Skip to main content
Log in

Magnetic Amine-Functionalized UiO-66 for Oxaliplatin Delivery to Colon Cancer Cells: In Vitro Studies

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

UiO-66-NH2 (U) and its magnetic UiO-66-NH2 form (MU) were used to enhance Oxaliplatin (OX) efficacy. The fundamental physical and structural properties of nanoparticles were characterized via X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR), UV–Visible (UV–Vis), Brunauer–Emmett–Teller (BET) surface area analysis, field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray analysis (EDAX) and mapping, and Dynamic light scattering (DLS). The results further showed an improved anticancer activity and efficacy of the designed drug delivery systems (DDSs) compared to OX in 2-and 3-dimensional models of colorectal cancer in which cell viability, proliferation and migration, and morphology were assessed. Additionally, the oxidative/antioxidant activity of U and MU-loaded OX demonstrated greater oxidative behavior compared to OX. In vitro experiments showed that U and MU could inhibit the proliferation and migration of colorectal cancer cells in a dose-dependent manner. The half-maximal inhibitory concentration (IC50) values were found to be 6.10 ppm for OX, 18.47 ppm for MU(OX), and 47.02 ppm for U(OX), respectively. The U(OX) and MU(OX) were more effective than OX in terms of drug release. The results indicate that U and MU show considerable promise as a novel and effective drug delivery system for the treatment of colorectal cancer and possibly other malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal (2018). CA: A Cancer Journal for Clinicians 68, 394–424.

    Google Scholar 

  2. D. Sur, M. Colceriu, G. Sur, E. Floca, L. Dascal, and A. Irimie (2019). Medicine and Pharmacy Reports 92, 21–24.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Z. Zhou, B. Li, C. Shen, D. Wu, H. Fan, J. Zhao, H. Li, Z. Zeng, Z. Luo, and L. Ma (2020). Small 16, 2004173.

    Article  CAS  Google Scholar 

  4. J.-H. Qin, H. Zhang, P. Sun, Y.-D. Huang, Q. Shen, X.-G. Yang, and L.-F. Ma (2020). Dalton Transactions 49, 17772–17778.

    Article  CAS  PubMed  Google Scholar 

  5. A. Moriarity, J. O’Sullivan, J. Kennedy, B. Mehigan, and P. McCormick (2016). Therapeutic Advances in Medical Oncology 8, 276–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. M. Palta, B. G. Czito, and C. G. Willett (2014). Nature Reviews Clinical Oncology 11, 182.

    Article  CAS  PubMed  Google Scholar 

  7. H. Gholamzadeh, M. Ilkhani, A. Ameri, and N. Shakeri (2019). Evidence Based Care 8, 7–13.

    Google Scholar 

  8. R.K. Mehmood (2014). Oncology Reviews 8, 256.

    PubMed  PubMed Central  Google Scholar 

  9. E. Raymond, S. Faivre, J.M. Woynarowski, S.G. Chaney (1998). Seminars in Oncology 25, 4–12.

    CAS  PubMed  Google Scholar 

  10. S. Gill, R. R. Thomas, and R. M. Goldberg (2003). Alimentary Pharmacology & Therapeutics 18, 683–692.

    Article  CAS  Google Scholar 

  11. J. Cassidy, J.-L. Misset (2002). Seminars in Oncology 29, 11–20.

    Article  CAS  PubMed  Google Scholar 

  12. P. M. Hoff, E. D. Saad, F. Costa, A. K. Coutinho, R. Caponero, G. Prolla, and R. C. Gansl (2012). Clinical Colorectal Cancer 11, 93–100.

    Article  CAS  PubMed  Google Scholar 

  13. W. Cai, J. Wang, C. Chu, W. Chen, C. Wu, and G. Liu (2019). Advanced Science 6, 1801526.

    Article  PubMed  CAS  Google Scholar 

  14. Q. Lin, W. Li, D. Liu, M. Zhao, X. Zhu, W. Li, L. Wang, T. Zheng, J. Li (2019). ACS Applied Bio Materials 2, 2317–2338.

    Google Scholar 

  15. C. He, K. Lu, D. Liu, and W. Lin (2014). Journal of the American Chemical Society 136, 5181–5184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. W. Liu, Y. Pan, Y. Zhong, B. Li, Q. Ding, H. Xu, Y. Qiu, F. Ren, B. Li, M. Muddassir, and J. Liu (2021). Chemical Engineering Journal 412, 127899.

    Article  CAS  Google Scholar 

  17. Y. Zhong, X. Li, J. Chen, X. Wang, L. Wei, L. Fang, A. Kumar, S. Zhuang, and J. Liu (2020). Dalton Transactions 49, 11045–11058.

    Article  CAS  PubMed  Google Scholar 

  18. S. R. Miller, D. Heurtaux, T. Baati, P. Horcajada, J.-M. Grenèche, and C. Serre (2010). Chemical Communications 46, 4526–4528.

    Article  CAS  PubMed  Google Scholar 

  19. R. C. Huxford, J. Della Rocca, and W. Lin (2010). Current Opinion in Chemical Biology 14, 262–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. À. Ruyra, A. Yazdi, J. Espín, A. Carné-Sánchez, N. Roher, J. Lorenzo, I. Imaz, and D. Maspoch (2015). Chemistry A European Journal 21, 2508–2518.

    Article  CAS  PubMed  Google Scholar 

  21. X. Li, L. Lachmanski, S. Safi, S. Sene, C. Serre, J. M. Grenèche, J. Zhang, and R. Gref (2017). Scientific Reports 7, 13142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couvreur, G. Ferey, R. E. Morris, and C. Serre (2011). Chemical Reviews 112, 1232–1268.

    Article  PubMed  CAS  Google Scholar 

  23. T. Baati, L. Njim, F. Neffati, A. Kerkeni, M. Bouttemi, R. Gref, M. F. Najjar, A. Zakhama, P. Couvreur, and C. Serre (2013). Chemical Science 4, 1597–1607.

    Article  CAS  Google Scholar 

  24. I. A. Lazaro and R. S. Forgan (2019). Coord. Chem. Rev. 380, 230–259.

    Article  CAS  Google Scholar 

  25. H. Tabasi, M. T. Hamed Mosavian, Z. Sabouri, M. Khazaei, and M. Darroudi (2021). Inorganic Chemistry Communications 125, 108430.

    Article  CAS  Google Scholar 

  26. K. A. Mocniak, I. Kubajewska, D. E. Spillane, G. R. Williams, and R. E. Morris (2015). RSC Advances 5, 83648–83656.

    Article  CAS  Google Scholar 

  27. A. Shaabani, R. Mohammadian, S. E. Hooshmand, A. Hashemzadeh, and M. M. Amini (1911). ChemistrySelect 2 (2017), 11906–11911.

    Google Scholar 

  28. O. Polozhentsev, V. Kochkina, V. Mazalova, and A. Soldatov (2016). Journal of Structural Chemistry 57, 1477–1484.

    Article  CAS  Google Scholar 

  29. M. Filippousi, S. Turner, K. Leus, P. I. Siafaka, E. D. Tseligka, M. Vandichel, S. G. Nanaki, I. S. Vizirianakis, D. N. Bikiaris, P. Van der Voort, and G. Van Tendeloo (2016). Int. J. Pharm. 509, 208–218.

    Article  CAS  PubMed  Google Scholar 

  30. V. Nejadshafiee, H. Naeimi, B. Goliaei, B. Bigdeli, A. Sadighi, S. Dehghani, A. Lotfabadi, M. Hosseini, M. S. Nezamtaheri, M. Amanlou, M. Sharifzadeh, and M. Khoobi (2019). Mater. Sci. Eng. C-Mater. Biol. Appl. 99, 805–815.

    Article  CAS  PubMed  Google Scholar 

  31. W. Cai, J. Q. Wang, C. C. Chu, W. Chen, C. S. Wu, and G. Liu (2019). Advanced Science 6, 20.

    Google Scholar 

  32. H. Zhang, Y. Shang, Y. H. Li, S. K. Sun, X. B. Yin, and A. C. S. Appl (2019). Mater. Interfaces 11, 1886–1895.

    Article  CAS  Google Scholar 

  33. J. Fang, Y. Yang, W. Xiao, B. W. Zheng, Y. B. Lv, X. L. Liu, and J. Ding (2016). Nanoscale 8, 3259–3263.

    Article  CAS  PubMed  Google Scholar 

  34. L. Fang, W. Q. Wang, Y. Liu, Z. G. Xie, and L. Chen (2017). Dalton Trans. 46, 8933–8937.

    Article  CAS  PubMed  Google Scholar 

  35. M. Li, Y. Huang, T. Yu, S. Chen, A. Ju, and M. Ge (2014). RSC Advances 4, 46476–46480.

    Article  CAS  Google Scholar 

  36. A. Hashemzadeh, M. M. Amini, R. Tayebee, A. Sadeghian, L. J. Durndell, M. A. Isaacs, A. Osatiashtiani, C. M. A. Parlett, and A. F. Lee (2017). Molecular Catalysis 440, 96–106.

    Article  CAS  Google Scholar 

  37. M. J. Katz, Z. J. Brown, Y. J. Colón, P. W. Siu, K. A. Scheidt, R. Q. Snurr, J. T. Hupp, and O. K. Farha (2013). Chemical Communications 49, 9449–9451.

    Article  CAS  PubMed  Google Scholar 

  38. M. Rovithi, A. Avan, N. Funel, L. G. Leon, V. E. Gomez, T. Wurdinger, A. W. Griffioen, H. M. Verheul, and E. Giovannetti (2017). Scientific Reports 7, 44686.

    Article  PubMed  PubMed Central  Google Scholar 

  39. A. Avan, K. Quint, F. Nicolini, N. Funel, A. E. Frampton, M. Maftouh, S. Pelliccioni, G. J. Schuurhuis, G. J. Peters, and E. Giovannetti (2013). Current Pharmaceutical Design 19, 940–950.

    Article  CAS  PubMed  Google Scholar 

  40. E. Y. Chen, C. M. Tan, Y. Kou, Q. Duan, Z. Wang, G. V. Meirelles, N. R. Clark, and A. Ma’ayan (2013). BMC Bioinformatics 14, 128.

    Article  PubMed  PubMed Central  Google Scholar 

  41. M. Madesh and K. Balasubramanian (1997). Indian Journal of Biochemistry and Biophysics 34, 535–539.

    CAS  PubMed  Google Scholar 

  42. F. Amerizadeh, N. Rezaei, F. Rahmani, S. M. Hassanian, R. Moradi-Marjaneh, H. Fiuji, N. Boroumand, A. Nosrati-Tirkani, M. Ghayour-Mobarhan, G. A. Ferns, M. Khazaei, and A. Avan (2018). Journal of Cellular Biochemistry 119, 10250–10261.

    Article  CAS  PubMed  Google Scholar 

  43. F. Rahmani, F. Amerizadeh, S.M. Hassanian, M. Hashemzehi, S.N. Nasiri, H. Fiuji, G.A. Ferns, M. Khazaei, A. Avan (2019). Journal of Cellular Physiology 234, 14123–14132.

    Article  CAS  PubMed  Google Scholar 

  44. A. Habeeb, Reaction of protein sulfhydryl groups with Ellman’s reagent (1972). Methods in Enzymology 25, 457–464.

    Article  CAS  PubMed  Google Scholar 

  45. H. Hosseinzadeh and H. R. Sadeghnia (2005). J Pharm Pharm Sci 8, 394–399.

    CAS  PubMed  Google Scholar 

  46. L. Valenzano, B. Civalleri, S. Chavan, S. Bordiga, M. H. Nilsen, S. Jakobsen, K. P. Lillerud, and C. Lamberti (2011). Chemistry of Materials 23, 1700–1718.

    Article  CAS  Google Scholar 

  47. J. López, F. González, F. Bonilla, G. Zambrano, M. Gomez (2010). Revista Latinoamericana de Metalurgia y Materiales 30, 60–66.

    Google Scholar 

  48. B. Agrahari, S. Layek, S. Kumari, R. Ganguly, and D. D. Pathak (2017). Journal of Molecular Structure 1134, 85–90.

    Article  CAS  Google Scholar 

  49. V. Kazbanov, A. Starkov, G. Kozhukhovskaya, T. Kazbanova, V. Trofimov, and N. Pavlenko (2001). Russian Journal of Coordination Chemistry 27, 65–69.

    Article  CAS  Google Scholar 

  50. S. Ray, P. Karmakar, A. Chattopadhyay, D. Nandi, R. Sarkar, and A. K. Ghosh (2016). International Journal of Chemical Kinetics 48, 347–357.

    Article  CAS  Google Scholar 

  51. R. Wysokiński, J. Kuduk-Jaworska, and D. Michalska (2006). Journal of Molecular Structure: THEOCHEM 758, 169–179.

    Article  CAS  Google Scholar 

  52. Y. Wang, L. Wang, W. Huang, T. Zhang, X. Hu, J. A. Perman, and S. Ma (2017). Journal of Materials Chemistry A 5, 8385–8393.

    Article  CAS  Google Scholar 

  53. Y. Cao, H. Zhang, F. Song, T. Huang, J. Ji, Q. Zhong, W. Chu, Q. Xu (2018). Materials 11, 589.

    Article  PubMed Central  CAS  Google Scholar 

  54. A. Mehta, J. Van den Hoven, H. Rosing, M. Hillebrand, B. Nuijen, A. Huitema, J. Beijnen, and V. Verwaal (2015). Int. J. Pharm. 479, 23–27.

    Article  CAS  PubMed  Google Scholar 

  55. J. Stetefeld, S. A. McKenna, and T. R. Patel (2016). Biophysical Reviews 8, 409–427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. B. Wessling (1993). Advanced Materials 5, 300–305.

    Article  CAS  Google Scholar 

  57. M. P. Monopoli, F. B. Bombelli, and K. A. Dawson (2011). Nature nanotechnology 6, 11.

    Article  CAS  PubMed  Google Scholar 

  58. Z. Yu, J. C. Reid, and Y.-P. Yang (2013). Journal of Pharmaceutical Sciences 102, 4284–4290.

    Article  CAS  PubMed  Google Scholar 

  59. M. Mahmoudi, I. Lynch, M. R. Ejtehadi, M. P. Monopoli, F. B. Bombelli, and S. Laurent (2011). Chemical Reviews 111, 5610–5637.

    Article  CAS  PubMed  Google Scholar 

  60. F. He and D. Zhao (2007). Environmental Science & Technology 41, 6216–6221.

    Article  CAS  Google Scholar 

  61. M. L. Garcia-Martin, G. V. Martinez, N. Raghunand, A. D. Sherry, S. Zhang, and R. J. Gillies (2006). Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine 55, 309–315.

    Article  CAS  Google Scholar 

  62. D. Screnci, M. J. McKeage, P. Galettis, T. W. Hambley, B. D. Palmer, and B. C. Baguley (2000). British Journal of Cancer 82, 966–972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. F. Zhang, X. Sang, X. Tan, C. Liu, J. Zhang, T. Luo, L. Liu, B. Han, G. Yang, and B. P. Binks (2017). Langmuir 33, 12427–12433.

    Article  CAS  PubMed  Google Scholar 

  64. C. Negrei, A. Hudita, O. Ginghina, B. Galateanu, S. N. Voicu, M. Stan, M. Costache, C. Fenga, N. Drakoulis, and A. M. Tsatsakis (2016). Frontiers in pharmacology 7, 172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. A. Eftekhari, E. Ahmadian, V. Panahi-Azar, H. Hosseini, M. Tabibiazar, and S. Maleki Dizaj (2018). Artificial Cells, Nanomedicine, and Biotechnology 46, 411–420.

    Article  CAS  PubMed  Google Scholar 

  66. B. Ankamwar, T. Lai, J. Huang, R. Liu, M. Hsiao, C. Chen, Y. Hwu (2010). Nanotechnology 21, 075102.

    Article  CAS  Google Scholar 

  67. R. Xing, X. Wang, C. Zhang, Y. Zhang, Q. Wang, Z. Yang, and Z. Guo (2009). Journal of Inorganic Biochemistry 103, 1039–1044.

    Article  CAS  PubMed  Google Scholar 

  68. P.-C. Lee, C.-Y. Lin, C.-L. Peng, and M.-J. Shieh (2016). Biomaterials Science 4, 1742–1753.

    Article  CAS  PubMed  Google Scholar 

  69. A. Hashemzadeh, F. Amerizadeh, F. Asgharzadeh, M. Darroudi, A. Avan, S. M. Hassanian, M. Landarani, and M. Khazaei (2021). Toxicology and Applied Pharmacology 423, 115573.

    Article  CAS  PubMed  Google Scholar 

  70. D. Chen, D. Yang, C. A. Dougherty, W. Lu, H. Wu, X. He, T. Cai, M. E. Van Dort, B. D. Ross, and H. Hong (2017). ACS Nano 11, 4315–4327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. C. M. Coleman, T. Venkataraman, Y. V. Liu, G. M. Glenn, G. E. Smith, D. C. Flyer, and M. B. Frieman (2017). Vaccine 35, 1586–1589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. H. He, H. Xiao, H. Kuang, Z. Xie, X. Chen, X. Jing, and Y. Huang (2014). Colloids and Surfaces B: Biointerfaces 117, 75–81.

    Article  CAS  PubMed  Google Scholar 

  73. K. Wang, L. Liu, T. Zhang, Y.-L. Zhu, F. Qiu, X.-G. Wu, X.-L. Wang, F.-Q. Hu, and J. Huang (2011). International Journal of Nanomedicine 6, 3207.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. C. Xu, B. Wang, and S. Sun (2009). Journal of the American Chemical Society 131, 4216–4217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. X. Ding, J. Gao, Z. Wang, H. Awada, and Y. Wang (2016). Biomaterials 111, 80–89.

    Article  CAS  PubMed  Google Scholar 

  76. N. Rakhshani, N. Hassanzadeh Nemati, A. Ramezani Saadatabadi, and S. K. Sadrnezhaad (2021). International Journal of Engineering 34, 1874–1881.

    CAS  Google Scholar 

  77. H. Mellor, S. Snelling, M. Hall, S. Modok, M. Jaffar, T. Hambley, and R. Callaghan (2005). Biochemical Pharmacology 70, 1137–1146.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the many colleagues for their helpful discussions. This study was supported by grant numbers of 982641 from Medical Research Development (NIMAD), 97017412 Iran National Science Foundation (INSF), and 971010 from Mashhad University of Medical Sciences (MUMS). G.D. is partially exempted from his duties at BNS to pursue fundamental research.

Funding

This work was financially supported by the National Institute for Medical Research Development (NIMAD) through grant # 982641, Iran National Science Foundation (INSF) through grant # 97017412, and Mashhad University of Medical Sciences (MUMS) through grant # 971010 as a research project.

Author information

Authors and Affiliations

Authors

Contributions

AH was initiated, designed, and executed the project and finally drafted the manuscript. The cellular experiment was performed and written by FA. The Oxidation stress tests were done and written by FA. SMH was partially contributed to data analyses. ML was partially contributed to data analyses. The whole project including the study and performed experiments was supervised by MK. He also provided all the chemicals, equipment, and funds. ZS was partially contributed to data analyses. MD was a consultant of this project. AA supervised cellular experiments. GPCD critically appraised the study, analyzed data, and revised figures. All authors read and approved the final version.

Corresponding authors

Correspondence to Majid Darroudi or Majid Khazaei.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Research Data

The research data used in the preparation of the manuscript is available by email to the corresponding authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 631 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemzadeh, A., Amerizadeh, F., Asgharzadeh, F. et al. Magnetic Amine-Functionalized UiO-66 for Oxaliplatin Delivery to Colon Cancer Cells: In Vitro Studies. J Clust Sci 33, 2345–2361 (2022). https://doi.org/10.1007/s10876-021-02158-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02158-6

Keywords

Navigation