Skip to main content

Advertisement

Log in

Novel In-Situ NanoEmulGel (NEG) of Azithromycin with Eugenol for the Treatment of Periodontitis: Formulation Development and Characterization

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The aim of present study was to develop and evaluate novel in situ nanoemulgel (NEG) of azithromycin (AZM) with eugenol for intra-pocket drug delivery for the treatment of periodontitis. Nanoemulsions of AZM were developed by spontaneous emulsification method containing Eugenol (oil phase), Tween 80 (surfactant) and PEG 400 (co-surfactant) and double distilled water (aqueous phase). The nanoemulsions were evaluated for surface morphology, globule size, polydispersibility index (PDI), zeta potential and viscosity. The final nanoemulsion formulation was converted into gelling system by using polaxamer 407 as a gelling agent. The prepared nanoemulgel was further evaluated for drug content, pH, viscosity, syringeability, sol–gel transition temperature, in-vitro drug release and skin irritation test using HET-CAM assay. The optimized nanoemulsion formulation had 10% oil, 40% Smix and 50% water with globule size, PDI and zeta potential as 31 ± 7 nm, 0. 285 ± 0.023 and − 23 ± 4 mV respectively. NEG of azithromycin showed good syringeability and viscosity proving its suitability of desired sol–gel property of formulation for periodontal drug delivery. In-vitro permeability results showed that NEG offered sustained release of AZM. HET-CAM assay revealed the non-irritancy of the developed NEG. The optimized NEG loaded with AZM was found to be suitable for intra-pocket drug delivery for sustained release effect.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Srivastava, K. Kohli, and M. Ali (2016). Formulation development of novel in situ nanoemulgel (NEG) of ketoprofen for the treatment of periodontitis. Drug Deliv. 23 (1), 154–166. https://doi.org/10.3109/10717544.2014.907842.

    Article  CAS  PubMed  Google Scholar 

  2. D. F. Kinane, P. G. Stathopoulou, and P. N. Papapanou (2017). Periodontal diseases. Nature Reviews. Disease Primers 3, 17038. https://doi.org/10.1038/nrdp.2017.38.PMID28805207.

    Article  PubMed  Google Scholar 

  3. A. J. Van Winkelhoff, T. E. Rams, and J. Slots (1996). Systemic antibiotic therapy in periodontics. Periodontology 2000 (10), 45–78. https://doi.org/10.1111/j.1600-0757.1996.tb00068.x.

    Article  Google Scholar 

  4. G. P. Dinos, M. Michelinaki, and D. L. Kalpaxis (2001). Insights into the mechanism of azithromycin interaction with an Escherichia coli functional ribosomal complex. Mol Pharmacol. 59, 1441–1445.

    Article  CAS  Google Scholar 

  5. R. Hirsch, H. Deng, and M. N. Laohachai (2012). Azithromycin in periodontal treatment: more than an antibiotic. J Periodontal Res. 47 (2), 137–148. https://doi.org/10.1111/j.1600-0765.2011.01418.x.

    Article  CAS  PubMed  Google Scholar 

  6. W. S. Champney and R. Burdine (1998). Azithromycin and clarithromycin inhibition of 50S ribosomal subunit formation in Staphylococcus aureus cells. Curr Microbiol. 36, 119–123.

    Article  CAS  Google Scholar 

  7. V. P. Singh, S. U. Nayak, S. K. Nettemu, S. Nettem, Y. H. Lee, and M. B. Verma (2018). Azithromycin in periodontal therapy: beyond the antibiotics. J Nepal Soc Perio Oral Implantol 2 (2), 61–66.

    Article  Google Scholar 

  8. M. Bosnar, B. Bosnjak, S. Cuzic, et al. (2009). Azithromycin and clarithromycin inhibit lipopolysaccharide-induced murine pulmonary neutrophilia mainly through effects on macrophage-derived granulocyte-macrophage colony-stimulating factor and interleukin-1beta. J Pharmacol Exp Ther 331, 104–113.

    Article  CAS  Google Scholar 

  9. S. Hodge, G. Hodge, S. Brozyna, H. Jersmann, M. Holmes, and P. N. Reynolds (2006). Azithromycin increases phagocytosis of apoptotic bronchial epithelial cells by alveolar macrophages. Eur Respir J 28, 486–495.

    Article  CAS  Google Scholar 

  10. A. R. Pradeep, S. V. Sagar, and H. Daisy (2008). Clinical and microbiologic effects of subgingivally delivered 0.5% azithromycin in the treatment of chronic periodontitis. J Periodontol. 79 (11), 2125–2135. https://doi.org/10.1902/jop.2008.070589.

    Article  CAS  PubMed  Google Scholar 

  11. Q. Ma and K. Kinneer (2002). Chemoprotection by phenolic antioxidants. Inhibition of tumor necrosis factor alpha induction in macrophages. J. Biol. Chem. 277, 2477–2484.

    Article  CAS  Google Scholar 

  12. Y. Murakami, M. Shoji, S. Hanazawa, S. Tanaka, and S. Fujisawa (2003). Preventive effect of bis-eugenol, a eugenol ortho dimer, on lipopolysaccharide-stimulated nuclear factor kappaB activation and inflammatory cytokine expression in macrophages. Biochem. Pharmacol. 66, 1061–1066.

    Article  CAS  Google Scholar 

  13. Y. Murakami, M. Shoji, A. Hirata, S. Tanaka, I. Yokoe, and S. Fujisawa (2005). nuclear factor kappaB activation and cyclooxygenase-2 expression in macrophages. Arch. Biochem. Biophys. 434, 326–332.

    Article  CAS  Google Scholar 

  14. Shrestha Sharma, Syed Arman Rabbani, Jasjeet K. Narang, Faheem Hyder Pottoo, Javed Ali, Shobhit Kumar, and Sanjula Baboota (2020). Role of rutin nanoemulsion in ameliorating oxidative stress: pharmacokinetic and pharmacodynamics studies. Chemistry and Physics of Lipids 228, 104890.

    Article  CAS  Google Scholar 

  15. G. Dumortier (2006). A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm. Res. 23 (12), 2709–2728.

    Article  CAS  Google Scholar 

  16. E. Giuliano, D. Paolino, M. Fresta, and D. Cosco (2018). Mucosal applications of poloxamer 407-based hydrogels: an overview. Pharmaceutics. 10 (3), 159. https://doi.org/10.3390/pharmaceutics10030159.

    Article  CAS  PubMed Central  Google Scholar 

  17. S. Sharma, J. K. Sahni, J. Ali, and S. Baboota (2015). Effect of highpressure homogenization on formulation of TPGS loaded nanoemulsion of rutin—pharmacodynamic and antioxidant studies. Drug Deliv. 22, 541–551.

    Article  CAS  Google Scholar 

  18. R. Mahour, J. K. Sahni, S. Sharma, S. Kumar, J. Ali, and S. Baboota (2015). Nanoemulsion as a tool for improvement of cilostazol oral bioavailability. J. Mol. Liq. 212, 792–798.

    Article  CAS  Google Scholar 

  19. S. Kumar, J. Ali, and S. Baboota (2016). Design Expert(®) supported optimization and predictive analysis of selegiline nanoemulsion via the olfactory region with enhanced behavioural performance in Parkinson’s disease. Nanotechnology. 27 (43), 435101. https://doi.org/10.1088/0957-4484/27/43/435101.

    Article  CAS  PubMed  Google Scholar 

  20. V. Bali, M. Ali, and J. Ali (2010). Study of surfactant combinations and development of a novel nanoemulsion for minimising variations in bioavailability of ezetimibe. Coll Surf B Biointerface 76, 410–420.

    Article  CAS  Google Scholar 

  21. S. Shafiq, F. Shakeel, S. Talegaonkar, et al. (2007). Formulation development and optimization using nanoemulsion technique: a technical note. AAPS PharmSciTech 8 (2), E12–E17.

    Article  Google Scholar 

  22. N. Belhaj, F. Dupuis, E. Arab-Tehrany, F. M. Denis, C. Paris, I. Lartaud, and M. Linder (2012). Formulation, characterization and pharmacokinetic studies of coenzyme Q10 PUFA’s nanoemulsions Eur. J. Pharm. Sci. 47, 305–312.

    CAS  Google Scholar 

  23. N. Ahmad, F. J. Ahmad, S. Bedi, S. Sharma, S. Umar, and M. A. Ansari (2019). A novel nanoformulation development of eugenol and their treatment in inflammation and periodontitis. Saudi Pharm J. 27 (6), 778–790. https://doi.org/10.1016/j.jsps.2019.04.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Y. Zheng, W. Q. Ouyang, Y. P. Wei, S. F. Syed, C. S. Hao, B. Z. Wang, and Y. H. Shang (2016). Effects of Carbopol_ 934 proportion on nanoemulsion gel for topical and transdermal drug delivery: a skin permeation study. Int. J. Nanomed. 11, 5971–5987.

    Article  CAS  Google Scholar 

  25. N. Kumari and K. Pathak (2012). Dual controlled release, in situ gelling periodontal sol of metronidazole benzoate and serratiopeptidase: statistical optimization and mechanistic evaluation. Curr Drug Deliv 9, 74–84.

    Article  CAS  Google Scholar 

  26. M. R. Dabhi and N. R. Sheth (2013). Formulation development of physiological environment responsive periodontal drug delivery system for local delviery of metronidazole benzoate. Drug Dev Ind Pharm. 39 (3), 425–436. https://doi.org/10.3109/03639045.2012.662505.

    Article  CAS  PubMed  Google Scholar 

  27. G. Rajpal Deshmukh, K. Hema Kumar, P. V. Suresh Reddy, B. Srinivasa Rao, and C. Venkata Satish Kumar (2012). Evaluation of eye irritation potential of aqueous leaf extract of achyranthes aspera by in vitro and in vivo method. ISRN Toxicol. 2012, 693489.

    Article  Google Scholar 

  28. M. S. Shahab, M. Rizwanullah, S. Alshehri, and S. S. Imam (2020). Optimization to development of chitosan decorated polycaprolactone nanoparticles for improved ocular delivery of dorzolamide: In vitro, ex vivo and toxicity assessments. Int J Biol Macromol. 15 (163), 2392–2404.

    Article  CAS  Google Scholar 

  29. N. Mehra, M. Aqil, and Y. Sultana (2021). A grafted copolymer-based nanomicelles for topical ocular delivery of everolimus: Formulation, characterization, ex-vivo permeation, in-vitro ocular toxicity, and stability study. Eur J Pharm Sci. 159, 105735.

    Article  CAS  Google Scholar 

  30. P. Budai, É. Kormos, I. Buda, G. Somody, and J. Lehel (2021). Comparative evaluation of HET-CAM and ICE methods for objective assessment of ocular irritation caused by selected pesticide products. Toxicol In Vitro. 20 (74), 105150. https://doi.org/10.1016/j.tiv.2021.105150.

    Article  CAS  Google Scholar 

  31. S. Sharma, A. Kumar, J. K. Sahni, et al. (2012). Nanoemulsion based hydrogel containing omega 3 fatty acids as a surrogate of betamethasone dipropionate for topical delivery. Adv Sci Lett 6, 221–231.

    Article  CAS  Google Scholar 

  32. P. U. H. S. Karunarathne, M. G. Thammitiyagodage, and N. S. Weerakkody (2018). Safety evaluation of galangal (Alpinia Galanga) extract for therapeutic Use as an antimicrobial agent. International Journal of Pharmaceutical Sciences and Research. 9 (11), 4582–4590.

    CAS  Google Scholar 

  33. R. Pajukanta, S. Asikainen, M. Saarela, S. Alaluusua, and H. Jousimies-Somer (1992). In vitro activity of azithromycin compared with that of erythromycin against Actinobacillus actinomycetemcomitans. Antimicrob Agents Chemother. 36 (6), 1241–1243. https://doi.org/10.1128/AAC.36.6.1241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. J. D. Williams, J. P. Maskell, H. Shain, G. Chrysos, A. M. Sefton, H. Y. Fraser, and J. M. Hardie (1992). Comparative in vitro activity of azithromycin, macrolides (erythromycin, clarithromycin and spiramycin) and streptogramin RP 59500 against oral organisms. Journal of Antimicrobial Chemotherapy 30, 27–37.

    Article  CAS  Google Scholar 

  35. A. Oteo, D. Herrera, E. Figuero, A. O’connor, I. Gonzalez, and M. Sanz (2010). Azithromycin as an adjunct to scaling and root planing in the treatment of Porphyromonas gingivalis associated periodontitis: a pilot study. J Clin Peridontol 37, 1005–1015.

    Article  CAS  Google Scholar 

  36. M. D. Kitzis, F. W. Goldstein, M. Miégi, and J. F. Acar (1990). In-vitro activity of azithromycin against various Gram-negative bacilli and anaerobic bacteria. J Antimicrob Chemother. 25, 15–18.

    Article  CAS  Google Scholar 

  37. R. Pajukanta (1993). In vitro antimicrobial susceptibility of Porphyromonas gingivalis to azithromycin, a novel macrolide. Oral Microbiol Immunol 8 (5), 325–326.

    Article  CAS  Google Scholar 

  38. J. Jiao (2008). Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery. Adv. Drug Deliv. Rev. 60 (15), 1663–1673.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrestha Sharma.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monika, Sharma, S., Shrivastva, M. et al. Novel In-Situ NanoEmulGel (NEG) of Azithromycin with Eugenol for the Treatment of Periodontitis: Formulation Development and Characterization. J Clust Sci 33, 2589–2600 (2022). https://doi.org/10.1007/s10876-021-02172-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02172-8

Keywords

Navigation