissue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atashkadi, M., Mohadesi, A., Karimi, M.A. et al. Preparation, Characterization, and Application of Novel Ternary PPS/PVA/Fe3O4 Nanocomposite for Enhanced Visible Light Photocatalytic Degradation of Methylene Blue. J Clust Sci 35, 497–518 (2024). https://doi.org/10.1007/s10876-023-02489-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-023-02489-6

Keywords

Navigation